
Bitmask-based Control Word Compression for NISC Architectures

Chetan Murthy and Prabhat Mishra
Computer & Information Science & Engineering

University of Florida, Gainesville, FL 32611, USA
{cmurthy, prabhat}@cise.ufl.edu

ABSTRACT
Implementing a custom hardware is not always feasible due to cost
and time considerations. No instruction set computer (NISC) archi-
tecture is one of the promising direction to design a custom datap-
ath for each application using its execution characteristics. A major
challenge with NISC control word is that they tend to be at least 4
to 5 times larger than regular instruction size, thereby imposing
higher memory requirement. A promising approach is to compress
these control words to reduce the code size of the application. This
article proposes an efficient bitmask-based compression technique
to drastically reduce the control word size while keeping the de-
compression overhead minimal. The main contributions of our ap-
proach are: i) efficient don’t care resolution for maximum bitmask
coverage using limited dictionary entries, ii) run length encoding to
significantly reduce repetitive control words, and iii) smart encod-
ing of constant and less frequently changing bits. Our experimental
results demonstrate that our approach improves compression effi-
ciency by an average of 20% over the best known control word
compression, giving a compression ratio of 25% to 35%.

Categories and Subject Descriptors: C.3 [Special-Purpose and
Application-based Systems]: Microprocessor applications

General Terms: Design, Algorithms

Keywords: No-Instruction-Set Computer, Compression.

1. INTRODUCTION
It is not always efficient to run an application on a generic pro-

cessor, whereas implementing a custom hardware is not always
feasible due to cost and time considerations. One of the promis-
ing direction is to design a custom datapath for each application
using its execution characteristics. The abstraction of instruction
set in generic processors limits from choosing such custom data
path. No instruction set architecture (NISC) promises faster perfor-
mance guarantees by analyzing the datapath behavior and eliminat-
ing abstraction of instruction set to choose a custom datapath thus
controlling the selection of optimal datapath to meet applications
performance requirements. These datapath or control word (CW)
tend to be at least 4 to 5 times wider than regular instructions thus
increasing the code size of applications. One promising approach
is to reduce these control words by compressing them. Figure 1
shows the compressed control word execution flow on a NISC ar-
chitecture. The compressed control word is read from control word

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GLSVLSI’09, May 10–12, 2009, Boston, Massachusetts, USA.
Copyright 2009 ACM 978-1-60558-522-2/09/05 ...$5.00.

memory (CW Mem) and decoded to obtain original control word
and sent to controller for execution.

Compression ratio is the metric commonly used to measure ef-
fectiveness of a compression technique (Equation 1). Clearly, smaller
the compression ratio better the compression efficiency.

Compression Ratio =
Compressed Size

Uncompresssed Size
(1)

Widely used code compression techniques utilize a dictionary
to store most frequently occurring instructions. The instructions
are replaced with smaller dictionary indices. The application of
such algorithm on NISC control words is found not to result in sig-
nificant reduction in code size. This is because the control words
replacing the original instructions might not retain the same repeat-
ing pattern. Gorjiara et al. [3] described an interesting approach in
which the control words are split to obtain redundancies and then
compressed using multiple dictionaries. The main disadvantage of
this technique is that the complete binary is stored in dictionary.
This leads to large compressed code (less compression) and vari-
able length dictionary size that requires variable number of block
RAMs (BRAM) on which these dictionaries are stored. Seong et
al. [9] presented a promising approach to achieve better compres-
sion by using limited dictionary entries and recording bit changes
to match most of the instructions with dictionary. The direct appli-
cation of this algorithm is found not to reduce the control word size
significantly. It is a major challenge to develop an efficient com-
pression technique which significantly reduces control word size
and has minimal decompression overhead.

C
on

tr
ol

 W
or

dDecoderCW Mem

PC

Address

A
dd

re
ss

G
en

er
at

or

Offset

Data Path

Functional
Units

Data
Memory

Figure 1: NISC architecture and decoder placement

In this paper, we propose an efficient compression technique that
takes advantage of both NISC control word compression [3] and
bitmask-based compression [9] techniques. This paper makes four
important contributions: i) an efficient control word compression
technique to improve compression ratio by splitting control words
and compressing them using multiple dictionaries, ii) a bitmask
aware don’t care resolution to decrease dictionary size and improve

dictionary coverage, iii) smart encoding of constant and less fre-
quently changing bits to further reduce the control word size, and
iv) run length encoding of repetitive sequences to both improve
compression ratio and decrease decompression overhead by pro-
viding the uncompressed words instantaneously.

The rest of the paper is organized as follows. Section 2 dis-
cusses the existing code compression techniques. Section 3 de-
scribes NISC architecture and existing bitmask based compression.
Section 4 describes our compression technique followed by a dis-
cussion on multiple dictionary based decompression in Section 5.
Section 6 presents our experimental results. Finally Section 7 con-
cludes the paper.

2. RELATED WORK
The first code-compression technique for embedded processors

was proposed by Wolfe and Chanin [1]. Their technique uses Huff-
man coding, and the compressed program is stored in the main
memory. The decompression unit is placed between the main mem-
ory and the instruction cache. They used a Line Address Table
(LAT) to map original code addresses to compressed block ad-
dresses. Lekatsas et al. [4] proposed a dictionary based decom-
pression prototype that is capable of decoding one instruction per
cycle. The idea of using dictionary to store the frequently occurring
instruction sequences has been explored by various researchers [2],
[8]. The techniques discussed so far target reduced instruction set
computer (RISC) processors. There has been a significant amount
of research in the area of code compression for very long instruc-
tion word (VLIW) and no instruction set computer (NISC) proces-
sors. The technique proposed by Ishiura and Yamaguchi [6] splits a
VLIW instruction into multiple fields, and each field is compressed
by using a dictionary-based scheme.

Gorjiara et al. [3] applies similar approach in splitting the con-
trol words into different fields and compressing them using multi-
ple dictionaries. Their approach can lead to unacceptable compres-
sion since it stores the complete binary in the dictionary. More-
over, it will require variable number of block RAMs (BRAM) to
store variable-length dictionaries for different applications. Our
approach outperforms [3] on both fronts by achieving 20% better
compression (on average) using a fixed-length dictionary. Seong
et al. [9] proposes a bitmask-based compression to improve com-
pression ratio by creating matching patterns using bitmasks. How-
ever, the direct application of their algorithm is not beneficial due
to lack of redundancy in longer control words. Moreover, the exist-
ing approach does not handle the presence of don’t cares in input
control words. As a result, it will sacrifice on compression effi-
ciency by randomly replacing don’t cares by 0’s or 1’s. The previ-
ous two methods ([3] and [9]) are closest to our approach. Section
6 presents experimental results to show how our approach improves
compression efficiency compared to these approaches, without in-
troducing any additional decompression overhead.

3. BACKGROUND AND MOTIVATION

3.1 No Instruction Set Computer (NISC)
NISC technology is based on horizontal microcoded architec-

ture. In this technology, first a custom datapath is generated for an
application, and then the datapath is synthesized and laid out prop-
erly to meet timing and physical constraints. The final step is to
compile the program on the generated datapath. If the application
is changed after synthesis, it is simply recompiled on the existing
datapath. This feature significantly improves the productivity of the
designer by avoiding repetition of timing closure phase. NISC re-

lies on a sophisticated compiler [7] to compile a program described
in a high-level language to binary that directly drives the control
signals of components in the datapath. The values of control sig-
nals generated for each cycle are called a control word. The control
words (CW) are stored in control word memory (CW Mem, shown
in Figure 1) in programmable IPs, while they are synthesized to
lookup-table logic in hardwired dedicated IPs.

PC

Data
Path

Data

PC

Data
Path

Data

(Control Words)

Program
Memory

Program
Memory

Decoder

CW

IR

CW

(a) RISC (b) NISC

(Instructions)

MemoryMemory

Figure 2: RISC and NISC Architectures

Figure 2 shows both RISC and NISC architectures. In RISC ar-
chitectures, instructions are fetched from the program memory and
stored in the instruction register (IR). The decoder decodes it to
generate the required control word. In contrast, the NISC archi-
tecture stores the control word in the program memory thus elim-
inating the instruction decoder and hardware scheduler as shown
in Figure 2(b). However, the code size is very large compared to
RISC architectures due to two factors: control words are wider than
instructions, and the number of NISC control words can be more
than the number of RISC instructions. On MiBench benchmarks,
NISC implementation runs 5.54 times faster than RISC-based Mi-
croBlaze, while its code size is four times larger [3]. The large
code size increases the size of control memory in programmable
IPs, and the area of control logic in dedicated IPs. The goal of our
code compression technique is to reduce the control word size of
NISC processors while maintaining the performance benefits.

3.2 Bitmask-based Compression
Dictionary-based compression techniques provide compression

efficiency as well as fast decompression mechanism. The basic
idea is to take advantage of commonly occurring instruction se-
quences by using a dictionary. The repeating occurrences are re-
placed with index of the dictionary that contains the original data.
Figure 3 shows an example of dictionary based code compression
using a 2 entry dictionary. Most frequently occurring words are
stored in a dictionary and are replaced with the dictionary index
(1 bit) during compression. The compressed program consists of
both indices and uncompressed instructions. Figure 4(a) and (b)
show the encoding scheme for a generic dictionary based compres-
sion technique. In this example, the dictionary based compression
achieves a compression ratio of 97.5%.

Seong et al. [9] improve the standard dictionary based com-
pression techniques by considering mismatches. The basic idea
is to find the instruction sequences that are different in few con-
secutive bit positions and store that information in the compressed
program. Compression ratio will depend on how many bit changes
(and length of each consecutive change) are considered during com-
pression. Figure 3 shows the same example compressed using one

 0000 0000
 1000 0010
 0000 0010
 0100 0010
 0100 1110
 0101 0010
 0000 1100
 0100 0010
 1100 0000
 0000 0000

 0000 0000
 0100 0010

Content

 0
 1

Index

 0 0
 1
 1
 0
 1
 1
 1
 0
 1
 0

 1000 0010
 0000 0010

 0100 1110
 0101 0010
 0000 1100

 1100 0000

 1

 1

 0

 0 1
 0
 0
 0
 0
 0
 0
 0
 0
 0

 0 00 11
 0 11 10

 0 10 11
 0 01 01
 0 10 11

 0 00 11

 1

 1

 1

 0
 1
 1
 1
 1
 1
 0
 1
 0
 0

bitmask flag

Dictionary−Compressed

Dictionary

Bitmask−Compressed

bitmask position

compress flag

Original Code bitmask value

Figure 3: Dictionary and bitmask based compression

bitmask allowing 2 consecutive bit changes starting at even loca-
tions. In this example we are able to compress all the mismatched
words using smaller number of bits and achieve compression ratio
of 87.5%. Figure 4(b), (c), and (d) show the encoding format used
by these techniques for a w-bit program. In general, the compres-
sion ratio depends mainly on the instruction width, dictionary size
and the number of bitmasks used. A smaller instruction size results
in more direct matches whereas increasing the number of words to
compress. A larger dictionary size can match more words replac-
ing them with dictionary index but at the cost of increased dictio-
nary index bits. More number of bitmasks results in more com-
pressed words at the same time requiring more bits to encode the
bitmask information. Our approach splits the wider control words
to achieve better redundancy by employing multiple dictionaries.

Dictionary IndexNumber of

bitmask information

Bitmasks
PositionBitmask . . .

isCompressed
(1 bit)

UnCompressed Word
(w bits)

(a) Compressed with dictionary index

(b) Uncompressed word

isCompressed Dictionary Index
(1 bit) 2(log (d) bits)

isCompressed
(1 bit) (1 bit)

Dictionary Index

2(log (d) bits)
isBitmasked

isCompressed
(1 bit) (1 bit)

isBitmasked

(c) Bitmask compressed using only dictionary index

(d) Compressed using bitmasks

2(log (d) bits)

Figure 4: Encoding formats of existing compression techniques

4. CONTROL WORD COMPRESSION
The existing bitmask-based compression is promising but there

are various challenges discussed in the previous section that needs
to be addressed. NISC control words are usually 3 to 4 times wider
than normal instructions. To achieve more redundancy and to re-
duce code size, the control words are split into two or more slices
depending on the width of the control word. Then don’t care bits
are resolved using vertex coloring. The resultant control words are
then scanned for less frequent and constant bits. These infrequent
bits are then encoded as a skip map. Then each slice is compressed
using bitmask based algorithm described in article [9] by selecting
profitable parameters. The parameters are selected based on the
length of each slice.

Algorithm 1 lists the major steps in compressing NISC control
words. Initially in step 1, all the constant bits are removed to get
reduced control words along with an initial skip map (skip map
represents the bits that can be skipped from compression, and are
hardcoded). In step 2, the input is split into required slices. The
less frequently changing bits are then removed from each slice us-
ing Algorithm 3. For each slice, don’t care values are resolved
using Algorithm 2 in step 3.1. The resultant slices are compressed
in step 3.2, using a combination of run length encoding (RLE) and
bitmask based compression [9]. Step 4 returns the compressed con-
trol words.

Algorithm 1: Multi-dictionary compression
Input: i) control words with don’t cares, I
ii) number of slices n
iii) threshold bits that can change t
Output: Compressed control words C
1. W = remove_constant_bits (I)
2. S[] = slice_and_remove_less_frequent_bits (W , n, t)
3. forall s in S[] do

3.1 S[i] = bitmask_aware_dont_care_resolve (s)
3.2 C[i] = RLE_bitmask_compress (S[i])

end
4. Return C

The complete compression and decompression methodology of
control words is shown in Figure 5. In this example the input con-
trol word is split into three slices. The input file containing the
control words is passed to the compressor. The compressor reduces
the control word size by applying the Algorithm 1 and produces the
compressed file in the order of slices. Later each decoder fetches
compressed words from different locations in the memory. These
compressed words are then decoded using the dictionary stored on
block RAM (BRAM). The decompressed control word is then as-
sembled to form the original control word.

CW1

CWn

C
om

pr
es

so
r

Decoder 2

Decoder 1

Decoder 3

. .
 .

.

Control Words

Compressed CW Decompression Engine

Control Word

CW2

Figure 5: Compressed control word compression

4.1 Bitmask-Aware Don’t Care Resolution
In a generic NISC processor implementation not all functional

units are involved in a given datapath, such functional units can be
either enabled or disabled. The compiler [7] inserts don’t care bits
in such control words. To obtain maximum compression any com-
pression algorithm can utilize these don’t care values efficiently.
One such algorithm presented in [3] creates a conflict graph with
nodes representing unique control words and edges between them
represent that these words cannot be merged. Application of min-
imal k colors to these vertices results in k merged words. It is
well known fact that vertex coloring is a NP-Hard problem. Hence
a heuristic based algorithm proposed by Welsh and Powell [5] is
applied to color the vertices to obtain merged dictionary. This al-

gorithm is well suited in reducing the dictionary size with exact
matches. The dictionary chosen by this algorithm might not yield
a better bitmask coverage.

An intuitive approach is to consider the fact that the dictionary
entries will be used for bitmask based matching during compres-
sion. Algorithm 2 describes the steps involved in choosing such a
dictionary. The algorithm allows certain bits that can be bitmasked
while creating a conflict graph. This reduces the dictionary size
drastically. The algorithm allows certain bits that can be bitmasked
to avoid them to be represented as edges in the conflict graph, thus
allowing the graph to be colored with less number of colors. This
results in dictionary size with smaller dictionary index bits thus re-
ducing the final compressed code size. It may be noted that while
merging the vertices if the bits are already set then bits originating
from the most frequent words are retained. This promises reduced
size as they result in more direct matches.

Algorithm 2: Bitmask Aware Don’t Care Resolution
Input: i) Unique input control words C = {ci, fi},
ii) number and type of bitmasks b, B = {si, ti}
Output: merged control words M
forall u in C do

forall v in C do
if bit_conflict (u,v) cannot be bitmasked using B then

add (u,v) with cuv = fu and (v,u) with cvu = fv

end
end
colors = wp_color_graph (G)
sort_on_frequencies (G)
forall clr ∈ colors do

M = merge all the nodes with same color clr
Retain the bits of most frequent words while merging

end
Return M

Figure 6 describes an example don’t care resolution of NISC
control words and a merging iteration. The input words and their
frequencies are as shown in Figure 6 (a). There are four inputs A, B,
C and D. Figure 6 (b) represents the conflict graph constructed by
the don’t care resolution algorithm in [3]. The algorithm chooses
three colors which represents the merged dictionary entries. Our
approach skips the edges which can be bitmasked as shown in Fig-
ure 6 (c). This example uses one 1-bit bitmask to store differences.
The final colors indicate the merged dictionary entries. The tra-
ditional approach will require three dictionary entries, whereas our
approach requires only two dictionary entries that results in savings
of one bit in dictionary index.

4.2 Encoding Less Frequently Changing Bits
Upon closer analysis of the control word sequence reveals that

some bits are constant or changes less frequently throughout the
code segment. Removal of such bits improves compression effi-
ciency and does not affect matches provided by rest of the bits.
The less frequently changing bits are encoded by using an unused
bitmask value as a marker (01 in case of a 2-bit bitmask). A thresh-
old number determines the number of times that a bit can change
in the given location throughout the code segment. It is found that
10 to 15 is a good threshold for the benchmarks used in our exper-
iments. Algorithm 3 lists the steps in eliminating the constant bits
and less frequently changing bits. Initially the Algorithm 3 calcu-
lates the number of ones and zeros in each bit position. In the next
step only those bit positions that change less than threshold t are
considered to be the initial skip map. For any given control word if

there are more than one bit position that change, it is not profitable
to encode all these bit changes. To avoid this condition, the last
step of the algorithm updates the initial skip map by constructing a
conflict map for each control word. The bit position which causes
the least conflict is retained for skipping.

A 0 0 0 X 1 10

2

5

8

B

C

D

1 0 0 X 1

0 0 0 1 1

0 1 1 X 0

BA

D C

BA

D C

0 0 0 1 1

1 0 0 X 1

0 1 1 X 0

0 0 0 1 1

0 1 1 X 0

a) Control Words
b) Traditional Vertex Coloring

c) Bitmask−aware Vertex Coloring

Figure 6: Bitmask aware don’t care resolution

Figure 7 shows an example control word sequence to demon-
strate bit reduction. Each control word is scanned for number of
ones and zeros in each bit position. The last three bit positions do
not change throughout the input thus they are removed from the
input, storing these bits in a skip map. Columns with bit changes
less than threshold (2 in this example) i.e. column 2, 4 and 5 have
less frequent bits changes. In the final step conflict map is created
(listed at the bottom part of the figure) representing the number
of collisions. The bit positions with collisions 0 or 1 are consid-
ered for skipping, the remaining columns (column 4) are excluded
from the initial skip map. The skip map and the bits which needs
to be encoded are shown on the right side of the figure. It can be
noted that there is a significant reduction in control word size for
compression. The decompression section discusses how these less
frequently changing bits are reassembled.

Algorithm 3: Removal of Less Frequently Changing Bits
Input: i) Control Words with don’t cares D,
ii) Threshold t number of bits
Output: Skip Map S
S = φ
forall w in D do

forall bi, ith bit in w do
count_ones
count_zeros

end
end
create a skip_map of 0/1 or taken with count < threshold t.
forall w in D do

if w has a conflict with skip_map then
count the number of bits w conflicts with skip_map.
if conflict > 1 then

remove most conflict bit from previously
calculated skip_map.

end
return S

4.3 Run Length Encoding
Careful analysis of the control words pattern reveals that the in-

1 0 1 1 0 0 0 0
0 0 0 1 0 0 0 X
1 0 1 1 0 0 0 X
0 0 0 1 0 X 0 0

0 0 1 1 0 X 0 0
1 1 0 1 0 0 X 0

− 0 − 1 0 0 0 0

0 0 1 0 1 0 X 0

Conflict map with threshold 2

1 1 0 0 0 0 X 0

− 0 − − 0 0 0 0Skip map

− 1 − 2 1 − − −

1 1 1
0 0 1
1 1 1

0 1 1

Constant

0 0 1
1 1 0 0

1 1 0 1
0 1 0 1

bits

Figure 7: Removal of constant and less frequently changing bits

put control words contain consecutive repeating patterns of words.
The bitmask based compression [9] encodes such patterns using
same repeated compressed words. Instead we use a method in
which repetition of such words are run length encoded (RLE). To
represent such encoding no extra bits are needed. An interesting
observation leads to the conclusion that bitmask value 0 is never
used, because this value means that it is an exact match and would
have encoded using zero bitmasks. Using this as a special marker,
these repetitions can be encoded. This smart encoding reduces the
extra bit that is required to indicate on all the compressed words
otherwise.

Another advantage of such run length encoding is that it allevi-
ates the decompression overhead by providing the decompressed
control word instantaneously to the configuration hardware in the
same cycle. Figure 8 illustrates the bitmask-based RLE. The in-
put contains, control word “0000 0000" repeating 5 times. In nor-
mal bitmask-based compression these control words will be com-
pressed with repeated compressed words, whereas our approach re-
places such repetitions using a bitmask of “00". The number of rep-
etition is encoded as bitmask offset and dictionary bits combined
together. In this example, the bitmask offset is “10" and dictionary
index is ‘0’. Therefore, the number of repetition will be “100” i.e.,
4 (in addition to the first occurrence). The compressed words are
run length encoded only if the savings made by RLE word encod-
ing is greater than the actual encoding. In other words, if there are r
repetition of compressed words and cost of representing each con-
trol word is x bits and the number of bits required to encode run
length is y bits then RLE is used only if x ∗ r < y bits.

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0

0 1 0
0 1 0
0 1 0

0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1

0 1 0
0 1 1

Input without RLE
0 1 0
0 0 10 0

0 1 1

with RLE

0 0 0 0 0 0 0 0

00

Dictionary

Figure 8: An illustrative example of RLE with bitmask

5. DECOMPRESSION MECHANISM
This section analyzes the modification required for the decom-

pression engine proposed in [9]. Figure 9 describes the structure
of the NISC control word decompression engine. The decompres-

sion hardware consists of multiple decoding units for each slice of
compressed control words. Each decoder contains input buffer to
store the incoming data from memory. Based on the type of com-
pressed word, control is passed to the corresponding decode unit.
Each decoding engine has a skip map register to insert extra bits
that were removed during less frequently changing bit reduction.
A separate unit to toggle these bits handles the insertion of these
difference bits. This unit reads the offset within the skip map reg-
ister to toggle the bit and places it in the output buffer. All outputs
from decoding engine are then directed to the skip map for con-
stant bits which holds the completely skipped bits (bits that never
change). The output from constant bit register will be connected to
controller for execution.

Output Buffer

Matching Flag Register

Compression Flag Register
Buffer

Input Data

Decoder Decoder
RLE

Decoder
Bit LocationBitmask

Bypass

0−− − . . −

From Decoder nFrom Decoder 1

Less Frequent
Bits Skip Map

Constant Bits
Skip Map

Compressed Control Words

.

Figure 9: Multi-dictionary based decompression engine

6. EXPERIMENTS
The effectiveness of our proposed compression technique is mea-

sured using MiBench benchmarks [3]. In particular we use adpcm-
coder, adpcmdecoder, crc32, dijkstra, sha, and fpmp3 programs.
These application are commonly used embedded software in mo-
bile, network, security and telecom domains. These benchmarks
are also used in the existing control word compression technique
[3]. We evaluate the compression ratio and resources used by de-
compression engine (BRAMs) against the compression approach
proposed by Gorjiara et al. [3] and original bitmask based com-
pression [9].

6.1 Compression Performance
The benchmarks are compiled in release mode using NISC com-

piler [7]. The profitable parameters selected for bitmask based
compression are determined by the width of the control word. For
example a control word between 16 and 32 bits, dictionary size of
16, two bitmasks of each 2-bit sliding is selected. For a control

20.00%
25.00%
30.00%
35.00%
40.00%
45.00%
50.00%
55.00%
60.00%
65.00%
70.00%

m-BMC - op1 m-BMC - op2 m-BMC - op3 m-BMC - op4

Figure 10: Our approach using multiple dictionaries

word less than 16 bits, dictionary size of 8, single bitmask of 2-bit
sliding is selected for compression.

Figure 10 compares the compression ratios of our approach (m-
BMC) using single (m-BMC-op1) and multiple (two: m-BMC-op2,
three: m-BMC-op3, four: m-BMC-op4) dictionaries. We split the
input control words equally into the number of dictionaries used.
For each control word slice we select the profitable parameters
mentioned above for bitmask based compression. The three dic-
tionary option clearly outperforms the other combination except
in the case of sha and crc32 program, where two and four dictio-
nary options respectively result in better compression ratio. Overall
we find that using three dictionary option is better for most of the
benchmarks.

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

BMC m-BMC - our approach

Figure 11: Bitmask-based compression versus our approach

Figure 11 compares our approach (using three dictionaries) with
the existing bitmask based compression technique (BMC [9]). Our
bitmask-based RLE approach combined with constant and less fre-
quently changing bits outperforms the existing bitmask based com-
pression method [9] by an average of 20 to 30%.

20.00%

25.00%

30.00%

35.00%

40.00%

45.00%

NISC - [3] m-BMC - our approach

Figure 12: Our approach versus existing NISC compression

Figure 12 compares the compression ratios between the exist-
ing multi-dictionary compression technique proposed by Gorjiara
et al. [3] and our approach. Both approaches use three dictionaries.
On an average, our approach outperforms over NISC compression
technique [3] by 15 to 20%. It is important to note that our ap-
proach uses up to six times less number of BRAMs to store the
dictionary compared to [3].

6.2 Decompression Overhead
Our approach automatically generates the Verilog based decom-

pression engine with selected compression parameters. The de-
compression engine can operate at the speed of the decoding units
capable of operating at 100 MHz in the range of NISC processor
operating range. The dictionary size used in all the benchmarks are
small and limited. In our approach, the BRAM used to store these
dictionaries are fixed requiring 1 or 2 BRAMs, whereas the existing
method [3] uses up to six BRAMs.

7. CONCLUSIONS
This paper presented a bitmask based compression technique to

reduce the size of NISC control words by splitting and compress-
ing them using multiple dictionaries. We designed a bitmask aware
don’t care resolution that produces dictionary having large bitmask
coverage with minimal and restricted dictionary size. We devel-
oped an efficient RLE technique that encodes the consecutive repet-
itive patterns to improve both compression efficiency and decom-
pression performance. This paper also developed an efficient way
of encoding constant and less frequently changing bits to signifi-
cantly reduce the control word size. Our approach improved com-
pression efficiency by 20 to 30 % over the best known compression
technique [3] with no additional decompression overhead.

8. ACKNOWLEDGMENTS
This work was partially supported by NSF CAREER award 0746261.

We would like to thank Dr. Bita Gorjiara and Dr. Mehrdad Reshadi
for their insightful comments and suggestions about NISC technol-
ogy and control word compression.

9. REFERENCES
[1] A. Wolfe and A. Chanin. Executing compressed programs on

an embedded RISC architecture. MICRO, 81–91, 1992.
[2] C. Lefurgy et al. Improving code density using compression

techniques. MICRO, 194–203, 1997.
[3] B. Gorjiara and D. Gajski. FPGA-friendly code compression

for horizontal microcoded custom IPs. FPGA, 108–115, 2007.
[4] H. Lekatsas and J. Henkel and V. Jakkula. Design of an

one-cycle decompression hardware for performance increase
in embedded systems. DAC, 34–39, 2002.

[5] T. Jensen and B. Toft. Graph coloring problems. Discrete
Mathematics and Optimization. Wiley-Interscience, 1995.

[6] N. Ishiura and M. Yamaguchi. Instruction code compression
for application specific VLIW processors based of automatic
field partitioning. SASIMI, 105–109, 1997.

[7] M. Reshadi. No-Instruction-Set-Computer (NISC) technology
modeling and compilation. PhD thesis, UC Irvine, 2007.

[8] S. Liao, S. Devadas and K. Keutzer. Code density
optimization for embedded DSP processors using data
compression techniques. Adv. Res. VLSI, 393–399, 1995.

[9] S. Seong and P. Mishra. Bitmask-based code compression for
embedded systems. IEEE Trans. CAD, 27(4): 673–685, 2008.

