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Abstract—The ongoing scaling of semiconductor technology is
causing severe increase of on-chip power density and temperature
in microprocessors. This urgently requires both power and
thermal management during system design. In this paper, we
propose a model checking based technique using extended timed
automata to solve the processor frequency assignment problem
in a temperature- and energy-constrained multitasking system.
We also develop a polynomial time approximation algorithm to
address the state space explosion problem caused by symbolic
model checker. Our approximation scheme is guaranteed to not
generate any false positive answer, while it may return false neg-
ative answer in rare cases. Our method is universally applicable
since it is independent of any system and task characteristics.
Experimental results demonstrate the usefulness of our approach.

I. INTRODUCTION

Along with the performance improvement in state-of-the-art
microprocessors, power densities are rising rapidly due to the
fact that feature size scales faster than voltages. In last five
years, though the processor frequency is only improved by
30%, the power density is more than doubled and expected
to reach over 250W/cm2 [1]. Since energy consumption is
converted into heat dissipation, high heat flux increases the
on-chip temperature. The “hot spot” on current microprocessor
die, caused by nonuniform peak power distribution, could
reach up to 120◦C [2]. This trend is observed in both desktop
and embedded processors [3].

Since high on-chip thermal dissipation has severe detrimen-
tal impact, we have to control the instantaneous temperature
so that it does not go beyond a certain threshold. Thermal
management schemes at all levels of system design are widely
studied for general-purpose systems. However, in the context
of embedded systems, traditional packaging and cooling solu-
tions are not applicable due to the constraints on device size
and cost. Moreover, embedded systems normally have limited
energy budgets since most devices are driven by batteries.
Multitasking systems with real-time constraints add another
level of difficulty since tasks have to meet their deadlines.
Since such systems normally have well-defined functionalities,
this multi-objective problem admits design-time algorithms.

Dynamic voltage scaling (DVS) is acknowledged as one of
the most efficient techniques used in both energy optimization
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and temperature management. In existing literatures, temper-
ature (energy)-constrained means that there is a temperature
threshold (energy budget) which cannot be exceeded, while
temperature (energy)-aware means that there is no constraint
but maximum instantaneous temperature (total energy con-
sumption) needs to be minimized. In this paper, we propose
a formal method based on model checking for temperature-
and energy-constrained (TCEC) scheduling in multitasking
systems.

There are two important contributions in this paper. We
developed a flexible and automatic design flow which models
the TCEC problem in timed automata and solves it using
formal verification techniques. Our approach is applicable to
a wide variety of system and task characteristics as well as
can incorporate runtime voltage scaling overhead. We also
present an approximation algorithm, which effectively address
the state space explosion problem. The approximation scheme
will give no false positive answer, while its possibility to report
false negative answer can be small enough for practical usage.

The rest of the paper is organized as follows. Section II
introduces relevant existing research works. Section III pro-
vides related background information. Section IV provides
an overview of our framework. Section V and Section VI
describes our contribution in details. Experimental results are
presented in Section VIII. Section IX concludes the paper.

II. RELATED WORK

Energy-aware scheduling techniques for real-time systems
have been widely studied to reduce energy consumption. For
example, Jejurikar et al. solved the energy-aware scheduling
problem for non-preemptive task sets [4]. Zhang et al. [5] has
shown that applying DVS in real-time systems is a NP-hard
problem. Optimal and approximation algorithms are given
in [5] [6], while other works proposed heuristics. However,
these techniques are not aware of controlling the operating
temperature.

Temperature-aware scheduling in real-time systems has
drawn significant research interests in recent years. wang et
al. [7] introduced a simple reactive DVS scheme aiming at
meeting task timing constraints and maintaining processor
safe temperature. Zhang et al. [8] proved the NP-hardness of
temperature-constrained performance optimization problem in
real-time systems and proposed an approximation algorithm.
However, none of these techniques solves TCEC problem.

Existing research formulated the voltage/frequency assign-
ment problems in different models. For example, Chantem et
al. [9] used ILP to model scheduling problem with steady-
state temperature constraints. Unfortunately, when transient
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temperature is considered, the expansion of the temperature
constraint introduces a large number of product terms, which
prevent us to solve the problem efficiently using ILP solvers.
Coskun et al. [10] circumvented this problem using an iterative
ILP and thermal simulation approach, although the conver-
gence to the optimal solution is not guaranteed. Although it
is possible to accelerate the solving process by converting the
problem into Pseudo-Boolean satisfiability problem, like SAT-
based test generation techniques [11] [12], its applicability to
large problems is limited by the capacity of solvers.

There are several studies on dynamic power management
(DPM) using formal verification methods for embedded sys-
tems [13] and multiprocessor platforms [14]. Shukla et al.
[13] provided a preliminary study on evaluating DPM schemes
using an off-the-shelf model checker. Lungo et al. [14] tried
to incorporate verification of DPM schemes in the early
design stage. None of these approaches considers temperature
management in such systems. Moreover, they did not account
for energy and timing constraints, which are important in real-
time embedded systems.

Temperature- or energy-constrained scheduling problems
are also related to the multi-constrained path (MCP) problem
for Quality of Service (QoS). MCP was extensively studied by
network community. For example, Chen et al. [15] designed an
approximation algorithm for MCP with two constraints. Xue et
al. [16] proposed polynomial time approximation algorithms,
which can be applied for more than two constraints. However,
since the QoS costs are usually modeled as additive constants,
these existing methods cannot be applied directly to solve
TCEC problem due to the fact that the computation of the
temperature is not additive.

III. BACKGROUND AND PROBLEM FORMULATION

In this section, we will provide the formal description of
the TCEC scheduling problem.

A. Thermal Model

A thermal RC circuit is normally utilized to model the
temperature variation behavior of a microprocessor [8]. We
adopt the RC circuit model proposed in [17], to capture the
heat transfer phenomena in the processor. If P denotes the
power consumption during a time interval, R denotes the
thermal resistance, C represents the thermal capacitance, Tamb
and Tinit are the ambient and initial temperature, respectively,
the temperature at the end of the time interval t can be
calculated as:

T = P ·R+ Tamb − (P ·R+ Tamb − Tinit) · e
−t
RC

= (1− e
−t
RC )Ts + e

−t
RC Tinit

(1)

where t is the length of the time interval, Ts = P ·R+ Tamb
is the steady-state temperature.

B. Energy Model

We adapt the energy model proposed in [18]. Processor’s
dynamic power can be represented as

Pdyn = α · C · V 2
dd · f (2)

Here Vdd is the supply voltage and f is the operation frequen-
cy. C is the total capacitance and α is the actual switching
activity which varies for different applications [19]. Static
power is given by Psta = Vdd · Isubth + |Vbs| · Ij where
Vbs, Isubth and Ij denote the body bias voltage, subthreshold
current and reverse bias junction current, respectively. Hence,
we have P = Pdyn + Psta.

C. System Model

The system we consider can be modeled as:
• A voltage scalable processor which supports l discrete

voltage levels {v1,v2, ... ,vl}
• A set of m independent tasks {τ1, τ2, ... ,τm}.
• Each task τi ∈ {τ1, τ2, ... ,τm} has known attributes

including worst-case workload, arrival time, deadline,
period (if it is periodic) or inter-arrival time (if it is
aperiodic/sporadic).

The runtime overhead of voltage scaling is variable and
depends on the original and new voltage levels. The context
switching overhead is assumed to be constant. For ease of
discussion, the terms task, job and execution block refer to
the same entity in the rest of this paper.

D. TCEC problem

The methodology described in this paper can be applied
to both scenarios in which task set has a common deadline
and each task has its own deadline. For ease of discussion,
the following definition of TCEC problem is constructed for
task sets with a common deadline. The second case will be
discussed in Section VII.

Given a trace of m jobs {τ1, τ2, · · · , τm}, where task τi+1

is executed after τi (1 ≤ i < m). If tasks are assumed to
have the same power profile (i.e., α is constant), the energy
consumption and execution time for τi under voltage level vj ,
denoted by wi,j and ti,j respectively, can be calculated based
on the given processor model. Otherwise, they can be collected
through static profiling by executing each task under every
voltage level. Let ψi,j and δi,j denote runtime energy and time
overhead, respectively, for scaling from voltage vi to vj . Since
power is constant during an execution block, temperature is
monotonically either increasing or decreasing [20]. We denote
T (i) as the final temperature of τi. If the task set has a common
deadline D, the safe temperature threshold is Tmax and the
energy budget is W , TCEC scheduling problem can be defined
as follows.

Definition 1: TCEC instance: Is there a voltage assign-
ment {l1, l2, ..., lm}1 such that:

m∑
i=1

(ti,li + δli−1,li) ≤ D (3)

m∑
i=1

(wi,li + ψli−1,li) ≤W (4)

T (i) ≤ Tmax,∀i ∈ 1, ...,m (5)

1li denote the index of the processor voltage level assigned to τi.
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T (i) is calculated based on Equation (1) for each i, i.e.,

T (i) = (1− βi)T lis + βiT (i− 1) (6)

where βi = e−ti,li/RC (Recall that ti,li is the worst case
execution time of task τi under voltage level li), T (0) = Tinit,
and T lis is the steady-state temperature of the system, when
li is applied. Equation (3), (4) and (5) denote the common
deadline, energy and temperature constraints, respectively.

When the workload is periodic, we also require the temper-
ature at the end of the hyperperiod to be less than or equal to
the initial temperature.

IV. OVERVIEW

Figure 1 illustrates the workflow of our approach, which
accepts a task execution trace as input. The task execution
trace can be produced by a scheduler with certain scheduling
policy. The scheduler executes the task set under the highest
voltage level and produces a trace of execution blocks. In this
paper, an execution block is defined as a piece of task execu-
tion in a continuous period of time under a single processor
voltage/frequency level. The task execution trace, along with
system specification (processor voltage, frequency levels, tem-
perature constraints or/and energy budget) and thermal/power
models are fed into the timed automata generator (TAG) that
we have developed. TAG generates two important outputs.
One is the corresponding timed automata model, which will
be discussed in Section V-B, and the other one is properties
reflecting the temperature/energy/deadline constraints defined
in system specification.

After that, a problem solver is applied to find a feasible
schedule of the tasks, or confirm that the required constraints
cannot be met. Based on the problem size, either a model
checker or the approximation algorithm we developed in Sec-
tion VI can be used to solve the problem. This methodology
is flexible and completely automatic.

System 
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Timed Automata Description 

Temperature/

Power Model 

Properties 

Result + Solution Trace 

Task Execution 

Trace 

Temperature/

Energy 

Constraints 

Timed Automata 

Generator (TAG) 

Problem Solving Driver 

 

Model Checker    Approximation  

                          Algorithm 

 

 

Fig. 1. Overview of our TCEC schedulability framework.

Section V describes a timed automata based model checking
framework for TCEC. To address the state space explosion
problem in model checking, Section VI proposes an approx-
imation algorithm for TCEC scheduling. Finally, Section VII
demonstrates the applicability of our approach to solve other
problem variants.

V. TCEC MODELING WITH TIMED AUTOMATON

A. Timed Automata

A classical timed automaton [21] is a finite-state automaton
extended with notion of time. A set of clock variables are
associated with each timed automaton and elapse uniformly
with time in each state (i.e., location). Transitions (i.e., edges)
are performed instantaneously from one state to another. Each
transition is labeled with a set of guards which are Boolean
constraints on clock variables and must be satisfied in order to
trigger the transition. Transitions also have a subset of clock
variables that need to be reset by taking the transition.

B. Modeling with Extended Timed Automata

Our approach scales the processor voltage level on the gran-
ularity of each execution block. In other words, the frequency
level is changed at the beginning of each execution block.
This strategy can lead to more flexible energy and temperature
management in preemptive systems since decisions are made
upon a finer granularity compared to inter-task manner [8]. We
utilize timed automata to model the voltage scaling problem
in the execution trace and extend the original automata with
notions of temperature and energy consumption.

For illustration, an extended timed automata A generated by
TAG is shown in Figure 2 assuming that there are two tasks
and two voltage levels. Generally, we use l states for each task,
forming disjoint sets (horizontal levels of nodes in Figure 2)
among tasks, to represent different voltage selections. We also
specify an error state (ERROR) which is reached whenever
there is a deadline miss. There are also a source state (BEGIN)
and a destination state (END) denoting the beginning and the
end of the task execution. Therefore, there are totally (m · l+
3) states2. There is a transition from every state of one task
to every state of its next task. In other words, the states in
neighboring disjoint sets are fully connected. There are also
transitions from every task state to the error state. All the states
of the last task have transitions to the end state.

The system temperature and cumulative energy consump-
tion are represented by two global variables, named temp
and energy, respectively. Constants such as execution time
ti,j , energy consumption wi,j , common deadline D, thermal
capacitance/resistance, ambient temperature Tamb and initial
temperature Tinit are stored in respective variables. There
are two clock variables, time and exec, which represent the
global system time and the local timer for task execution,
respectively. Both clock variables are initially set to 0.

The transition from the source state carries a function
initialize(), which contains updates to initialize all the vari-
ables and constants. Each state is associated with an invariant
condition, in the form of exec ≤ ti,j , which must be satisfied
when the state is active. This invariant represents the fact that
the task is still under execution. Each transition between task
states carries a pair of guard: time ≤ D and exec == ti,j .
The former one ensures that the deadline is observed and the
latter one actually triggers the transition, reflecting the fact

2m blocks with each supporting l voltage levels requires m · l nodes, plus
BEGIN, END and ERROR
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that the current task has finished execution. Note that the
overhead can be incorporated here since we know the start
and end voltage level, if they are different. Each transition
is also labeled with three important updates. The first one,
temp = calcTemp(temp), basically updates the current system
temperature after execution of one task based on the previous
temperature, average power consumption and the task’s exe-
cution time. The second one, energy = calcEnergy(energy),
adds the energy consumed by last task to energy. The third
update resets clock exec to 0. All the transitions to the error
state are labeled with a guard in the form of time > D, which
triggers the transition whenever the deadline is missed during
task execution. Note that not all the transition labels are shown
in Figure 2.

ERROR

Deadline miss transition

temp = calcTemp(temp)
energy = calcEnergy(energy)
exec = 0

time ≤ D and exec == t1,1
temp = calcTemp(temp)
energy = calcEnergy(energy)
exec = 0

TASK1-V2
exec≤ t1,2

TASK2-V2
exec≤ t2,2

time> D

initialize()

END

initialize()

TASK2-V1
exec≤ t2,1

TASK1-V1
exec≤ t1,1

BEGIN

Task execution transition

time ≤ D and exec == t2,1

Fig. 2. TCEC problem modeled in extended timed automata.

To solve the TCEC problem as formulated above, we need
to find a state sequence with the following properties. First, the
final state is the destination state which guarantees the deadline
constraint. Next, the temperature temp is always below Tmax
in every state. Finally, the energy consumption energy is no
larger than W . We can write this requirement as a property in
computation tree logic (CTL) as:

EG((temp < Tmax ∧ energy < W ) U A.end) (7)

where A.end means the destination state is reached. Now,
we can use the model checker to verify this property and, if
satisfied, the witness trace it produces is exactly the TCEC
schedule that we want.

Timed automata can be used to model the TCEC problem
effectively [22]. However, when the number of jobs is large,
it can be time consuming to check the properties on the timed
automata directly. The reason is that the underlying symbolic
model checker sometimes cannot handle large problems due
to the state space explosion problem. Therefore, a different
algorithmic solution is desired to handle large scale TCEC
problems.

VI. APPROXIMATION ALGORITHM FOR TCEC
SCHEDULING

To alleviate the state explosion problem in TCEC schedul-
ing, we can formulate our model checking problem as a
Multi-Constrained Path problem (MCP). Although MCP is
NP-Complete for more than one constraints [23], we are able
to design polynomial time approximation scheme which can
be tuned with enough accuracy for practical design usage. In
this section, we first explain how to model TCEC problem as
MCP. Next, we present our polynomial time approximation
algorithm for TCEC.

A. Notations

Given a directed graph G = (V,E), a path p = s →
n1 → · · · → ni and an edge ei = (ni, ni+1) ∈ E,
where s, n1, · · · , ni ∈ V , the notation p||ei denotes the path
s → n1 → · · · → ni → ni+1. In other words, p can
also be expressed as e0||e1|| · · · ||ei, where e0 = (s, n1),
e1 = (n1, n2),· · · ,ei = (ni, ni+1).

Given vectors a, b ∈ RN , we say that a is dominated by
b, or a ≤ b, iff each component of a is smaller or equal to
the corresponding component in b. For a vector a, we use
a1, a2, a3 to denote the first, second and third component of
a.

B. TCEC as MCP

··
···

· ··
·

s

d

n1,2 n1,L

n2,Ln2,1

n1,1

n2,2

· · ·

nm,1 nm,2 nm,L

Fig. 3. Job execution graph

An instance TCEC can be reduced to an instance of MCP, if
we view the execution jobs at different voltage levels as a path
in job execution graph (JEG). As shown in Figure 3, a JEG
contains a source node s, a destination node d, and m layers
of job (task) nodes. In each layer, there are l nodes for each
voltage level. Edges only exist between different layers of job
nodes, or job nodes and source/destination nodes. Formally,
we define JEG as follows.

Definition 2: Job execution graph (JEG) is an acyclic
directed graph G = (V,E) with following properties: V =
{s, d}

⋃
{ni,j |1 ≤ i ≤ m, 1 ≤ j ≤ l}; E = {(s, n1,j)|1 ≤
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j ≤ l}
⋃
{(nm,j , d)|1 ≤ j ≤ l}

⋃
{(ni,j , ni+1,j′)|1 ≤ i <

m, 1 ≤ j, j′ ≤ l}.
In order to calculate the values of time, energy and temper-

ature on JEG, we recursively define path transfer functions for
path p = e0||e1|| · · · ||ei−1||ei (1 ≤ i ≤ m) from s to ni,j as:

fpt (t0) = fqt (t0) + ti,j + δ(j′, j) (8)
fpw(w0) = fqw(w0) + wi,j + ψ(j′, j) (9)
fpT (T0) =β · fqT (T0) + (1− β) · Ts,

β = e−ti,j/RC
(10)

where q = e0||e1|| · · · ||ei−1 is a prefix of p, which starts from
s and ends at ni−1,j′ . For p = e0 = (s, n1,j), fpt (t0) = t0,
fpw(w0) = w0, fpT (T0) = T0, where t0, w0 and T0 are the time,
energy consumption and temperature before the execution of
the task set. Normally, we have t0 = w0 = 0 and T0 = Tinit.
We can also write the path transfer functions in vector form

fp(I) = [fpt (t0)fpw(w0)fpT (T0)]T (11)

where I = [t0 w0 T0]T .
Using the above definition, the value of time, energy

consumption and temperature of first i jobs with voltage
assignment {j1, j2, · · · , ji} can be expressed as fp(I), where
p = s→ n1,j1 → · · · → ni,ji . We use the example in Figure 4

e1[0us, 0mJ]

d

s

n1,1[70
◦C]

n2,1[70
◦C]

n1,2[80
◦C]

n2,2[80
◦C]

e2[0us, 0mJ]

e3[20us, 30mJ]

e8[9us, 24mJ]e7[12us, 18mJ]

e6[15us, 40mJ]

e5[20us, 41mJ]

e4[21us, 31mJ]

Fig. 4. JEG of TCEC. The values next to each edge are corresponding time
and energy consumption.

to illustrate such computation in practice. In this case, we
have m = 2 jobs and l = 2 voltage levels. Suppose that the
initial temperature T0 = 65◦C and constant RC = 30us.
The design constraints are deadline D = 32us, energy budget
W = 55mJ and maximum temperature Tmax = 75◦C.
Assume that we decide to use voltage level 1 and 2 to execute
job 1 and 2 respectively. Based on the definition of JEG, this
voltage assignment corresponds to s − d path p = e1||e4||e8
(highlighted). The time consumption after the execution of all
jobs can therefore be computed as

f
e1||e4||e8
t (0) = f

e1||e4
t (0) + 9us = fe1t (0) + 21us+ 9us

= 0us+ 21us+ 9us = 30us

Similarly, we can compute the energy consumption of p as

fe1||e4||e8w (0) = 0mW + 31mJ + 24mJ = 55mJ

and the final temperature of p as

f
e1||e4||e8
T (0) = (e−

9
30 (e−

21
30 · 65◦C + (1− e− 21

30 ) · 70◦C)

+ (1− e− 9
30 ) · 80◦C) = 70.8◦C

In other words, our schedule or path p satisfies the constraints
D = 32us, W = 55mJ and Tmax = 75◦C.

Clearly, the model checking problem discussed in Section V
can be answered by checking whether there exists a path p,
such that fp(I) ≤ C, where C = [D W Tmax]T . The
formal definition of our MCP problem is as follows.

Definition 3: MCP (G, I,C) instance: Given a job exe-
cution graph G, an initial state vector I = [t0, w0, T0]T , a
constraint vector C = [D,W, Tmax]T , is there an s − d path
p = e0||...||em such that for all 0 ≤ i ≤ m

fe0||···||ei(I) ≤ C

The definition above seems to be tighter than the definition of
TCEC given in Section V-B, because all constraints are en-
forced after each job, while the deadline and energy constraint
are enforced only after the last job in TCEC. However, they
are essentially equivalent due to monotonic nature of execution
time and energy consumption.

In the rest of the paper, we will use MCP to present
MCP (G, I,C) for ease of illustration. Our definition of
MCP differs from Quality of Service (QoS) MCP problems
[16], [15] in networking, because the computation of the
temperature is not additive. As a result, the existing techniques
can not be applied directly to solve our problem.

C. Approximation Algorithm

Before we introduce our approximation scheme for MCP ,
we first present another problem MCPε, which is closely
related to MCP .

Definition 4: MCPε(G, I,C) instance: Given a positive
constant ε > 0, a job execution graph G; an initial state vector
I = [t0, w0, T0]T ; a constraint vector C = [D,W, Tmax]T ,
there exists an s − d path p = em||...||e0 such that for all
0 ≤ i ≤ m

f
e0||···||ei
t (t0) ≤ D

fe0||···||eiw (w0) ≤ (1− ε)W
f
e0||···||ei
T (T0) ≤ (1− ε)Tmax

MCPε is tighter than MCP . Any s−d path that satisfies the
constraints in MCPε also satisfies the constraints in MCP ,
but not vice versa. In this section, we are going to develop an
approximation algorithm EBFε to MCP , such that 1) EBFε
is true implies MCP is true, and 2) EBFε is false implies
MCPε is false. In other words, EBFε gives no false positive
answer to MCP . It may give false negative answer when
the exact answers to MCP and MCPε are true and false
respectively (i.e., there are feasible paths for MCP , but no
feasible path for MCPε). Since MCPε becomes MCP when
ε = 0, EBFε will be more and more accurate when ε→ 0.
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In a JEG G = (V,E), we define functions h1, h2, h3 on
each edge to simplify the description of our approximation
scheme. Here, h1, h2, and h3 corresponds to the functions
related to the functions of time, energy and temperature,
respectively. For e = (s, n1,j) ∈ E (1 ≤ j ≤ l), we define

he1(x1) = x1 (12)
he2(x2) = x2 (13)
he3(x3) = x3 (14)

For other e ∈ E,

he1(x1) = x1 + ti,j + δ(j′, j) (15)
he2(x2) = x2 + wi,j + ψ(j′, j) (16)
he3(x3) = β · x3 + (1− β) · Ts, (17)

β = e−ti,j/RC (18)

Based on the definition of path transfer functions, it is easy to
see that for path p = e0|| · · · ||ei,

fpt (t0) = hei1 ◦ · · · ◦ h
e0
1 (t0)

fpw(w0) = hei2 ◦ · · · ◦ h
e0
2 (w0)

fpT (T0) = hei3 ◦ · · · ◦ h
e0
3 (T0)

where ◦ is the composition operation for successive invocation
functions.

The basic idea of our approximation scheme is to build a
table Zn for each node n. Each cell in this table holds the least
value of time consumption among all execution paths, which
have the same energy and temperature value after scaling. In
other words, each cell represents an optimal execution path.
Dynamic programming is then applied to fill each Zn. The
approximated solution can be obtained by checking Zd, which
holds the approximated least time consumption of all possible
execution paths.

Algorithm 1 shows the details of our approximation algo-
rithm EBFε. Initially, we compute the table size M and the
“step size” ∆k for each constraint based on the value of ε (line
1 and 2 of EBFε), and then initialize M∗M tables Zn for each
node in G. Here, the “step size” ∆k is used to scale the energy
and temperature values as indices in the table. For example,
cell (dI2/∆2e, dI3/∆3e) in Zs holds the time consumption
before we execute any jobs, which is initialized as 0 in line
7. The rest of EBFε is similar to EBF . We use dynamic
programming to fill each Zn by calling Relaxε, which can
be viewed as a scaled version of Relax. In Relaxε(u, v),
we traverse Zu to fill Zv by extending paths in Zu. Since
Zu is an M by M table, we use c2 and c3 ∈ {0, 1, ..,M}
as index variables (line 1). As we have discussed previously,
each cell Zu(c2, c3) represents an execution path from s to u
with time consumption Zu(c2, c3), energy consumption c2∗∆2

and temperature c3 ∗∆3
3. In line 2 of Relaxε, we first check

whether the energy and temperature constraints are violated
if the job is executed based on edge (u, v). If no violation
occurs, we calculate the scaled version of the new energy
and temperature values (b2, b3). After that, we compare the

3Recall that indices in table are scaled version of energy and temperature
values. We can obtain the actual energy and temperature values by multiplying
table indices with ∆2 and ∆3.

Algorithm 1 .
EBFε(G, I,C)

1: M = d(m+ 1)/εe
2: ∆k = ε ∗ Ck/(m+ 1), k = 2, 3
3: for each v ∈ G do
4: for each (c2, c3) ∈ {0, 1, ..,M}2 do
5: Zv(c2, c3) =∞
6: πv(c2, c3) = null
7: Zs(dI2/∆2e, dI3/∆3e) = 0
8: for i = 1 to |m| do
9: for j = 0 to |l| do

10: for each edge (u, ni,j) ∈ E do
11: Relaxε(u, ni,j)
12: for each edge (u, d) ∈ E do
13: if Relaxε(u, d) then
14: return TRUE
15: return FALSE

Relaxε(u, v)

1: for each (c2, c3) ∈ {0, 1, ..,M} × {0, 1, ..,M} do
2: if h(u,v)k (ck ∗∆k) ≤ Ck for k = 2, 3 then
3: bk = dh(u,v)k (ck ∗∆k)/∆ke, k = 2, 3

4: Znew = h
(u,v)
1 (Zu(c2, c3))

5: if Znew < Zv(b2, b3) and Znew ≤ C1 then
6: Zv(b2, b3) = Znew
7: πv(b2, b3) = (u, c2, c3)
8: if v = d then
9: return TRUE

10: return FALSE;

new time consumption Znew = h
(u,v)
1 (Zu(c2, c3)) with the

current value in Zv(b2, b3) and update Zv when necessary.
If we already reach destination d and the time consumption
Znew is still less than the required value C1

4, we have found
the required schedule. Compared with Relax, Relaxε does not
store the paths explicitly as Path(v) in Relax, but implicitly
in different cells within each table.
EBFε is a polynomial time algorithm for a given ε, because

the complexity of Relaxε is M2 or (m/ε)2. Relaxε is
executed for m·l times. Therefore, the overall time complexity
is O(m·l ·(m/ε)2). Now, we show that EBFε is a polynomial
time algorithm with the approximation properties as claimed
by the following two theorems.

Theorem 6.1: Given an instance of MCP (G, I,C), if
EBFε(G, I,C) returns TRUE, MCP (G, I,C) is true.

Proof: When EBFε returns TRUE, let the path p =
e0||...||em be the path constructed by tracing back using table
π. Clearly, p is a s − d path. We need to show that for all
0 ≤ i ≤ m

heik ◦ ... ◦ h
e0
k (Ik) ≤ Ck, k = 1, 2, 3 (19)

4C1, C2, and C3 are the constraints for time, energy, and temperature,
respectively.
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Clearly, p satisfies Equation (19) for k = 1, because the
condition on line 5 of Relaxε guarantees that

hei1 ◦ ... ◦ h
e0
1 (I1) ≤ C1, 0 ≤ i ≤ m

Since p is constructed by π, it is easy to see that

Ck ≥ he0k (dIk/∆ke ∗∆k), k = 2, 3

Otherwise, condition on line 2 of Relaxε would not be
satisfied during Relaxε(e0), and line 7 of Relaxε would not
be executed. This contradicts the fact that e0 is recorded in π.

Similarly, for 0 ≤ i ≤ m and k = 2, 3, we have

Ck ≥ he1k (dhe0k (dIk/∆ke ∗∆k)/∆ke ∗∆k)

...

Ck ≥ heik (d...dhe0k (dIk/∆ke ∗∆k)/∆ke ∗∆k.../∆ke ∗∆k)

Or
Ck ≥ heik ◦ gk ◦ ... ◦ h

e1 ◦ gk ◦ he0k ◦ gk(Ik)

where gk is a “ceiling” function

gk(x) = dx/∆ke ∗∆k

Since heik and gk are monotonically increasing functions and
gk(x) ≥ x, we have following relations

dIk/∆ke ∗∆k = gk(Ik) ≥ Ik
he0k ◦ gk(Ik) ≥ he0k (Ik)

he1k ◦ gk ◦ h
e0
k ◦ gk(Ik) ≥ he1k ◦ h

e0
k (Ik)

...

hemk ◦ gk ◦ ... ◦ h
e0
k ◦ gk(Ik) ≥ hemk ◦ ... ◦ h

e0
k (Ik)

Thus, for 0 ≤ i ≤ m

Ck ≥ heik ◦ gk ◦ ... ◦ h
e1
k ◦ gk ◦ h

e0
k ◦ gk(Ik)

≥ heik ◦ ... ◦ h
e0
k (Ik)

Therefore, Equation (19) also holds on p for k = 2, 3. By the
definition of MCP , MCP (G, I,C) is true.

Lemma 6.1.1: Given an instance of MCPε(G, I,C), if
there is an s− d path p = e0||...||em−1||em such that

hei1 ◦ ... ◦ h
e0
1 (I1) ≤ C1 (20)

heik ◦ gk ◦ ... ◦ h
e0
k ◦ gk(Ik) ≤ Ck, k = 2, 3 (21)

holds for 0 ≤ i ≤ m, EBFε will return TRUE.
Lemma 6.1.1 can be proven by considering the following

fact that if we only perform Relaxε on edges that are in p,
Equation (21) and Equation (20) guarantees that the conditions
on line 2 and 5 in Relaxε are satisfied and line 6 will be
executed in each round. Eventually, EBFε will return true. If
we perform Relaxε on more edges, the minimal value in Zd
will not increase. As a result, EBFε still returns true.

Theorem 6.2: Given an instance of MCPε(G, I,C),
MCPε(G, I,C) is true implies EBFε(G, I,C) returns
TRUE.

Proof: We just need to show that if there is an s−d path

p = s→ n1,j1 → · · · → nm,jm → d

= e0||...||em−1||em

such that for all 0 ≤ i ≤ m

hei1 ◦ ... ◦ h
e0
1 (I1) ≤ C1 (22)

hei2 ◦ ... ◦ h
e0
2 (I2) ≤ (1− ε)C2, k = 2, 3 (23)

it also satisfies Equation (20) and (21).
Clearly, for any edge e ∈ E

he2(c+ ∆) ≤ he2(c) + ∆

For he3, which represents the temperature constraints, we have

he3(c+ ∆) = he3(c) + ∆ ∗ β ≤ he3(c) + ∆

because β = e
−t
RC ≤ 1.

Using ceiling functions gk(x) = dx/∆ke ∗∆k, k = 2, 3, it
is easy to verify

gk(Ik) ≤ Ik + ∆k

By applying heik on its both sides, we have

he0k ◦ gk(Ik) ≤ he0k (Ik + ∆k) ≤ he0k (Ik) + ∆k, k = 2, 3

because he0k is a monotonic function. Therefore,

he0k ◦ gk(Ik) ≤ he0k (Ik) + ∆k,

gk ◦ he0k ◦ gk(Ik) ≤ he0k (Ik) + 2∆k,

he1k ◦ gk ◦ h
e0
k ◦ gk(Ik) ≤ he1 ◦ he0k (Ik) + 2∆k

...

hemk ◦ gk ◦ ... ◦ h
e0
k ◦ gk(Ik) ≤ hemk ◦ ... ◦ h

e0
k (Ik) + (m+ 1) ∗∆k

From Equation (23), we know that

heik ◦ ... ◦ h
e0
k (Ik) ≤ (1− ε) ∗ Ck, k = 2, 3

Thus, for 0 ≤ i ≤ m k = 2, 3, we have

heik ◦ gk ◦ ... ◦ h
e0
k ◦ gk(Ik) ≤ (1− ε) ∗ Ck + (m+ 1) ∗∆k

≤ (1− ε) ∗ Ck + ε ∗ Ck = Ck

Therefore, p satisfies Equation (20) and Equation (21). Using
Lemma 6.1.1, EBFε will return true.

VII. PROBLEM VARIANTS

Our approach is also applicable to other problem variants
by modifying the property and making suitable changes to
invocation of the problem solving driver in Figure 1 (model
checker and approximation algorithm).

Task set with individual deadlines: In the scenario where
each task has its own deadline, we have to make sure that the
execution blocks finish no later than their corresponding task’s
deadline. Suppose that the deadline of the ith execution block
is D[i]. Equation (3) is replaced by following constraints, for
all 1 ≤ i ≤ m:

m∑
i=1

ti,li + δli−1,li ≤ D[i],∀D[i] > 0 (24)

Our timed automata model can be easily modified with the
following changes in the guard of transitions: Instead of
time ≤ D, the guard for transitions between task states is
in the form of (time ≤ D[ ]). The transition from task state to
error state now carries a guard of (time > D[ ]).
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The approximation algorithm EBFε can also be modified
sightly to the individual deadline case. We only need to replace
C1 (line 5 in Relaxε) with D[i], when node u represents
job i. Since the approximation is applied on the energy and
temperature constraints, all the properties and related proofs
of EBFε still hold.

Periodic Tasks: We solve the TCEC scheduling of peri-
odic tasks by considering the scheduling of tasks within a
hyperperiod. We have to make sure that a) all tasks meets
their corresponding deadlines in every hyper-period, b) the
temperature constraints are not violated after execution of any
hyperperiod. Clearly, the first requirement can be achieved by
adding the deadline constraints as we discussed in task set with
individual deadlines. The second requirement is satisfied by
only choosing the schedules, whose temperature at the end of
the hyper-period is less than or equal to the initial temperature,
as discussed in Section III-D.

Our timed automata model needs to be modified by setting
the temperature at the end of the hyper-period T (mh) is less
than the initial temperature Tinit. We also need to modify the
approximation algorithm EBFε. When Relaxε is applied to
the node corresponding to the last task, we need to ensure that
h
(u,v)
3 (c3 ∗ ∆3) ≤ Tinit (line 2 in Relaxε). In addition, the

step size of temperature should be calculated based on Tinit,
i.e., ∆3 = ε ∗ Tinit/(m + 1) (line 2 of EBFε). we verified
that all the properties and related proofs of EBFε still hold.

VIII. EXPERIMENTS

A. Experimental Setup

In this section, we describe the experimental setup for eval-
uation of our approach. A DVS-capable processor StrongARM
[24] is modeled with four voltage/frequency levels (1.5V-
206MHz, 1.4V-192Mhz, 1.2V-162MHz and 1.1V-133MHz).
We use synthetic task sets which are randomly generated with
each of them having execution time in the range of 100 - 500
milliseconds. These are suitable and practical sizes to reflect
variations in temperature, and millisecond is a reasonable
time unit granularity [8]. We adopt the thermal resistance
(R) and thermal capacitance (C) values from [20], which
are 1.83◦C/Watt and 112.2mJoules/◦C, respectively. The
ambient temperature of the processor is 32◦C. The scheduler
and TAG shown in Figure 1 are implemented in C++. The
exact algorithm EBF and the approximation algorithm EBFε
are also implemented in C++. All experiments are performed
on a computer with AMD64 2GHz CPU and 16G RAM.

B. TCEC versus TC or EC

This section demonstrates that existing solutions based
on TC or EC are not sufficient to find TCEC schedules.
We compared the schedule generated by energy constrained
scheduling algorithm [25] and our TCEC scheduling for the
same set of jobs under the same energy constraint. We also
require that the system temperature after the execution of task
set does not exceed the initial temperature Tinit, so that the
temperature constraint is not violated even if the task set is
executed repeatedly. The results are shown in Figure 5.

 

A 

B 

C 

Fig. 5. EC vs TCEC. EC finishes at A. TCEC(< 80◦C) finishes at B. Both
TCEC(< 78◦C) and TCEC(< 76◦C) finish at C. The execution time of both
algorithms are 0.05s and 0.07s, respectively.

It can be seen that the schedule generated by [25], which
considers only energy constraint takes less execution time.
However, it violates temperature constraint. On the other hand,
the schedules generated by our TCEC approach will not
exceed the respective temperature constraints (80◦C, 78◦C
and 76◦C, respectively), although it takes a little longer
execution time. Therefore, scheduling algorithms that consider
only energy constraint are not suitable, when we want to
control the maximum temperature of the processor during job
execution.

 

A 

B 

C 

Fig. 6. TC vs TCEC. Both TC and TCEC(< 14000mJ) finish at A. TCEC(<
13700mJ) finishes at B. TCEC(< 12500mJ) finishes at C. The execution
time of both algorithms are 0.04s and 0.07s, respectively.

We also compared our TCEC scheduling with temperature
constrained scheduling algorithm [8]. The experiments were
performed on the same job set with the same temperature
constraints. For TCEC, we applied three different energy
constraints. We also require that the system temperature after
the execution of task set does not exceed the initial temper-
ature Tinit. Figure 6 presents the results. Since TC has no
constraint on energy consumption, it always tries to execute
jobs with high voltage, which may lead to peak temperature
several times. As a result, TC has the shortest execution time.
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However, once we consider energy constraint, it may not be
possible to execute some jobs at high voltage. When the
energy budget is very tight, we may not be able to reach
the maximum temperature during the entire execution, like
curve “TCEC(<12500mJ)” in Figure 6. In this case, TC will
clearly violate the energy constraint, while our TCEC obtains
a schedule within the energy budget.

C. TCEC using Approximation Algorithm

Our approximation algorithm should be used when the
model checker (UPPAAL) cannot find a solution in reasonable
time due to state space explosion. We compared the efficiency
of conventional symbolic model checker (UPPAAL) with our
approximation algorithm EBFε on task sets with different
number of blocks. The results are shown in Table I. The first
and the second column are the index and number of blocks in
each task set, respectively. The next three columns present the
temperature constraint (TC, in ◦C), energy constraint (EC, in
mJ), and deadlines (DL, in ms) to be checked on the model.
The sixth column indicates whether there exists a schedule
which satisfies all the constraints. The last three columns
of Table I shows the results (running time in seconds) of
UPPAAL, and our approach EBFε with ε = 0.02. Since
UPPAAL failed to produce result for task set 4 and 5, we
only report the running time of EBFε. It can be seen that
EBFε outperforms UPPAAL by more than 10 times on
average. Moreover, EBFε can solve much larger problems
in reasonable running time.

TABLE I
RUNNING TIME COMPARISON ON DIFFERENT TASK SETS

TS #Blk TC EC DL Found? UPPAAL EBFε

1 10
85 180000 7000 Y 9.6 0.2
85 150000 8000 Y 9.9 0.2
80 140000 8000 N 9.4 0.2

2 12
85 70000 2500 Y 18.5 0.3
85 60000 2700 Y 106.6 0.3
80 60000 2500 N 17.5 0.3

3 14
90 90000 2600 Y 65.1 0.3
85 80000 2800 Y 648.3 0.3
90 80000 2700 N 208.6 0.3

4 50 85 380000 39500 Y - 20.2
5 100 85 720000 83800 Y - 102.5
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Fig. 7. Running time with different job set size and ε.
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Fig. 8. Accuracy of EBFε.

We also evaluated the running time of our approximation
scheme with different ε. The results are shown in Figure 7.
Curve “Exact” represents the execution time of the exact
algorithm EBF . Other curves present the running time of
EBFε with different ε. As expected EBFε requires more time
for smaller ε or larger job set size. But its time consumption
is sill much smaller than the exact algorithm EBF .

To investigate the accuracy of our proposed approximation
scheme, we evaluated the distribution of false negative ra-
tio along different constraint values. In this experiment, we
generated 1500 instance of TCEC problem as the test set.
They share the same deadline and energy budget, while the
temperature constraints are uniformly distributed within 1◦C
above the lowest feasible temperature. For each instance, the
exact algorithm EBF is applied first to determine whether the
feasible schedule exists. Then we run EBFε on each instance
and check the correctness of the return value. The experimental
results are presented in Figure 8. Each point represent the false
negative ratio of TCEC instances in each 0.0625◦C interval.
For example, the false negative ratio is 30% for instances with
in interval [0.1875 0.25] when ε = 0.06. As we discussed in
Section VI-C, the false negative ratio curves behaves as step
functions, which fall to zero when the temperature constraint is
slightly larger (0.125◦C for ε = 0.02) than the lowest feasible
temperature. In other words, EBFε produces false negative
answers in rare cases.

IX. CONCLUSION

In this paper, we proposed a flexible and automatic
framework to solve the temperature- and energy-constrained
scheduling problem in multitasking systems with different
voltage levels. We modeled the problem using extended timed
automata and translated the energy/temperature constraints
into CTL specifications. The user can employ a suitable model
checker to determine whether there exists a schedule that
satisfies the constraints. Due to the capacity limitations of
symbolic model checker like UPPAAL, we also proposed
a polynomial time approximation scheme that is guaranteed
to generate results close to optimal value with reasonable
running time. We proved mathematically that our approxi-
mation algorithm will give no false positive answer, while
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the false negative ratio can be negligibly small in practical
scenarios. Extensive experimental results demonstrated the
effectiveness of our approach. In our future work, we plan
to develop approximation algorithms to efficiently solve both
task sequencing and voltage assignment together.
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