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Abstract 
Instruction-set simulators are an integral part of today’s processor and software design process. Due to increasing 

complexity of the architectures and time-to-market pressure, performance and retargetability are the most important 
features of an instruction-set simulator. Dynamic behavior of applications and processors requires the ISA simulators to 
be flexible. Flexible interpretive simulators are slow while fast compiled simulators are not flexible enough. 
Retargetability and flexibility require generic models while high performance demands target specific customizations. To 
address these contradictory requirements, we propose a generic model as well as an efficient and flexible implementation 
technique. The contribution of this paper is a simulation framework that is retargetable, fast and flexible. We have 
developed a generic instruction model and a generic decode algorithm to generate retargetable simulators that supports 
wide spectrum of processor architectures including RISC, DSP, VLIW and Superscalar. We have also developed the 
Instruction-Set Compiled Simulation (IS-CS) technique that combines the performance of compiled simulation with the 
flexibility of interpretive simulation. The generated simulator delivers up to 46% performance improvement over JIT-CCS 
�[2], the best known result in this category. We illustrate the applicability of our approach using two different state-of-the-
art real world architectures: the Sparc and the ARM. 
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1 Introduction 
Instruction-set simulators are indispensable tools in the development of new architectures. They are used to validate 

an architecture design, a compiler design as well as to evaluate architectural design decisions during design space 
exploration. Running on a host machine, these tools mimic the behavior of an application program on a target machine. 
These simulators should be fast to handle the increasing complexity of processors, flexible to handle all features of 
applications and processors, e.g. runtime self modifying codes, multi mode processors; and retargetable to support a wide 
spectrum of architectures. Unfortunately none of the available simulation techniques focus on all of these issues at the 
same time. 

Interpretive simulation is widely used due to its flexibility, despite its poor performance. In interpretive simulation, 
every time an instruction is fetched from memory, it is decoded and executed. By decoding all the instructions once prior 
to execution, the compiled simulation can significantly improve the simulation speed. However, the compiled simulation 
can not handle dynamic behavior of applications or processors that requires re-decoding of instructions during execution. 
As a result, compiled simulation can not handle many application domains, such as processors with multiple instruction 
set modes and self modifying programs. 

A similar tradeoff between speed and retargetability exists in ISA simulators. Some of the retargetable simulators use 
a very general processor model and support a wide range of architectures but are slow, while others use some architectural 
or domain specific performance improvements but support only a limited range of processors. Although in the past years, 
performance has been the most important quality measure for the ISA simulators, retargetability is and additional concern, 
particularly in the area of the embedded systems. Today, an embedded application can be implemented on a variety of 
different architectures including microprocessors, DSPs and reconfigurable platforms. Besides, there are emerging 
architectures with combined features of classical architectures such as DSP, VLIW and Superscalar. For example, the TI 
C6x �[19] family combines DSP and VLIW features and the Intel Itanium combines features of VLIW and superscalar 
architectures. To enable rapid design space exploration of such architectures, designers need a way of specifying a wide 
variety of processor-memory features and automatic generation of software toolkit including ISA simulators. A model is 
needed for capturing the features and techniques must be used for extracting the information and generating the simulator. 
While such a simulator must be fast and flexible, the model and the techniques must be general enough to support a wide 
spectrum of architectures. To the best of our knowledge, there is no published work on retargetable simulation that has 
focused on all these issues at the same time, while being able to deliver fast performance.  

In this paper, we present a simulation framework that has the speed of compiled simulation and the flexibility of 
interpretive simulation while supporting many variations of architectures. We use the EXPRESSION ADL �[13] to capture 
the architecture and generate the simulator from the ADL specification. 

To achieve maximum retargetability, we have developed a generic instruction model coupled with a decoding 
technique that flexibly supports variations of instruction formats for widely differing contemporary processor 
architectures such as RISC, CISC, VLIW and variable length instruction set processors. To get high simulation 
performance, we have developed a technique called Instruction-Set Compiled Simulation (IS-CS). In IS-CS, instead of 
compiling the whole target program to a host binary, we compile each instruction to an optimized code for that instance of 
the instruction. This technique also enables us to use an interpretive simulation engine that can use pre-decoded optimized 
instructions as well as dynamically decoded instructions. Therefore the simulator uses the advantages of both techniques: 
the performance of compiled simulation and the flexibility of interpretive simulation.  

The rest of the paper is organized as follows. Section �2 presents related work addressing ISA simulator generation 
techniques and distinguishes our approach. Section �3 outlines the retargetable simulation framework. It describes three 
key components of the framework: a generic instruction model, a decoding algorithm, and the instruction-set compiled 
simulation (IS-CS) technique. Section �4 presents simulation results using two contemporary processor architectures: 
ARM7 and SPARC. Section �5 concludes the paper. 



2 Related Work 
An extensive body of recent work has addressed instruction-set architecture simulation. The wide spectrum of 

today’s instruction-set simulation techniques includes the most flexible but slow interpretive simulation and faster 
compiled simulation. Recent research addresses retargetability of instruction-set simulators using machine description 
languages. 

Embra �[15] and FastSim �[14] simulators use dynamic binary translation and result caching to improve simulation 
performance. Embra provides the highest flexibility with maximum performance but is not retargetable and is restricted to 
the simulation of the MIPS R3000/R4000 architecture. It is inspired by Shade simulator �[18] which uses a similar 
technique and can simulate the SPARC V8, V9 and MIPS instruction set at speeds of 3-10 times slower than native 
execution. SimpleScalar �[21] is a popular interpretive simulator that supports a number of contemporary architectures but 
is not retargetable. 

A fast and retargetable simulation technique is presented in �[5]. It improves traditional static compiled simulation by 
aggressive utilization of the host machine resources. Such utilization is achieved by defining a low level code generation 
interface specialized for ISA simulation. This approach requires C descriptions that are based on the internal 
implementation details of the simulator rather than the specification of the target architecture. 

Retargetable fast simulators based on an ADL have been proposed within the framework of FACILE �[11], Sim-nML 
�[16], ISDL �[7], MIMOLA �[17], and LISA (�[3], �[4]). The simulator generated from a FACILE description utilizes the Fast 
Forwarding technique to achieve reasonably high performance. All of these simulation approaches assumes that the 
program code is run-time static and have a limited retargetability. For example, Sim-nML only supports DSP processors 
while ISDL is mainly targeted at RISC machines. FLEXWARE Simulator �[6] uses a VHDL model of a generic 
parameterizable model. SimC �[12] is based on a machine description in ANSI C. It uses compiled simulation and has 
limited retargetability.  

The published results of the LISA framework show successful retargetability for DSP and VLIW processors. The 
just-in-time cache compiled simulation (JIT-CCS) �[2] technique, the closest to our approach, combines retargetability, 
flexibility and high simulation performance. The JIT-CCS performance improvement is gained by caching the decoded 
instruction information. This technique makes an assumption to get performance closer to compiled simulation: the 
number of repeatedly executed instructions should be very large such that 90% of the execution time is spent in 10% of 
the code. This assumption may not hold true for all real world applications. For example, the 176.gcc benchmark from 
SPEC CPU2000 violates this rule.  

Our simulation framework supports a wide spectrum of processor architectures including RISC, DSP, VLIW, 
Superscalar and Hybrid architectures. In spite of being truly retargetable, our ISA simulator delivers up to 46% 
performance improvement over JIT-CCS. To have a fast, flexible and retargetable ISA simulator the following two 
questions must be answered: 

First, what limits the retargetability? The existing ADL based approaches describe the instructions of an architecture 
based on a predefined model and then use a fixed decoding algorithm to decode target instruction binaries. This fixed 
decoding algorithm may not always work because different architectures use different decoding schemes for this purpose. 
This limitation can be solved by including necessary information of the instruction decoding algorithm in the 
specification. In our approach we use this information to extract the target decoding scheme. 

Second, how are performance and flexibility related? The performance of a simulator depends on the overhead of 
simulating the program vs. executing it natively. To reduce this overhead, in a compiled simulation the program is 
decoded back into a source code with the same functionality and then, this source code is compiled and optimized on the 
host to get the best possible performance. In general, the flexibility of a simulator is defined by the granularity of portions 
of the program to which the decoding and optimizations are applied. Instruction level granularity is normally sufficient for 
flexible ISA simulators and therefore the performance optimizations should be applied to an instruction. In our simulator 
we generate optimized code for each instance of the instructions and execute them one by one. In this way, we can 
reinitiate the decoding of each instruction, if necessary. 
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3 Retargetable Simulation Framework 
In a retargetable ISA simulation framework, the range of architectures that can be captured and the performance of 

the generated simulators depend on three issues: first, the model based on which the instructions are captured; second, the 
decoding algorithm that uses the instruction model to decode the input binary program; and third, the execution method of 
decoded instructions. These issues are equally important and ignoring any of them results in a simulator that is either very 
general but slow or very fast but restricted to some architecture domain. However, the instruction model significantly 
affects the complexity of decode and the quality of execution. We have developed a generic instruction model coupled 
with a simple decode algorithm that lead to an efficient and flexible execution of decoded instructions. 

 
 

Figure 1- Generating the simulator  from ADL 

 
Figure 1 shows our retargetable simulation framework that gets the ADL (written in EXPRESSION) and the 

application program binary (compiled by gcc) and generates the simulator. The ADL captures behavior and structure of 
the target architecture. The behavioral part of the ADL is based on the generic instruction model, as described in Section 
�3.1, and is used by the Static Instruction Decoder. The structural information is used by the Structure Generator. Using 
the instruction specifications from ADL, the Static Instruction Decoder decodes the target program one instruction at a 
time, as described in Section �3.2. It then generates the optimized source code of the decoded instructions using IS-CS 
technique (Section �3.3) that is loaded in the instruction memory. 

 The Structure Generator compiles the structural information of the ADL into components and objects that keep 
track of the state of the simulated processor. It generates proper source code for instantiating these components at run 
time. 

 

 
Figure 2- Instruction-Set Compiled Simulation Flow 

 



The target independent components are described in the Library. This library is finally combined with the Structural 
Information and the Decoded Instructions and is compiled on the host machine to get the final ISA simulator. Figure 2 
shows the flow of the simulation engine. This engine fetches the decoded instructions from the instruction memory and 
executes them. If the simulator detects that the program code of a previously executed address has changed it initiates a 
re-decoding and then updates the instruction memory. This technique combines the performance of traditional compiled 
simulators with the flexibility of interpretive simulation and achieves the highest possible performance due to two reasons. 
First, the time consuming instruction decoding process is moved to compile time. Second, we use a novel instruction 
abstraction technique to generate aggressively optimized decoded instructions that further improves simulation 
performance as described in the section �3.3. 

In the remainder of this section, we describe the generic instruction model, followed by how we capture instructions 
in the ADL using the generic model. Then, we explain how the decoding algorithm decodes the program binary using the 
description of instructions in the ADL. Finally, we show how the IS-CS technique achieves its speed and flexibility using 
the optimized decoded instructions. 

3.1 Generic Instruction Model 
A major challenge in retargetable simulation is the ability to capture a wide variety of instructions. In this section we 

propose an instruction model that is generic enough to capture variations of instruction formats of contemporary 
processors such as RISC, CISC, VLIW and variable length instruction set processors. As an illustrative example, we use 
integer arithmetic instructions of the Sparc V7 processor to explain this model. 
Example 1: Sparc V7 �[22] is a single-issue processor with 32-bit instruction. The integer-arithmetic instructions, 

IntegerOps (as shown below), are a subset of the instruction set that perform certain arithmetic operation on two source 
operands and write the result to the destination operand. So the behavior of these instructions can be defined as: 
dest=fopcode(src1, src2). The destination and the first source operand are always a register, but the second source operand 
can be a register or an immediate integer constant. This subset of instructions is distinguished from the others by the 
following bit mask: 

         IntergerOps: <opcode   dest   src1   src2>        
A bit mask is a string of ‘1’ , ‘0’  and ‘x’  symbols and it matches a bit pattern of the binary instruction if and only if 

for each ‘1’  or ‘0’  in the mask, the binary instruction has a 1 or a 0 value in the corresponding position respectively. The 
‘x’  symbol matches with both 1 and 0 values. 

In this model, an instruction of a processor is composed of a series of slots, ><= ,...1sl,0sl I , and each slot contains 

only one operation from a subset of operations. All the operations in an instruction execute in parallel. For example, in the 
TI C6x architecture a VLIW instruction has 8 slots; hence it can have up to 8 concurrent operations. Each operation is 
distinguished by a mask pattern. Therefore, each slot (sli) contains a set of operation-mask pairs (opi, mi) and is defined in 
the following format. The length of an operation is equal to the length of mask pattern.  
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An operation class refers to a set of similar operations in the instruction set that can appear in the same instruction 
slot. The previous slot description can be rewritten using an operation class clOps: >=< )

i
m  ,

i
(clOps

i
sl . An instruction in 

the Sparc V7 processor of Example 1 can have only one slot (one operation). For example, integer arithmetic instructions 
in Sparc V7 can be grouped in a class (IntegerOps) as shown below: 

ISPARC =  <(IntegerOps, 10xx-xxx0 xxxx-xxxx xxxx-xxxx xxxx-xxxx)| … > 
An operation class is composed of a set of symbols and an expression that describes the behavior of the operation 

class in terms of the values of its symbols. For example, the operation class in Example 1 has four symbols: opcode, dest, 
src1 and src2. The expression for this example will be: dest = fopcode(src1, src2). Each symbol may have a different type 
depending on the bit pattern of the operation instance in the program. For example, the possible types for src2 symbol in 
Example 1 are register and immediate integer. The value of a symbol depends on its type and can be static or dynamic. 
For example, the value of a register symbol is dynamic and is known only at run time, whereas the value of an immediate 
integer symbol is static and is known at compile time. In general, each symbol in an operation has a possible set of types. 
A general operation class is then defined as:  

Bitmask: 10xxxxx0 xxxxxxxx xxxxxxxx xxxxxxxx 



>=< ,...)s,exp(s|),....)T,(s),T,(sclOps 101100
, where (si, Ti) are (symbol, type) pairs and exp(s0,s1,…) is the  

  behavior of the operations based on the values of the symbols. 
 
The type of a symbol can be defined as a register (∈Registers) or an immediate constant (∈Constants) or can be 

based on certain micro-operations (∈Operations). For example, a data processing instruction in ARM (e.g., add) uses 
shift (micro-operation) to compute the second source operand, known as ShifterOperand. Each possible type of a symbol 
is coupled with a mask pattern that determines what bits in that operation must be checked to find out the actual type of 
the corresponding symbol. In general, possible types of a symbol are defined as: 

x)* }|0|(1m Constants,RegistersOperationst|m){ (t,T ∈∪∪∈=  
For example, the opcode symbol in Example 1 can be any of valid integer arithmetic operations and can be described 

as: 
 OpTypes = {  
  (Add, xxxx-xxxx 0000-xxxx xxxx-xxxx xxxx-xxxx),  
  (Sub, xxxx-xxxx 0100-xxxx xxxx-xxxx xxxx-xxxx),  
  … 
 } 

 
Usually the registers of a processor are divided into groups known as register classes. For example, the SPARC 

processor has three register classes: integer registers, floating point registers and control registers. The actual register in a 
processor is defined by its class and its index. The index of a register in an instruction is defined by extracting a slice of 
the instruction bit pattern and interpreting it as an unsigned integer. An instruction can also use a specific register with a 
fixed index as in a branch instruction that update the program counter. In general a register is defined by 

index][regClass, | j]i,[regClass,r =  where i and j define the boundary of index bit slice in the instruction. For example, the 
dest symbol (in Example 1) is 25th to 29th bits in the instruction, and is an integer register. Its type can be described as: 
DestType= (IntegerRegClass, 29, 25). 

 
SPARCInst = $  
 (InegerOps, 10xx-xxx0 xxxx-xxxx xxxx-xxxx xxxx-xxxx) |  … 
$; 
IntegerOp = <  
 (opcode, OpTypes), (dest, DestType), (src1, Src1Type), (src2, Src2Type)  
 | {  
  dest = opcode(src1, src2);  
 }  
>; 
OpTypes = {  
  (Add, xxxx-xxxx 0000-xxxx xxxx-xxxx xxxx-xxxx),  
  (Sub, xxxx-xxxx 0100-xxxx xxxx-xxxx xxxx-xxxx),  
  (Or , xxxx-xxxx 0010-xxxx xxxx-xxxx xxxx-xxxx),  
  (And, xxxx-xxxx 0001-xxxx xxxx-xxxx xxxx-xxxx),  
  (Xor, xxxx-xxxx 0011-xxxx xxxx-xxxx xxxx-xxxx),  
  …  
} ; 
DestType = [IntegerRegClass, 29, 25]; 
Src1Type = [IntegerRegClass, 18, 14]; 
Src2Type = {  
  ([IntegerRegClass,4,0], xxxx-xxxx xxxx-xxxx xx0x-xxxx xxxx-xxxx),  
  (#int,12,0#, xxxx-xxxx xxxx-xxxx xx1x-xxxx xxxx-xxxx) 
} ; 

Figure 3- Integer  ar ithmetic instcutions in SPARC 

 



Similarly a portion of an instruction may be considered as a constant. For example, one bit in an instruction can be 
equivalent to a Boolean type or a set of bits can make an integer immediate. It is also possible to have constants with fixed 
values in the instructions. In general a constant type is defined by value#type,#  |  j#i,type,#c =  where i and j show the bit 
positions of the constant and type is a scalar type such as integer, Boolean, float, etc. 

Figure 3 shows the complete description of integer-arithmetic instructions in SPARC processor (Example 1). This 
simple example also shows how similar operations can be grouped together and described easily. We are able to describe 
instruction sets of a wide range of architectures using our generic instruction model. Figure 4 describes how to capture 
instruction set of the ARM processor using the instruction model. 

The ARM instructions are 32-bit wide and all are conditional. In data-processing instructions, if the condition is true, 
some arithmetic operation is performed on the two source operands and the result is written in the destination operand. 
The destination and the first source operand are always registers. The second source operand, called ShifterOperand, has 
three fields: shift operand (register/immediate), shift operation (5 types) and shift value (register/immediate). The shift 
value shows the number of shifts that must be performed on the shift operand by the specified shift operation. For 
example, the “ADD r1, r2, #10 sl r3”  is equivalent to “ r1=r2+(10 << r3)”  expression. If indicated in the instruction 
opcode, the flag bits (Z, N, C, and V) are updated. 

We defined a set of macros that can be used for compact description. For example, to avoid long mask strings with 
many don’ t care bits, the mask macro can be used. This macro gets the length of a mask, a bit position and a string. It then 
generates a bit mask with the specified size and copies the string at the corresponding bit position and fills the rest of the 
bit mask with ‘x’  symbols. For example mask(8, 2,“ 10” ) generates an 8 bit mask that has a ‘10’  at position 2 i.e. xxxx-
x10x. 

 
ARMInst = $ 
  (DPOperation, xxxx-001x xxxx-xxxx xxxx-xxxx xxxx-xxxx) |  
  (DPOperation, xxxx-000x xxxx-xxxx xxxx-xxxx xxx0-xxxx) |  
  (DPOperation, xxxx-000x xxxx-xxxx xxxx-xxxx 0xx1-xxxx) | 
  …  
$; 
DPOperation = <  
  (cond, Conditions), (opcode, Operations), (dest, [intReg,15,12]), (src1, [intReg,19,16]), (src2, ShifterOperand),   
  (updateFlag, { (true, mask(32, 20, “1” ), (false, mask(32, 20, “0” )} ) 
 | {    
  if (cond()) {  
   dest = opcode( src1, src2);  
   if (updateFlags) { /*Update flags* /}   
  }   
 }  
>; 
Conditions = {   
  (Equal, mask(32, 31, “0000” ), (NotEqual, mask(32, 31, “0001” ), (CarrySet, mask(32, 31, “0010” ),  
  (CarryClear, mask(32, 31, “0011” ), …, (Always, mask(32, 31, “1110” ), (Never, mask(32, 31, “1111” ) 
} ; 
Operations = {   
  (And, mask(32, 24, “0000”), (XOr, mask(32, 24, “0001” ), (Sub, mask(32, 24, “0010”), (Add, mask(32, 24, “0100” ), … 
} ; 
ShifterOperand = <  
  (op, { ([intReg,11,8], mask(32,4,“0” )), (#int,11,7#, mask(32,7,“0xx1” ))} ),  
  (sh, { (ShiftLeft, mask(32,6,”00)), (ShiftRight, mask(32,6,”01)), …} ),  
  (val, { ([intReg,3,0], mask(32,25,“0” )), (#int,7,0#, mask(32,25,“1” ))} )  
 | {   sh(op, val)  }  
>; 

Figure 4- Data processing instructions in ARM 

 



To see how compact and efficient this model is, consider the number of different instructions that this small 
description in Figure 4 defines. The data processing instructions in ARM processor can have 16 conditions and 16 
operations. The shifter operand supports 5 shift operations and the parameters can be register or immediate (5x2x2). Each 
instruction may or may not update the flag bits (2). Therefore there will be 16x16x(5x2x2)x2=10240 possible formats in 
this category. In the next sections, we show how all these possibilities are explored for generating an optimized code for 
each type of instruction. In this model, instructions that have similar format are grouped together into one class. Most of 
the time this information is readily available from the instruction set architecture manual. For example, we defined six 
instruction classes for the ARM processor viz., Data Processing, Branch, LoadStore, Multiply, Multiple LoadStore, 
Software Interrupt, and Swap. 

In this section, we have demonstrated two key features of our instruction model: first, it is generic enough to capture 
architectures with varied instruction sets; second, it captures the instructions efficiently by allowing instruction grouping.  

3.2 Generic Instruction Decoder 
A key requirement in a retargetable simulation framework is the ability to automatically decode application binaries 

of different processors architectures. This necessitates a generic decoding technique that can decode the application 
binaries based on instruction specifications. In this section we propose a generic instruction decoding technique that is 
customizable depending on the instruction specifications captured through our generic instruction model. 

 
Algor ithm 1: StaticInstructionDecoder 
Input: Target Program Binary Appl, Instruction Specifications InstSpec; 
Output: Decoded Program DecodedOperations; 
Begin 
  Addr = Address of first instruction in Appl; 
 While (Appl not processed completely) 
  BinStream = Binary stream in Appl starting at Addr; 
  (Exp, AddrIncrement) = DecodeOperation (BinStream, InstSpec); 
   DecodedOperations  = Append (Exp, Addr,  DecodedOperations ); 
  Addr = Addr + AddrIncrement; 
 EndWhile; 
 return  DecodedOperations ; 
End; 

 
Algorithm 1 describes how Static Instruction Decoder of Figure 1 works. This algorithm accepts the target program 

binary and the instruction specification as inputs and generates a source file containing decoded instructions as output. 
Iterating on the input binary stream, it finds an operation, decodes it using Algorithm 2, and adds the decoded operation to 
the output source file. Algorithm 2 also returns the length of the current operation that is used to determine the beginning 
of the next operation. 

 
Algor ithm 2: DecodeOperation 
Input: Binary Stream BinStream, Specifications Spec; 
Output: Decoded Expression Exp, Integer DecodedStreamSize; 
Begin 
 (OpDesc, OpMask) = findMatchingPair(Spec, BinStream); 
 OpBinary = initial part of BinStream whose length is equal to OpMask; 
 Exp = the expression part of OpDesc; 
 ForEach pair of (s, T) in the OpDesc 
  Find t in T whose mask matches the OpBinary; 
  v = ValueOf(t, OpBinary); 
  Replace s with v in Exp; 
 EndFor  
 return (Exp , size(OpBianry)); 
End; 
 



 
Algorithm 2 gets a binary stream and a set of specifications containing operation or micro-operation classes. The 

binary stream is compared with the elements of the specification to find the specification-mask pair that matches with the 
beginning of the stream. The length of the matched mask defines the length of the operation that must be decoded. The 
types of symbols are determined by comparing their masks with the binary stream. Finally, using the symbol types, all 
symbols are replaced with their values in the expression part of the corresponding specification. The resulting expression 
is the behavior of the operation. This behavior and the length of the decoded operation are produced as outputs. 

Consider the following SPARC Add operation example and its binary pattern: 
 

31 23 15 7 

Add g1, #10, g2      1000-0100  0000-0000 0110-0000 0000-1010 
  

In the first line of Algorithm 2, the (InegerOps, 10xx-xxx0 xxxx-xxxx xxxx-xxxx xxxx-xxxx) pair matches with the 
instruction binary. This means that the IntegerOps operation class matches this operation. It calls Algorithm 3 to decode 
the symbols of IntegerOps viz. opcode, dest, src1, src2. 

 
Algor ithm 3: ValueOf 
Input: Type t, Operation Binary OpBinary; 
Output: Extracted Value extValue; 
Begin 
 Switch (t) 
  case #type, value#: extValue = (type) value; endcase 
  case #type, i, j#: extValue = (type) OpBinary[i:j]; endcase 
  case [regClass, index]: extValue = REGS[regClass][index]; endcase 
  case [regClass, i, j]: extValue = REGS[regClass][ OpBinary[i:j]];  endcase 
  case Operation Spec:  
    (extValue, tmp) = DecodeOperation(OpBinary, t);   
  endcase 
 EndSwitch; 
 return extValue; 
End;  
 

 
Algorithm 3 gets a symbol type and an operation binary (OpBinary), and returns the actual value of the 

corresponding symbol. If the type itself is a micro-operation specification, the decode algorithm (Algorithm 2) is called 
again and the result is returned. If the type is not a fixed constant (register), the value is calculated by interpreting the 
proper portion of the operation binary (OpBinary[ i:j] ) as a constant (register index). 

In the previous example, the 4 symbols (opcode, dest, src1, src2) are decoded using Algorithm 3. Symbol opcode’s 
type is OpTypes in which the mask pattern of Add matches the operation pattern. So the value of opcode is Add function. 
Symbol dest’s type is DestType which is a register type. It is an integer register whose index is bits 25th to 29th (00010), 
i.e. 2. Similarly, symbol src1’s type is Src1Type which is a register type. It is a register integer whose index is bits 14th to 
18th (00001), i.e. 1. Likewise, symbol src2’s type is Src2Type in which the mask pattern of #int,12,0# matches the 
operation binary pattern. This means that the bits 0th to 12th (0000000001010) must be interpreted as an integer, i.e. 10. By 
replacing these values in the expression part of the IntegerOps the final behavior of the operation would be: g2 = Add(g1, 
10); which means g2 = g1 + 10. 

The complexity of the decoding algorithm is O(n*m* log2m), where n is the number of operations in the input binary 
program, m is the number of operations in the architecture instruction set.  

3.3 IS-Compiled Simulation (IS-CS) 
We developed the instruction set compiled simulation (IS-CS) technique with the intention of combining the full 

flexibility of interpretive simulation with the speed of the compiled principle. The basic idea is to move the time-
consuming instruction decoding to compile time as shown in Figure 5. The application program, written in C/C++, is 



compiled using the gcc compiler configured to generate binary for the target machine. The instruction decoder decodes 
one binary instruction at a time to generate the decoded program for the input application. The decoded program is 
compiled by C++ compiler and linked with the simulation library to generate the simulator. The simulator recognizes if 
the previously decoded instruction has changed and initiates re-decoding of the modified instruction. If any instruction is 
modified during execution and subsequently re-decoded, the location in instruction memory is updated with the re-
decoded instruction.  

 

 
Figure 5- Instruction Set Compiled Simulation Flow 

 
To improve the simulation speed we use a novel instruction abstraction technique that generates optimized decoded 

instructions as described in Section 3.1. As a result the computation during run-time is minimized. 
In traditional interpretive simulation (e.g., Simplescalar �[21]) the decoding and execution of binary instructions are 

done using a single monolithic function. This function has many if-then-else and switch/case statements that perform 
certain activities based on bit patterns of opcode, operands, addressing modes etc. In advanced interpretive simulation 
(e.g., LISA �[2]) the binary instruction is decoded and the decoded instruction contains pointers to specific functions. There 
are many variations of these two methods based on efficiency of decode, complexity of implementation, and performance 
of execution. However, none of these techniques exploit the fact that a certain class of instructions may have a constant 
value for a particular field of the instruction. For example, a majority of the ARM instructions execute unconditionally 
(condition field has value always). It is a waste of time to check the condition for such instructions every time they are 
executed. 

Clearly, when certain input values are known for a class of instructions, the partial evaluation [13] technique can be 
applied. The effect of partial evaluation is to specialize a program with part of its input to get a faster version of the same 



program. To take advantage of such situations we need to have separate functions for each and every possible format of 
instructions so that the function could be optimized by the compiler at compile time and produce the best performance at 
run time. Unfortunately, this is not feasible in practice. For example, consider the ARM data processing instructions. It 
can have 16 conditions, 16 operations, an update flag (true/false), and one destination followed by two source operands. 
The second source operand, called shifter operand, has three fields: operand type (reg/imm), shift options(5 types) and 
shift value (reg/imm). In total, the ARM data processing instructions have 16 x 16 x 2 x 2 x 5 x 2 = 10240 possible 
formats. 

Our solution to this problem is to define instruction classes, where each class contains instructions with similar 
formats. Most of the time this information is readily available from the instruction set architecture manual. For example, 
we defined six instruction classes for the ARM processor viz., Data Processing, Branch, LoadStore, Multiply, Multiple 
Load-Store, Software Interrupt, and Swap. Next, we define a set of masks for each instruction class. The mask consists of 
'0', '1' and 'x' symbols. A '0' ('1') symbol in the mask matches with a '0' ('1') in binary pattern of the instruction at the same 
bit position. An 'x' symbol matches with both '0' and '1'. For example, the masks for the data processing instructions are 
shown below: "xxxx-001x xxxx-xxxx xxxx-xxxx xxxx-xxxx" "xxxx-000x xxxx-xxxx xxxx-xxxx xxx0-xxxx" "xxxx-000x 
xxxx-xxxx xxxx-xxxx 0xx1-xxxx" We use C++ templates to implement the functionality for each class of instructions. 
For example, the pseudo code for the data processing template is shown below. The template has four parameters viz., 
condition, operation, update flag, and shifter operand. The shifter operand is a template having three parameters viz., 
operand type, shift options and shift value. 

 
Example 1: Template for Data Processing Instructions 
template <class Cond, class Op, class Flag, class SftOper> 
 class DataProcessing : 
 {  
  SftOper _sftOperand; 
  Reg _dest, _src1; 
 public: 
  ....... 
  virtual void execute() 
  {  
  if (Cond::execute()) 
  {  
   _dest = Op::execute(_src1, _sftOperand.getValue()); 
   if (Flag::execute()) 
   {  
    // Update Flags 
   }  
  }  
 }  
} ; 

We illustrate the power of our technique to generate an optimized decoded instruction using a single data processing 
instruction. We show the binary as well as the assembly of the instruction below. 

 
Binary:  1110|000|0100|0|0010|0001|01010|00|0|0011 

(cond|000| op |S| Rn | Rd |shift immed|shift|0|Rm) 
Assembly: ADD r1, r2, r3 LSL #10 

(op{ <cond>} { S}  Rd, Rn, Rm shift #<immed>) 
 

The DetermineTemplate function returns the DataProcessing template (shown in Example 1) for this binary 
instruction. The CustomizeTemplate function generates the following customized template for the execute function. 

 
void DataProcessing<Always, Add, False, 
SftOper<Reg, ShiftLeft, Imm>>::execute() 
{  



 if (Always::execute()) {  
  _dest = Add::execute(_src1, _sftOperand.getValue()); 
  if (False::execute()) {  
   // Update Flags 
   ... 
  }  
 }  
}  

After compilation using a C++ compiler, several optimizations occur on the execute() function. The 
Always::execute() function call is evaluated to true. Hence, the check is removed. Similarly, the function call 
False::execute() is evaluated to false. As a result the branch and the statements inside it are removed by the compiler. 
Finally, the two function calls Add::execute(), and sftOperand.getValue() get inlined as well. Consequently, the execute() 
function gets optimized into one single statement as shown below: 

 
void DataProcessing<..skipped..>::execute() {  
 _dest = _src1 + _sftOperand._operand << 10; 
}  

Furthermore, in many ARM instructions, the shifter operand is a simple register or immediate. Therefore, the shift 
operation is actually a no shift operation. Although the manual says that the case is equivalent to shift left zero, we use a 
no shift operation that enables further optimization. In this way, an instruction similar to the above example would have 
only one operation in its execute() method. 

Similarly, Figure 6 shows the code generation process for the Sparc description shown in Figure 3. 
 

/*  generated template for integer arithmetic operations of Sparc* / 
template<class OpTypes, class DestType, class Src1Type, class Src2Type>   
class IntegerOps 
{  
  DestType dest;  Src1Type src1;  Src2Type src2; 
 public: 
  virtual void execute() {  dest = OpTypes::f(src1, src2); }   
  … 
} ; 
 
/*  customized template for Add g1, #10, g2 instruction*/ 
void IntegerOps<Add, Register, Register, int>::execute(){  
 REGS[IntegerRegClass][dest] = Add:f(REGS[IntegerRegClass][src1], src2); 
}  
 
/*  optimized template for  Add g1, #10, g2 instruction* / 
void IntegerOps<Add, Register, Register, int>::execute(){   
 REGS[IntegerRegClass][dest] = REGS[IntegerRegClass][ src1] + src2; 
}  

Figure 6- Code generation for  a Sparc instruction 

4 Experiments 
In order to evaluate the applicability of our framework to generate fast, flexible and retargetable simulator, we 

performed several experiments using various processor models. In this section, we present simulation results using two 
contemporary processors: ARM7 �[20] and SPARC �[22] to demonstrate the usefulness of our approach.  



4.1 Experimental Setup 
The ARM7 processor is a RISC machine with fairly complex instruction set. We used arm-linux-gcc for generating 

target binaries for ARM7 and validated the generated simulator by comparing traces with Simplescalar-arm �[21] 
simulator.  

The Sparc V7 is a high performance RISC processor with 32-bit instructions. We used gcc3.1 running on Solaris to 
generate the target binaries for Sparc and validated the generated simulator by comparing traces with Shade �[18] 
simulator. 

Performance results for simulators were obtained using a 1 GHz PentiumIII with 256 MB RAM running Windows 
2000 Professional. The generated simulator code was compiled using the Microsoft Visual Studio .NET compiler with all 
optimization enabled. We also used a 400 MHz UltraSparc-II with 1 GB RAM and gcc3.1 with all optimizations to 
compare the performance of the simulator against running the program natively. In both cases, the same C++ compiler 
was used for compiling the decoded program. 

We have used benchmarks from SPEC 95 and DSP domains. In this section we show the results using three 
application programs: adpcm from DSP benchmark suite, 099.go and 129.compress from SPEC 95. 

4.2 Results 
 Figure 7 shows the simulation performance of our technique using the ARM7 model. The first bar shows the 

simulation performance with dynamic checking of program modification. The second bar presents the performance 
without checking run time changes.  
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Figure 7- Simulation Results – ARM7 

 
Our simulation performance is superior to all variations of interpretive simulation techniques published in the 

literature. To the best of our knowledge the best performance of a simulator having the flexibility of interpretive 
simulation has been JIT-CCS �[2]. The JIT-CCS technique could achieve a performance up to 8 MIPS on an Athlon at 1.2 
GHz with 768 MB RAM for adpcm benchmark on ARM7 simulator. Our simulation technique delivers up to 46% 
performance improvement (11.7 MIPS with dynamic checking) using a slower machine (P3 1.0 GHz with 256 MB 
RAM). The performance improvement is even higher (12.9 MIPS) when dynamic checking is disabled. There are two 
reasons for the superior performance of our technique: moving the time consuming decoding out of the execution loop, 
and generating aggressively optimized code for each instruction. 
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Figure 8- Simulation Results - Sparc 

 
Figure 8 shows the simulation performance of our technique using Sparc model. The first bar shows the simulation 

performance with dynamic checking of program modification. The second bar presents the performance with checking 
disabled.  

Note that in IS-CS, each instruction is optimized and hence depending on their complexity, different instructions 
have different performance. For example, in both Sparc and ARM architectures, the most complex instructions are those 
that are used for context switching. These instructions are used to save or restore a group of registers. The reason for the 
poor performance of the compress benchmark in both simulators is mainly because of too many Save and Restore 
operations.  

Also note that, the overall performance of ARM simulator is slightly better than that of Sparc. ARM instructions are 
more complex and in most cases are equivalent to more than one Sparc instruction. Therefore optimizing one ARM 
instruction is equivalent to optimizing multiple instructions in Sparc. 

Table 1 compares the simulation results of our Sparc simulator (with dynamic checking disabled) against native 
execution. We ran both the simulator and the application program on a 400 MHz UltraSparc-II with 1 GB RAM. Our 
simulator is approximately 100 times slower than the native execution. The poor performance for compress benchmark is 
due to the simulation of too many save and restore instructions. 

 
Table 1- Native Execution Vs Simulation Per formance 

Benchmarks Native Execution(MIPS) Simulation(MIPS) Ratio 
adpcm 390.71 3.9 100 
compress 487.12 2.9 167 
go 202.07 4.0 50 

 
We have demonstrated that our framework can generate retargetable simulators that deliver the performance of 

compiled simulation while maintaining the flexibility of interpretive simulation. Our simulation technique delivers better 
performance than any simulators in this category, as demonstrated in this section. 

5 Summary 
In this paper, we presented a framework for generating fast, flexible, and retargetable ISA simulator. We proposed a 

generic instruction model as well as a generic decode algorithm that can specify and decode many variations of 
instructions. Besides, due to the simple interpretive simulation engine and optimized pre-decoded instructions, our 



instruction set compiled simulation (IS-CS) technique achieves the performance of compiled simulation while maintaining 
the flexibility of interpretive simulation. The IS-CS technique achieves its superior performance for two reasons: moving 
time-consuming decode to compile time, and using templates to produce aggressively optimized code for each instance of 
instructions. We demonstrated performance improvement of up to 46% over the best published results on an ARM7 
model. Our framework uses the EXPRESSION ADL to capture the processor architecture and generate retargetable 
simulator. The generic instruction model coupled with decoding algorithm form the backbone of our retargetable 
framework. Future work will concentrate on using this framework for modeling other real world architectures.  
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