
Dynamic Selection of Trace Signals for Post-Silicon Debug
Kanad Basu, Prabhat Mishra

Computer and Information Sc. and Engg.
University of Florida, USA

email: {kbasu, prabhat}@cise.ufl.edu

Priyadarsan Patra
Post-Si Validation Architecture

Intel Corporation, USA
email: priyadarsan.patra@intel.com

Amir Nahir, Alon Aadir
IBM Research

Haifa, Israel
email: {nahir, adir}@il.ibm.com

Abstract— Post-silicon validation is one of the most expensive and

complex tasks in today’s System-on-Chip (SoC) design methodology. A

major challenge in post-silicon debug is limited observability of the

internal signals. Existing approaches address this issue by selecting a

small set of useful signals. These signal states are stored in an on-chip

trace buffer during execution. The applicability of existing methods is

limited to a specific debug scenario where every component has equal

importance all the time. In reality, a verification engineer would like to

focus on a specific set of components (functional regions). Some regions

can be ignored in a certain duration during execution due to clock

gating and other considerations. Similarly, certain regions may be well

verified datapath and less likely to have errors compared to other control-

intensive regions. In this paper, we propose an efficient signal selection

algorithm and a low-overhead trace controller design that would enable

verification engineers to dynamically select a set of trace signals for

improved error detection. Our experimental results using both ISCAS’89

benchmarks and Opencores circuits demonstrate that our approach can

detect up to 3 times more errors compared to existing techniques.

I. INTRODUCTION

An important challenge during post-silicon debug is the limited
observability of internal signals since the chip has already been
manufactured. Design overhead considerations limit the number of
signals that can be traced or stored in an on-chip trace buffer. To
improve the observability, existing techniques [1], [2], [4], [6] select
a small set of useful signals during design time. The states of these
signals are stored in an on-chip trace buffer during execution. The
data from the trace buffer is then used for debugging using an off-line
debugger. Unfortunately, the applicability of the existing methods is
limited for various reasons. First, these methods treat each component
(functional regions) of the design as equally important from debug
perspective and therefore selects signals that are globally beneficial
based on restoration capability. In other words, it assumes uniform
“spatial” and “temporal” distribution of errors. In reality, certain
regions may not be relevant in a certain duration for various reasons.
For example, a set of cores in a multicore architecture may be in
power saving mode (using clock gating) during certain timeframe.
Therefore, no error is possible in those cores during that timeframe.
Similarly, certain regions (such as well verified datapath) are less
likely to have errors compared to other control-intensive regions. In
general, only a small set of regions may be relevant during a certain
duration for debugging an error. Therefore, a verification engineer
would like to have knobs that allow him to trace a different set of
signals at different timeframe.

In this paper, we propose an efficient signal selection algorithm
and associated trace controller design that would enable verification
engineers to dynamically trace different set of signals for improved
error detection. This paper makes two important contributions. We
propose a region-aware signal selection algorithm (RSS) that selects
useful signals during design time (using static analysis) based on the
knowledge of functional regions and associated error zones. We also
develop a low-overhead dynamic signal tracing (DST) hardware to
enable designers to trace different set of signals during execution

This work was partially supported by NSF grant CCF-1218629.

based on active (relevant) functional regions. This lays emphasis on
the errors in active zones in the circuit that can be detected using
a specifically selected set of trace signals. We have developed an
efficient spatio-temporal solution for dynamic trace signal selection.
Our experimental results using both ISCAS’89 benchmarks and
Opencores circuits demonstrate that our approach is able to detect
up to 3 times more signals compared to existing state-of-the-art
techniques.

The rest of the paper is organized as follows. Section II de-
scribes related work on signal selection. Section III compares signal
restoration versus error detection. Section IV formulates the dynamic
signal selection problem followed by the description of our region
based signal selection algorithm in Section V. Section VI describes
our dynamic signal tracing technique. Section VII presents our
experimental results. Finally, Section VIII concludes the paper.

II. RELATED WORK

Limited observability is a primary concern during post-silicon
debug. Various signal selection techniques [1], [2], [4], [3], [6],
[7] have been proposed for post-silicon validation and debug which
focus on signal restoration across the entire circuit and are not
designed for error detection. Recent approaches emphasize detection
of timing errors [11], [12]. All of these approaches perform static
signal selection i.e., the same set of signals are traced during the
entire execution. The procedure developed by Prabhakar et al. [10]
alternates between two sets of signals in alternate cycles. As a result,
it is a very specific case of temporal distribution of errors without any
consideration for spatial distribution. A multiplexed signal selection
for error detection was proposed by Liu et al. [5]. Their approach is
an ad-hoc signal selection heuristic based on error visibility metric.
Their approach does not consider the challenges associated with
dynamic signal selection in the presence of spatial and temporal
distribution of errors. Lee et al. [9] described a dynamic signal
sequence slicing approach in which they tried to generate the input
sequence values that would result in an error rather than focusing
on the trace signals. Recently, Han et al. [8] proposed a dynamic
signal selection algortihm which focuses on signal resotration rather
than error detection. The major limitation of their approach is that it
depends on only the test vectors and does not take into account the
currently active regions in the circuit, that is, it has no information
on the current state of the circuit. In this paper, we propose a
comprehensive spatio-temporal solution for dynamic trace signal
selection to allow designers to choose different set of signals at
different duration.

III. SIGNAL RESTORATION VERSUS ERROR DETECTION

This section compares two widely used metric, state restoration
and error detection. Majority of the existing signal selection ap-
proaches [2], [4] try to focus on restoration of unknown signal using
the knowledge of known signal states. Let’s consider an AND gate
with two inputs a and b and the output c. If the state of a is traced
and found as 0, it is obvious that the state of c is also 0. Similarly,

if the state of c is traced and found as 1, it is obvious that both a
and b will have states 1 each.

Let us consider an example circuit in Figure 1 comprising of 12
flip-flops. Tracing states of flip-flops A and L in cycle t, helps to
restore the state of flip-flop D in cycle t +1, since the input to flip-
flop D is an OR of the outputs of A and L. Similarly, since flip-flops
C and H are connected by a NOT gate, tracing H in cycle t provides
the state of C in cycle t−1. It should be noted that signal restoration
can proceed in both forward (input to output) and backward (output
to input) direction. For example, the restoration of D from A and
L is in forward direction, while the restoration of C from H is in
backward direction.

L

C

F

G

E

A

H

D

I

K

R

R

2

1

J

B

Fig. 1. Example circuit with two regions and 10 flip-flops

In case of error detection only backward restoration is meaningful.
In Figure 1, when flip-flop D is in error, the bug can only propagate
along a forward direction to its fan-out cone towards flip-flops E
and G. Therefore, in order to detect the error in D, we have to trace
either of these two flip-flops, and then apply backward restoration
to restore D (error detection). Tracing the inputs of D, or those flip-
flops that are in its fan-in cone (A and L) do not help. Given that a
designer is interested in detecting an error, it is meaningful to focus
directly on error detection metric instead of restoration performance.

IV. PROBLEM FORMULATION

The goal of this paper is to develop an efficient dynamic signal
selection technique to maximize detection of currently active errors1

in a circuit. For example, if, the number of errors detected by
signal i is represented by detecti and n is the trace buffer width,

our goal is to select n signals such that
n

∑
i=0

detecti is maximized.

Various industrial studies highlight the fact that error locations are
not uniformly distributed across the circuit, instead they are clustered
in multiple small zones. In this paper, we call them error-prone zones
(or error zones, in short). We assume that error zones during post-
silicon validation closely resemble those in the pre-silicon phase. We
divide the circuit into multiple parts where each part contains one or
more error zones. We call these parts as functional regions (or region,
in short). Information about error zones and regions are assumed to
be provided by the pre-silicon engineer. A natural boundary for a
region would be the component boundary of an SoC. For example,
each core in a multicore SoC can form a region. If one component
has multiple error zones, we may even divide that component into
multiple regions following some functional boundary. For example,
a processor core can be divided into two regions, one covering fetch
and decode units and the other covering the rest. In our construction,
an error zone is completely contained inside a region of the circuit.

1Those located in active regions, explained later in this section.

There is a trade-off between number of regions versus error zones.
One region per error zone may create too many regions (partitions)
and lead to unacceptable computational complexity and hardware
overhead. On the other hand, a large region with many disjoint error
zones may reduce the effectiveness of dynamic signal selection.

Let us consider a circuit represented by the rectangle in Figure 2.
The entire circuit is divided into m regions named R1 to Rm. Each
region can have one or more disjoint error zones. For the ease of
illustration, we assume one error zone per region. It does not lose
any generality since one error zone can be viewed as a composition
of multiple disjoint error clusters. For example, the error zone ZR1

for region R1 consists of two disjoint error clusters in Figure 2. These
two clusters together form the error zone ZR1 .

ZR
1

Z

Z

Z

R
2

Rm

1R

R2

R

i

ZR

R

m

R1
i

Fig. 2. Illustrative example showing regions and error zones

We consider a trace buffer of width n, that is, n signal states can
be stored in the trace buffer per cycle. During any particular cycle,
some of the functional regions remain active (relevant). A region
is considered active if the gates in the particular region function
normally and are not dormant due to power-saving mode (using
clock gating) or any other reason. Regions which do not have any
signal transition during certain timeframe are considered inactive and
hence are not relevant. There are two extreme scenarios. When all
the regions are active, our signal tracing algorithm gives proportional
emphasis to every region and the associated error zones. However,
when only one region is active, beneficial signals from that region
need to be traced. We select n signals from each of the m regions,
forming a total set of m× n signals. During execution, depending
on the currently active regions, n best signals will be chosen out of
m× n signals. It must be noted that the n signals from region Ri
(where 1 ≤ i ≤ m) used to detect errors in ZRi can be from anywhere
in Ri (inside as well as outside of ZRi). Our region-based signal
selection algorithm (RSS) in Section V describes how these signals
are selected, while an efficient hardware implementation for dynamic
signal tracing (DST) is described in Section VI.

V. REGION-BASED SIGNAL SELECTION (RSS)

Algorithm 1 describes our region based signal selection algorithm
(RSS) for selecting useful signals during design time. The first step
creates a graph-based model of the circuit. Next, for each region it
computes the error propagation probability (defined in Section V-B)
from each node in the error zone to the other nodes in the entire
region. Finally, for each region the most profitable n signals are
selected. The remainder of this section describes these steps in detail.

A. Graph Based Modeling of Circuits

The first step of Algorithm 1 is to construct a graphical represen-
tation of the circuit. We explain this step using our example circuit
in Figure 1. Each signal in the circuit is represented by a node and
any data flow between two nodes represented by an edge. The edge
is irrespective of the type of gate between two nodes. The graphical
representation is shown in Figure 3. For example, flip-flops C and
H are connected by a NOT gate, hence, the two nodes representing
them have an edge connecting them. Directed arrows signify the error
propagation direction. R1 and R2 represent two different functional

Algorithm 1: Region-based Signal Selection (RSS)
Input: Circuit, Trace buffer width n, Error zones Z1,...,Zm
Output: m lists of selected signals, SS1,...,SSm
SSi = φ /*Initialize all lists to NULL*/
1: Create a graphical representation of the circuit.
Divide the circuit into m regions, Ri contains the error zone Zi.
2: /*Compute error propagation probability for each region Ri*/
For each node s in Zi, compute the probability of an error at s
getting propagated to any node d in region Ri.
3: /*Select n trace signals for each region Ri*/
while SSi does not have n signals or Ri empty do

3.1 For each node d in Ri, compute the summation of the
error propagation probability for each node s at Zi.
This is the node value of d.
3.2 Select the node j with the highest node value.
3.3 Add the node to the list SSi = SSi ∪ j
3.4. Remove node j and its overlap from Ri

end

Return the lists (SSi,...,SSm) with selected signals

regions of the circuit with respective error zones, ZR1 and ZR2 . Let us
consider the region R1. The probable sources of error are the nodes
A and B. Any errors in these nodes can propagate to the other nodes
in R1 which are in their respective fan-out cones. Therefore, the error
at A can propagate to F,D,E and G. We would like to compute the
possibility of an error at any of these two probable erroneous nodes
(A and B) to propagate to the other nodes. We call this probability
as error propagation probability, as described next.

L

1

ZR
1

A

I

J
C

K

H

D

F

G

E

R
2

ZR
2

B

R

Fig. 3. Graphical representation of Figure 1 with two regions

B. Error Propagation Probability Computation
We first describe how to compute error propagation probability

through single gates. Error propagation probability is defined as the
probability of an error present at an input of a gate being propagated
to its output. Error propagation probability over multiple gates will
be explained later. We compute the probability of an error at one of
the inputs getting propagated to the output of an individual gate.

Individual Gates: To compute the probability of error propagation,
we first consider a multi-input AND gate. Let the inputs be named i1,
i2,...,in and the output o1 respectively. Let us assume an error occurs
at one of the inputs, say, i1. We want to compute the probability of
the error to be propagated to o1. In order for any error (0/1 or 1/0) to
propagate to o1, it is necessary that all the other inputs of the AND
gate be tied at 1. If any of the other inputs is at state 0, the output
will always be at a state of 0, irrespective of i1, hence, the error
gets undetected. Here, we assume all the other inputs to the AND

gate are independent. Therefore, the probability that all of them are 1
simultaneously is the product of each of the individual probabilities.
Let p1

ik be the probability that input ik is at state 1. Therefore, the
probability that all the other inputs are at 1 is P1

i1 =∏2≤k≤n p1
ik which

is the probability that an error at i1 will get propagated to o1, that
is the error propagation probability through the AND gate. Similar
computations can be performed for a NAND gate.

The computations for an OR gate follows the approach similar
to an AND gate. Let the inputs be named i1, i2,...,in as before, and
the output o2 respectively. Let’s consider the error propagation from
i1 to o2. In order to propagate an error in i1 to o2, all the other
inputs of the OR gate must be held at a state of 0. The probability
that an input ik is held at 0 is p0

ik . The joint probability that all the
inputs other than i1 is held at 0 is P0

i1 = ∏2≤k≤n p0
ik which is the error

propagation probability from i1 to o2. Similar computations can be
performed for a NOR gate. For any one input and one output node
(such as flip-flop and NOT gate), the error propagation probability
is always 1.

Now we discuss how the probability of error propagation changes
across multiple gates. Since there are more than one gates involved,
we need to consider both independent and dependent paths. A path
is defined as the series of logic gates which are placed in between
source (s) and destination (d) nodes. In other words, it signifies the
path traversed by a potential error at node s to reach node d.

Independent Paths through Multiple Gates: An independent path
is one which passes across a set of logic gates with each gate being
visited at most once. We explain the independent path scenario using
Figure 3. In this example, we assume that each internal signal can
be in a state of 0 or 1 with a probability of 50%. This assumption is
for the ease of illustration; in our implementation as well as during
experiments (presented in Section VII), we use profiling information
to determine the state probability. The edge from A to E is an
independent path, since there exists only one path from A to E, via
D. Since there is only an OR gate between A and D, the probability
of an error at A getting propagated to D is the probability of L (the
other input to the OR gate) being in a state of 0, which is 0.5 in
this case. Hence, the error propagation probability between A and
D is 0.5. Similarly, since there is only a 2-input AND gate between
D and E, the error propagation probability between D and E is 0.5.
Since none of the signals are visited more than once, the overall
error propagation probability between A and E is the product of
these two, which is 0.25. In general, if there are n+ 1 signals in
an independent path between nodes s and d, with their intermediate
error propagation probabilities being p1, p2,..., pn, the overall error
propagation probability across the path is P(s,d) = ∏1≤k≤n pk

Dependent Paths through Multiple Gates: A dependent path is one
in which while moving from a source node to a destination node, at
least one of the internal nodes is visited more than once2. We explain
the error propagation probability computation using Figure 3. There
exists two independent paths between nodes A and G. One edge
is (A,F,G) while the other is (A,D,E,G), both branching out at
A and combining at G. In order to compute the error propagation
probability across the path between A and G, we need to compute
these independent path values separately. For the path (A,F,G),
the error propagation probability is the product of the probabilities
between the paths (A,F) and (F,G), both of which, for obvious
reasons are 0.5. Thus, the error propagation probability of path
(A,F,G) is 0.25. On the other hand, since the path (A,D,E,G) passes
through 3 independent two-input gates, the eventual error propagation
probability is 0.125. The error propagation probability through path

2The same computations are used even if a combinational gate is visited
twice instead of a flip-flop.

(A,G) can be computed as p(A,G) = max(p(A,F,G), p(A,D,E,G)). This
is because during computation, the effect of two different paths are
already taken into account, and a path with a higher probability of
detecting an error will always dominate. In general, if there are
n independent paths e1, e2,..,en between two nodes s and d, then
the error propagation probability of the paths between s and d,
p(s,d) = max(pe1 , pe2 ,, pen)

C. Signal Selection Based on Node Values
In this section, we describe the final step in our signal selection

algorithm. The first node chosen for tracing in a region is the one
with the highest node value. The value of a node is the sum of
error propagation probabilities of all paths in which the node is the
destination. For example, in Figure 4, if we concentrate on Region
R1, the node value of E will depend on paths (A,D,E), (L,D,E)
and (D,E). Since in this example only A and B are possible error
locations for R1, the relevant path would be (A,D,E); the paths
(L,D,E) and (D,E) are not relevant because D and L are not in
error zone. Therefore the node value of E will be the sum of error
propagation probability across the path (A,D,E), that is, 0.25. We
can have similar computations for other regions. The node values
of all the nodes in R1 are shown in Figure 4. Each node value is
represented by a number beside it.

1

B

1

A

1
{0.5+0.5}

0.5

0.25

0.5

F

D

E

G

L

Z
R1

R

Fig. 4. Node values for region R1 in Figure 3

In Figure 4, three nodes (A, B and F) have highest node values of
1. A and B are not valid choices since any of them cannot detect the
error in other node, whereas F can detect error in both A and B with
50% probability. Therefore, we choose F as the first node to trace.
The subsequent signals should be carefully selected to enhance the
error detection in the region. Contributions from signals which have
a high error detection probability from the already selected signals
should be deleted. Step 4.4 of Algorithm 2 is used for this purpose.
The basic idea is that if an already selected node (e.g., F) can detect
an error (e.g., in A) with equal or higher probability than another node
(e.g., D), then the overlap from the other node should be removed.
For example, since F can detect an error in A with 50% probability,
the contribution claimed by D (also 50% for A) should be deleted
from D during the next iteration. This process continues until n best
signals are selected for each region or there are no more signals to
be selected.

VI. DYNAMIC SIGNAL TRACING (DST)
Algorithm 2 describes our dynamic signal tracing (DST) procedure

for improved error detection. The inputs to the algorithm are the
chip design, trace buffer size, active regions and associated relevance
and signal lists. Relevance of a region indicates how important the
region is in error detection, or the possibility of finding an error in
that region compared to other regions. The relevance information is
provided by the pre-silicon verification engineer based on percentage
of errors found in the error zone in that region (compared to other
error zones) during pre-silicon validation3. If no information is

3The probability of errors present in each zone during the post-silicon phase
is assumed to be similar.

Algorithm 2: Dynamic Signal Tracing (DST)
Input: Circuit, Trace buffer size n, k active regions (Ri), and

respective relevance (ri) and selected signal lists (SSi)
Output: List of n signals to be traced, T S
T S = φ /*Initialize to NULL*/
1: Here, ri denote the relevance of region Ri, and SSi is the
most profitable n signals selected for region Ri, where
1 ≤ i ≤ m.
Let r = ∑i=m

i=1 ri
2: Find the contribution from Ri, Ci =

n×ri
r

3: Select the best Ci signals from SSi
4: Put the selected signals in T S.
5: Repeat steps 3-4 for all k regions 1 ≤ i ≤ k.
Return the selected signals T S

available, we can consider the size of the error zone in that region as
relevance. If the trace buffer size is n, and there are m active regions
in the circuit, during design time our RSS procedure (Algorithm 1)
will select m×n signals. During execution, our DST procedure needs
to choose n signals from these m×n signals that are most profitable
at a certain duration depending on the k (1 ≤ k ≤ m) active regions.

Since we have to select n out of m× n signals for tracing, it is
reasonable to adopt n multiplexers, each of which will provide a
signal corresponding to the trace buffer output. The main problem
is to divide the m× n signals among the n multiplexers so that all
possible combinations of trace signals can be achieved. An obvious
but expensive solution would be to use n multiplexers each having
all the m×n signals as input and 1 output.

One optimization can be achieved by the following observation.
Let us consider a circuit with 4 regions, RA, RB, RC, RD. Suppose
the signals responsible for detecting errors in region RA are named
A1, A2,...,An, in the order of priority. If signal A1 is not selected for
tracing, subsequent signals, that is, A2, A3,....An will not be selected
for tracing. Thus, it is not necessary to keep the signals under the
same multiplexer input as A1. The number of initial signals selected
from each region to feed into the n multiplexers are n

m . A total of n
signals will fill in the first stage of each multiplexer. Now, number
of signals remaining for each region is given by

n remain = n− n
m

Under each multiplexer, all these signals except the one from the
same region will be stored. For example, consider Figure 5 with
m =3 and n = 3. The original design of each multiplexer is 9× 1
whereas our optimized design is 5× 1, providing reduction of 9

5 =
1.8.

Now, we would like to explore the design for our dynamic signal
tracing algorithm. The total possible number of states is 2m−1 since
at least one of m regions will be active at a time. This is independent
of n, that is, the trace buffer width. However each of the states will be
defined by n signals, signifying the n signals to be traced at that time.
Table I shows a simple example controller illustrating different signal
selections depending on the state of currently active regions when
m = 2 and n = 2. Let the two regions be RA and RB. The two signals
selected from each region being A0, A1 and B0, B1 respectively. At
any point, only two of the signals are chosen for tracing. When only
region RA is active, the signals to be traced are the two signals from
region RA, indicated by A0,A1. Similarly, when only region RB is
active the two signals to be traced are B0,B1. When both regions are
active, the trace signals to be selected are A0,B0.

The overall structure of our proposed design is shown in Figure 6.
Here we consider a design with n multiplexers that would produce n

A1

1MUX 2MUX 3MUX

C3

RCR RA B
A2 A3 B1 B2 B3 1 C2C

DATAPATHTo Trace Buffer

CONTROLLER

Fig. 5. Optimized trace controller design for m = 3 and n = 3TABLE I
TABLE FOR n = 2 AND m = 2

Current State Selected
RA RB Signals
0 1 (B0, B1)
1 0 (A0, A1)
1 1 (A0, B0)

trace signals. The output of the multiplexers are fed to a trace buffer.
The trace controller provides the control signals to the multiplexers
based on the logic mentioned above. The trace controller operates
under the same clock as the Design Under Test (DUT). An external
knob is applied on the trace controller (generally by the validation
engineer) which contains information about the currently active error
zones in the circuit.

.

R
A
C
E

B
U
F
F
E
R

Clk

Trace

MUX 1

MUX 2

MUX n

Design Under Test

Input
Tests

Controller

Regions
Active

...

T

Fig. 6. Proposed dynamic signal tracing hardware

VII. EXPERIMENTS

A. Experimental Setup

We verified the effectiveness of our region-based signal selection
(RSS) and dynamic signal tracing (DST) algorithms using some
of the largest ISCAS’89 benchmarks as well as opencores circuits.
In each of the subsequent experiments, we consider a number of
regions with each region having one error zone. We inserted 50
random errors in the error zones of the active regions, with the
error density proportional to the region size. We assume a simple
bit-flip model for error, that is, at particular cycle, the error signal
will just invert its state. Profiling information is obtained by running
an ideal simulation of 1000 cycles with random input vectors. We
perform two simulations, one for the ideal case, when all the signals
are assumed to be error free, and one with the erroneous signals
included. It should be noted that we consider the errors individually,
in order to prevent each error’s effect from suppressing another. The
error model is assumed to be sporadic, that is, errors do not kick off
every cycle, but after certain intervals. For our case, we assume the
errors to be manifested after a hiatus of 100 cycles. The simulation

performed is of total 1000 cycles, that is, a total of 50000 cycles for
the 50 errors. Any discrepancy in the traced signal states is reported
as error. We define a metric error detection ratio (EDR) in order to
compare the performance of different algorithms:

EDR =
Number o f Errors Detected

Number o f Detectable Errors

We have applied our algorithms using a wide variety of total re-
gions (m) and active regions (k, k ≤m). In this section, we summarize
the results for two scenarios (each having several subcases): 2 regions
(both active and only one active) and 3 regions (two active, and only
one active). In each of these subcases, we present the average of all
possible scenarios. We compare the following three approaches:

• GSS: This approach represents the existing techniques that
focus on global signal selection (GSS) without any knowledge
of error zones or active regions, it assumes that the errors are
uniformly distributed across the circuit. The signals are selected
using an approach similar to [4]; the only difference being that
we have considered error detection and not restoration.

• EZ-GSS: We extend the existing methods with the knowledge
of the error zones to evaluate their effectiveness in handling error
zones. We call this approach as error-zone aware global signal
selection (EZ-GSS). This is a static signal selection assuming
all zones are active.

• RSS+DST: Our approach is essentially a combination of region-
aware signal selection (RSS) and dynamic signal tracing (DST).

B. Results for Two Regions

For each of our experimental circuits, we created two regions each
having one error zone. In the first set of experiment, we assume both
zones are active. In this case, EZ −GSS and RSS+DST are same,
since we have to consider both zones for signal selection even during
DST . The results are shown in Figure 7. As expected, our approach
performs better than GSS, with the maximum improvement being
1.75 times, since our approach lays more emphasis on the error zones.

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

)*$+%#)(+$!,#)(-'-!#

./
0#

122# .34122# 0225/26#

Fig. 7. Comparison of EDR performance when both regions are active

In the next experiment, we assume one of the two error zones are
active at a particular time. Now, we would like to compare the EDR
performance of our three approaches, GSS, EZ −GSS and RSS +
DST . The results are shown in Figure 8. GSS performs the worst
among the three since it has no knowledge of where the error is
located or which region is active. EZ−GSS performs better than GSS
but has no knowledge of active regions. RSS+DST performs the best
since it dynamically selects signals with the complete knowledge of
currently active error zones, perform best. Please note that, there are
two possible scenarios for one active region: R1 is active or R2 is
active. We present the average of both of these cases. The maximum
improvement obtained by our approach against GSS is almost 3 times.

We would now like to observe the performance of our approach
on some real circuits obtained from the Opencores[13] website.
We choose three circuits for our purpose, namely RS232 Uart,
OPB Onewire and i2cslave. These will be referred to as uart,
one and slave, respectively for further discussion in this section.

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

)*$+%#)(+$!,#)(-'-!#

./
0#

122# .34122# 0225/26#

Fig. 11. Comparison of EDR performance when two regions are active

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

)*$+%#)(+$!,#)(-'-!#

./
0#

122# .34122# 0225/26#

Fig. 8. Comparison of EDR performance when only one region is active

We synthesized these using Synopsys Design Compiler to obtain
the gate-level netlist from the RTL descriptions. For each of these
circuits, we consider two error regions of which one is active at
a time. The results are shown in Figure 9. As expected, for all
three benchmarks, our proposed methods EZ−GSS and RSS+DST
performs much better than GSS. RSS + DST performs best in all
cases; however for one performance of EZ−GSS and RSS+DST are
similar. This is because of all the signals selected using RSS+DST ,
the ones which can detect most of the errors are selected using
EZ −GSS as well.

!"#

$!"#

%!"#

&!"#

'()*# +,-## ./(0-#

12
3#

455# 167455# 3558259#

Fig. 9. Comparison of EDR performance on the Opencores circuits

C. Results for Three Regions
In these experiments, we created three regions for each circuit.

In the first experiment, we assume only one of the three regions
are active. The EDR performance comparison using ISCAS ’89
benchmarks is shown in Figure 10. The RSS+DST numbers are the
average of three possible scenarios of one active region in the circuit.
Up to 3 times improvement is obtained by our approach compared
to GSS, while compared to EZ −GSS, RSS+DST has a maximum
improvement of 1.56.

!"#

$!"#

%!"#

&!"#

'!"#

(!!"#

)*$+%#)(+$!,#)(-'-!#

./
0#

122# .34122# 0225/26#

Fig. 10. Comparison of EDR performance when one region is active

In the next set of experiments, we compare when two of the three
regions are active. The results are shown in Figure 11. The RSS+
DST numbers are the average of three possible scenarios of two
active regions in the circuit. RSS+DST performs the best among the
three approaches, with the maximum improvement obtained 2 times
(compared to GSS) and 1.3 times (compared to EZ−GSS). We also
performed experiments for 4 regions and made similar observations.
Due to space limitations, we omit those results.

D. Hardware Overhead
We have developed a Verilog module that is parameterizable for m

regions per circuit and n trace signals. We have synthesized both our
controller (that generates selected signals for the MUXes) and the
datapath (MUX structure) described in Section VI using Synopsys
Design Compiler with lsi 10k technology library. The controller
area corresponding to n = 32 and m = 4 (a reasonably realistic
scenario) is 239µ. The corresponding datapath area consisting of
32 multiplexers is 185µ. Therefore the total area for our design is
239+185 = 424µ. The trace buffer, which is an integral part of post-
silicon debug methodology would occupy much more area compared
to the controller. A typical trace buffer of 32 × 1024 bits, when
synthesized using the same library is found to occupy an area of
almost 60000µ, which is about 141 times more than the controller
area. We believe that the trace controller has acceptable (negligible)
area overhead considering that our approach can detect up to 3 times
more errors compared to state-of-the-art existing methods.

VIII. CONCLUSION

Limited trace buffer size constraints the number of signals that can
be observed during post-silicon debug. Existing trace signal selection
techniques operate on the basic assumption that errors are uniformly
distributed across the circuit. During design time, our region-aware
signal selection approach selects beneficial signals for each region
based on information regarding error zones. During execution, our
dynamic signal tracing controller enables designer to trace a different
set of signals based on regions that are relevant (active) during a
certain duration. Our experimental results demonstrated that our ap-
proach can detect significantly more (up to 3 times) errors compared
to existing approaches.

REFERENCES

[1] H. Ko et al., “Algorithms for state restoration and trace-signal selection
for data acquisition in silicon debug,” TCAD, pp. 285–297, 2009.

[2] X. Liu et al., “Trace signal selection for visibility enhancement in post-
silicon validation,” in DATE, 2009, pp. 1338–1343.

[3] S. Prabhakar et al., “Using Non-Trivial Logic Implications for Trace
Buffer-based Silicon Debug,” in ATS 2009, pp. 131–136.

[4] K. Basu et al., “Efficient Trace Signal Selection for Post Silicon
Validation and Debug,” in VLSI Design, 2011.

[5] X. Liu et al., “On multiplexed signal tracing for post-silicon debug,” in
DATE, 2011, pp. 1 – 6.

[6] D. Chatterjee et al., “Simulation-based signal selection for state restora-
tion in silicon debug,” in ICCAD, 2011, pp. 595–601.

[7] M. Li et al., “A hybrid approach for fast and accurate trace signal
selection for post-silicon debug,” in DATE, 2013, pp. 485–490.

[8] K. Han et al., “Dynamic Trace Signal Selection for Post-Silicon Vali-
dation,” in VLSI Design, 2013, pp. 302–307.

[9] Y. Lee et al., “On-chip dynamic signal sequence slicing for efficient
post-silicon debugging,” in ASPDAC, 2011, pp. 719–724.

[10] S. Prabhakar et al., “Multiplexed trace signal selection using non-trivial
implication-based correlation.,” in ISQED, 2010, pp. 697 – 704.

[11] J. S. Yang et al., “Automated selection of signals to observe for efficient
silicon debug,” in VTS, 2009.

[12] H. Shojaei et al., “Trace signal selection to enhance timing and logic
visibility in post-silicon validation”, in ICCAD 2010, pp. 68 – 72

[13] www.opencores.org

