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Modeling plays a central role in design automation of embedded processors. It is necessary to develop
a specification language that can model complex processors at a higher level of abstraction and enable au-
tomatic analysis and generation of efficient tools and prototypes. The language should be powerful enough
to capture high-level description of the processor architectures. On the other hand, the language should
be simple enough to allow correlation of the information between the specification and the architecture
manual.
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Figure 1. ADL-driven design automation of embedded processors

Architecture Description Languages (ADL) enable design automation of embedded processors as as
shown in Figure 1. The ADL specification is used to generate various executable models including sim-
ulator, compiler and hardware implementation. The generated models enable various design automation
tasks including exploration, simulation, compilation, synthesis, test generation, and validation. Chapter
5 describes retargetable software tools for embedded processors. This chapter reviews the existing ADLs
in terms of their capabilities in capturing a wide variety of embedded processors available today. Existing
ADLs can be classified based on two aspects: content and objective. The content-oriented classification is
based on the nature of the information an ADL can capture, whereas the objective-oriented classification is



based on the purpose of an ADL. Existing ADLs can be classified into various content-based categories such
as structural, behavioral and mixed ADLs. Similarly, contemporary ADLs can be classified into various
objective-oriented categories such as simulation-oriented, synthesis-oriented, test-oriented, compilation-
oriented, validation-oriented, and so on. This chapter is organized as follows. Section 1 describes how
ADLs differ from other modeling languages. Section 2 surveys the contemporary ADLs. Finally, Section 3
concludes this chapter with a discussion on expected features of future ADLs.

1 ADLs and other Languages

The phrase “Architecture Description Language” (ADL) has been used in context of designing both
software and hardware architectures. Software ADLs are used for representing and analyzing software
architectures [31]. They capture the behavioral specifications of the components and their interactions that
comprises the software architecture. However, hardware ADLs capture the structure (hardware components
and their connectivity), and the behavior (instruction-set) of processor architectures. The concept of using
machine description languages for specification of architectures has been around for a long time. Early
ADLs such as ISPS [19] were used for simulation, evaluation, and synthesis of computers and other digital
systems. This chapter surveys contemporary hardware ADLs.

How do ADLs differ from programming languages, hardware description languages, modeling languages,
and the like? This section attempts to answer this question. However, it is not always possible to answer
the following question: Given a language for describing an architecture, what are the criteria for deciding
whether it is an ADL or not? Specifications widely in use today are still written informally in natural
languages such as English. Since natural language specifications are not amenable to automated analysis,
there are possibilities of ambiguity, incompleteness, and contradiction: all problems that can lead to
different interpretations of the specification. Clearly, formal specification languages are suitable for analysis
and verification. Some have become popular because they are input languages for powerful verification tools
such as a model checker. Such specifications are popular among verification engineers with expertise in
formal languages. However, these specifications are not acceptable by designers and other tool developers.
An ADL specification should have formal (unambiguous) semantics as well as easy correlation with the
architecture manual.
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Figure 2. ADLs versus non-ADLs

In principle, ADLs differ from programming languages because the latter bind all architectural abstrac-
tions to specific point solutions whereas ADLs intentionally suppress or vary such binding. In practice,
architecture is embodied and recoverable from code by reverse engineering methods. For example, it might
be possible to analyze a piece of code written in C and figure out whether it corresponds to Fetch unit or



not. Many languages provide architecture level views of the system. For example, C++ offers the ability
to describe the structure of a processor by instantiating objects for the components of the architecture.
However, C++ offers little or no architecture-level analytical capabilities. Therefore, it is difficult to de-
scribe architecture at a level of abstraction suitable for early analysis and exploration. More importantly,
traditional programming languages are not natural choice for describing architectures due to their inabil-
ity in capturing hardware features such as parallelism and synchronization. ADLs differ from modeling
languages (such as UML) because the later are more concerned with the behaviors of the whole rather
than the parts, whereas ADLs concentrate on representation of components. In practice, many modeling
languages allow the representation of cooperating components and can represent architectures reasonably
well. However, the lack of an abstraction would make it harder to describe the instruction-set of the ar-
chitecture. Traditional Hardware Description Languages (HDL), such as VHDL and Verilog, do not have
sufficient abstraction to describe architectures and explore them at the system level. It is possible to per-
form reverse-engineering to extract the structure of the architecture from the HDL description. However,
it is hard to extract the instruction-set behavior of the architecture. In practice, some variants of HDLs
work reasonably well as ADLs for specific classes of embedded processors.

There is no clear line between ADLs and non-ADLs. In principle, programming languages, modeling
languages, and hardware description languages have aspects in common with ADLs, as shown in Figure 2.
Languages can, however, be discriminated from one another according to how much architectural infor-
mation they can capture and analyze. Languages that were born as ADLs show a clear advantage in this
area over languages built for some other purpose and later co-opted to represent architectures.

2 Survey of Contemporary ADLs

This section briefly surveys some of the contemporary ADLs in the context of designing customizable
and configurable embedded processors. There are many comprehensive ADL surveys available in the
literature including ADLs for retargetable compilation [37] and SOC design [10]. Figure 3 shows the
classification of ADLs based on two aspects: content and objective. The content-oriented classification is
based on the nature of the information an ADL can capture, whereas the objective-oriented classification
is based on the purpose of an ADL. Contemporary ADLs can be classified into four categories based on
the objective: simulation-oriented, synthesis-oriented, compilation-oriented and validation-oriented. It is
not always possible to establish a one-to-one correspondence between content-based and objective-based
classification.

2.1 Content-oriented Classification of ADLs

ADLs can be classified into four categories based on the nature of the information: structural, behav-
ioral, and mixed. The structural ADLs capture the structure in terms of architectural components and
their connectivity. The behavioral ADLs capture the instruction-set behavior of the processor architecture.
The mixed ADLs capture both structure and behavior of the architecture. This section presents the survey
using content-based classification of ADLs.

2.1.1 Structural ADLs

There are two important aspects to consider to design an ADL: level of abstraction versus generality. It
is very difficult to find an abstraction to capture the features of different types of processors. A common
way to obtain generality is to lower the abstraction level. Register transfer level (RT-level) is a popular
abstraction level - low enough for detailed behavior modeling of digital systems, and high enough to hide



Oriented
Test/Validation

Architecture Description Languages (ADLs)

(e.g., ISDL, nML)
Behavioral ADLs

(e.g., EXPRESSION, LISA)
Mixed ADLsStructural ADLs

(e.g., MIMOLA, UDL/I)

Synthesis
Oriented Oriented

Simulation
Oriented

Compilation

Figure 3. Taxonomy of ADLs

gate-level implementation details. Early ADLs are based on RT-level descriptions. This section briefly
describes a structural ADL: MIMOLA [33].

MIMOLA

MIMOLA [33] is a structure-centric ADL developed at the University of Dortmund, Germany. It
was originally proposed for micro-architecture design. One of the major advantages of MIMOLA is that
the same description can be used for synthesis, simulation, test generation, and compilation. A tool
chain including the MSSH hardware synthesizer, the MSSQ code generator, the MSST self-test program
compiler, the MSSB functional simulator, and the MSSU RT-level simulator were developed based on
the MIMOLA language [33]. MIMOLA has also been used by the RECORD [33] compiler. MIMOLA
description contains three parts: the algorithm to be compiled, the target processor model, and additional
linkage and transformation rules. The software part (algorithm description) describes application programs
in a PASCAL-like syntax. The processor model describes micro-architecture in the form of a component
netlist. The linkage information is used by the compiler in order to locate important modules such as
program counter and instruction memory. The following code segment specifies the program counter and
instruction memory locations [33]:

LOCATION_FOR_PROGRAMCOUNTER PCReg;
LOCATION_FOR_INSTRUCTIONS IM[0..1023];

The algorithmic part of MIMOLA is an extension of PASCAL. Unlike other high level languages,
it allows references to physical registers and memories. It also allows use of hardware components using
procedure calls. For example, if the processor description contains a component named MAC, programmers
can write the following code segment to use the multiply-accumulate operation performed by MAC:

res := MAC(x, y, z);

The processor is modeled as a net-list of component modules. MIMOLA permits modeling of arbitrary
(programmable or non-programmable) hardware structures. Similar to VHDL, a number of predefined,
primitive operators exists. The basic entities of MIMOLA hardware models are modules and connections.



Each module is specified by its port interface and its behavior. The following example shows the description
of a multi-functional ALU module [33]:

MODULE ALU
(IN inp1, inp2: (31:0);
OUT outp: (31:0);
IN ctrl;
)

CONBEGIN
outp <- CASE ctrl OF

0: inp1 + inp2 ;
1: inp1 - inp2 ;
END;

CONEND;

The CONBEGIN/CONEND construct includes a set of concurrent assignments. In the example a
conditional assignment to output port outp is specified, which depends on the two-bit control input ctrl.
The netlist structure is formed by connecting ports of module instances. For example, the following
MIMOLA description connects two modules: ALU and accumulator ACC.

CONNECTIONS ALU.outp -> ACC.inp
ACC.outp -> ALU.inp

The MSSQ code generator extracts instruction-set information from the module netlist. It uses two
internal data structures: connection operation graph (COG) and instruction tree (I-tree). It is a very
difficult task to extract the COG and I-trees even in the presence of linkage information due to the
flexibility of an RT-level structural description. Extra constraints need to be imposed in order for the
MSSQ code generator to work properly. The constraints limit the architecture scope of MSSQ to micro-
programmable controllers, in which all control signals originate directly from the instruction word. The
lack of explicit description of processor pipelines or resource conflicts may result in poor code quality for
some classes of VLIW or deeply pipelined processors.

2.1.2 Behavioral ADLs

The difficulty of instruction-set extraction can be avoided by abstracting behavioral information from the
structural details. Behavioral ADLs explicitly specify the instruction semantics and ignore detailed hard-
ware structures. Typically, there is a one-to-one correspondence between behavioral ADLs and instruction-
set reference manual. This section briefly describes two behavioral ADLs: nML [16] and ISDL [8].

nML

nML is an instruction-set oriented ADL proposed at Technical University of Berlin, Germany. nML
has been used by code generators CBC [1] and CHESS [5], and instruction set simulators Sigh/Sim [6]
and CHECKERS. Currently, CHESS/CHECKERS environment is used for automatic and efficient soft-
ware compilation and instruction-set simulation [12]. nML developers recognized the fact that several
instructions share common properties. The final nML description would be compact and simple if the
common properties are exploited. Consequently, nML designers used a hierarchical scheme to describe
instruction sets. The instructions are the topmost elements in the hierarchy. The intermediate elements
of the hierarchy are partial instructions (PI). The relationship between elements can be established using
two composition rules: AND-rule and OR-rule. The AND-rule groups several PIs into a larger PI and



the OR-rule enumerates a set of alternatives for one PI. Therefore instruction definitions in nML can be
in the form of an and-or tree. Each possible derivation of the tree corresponds to an actual instruction.
To achieve the goal of sharing instruction descriptions, the instruction set is enumerated by an attributed
grammar [15]. Each element in the hierarchy has a few attributes. A non-leaf element’s attribute values
can be computed based on its children’s attribute values. The following nML description shows an example
of instruction specification [16]:

op numeric_instruction(a:num_action, src:SRC, dst:DST)
action {

temp_src = src;
temp_dst = dst;
a.action;
dst = temp_dst;

}
op num_action = add | sub
op add()
action = {

temp_dst = temp_dst + temp_src
}

The definition of numeric instruction combines three partial instructions (PI) with the AND-rule:
num action, SRC, and DST. The first PI, num action, uses OR-rule to describe the valid options for
actions: add or sub. The number of all possible derivations of numeric instruction is the product of the
size of num action, SRC and DST. The common behavior of all these options is defined in the action
attribute of numeric instruction. Each option for num action should have its own action attribute defined
as its specific behavior, which is referred by the a.action line. For example, the above code segment has
action description for add operation. Object code image and assembly syntax can also be specified in the
same hierarchical manner.

nML also captures the structural information used by instruction-set architecture (ISA). For example,
storage units should be declared since they are visible to the instruction-set. nML supports three types
of storages: RAM, register, and transitory storage. Transitory storage refers to machine states that are
retained only for a limited number of cycles e.g., values on buses and latches. Computations have no delay
in nML timing model - only storage units have delay. Instruction delay slots are modeled by introducing
storage units as pipeline registers. The result of the computation is propagated through the registers in the
behavior specification. nML models constraints between operations by enumerating all valid combinations.
The enumeration of valid cases can make nML descriptions lengthy. More complicated constraints, which
often appear in DSPs with irregular instruction level parallelism (ILP) constraints or VLIW processors
with multiple issue slots, are hard to model with nML. nML explicitly supports several addressing modes.
However, it implicitly assumes an architecture model which restricts its generality. As a result it is hard
to model multi-cycle or pipelined units and multi-word instructions explicitly.

ISDL

Instruction Set Description Language (ISDL) was developed at MIT and used by the Aviv compiler
[34] and GENSIM simulator generator [7]. The problem of constraint modeling is avoided by ISDL with
explicit specification. ISDL is mainly targeted towards VLIW processors. Similar to nML, ISDL primarily
describes the instruction-set of processor architectures. ISDL consists of mainly five sections: instruction
word format, global definitions, storage resources, assembly syntax, and constraints. It also contains
an optimization information section that can be used to provide certain architecture specific hints for
the compiler to make better machine dependent code optimizations. The instruction word format section



defines fields of the instruction word. The instruction word is separated into multiple fields each containing
one or more subfields. The global definition section describes four main types: tokens, non-terminals, split
functions and macro definitions. Tokens are the primitive operands of instructions. For each token,
assembly format and binary encoding information must be defined. An example token definition of a
binary operand is:

Token X[0..1] X_R ival {yylval.ival = yytext[1] - ’0’;}

In this example, following the keyword Token is the assembly format of the operand. X R is the
symbolic name of the token used for reference. The ival is used to describe the value returned by the
token. Finally, the last field describes the computation of the value. In this example, the assembly syntax
allowed for the token X R is X0 or X1, and the values returned are 0 or 1 respectively. The value (last)
field is used for behavioral definition and binary encoding assignment by non-terminals or instructions.
Non-terminal is a mechanism provided to exploit commonalities among operations. The following code
segment describes a non-terminal named XYSRC:

Non_Terminal ival XYSRC: X_D {$$ = 0;} |
Y_D {$$ = Y_D + 1;};

The definition of XYSRC consists of the keyword Non Terminal, the type of the returned value, a
symbolic name as it appears in the assembly, and an action that describes the possible token or non-
terminal combinations and the return value associated with each of them. In this example, XYSRC refers
to tokens X D and Y D as its two options. The second field (ival) describes the returned value type. It
returns 0 for X D or incremented value for Y D. Similar to nML, storage resources are the only structural
information modeled by ISDL. The storage section lists all storage resources visible to the programmer. It
lists the names and sizes of the memory, register files, and special registers. This information is used by
the compiler to determine the available resources and how they should be used.

The assembly syntax section is divided into fields corresponding to the separate operations that can
be performed in parallel within a single instruction. For each field, a list of alternative operations can be
described. Each operation description consists of a name, a list of tokens or non-terminals as parameters, a
set of commands that manipulate the bitfields, RTL description, timing details, and costs. RTL description
captures the effect of the operation on the storage resources. Multiple costs are allowed including operation
execution time, code size, and costs due to resource conflicts. The timing model of ISDL describes when
the various effects of the operation take place (e.g., because of pipelining). In contrast to nML, which enu-
merates all valid combinations, ISDL defines invalid combinations in the form of Boolean expressions. This
often leads to a simple constraint specification. It also enables ISDL to capture irregular ILP constraints.
ISDL provides the means for compact and hierarchical instruction set specification. However, it may not
be possible to describe instruction sets with multiple encoding formats using simple tree-like instruction
structure of ISDL.

2.1.3 Mixed ADLs

Mixed languages captures both structural and behavioral details of the architecture. This section briefly
describes three mixed ADLs: HMDES, EXPRESSION and LISA.

HMDES

Machine description language HMDES was developed at University of Illinois at Urbana-Champaign
for the IMPACT research compiler [13]. C-like preprocessing capabilities such as file inclusion, macro



expansion and conditional inclusion are supported in HMDES. An HMDES description is the input to the
MDES machine description system of the Trimaran compiler infrastructure, which contains IMPACT as
well as the Elcor research compiler from HP Labs. The description is first pre-processed, then optimized
and translated to a low-level representation file. A machine database reads the low level files and supplies
information for the compiler backend through a predefined query interface. MDES captures both structure
and behavior of target processors. Information is broken down into sections such as format, resource usage,
latency, operation, and register. For example, the following code segment describes register and register
file. It describes 64 registers. The register file describes the width of each register and other optional fields
such as generic register type (virtual field), speculative, static and rotating registers. The value ‘1’ implies
speculative and ‘0’ implies non-speculative.

SECTION Register {
R0(); R1(); ... R63();
’R[0]’(); ... ’R[63]’();
...

}

SECTION Register_ File {
RF_i(width(32) virtual(i) speculative(1)

static(R0...R63) rotating(’R[0]’...’R[63]’));
...

}

MDES allows only a restricted retargetability of the cycle-accurate simulator to the HPL-PD processor
family [21]. MDES permits description of memory systems, but limited to the traditional hierarchy, i.e.,
register files, caches, and main memory.

EXPRESSION

The above mixed ADLs require explicit description of Reservation Tables (RT). Processors that con-
tain complex pipelines, large amounts of parallelism, and complex storage sub-systems, typically contain a
large number of operations and resources (and hence RTs). Manual specification of RTs on a per-operation
basis thus becomes cumbersome and error-prone. The manual specification of RTs (for each configura-
tion) becomes impractical during rapid architectural exploration. The EXPRESSION ADL [2] describes
a processor as a netlist of units and storages to automatically generate RTs based on the netlist [24].
Unlike MIMOLA, the netlist representation of EXPRESSION is coarse grain. It uses a higher level of
abstraction similar to block-diagram level description in architecture manual. EXPRESSION ADL was
developed at University of California, Irvine. The ADL has been used by the retargetable compiler and
simulator generation framework [11]. An EXPRESSION description is composed of two main sections:
behavior (instruction-set), and structure. The behavior section has three subsections: operations, instruc-
tion, and operation mappings. Similarly, the structure section consists of three subsections: components,
pipeline/data–transfer paths, and memory subsystem.

The operation subsection describes the instruction-set of the processor. Each operation of the processor
is described in terms of its opcode and operands. The types and possible destinations of each operand
are also specified. A useful feature of EXPRESSION is operation group that groups similar operations
together for the ease of later reference. For example, the following code segment shows an operation group
(alu ops) containing two ALU operations: add and sub.



(OP_GROUP alu_ops
(OPCODE add

(OPERANDS (SRC1 reg) (SRC2 reg/imm) (DEST reg))
(BEHAVIOR DEST = SRC1 + SRC2)

...)
(OPCODE sub

(OPERANDS (SRC1 reg) (SRC2 reg/imm) (DEST reg))
(BEHAVIOR DEST = SRC1 - SRC2)

...)
)

The instruction subsection captures the parallelism available in the architecture. Each instruction
contains a list of slots (to be filled with operations), with each slot corresponding to a functional unit.
The operation mapping subsection is used to specify the information needed by instruction selection and
architecture-specific optimizations of the compiler. For example, it contains mapping between generic and
target instructions. The component subsection describes each RT-level component in the architecture.
The components can be pipeline units, functional units, storage elements, ports, and connections. For
multi-cycle or pipelined units, the timing behavior is also specified.
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Figure 4. A VLIW DLX Architecture

The pipeline/data-transfer path subsection describes the netlist of the processor. The pipeline path
description provides a mechanism to specify the units which comprise the pipeline stages, while the data-
transfer path description provides a mechanism for specifying the valid data-transfers. This information is
used to both retarget the simulator, and to generate reservation tables needed by the scheduler [24]. An



example path declaration for the DLX architecture [14] (Figure 4) is shown below. It describes that the
processor has five pipeline stages. It also describes that the Execute stage has four parallel paths. Finally,
it describes each path e.g., it describes that the FADD path has four pipeline stages.

(PIPELINE Fetch Decode Execute MEM WriteBack)
(Execute (ALTERNATE IALU MULT FADD DIV))
(MULT (PIPELINE MUL1 MUL2 ... MUL7))
(FADD (PIPELINE FADD1 FADD2 FADD3 FADD4))

The memory subsection describes the types and attributes of various storage components (such as
register files, SRAMs, DRAMs, and caches). The memory netlist information can be used to generate
memory aware compilers and simulators [26]. EXPRESSION captures the data path information in the
processor. The control path is not explicitly modeled. The instruction model requires extension to capture
inter-operation constraints such as sharing of common fields. Such constraints can be modeled by ISDL
through cross-field encoding assignment.

LISA

LISA (Language for Instruction Set Architecture) [36] was developed at Aachen University of Technol-
ogy, Germany with a simulator centric view. The language has been used to produce production quality
simulators [35]. An important aspect of LISA language is its ability to capture control path explicitly.
Explicit modeling of both datapath and control is necessary for cycle-accurate simulation. LISA has also
been used to generate retargetable C compilers [17]. LISA descriptions are composed of two types of dec-
larations: resource and operation. The resource declarations cover hardware resources such as registers,
pipelines, and memories. The pipeline model defines all possible pipeline paths that operations can go
through. An example pipeline description for the architecture shown in Figure 4 is as follows:

PIPELINE int = {Fetch; Decode; IALU; MEM; WriteBack}
PIPELINE flt = {Fetch; Decode; FADD1; FADD2;

FADD3; FADD4; MEM; WriteBack}
PIPELINE mul = {Fetch; Decode; MUL1; MUL2; MUL3; MUL4;

MUL5; MUL6; MUL7; MEM; WriteBack}
PIPELINE div = {Fetch; Decode; DIV; MEM; WriteBack}

Operations are the basic objects in LISA. They represent the designer’s view of the behavior, the
structure, and the instruction set of the programmable architecture. Operation definitions capture the
description of different properties of the system such as operation behavior, instruction set information,
and timing. These operation attributes are defined in several sections. LISA exploits the commonality of
similar operations by grouping them into one. The following code segment describes the decoding behavior
of two immediate-type (i type) operations (ADDI and SUBI) in the DLX Decode stage. The complete
behavior of an operation can be obtained by combining its behavior definitions in all the pipeline stages.



OPERATION i_type IN pipe_int.Decode {
DECLARE {

GROUP opcode={ADDI || SUBI}
GROUP rs1, rd = {fix_register};

}
CODING {opcode rs1 rd immediate}
SYNTAX {opcode rd ‘‘,’’ rs1 ‘‘,’’ immediate}
BEHAVIOR { reg_a = rs1; imm = immediate; cond = 0;
}
ACTIVATION {opcode, writeback}

}

A language similar to LISA is RADL. RADL [4] was developed at Rockwell, Inc. as an extension of
the LISA approach that focuses on explicit support of detailed pipeline behavior to enable generation of
production quality cycle-accurate and phase-accurate simulators. Efficient software toolkit generation is
also demonstrated using Mescal Architecture Description Language (MADL) [38]. MADL uses Operation
State Machine (OSM) model to describe the operations at the cycle-accurate level. Due to OSM based
modeling of operations, MADL provides flexibility in describing a wide range of architectures, simulation
efficiency, and ease of extracting model properties for efficient compilation.

2.2 Objective-based Classification of ADLs

ADLs have been successfully used as a specification language for processor development. Rapid eval-
uation of candidate architectures is necessary to explore the vast design and find the best possible design
under various design constraints such as area, power, and performance. Figure 5 shows a traditional
ADL-based design space exploration flow. The application programs are compiled and simulated, and the
feedback is used to modify the ADL specification. The generated simulator produces profiling data that
can be used to evaluate and instruction set, performance of an algorithm, and required size of memory
and registers. The generated hardware (synthesizable HDL) model can provide more accurate feedback
related to required silicon area, clock frequency, and power consumption of the processor architecture.
Contemporary ADLs can be classified into four categories based on the objective: compilation-oriented,
simulation-oriented, synthesis-oriented and validation-oriented. In this section we briefly describe the ADLs
based on the objective based classification. We primarily discuss the required capabilities in an ADL to
perform the intended objective.

2.2.1 Compilation-oriented ADLs

The goal of such an ADL is to enable automatic generation of retargetable compilers. A compiler is classified
as retargetable if it can be adapted to generate code for different target processors with significant reuse
of the compiler source code. Retargetability is typically achieved by providing target machine information
in an ADL as input to the compiler along with the program corresponding to the application. Therefore,
behavioral ADLs (e.g., ISDL [8] and nML [16]) are suitable for compiler generation. They capture the
instruction-set of the architecture along with some structural information such as program counter and
register details. Mixed ADLs are suitable for compiler generation since they capture both structure and
behavior of the processor.

There is a balance between the information captured in an ADL and the information necessary for
compiler optimizations. Certain ADLs (e.g., AVIV [34] using ISDL, CHESS [5] using nML, and Elcor
[21] using MDES) explicitly capture all the necessary details such as instruction-set and resource conflict
information. Recognizing that the architecture information needed by the compiler is not always in a form
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that may be well suited for other tools (such as synthesis) or does not permit concise specification, some
research has focussed on extraction of such information from a more amenable specification. Examples
include the MSSQ and RECORD compiler using MIMOLA [33], compiler optimizers using MADL [38],
retargetable C compiler based on LISA [17], and the EXPRESS compiler using EXPRESSION [2].

2.2.2 Simulation-oriented ADLs

Simulation can be performed at various abstraction levels. At the highest level of abstraction, func-
tional simulation (instruction-set simulation) of the processor can be performed by modeling only the
instruction-set. Behavioral ADLs can enable generation of functional simulators. The cycle-accurate and
phase-accurate simulation models yield more detailed timing information since they are at lower level of
abstraction. Structural ADLs are good candidates for cycle-accurate simulator generation.

Retargetability (i.e., ability to simulate a wide variety of target processors) is especially important in
the context of customizable processor design. Simulators with limited retargetability are very fast but
may not be useful in all aspects of the design process. Such simulators (e.g., HPL-PD [21] using MDES)
typically incorporate a fixed architecture template and allow only limited retargetability in the form of
parameters such as number of registers and ALUs. Due to OSM based modeling of operations, MADL
allows modeling and simulator generation for a wide range of architectures [38]. Based on the simulation
model, simulators can be classified into three types: interpretive, compiled, and mixed. Interpretive
simulators (e.g., GENSIM/XSIM [7] using ISDL) offers flexibility but slow due to fetch, decode, and
execution model for each instruction. Compilation based approaches (e.g., [35] using LISA) reduce the
runtime overhead by translating each target instruction into a series of host machine instructions which
manipulate the simulated machine state. Recently proposed techniques (JIT-CCS [3] using LISA and
IS-CS [20] using EXPRESSION) combines the flexibility of interpretive simulation with the speed of the
compiled simulation.

2.2.3 Synthesis-oriented ADLs

Structure-centric ADLs such as MIMOLA are suitable for hardware generation. Some of the behavioral
languages (such as ISDL and nML) are also used for hardware generation. For example, the HDL generator
HGEN [7] uses ISDL description, and the synthesis tool GO [12] is based on nML. Itoh et al. [18] have



proposed a micro-operation description based synthesizable HDL generation. Mixed languages such as
LISA and EXPRESSION capture both structure and behavior of the processor and enables HDL generation
[23, 25]. The synthesizable HDL generation approach based on LISA language produces an HDL model of
the architecture. The designer has the choice to generate a VHDL, Verilog or SystemC representation of
the target architecture [23].

2.2.4 Validation-oriented ADLs

ADLs have been successfully used in both academia as well as industry to enable test generation for
functional validation of embedded processors. Traditionally, structural ADLs such as MIMOLA [33] are
suitable for test generation. Behavioral ADLs such as nML [12] have been used successfully for test
generation. Mixed ADLs also enable test generation based on coverage of the ADL specification using
EXPRESSION [28, 29, 9] as well as automated test generation for LISA processor models [22]. ADLs have
been used in the context of functional verification of embedded processors [32] using a top-down validation
methodology as shown in Figure 6. The first step in the methodology is to verify the ADL specification
to ensure the correctness of the specified architecture [27]. The validated ADL specification can be used
as a golden reference model for various validation tasks including property checking, test generation and
equivalence checking. For example, the generated hardware model (reference) can be used to perform both
property checking and equivalence checking of the implementation using EXPRESSION ADL [30].
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Figure 6. Top-Down Validation Flow

3 Conclusions

Design of customizable and configurable embedded processors requires the use of automated tools and
techniques. ADLs have been successfully used in academic research as well as industry for processor



development. The early ADLs were either structure-oriented (MIMOLA, UDL/I), or behavior-oriented
(nML, ISDL). As a result, each class of ADLs are suitable for specific tasks. For example, structure-
oriented ADLs are suitable for hardware synthesis, and unfit for compiler generation. Similarly, behavior-
oriented ADLs are appropriate for generating compiler and simulator for instruction-set architectures, and
unsuited for generating cycle-accurate simulator or hardware implementation of the architecture. However,
a behavioral ADL can be modified to perform the task of a structural ADL (and vice versa). For example,
nML is extended by Target Compiler Technologies to perform hardware synthesis and test generation [12].
The later ADLs (LISA, HMDES and EXPRESSION) adopted the mixed approach where the language
captures both structure and behavior of the architecture. ADLs designed for a specific domain (such as
DSP or VLIW) or for a specific purpose (such as simulation or compilation) can be compact and it is
possible to automatically generate efficient (in terms of area, power and performance) tools/hardwares.
However, it is difficult to design an ADL for a wide variety of architectures to perform different tasks
using the same specification. Generic ADLs require the support of powerful methodologies to generate
high quality results compared to domain-specific/task-specific ADLs.

In the future, the existing ADLs will go through changes in two dimensions. First, ADLs will specify not
only processor, memory and co-processor architectures but also other components of the system-on-chip
architectures including peripherals and external interfaces. Second, ADLs will be used for software toolkit
generation, hardware synthesis, test generation, instruction-set synthesis, and validation of microprocessors.
Furthermore, multiprocessor SOCs will be captured and various attendant tasks will be addressed. The
tasks include support for formal analysis, generation of real-time operating systems (RTOS), exploration
of communication architectures, and support for interface synthesis. The emerging ADLs will have these
features.
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