
A Framework for Fast, Flexible and Retargetable Instruction-Set
Architecture Simulation

Mehrdad Reshadi, Prabhat Mishra, Nikhil Bansal, Nikil Dutt

Architectures and Compilers for Embedded Systems (ACES) Laboratory
Center for Embedded Computer Systems, University of California, Irvine.

{reshadi, pmishra, nbansal, dutt}@cecs.uci.edu
http://www.cecs.uci.edu/~aces

CECS Technical Report #03-05
Center for Embedded Computer Systems

University of California, Irvine, CA 92697, USA
February, 2003

Abstract
Instruction-set simulators are an integral part of today’s processor and software design process. Due to increasing

complexity of the architectures and time-to-market pressure, performance and retargetability are the most important
features of an instruction-set simulator. Dynamic behavior of applications and processors requires the ISA simulators to
be flexible. Flexible interpretive simulators are slow while fast compiled simulators are not flexible enough.
Retargetability and flexibility require generic models while high performance demands target specific customizations. To
address these contradictory requirements, we propose a generic model as well as an efficient and flexible implementation
technique. The contribution of this paper is a simulation framework that is retargetable, fast and flexible. We have
developed a generic instruction model and a generic decode algorithm to generate retargetable simulators that supports
wide spectrum of processor architectures including RISC, DSP, VLIW and Superscalar. We have also developed the
Instruction-Set Compiled Simulation (IS-CS) technique that combines the performance of compiled simulation with the
flexibility of interpretive simulation. The generated simulator delivers up to 46% performance improvement over JIT-CCS
�[2], the best known result in this category. We illustrate the applicability of our approach using two different state-of-the-
art real world architectures: the Sparc and the ARM.

Contents

1 Introduction..3
2 Related Work ...4
3 Retargetable Simulation Framework ...5

3.1 Generic Instruction Model ..6
3.2 Generic Instruction Decoder ...9
3.3 IS-Compiled Simulation (IS-CS) ..10

4 Experiments...13
4.1 Experimental Setup..14
4.2 Results...14

5 Summary..15
6 Reference...16

List of Figures

Figure 1- Generating the simulator from ADL...5
Figure 2- Instruction-Set Compiled Simulation Flow...5
Figure 3- Integer arithmetic instcutions in SPARC..7
Figure 4- Data processing instructions in ARM ...8
Figure 5- Instruction Set Compiled Simulation Flow...11
Figure 6- Code generation for a Sparc instruction..13
Figure 7- Simulation Results – ARM7 ..14
Figure 8- Simulation Results - Sparc...15

List of Tables

Table 1- Native Execution Vs Simulation Performance...15

1 Introduction
Instruction-set simulators are indispensable tools in the development of new architectures. They are used to validate

an architecture design, a compiler design as well as to evaluate architectural design decisions during design space
exploration. Running on a host machine, these tools mimic the behavior of an application program on a target machine.
These simulators should be fast to handle the increasing complexity of processors, flexible to handle all features of
applications and processors, e.g. runtime self modifying codes, multi mode processors; and retargetable to support a wide
spectrum of architectures. Unfortunately none of the available simulation techniques focus on all of these issues at the
same time.

Interpretive simulation is widely used due to its flexibility, despite its poor performance. In interpretive simulation,
every time an instruction is fetched from memory, it is decoded and executed. By decoding all the instructions once prior
to execution, the compiled simulation can significantly improve the simulation speed. However, the compiled simulation
can not handle dynamic behavior of applications or processors that requires re-decoding of instructions during execution.
As a result, compiled simulation can not handle many application domains, such as processors with multiple instruction
set modes and self modifying programs.

A similar tradeoff between speed and retargetability exists in ISA simulators. Some of the retargetable simulators use
a very general processor model and support a wide range of architectures but are slow, while others use some architectural
or domain specific performance improvements but support only a limited range of processors. Although in the past years,
performance has been the most important quality measure for the ISA simulators, retargetability is and additional concern,
particularly in the area of the embedded systems. Today, an embedded application can be implemented on a variety of
different architectures including microprocessors, DSPs and reconfigurable platforms. Besides, there are emerging
architectures with combined features of classical architectures such as DSP, VLIW and Superscalar. For example, the TI
C6x �[19] family combines DSP and VLIW features and the Intel Itanium combines features of VLIW and superscalar
architectures. To enable rapid design space exploration of such architectures, designers need a way of specifying a wide
variety of processor-memory features and automatic generation of software toolkit including ISA simulators. A model is
needed for capturing the features and techniques must be used for extracting the information and generating the simulator.
While such a simulator must be fast and flexible, the model and the techniques must be general enough to support a wide
spectrum of architectures. To the best of our knowledge, there is no published work on retargetable simulation that has
focused on all these issues at the same time, while being able to deliver fast performance.

In this paper, we present a simulation framework that has the speed of compiled simulation and the flexibility of
interpretive simulation while supporting many variations of architectures. We use the EXPRESSION ADL �[13] to capture
the architecture and generate the simulator from the ADL specification.

To achieve maximum retargetability, we have developed a generic instruction model coupled with a decoding
technique that flexibly supports variations of instruction formats for widely differing contemporary processor
architectures such as RISC, CISC, VLIW and variable length instruction set processors. To get high simulation
performance, we have developed a technique called Instruction-Set Compiled Simulation (IS-CS). In IS-CS, instead of
compiling the whole target program to a host binary, we compile each instruction to an optimized code for that instance of
the instruction. This technique also enables us to use an interpretive simulation engine that can use pre-decoded optimized
instructions as well as dynamically decoded instructions. Therefore the simulator uses the advantages of both techniques:
the performance of compiled simulation and the flexibility of interpretive simulation.

The rest of the paper is organized as follows. Section �2 presents related work addressing ISA simulator generation
techniques and distinguishes our approach. Section �3 outlines the retargetable simulation framework. It describes three
key components of the framework: a generic instruction model, a decoding algorithm, and the instruction-set compiled
simulation (IS-CS) technique. Section �4 presents simulation results using two contemporary processor architectures:
ARM7 and SPARC. Section �5 concludes the paper.

2 Related Work
An extensive body of recent work has addressed instruction-set architecture simulation. The wide spectrum of

today’s instruction-set simulation techniques includes the most flexible but slow interpretive simulation and faster
compiled simulation. Recent research addresses retargetability of instruction-set simulators using machine description
languages.

Embra �[15] and FastSim �[14] simulators use dynamic binary translation and result caching to improve simulation
performance. Embra provides the highest flexibility with maximum performance but is not retargetable and is restricted to
the simulation of the MIPS R3000/R4000 architecture. It is inspired by Shade simulator �[18] which uses a similar
technique and can simulate the SPARC V8, V9 and MIPS instruction set at speeds of 3-10 times slower than native
execution. SimpleScalar �[21] is a popular interpretive simulator that supports a number of contemporary architectures but
is not retargetable.

A fast and retargetable simulation technique is presented in �[5]. It improves traditional static compiled simulation by
aggressive utilization of the host machine resources. Such utilization is achieved by defining a low level code generation
interface specialized for ISA simulation. This approach requires C descriptions that are based on the internal
implementation details of the simulator rather than the specification of the target architecture.

Retargetable fast simulators based on an ADL have been proposed within the framework of FACILE �[11], Sim-nML
�[16], ISDL �[7], MIMOLA �[17], and LISA (�[3], �[4]). The simulator generated from a FACILE description utilizes the Fast
Forwarding technique to achieve reasonably high performance. All of these simulation approaches assumes that the
program code is run-time static and have a limited retargetability. For example, Sim-nML only supports DSP processors
while ISDL is mainly targeted at RISC machines. FLEXWARE Simulator �[6] uses a VHDL model of a generic
parameterizable model. SimC �[12] is based on a machine description in ANSI C. It uses compiled simulation and has
limited retargetability.

The published results of the LISA framework show successful retargetability for DSP and VLIW processors. The
just-in-time cache compiled simulation (JIT-CCS) �[2] technique, the closest to our approach, combines retargetability,
flexibility and high simulation performance. The JIT-CCS performance improvement is gained by caching the decoded
instruction information. This technique makes an assumption to get performance closer to compiled simulation: the
number of repeatedly executed instructions should be very large such that 90% of the execution time is spent in 10% of
the code. This assumption may not hold true for all real world applications. For example, the 176.gcc benchmark from
SPEC CPU2000 violates this rule.

Our simulation framework supports a wide spectrum of processor architectures including RISC, DSP, VLIW,
Superscalar and Hybrid architectures. In spite of being truly retargetable, our ISA simulator delivers up to 46%
performance improvement over JIT-CCS. To have a fast, flexible and retargetable ISA simulator the following two
questions must be answered:

First, what limits the retargetability? The existing ADL based approaches describe the instructions of an architecture
based on a predefined model and then use a fixed decoding algorithm to decode target instruction binaries. This fixed
decoding algorithm may not always work because different architectures use different decoding schemes for this purpose.
This limitation can be solved by including necessary information of the instruction decoding algorithm in the
specification. In our approach we use this information to extract the target decoding scheme.

Second, how are performance and flexibility related? The performance of a simulator depends on the overhead of
simulating the program vs. executing it natively. To reduce this overhead, in a compiled simulation the program is
decoded back into a source code with the same functionality and then, this source code is compiled and optimized on the
host to get the best possible performance. In general, the flexibility of a simulator is defined by the granularity of portions
of the program to which the decoding and optimizations are applied. Instruction level granularity is normally sufficient for
flexible ISA simulators and therefore the performance optimizations should be applied to an instruction. In our simulator
we generate optimized code for each instance of the instructions and execute them one by one. In this way, we can
reinitiate the decoding of each instruction, if necessary.

Structure
Generator gcc

Static
instruction

decoder

H
ost C

+
+

C

om
piler

Target Application

ADL

Target Binary

Structural Info.

Library

Decoded Instructions

Simulator

3 Retargetable Simulation Framework
In a retargetable ISA simulation framework, the range of architectures that can be captured and the performance of

the generated simulators depend on three issues: first, the model based on which the instructions are captured; second, the
decoding algorithm that uses the instruction model to decode the input binary program; and third, the execution method of
decoded instructions. These issues are equally important and ignoring any of them results in a simulator that is either very
general but slow or very fast but restricted to some architecture domain. However, the instruction model significantly
affects the complexity of decode and the quality of execution. We have developed a generic instruction model coupled
with a simple decode algorithm that lead to an efficient and flexible execution of decoded instructions.

Figure 1- Generating the simulator from ADL

Figure 1 shows our retargetable simulation framework that gets the ADL (written in EXPRESSION) and the

application program binary (compiled by gcc) and generates the simulator. The ADL captures behavior and structure of
the target architecture. The behavioral part of the ADL is based on the generic instruction model, as described in Section
�3.1, and is used by the Static Instruction Decoder. The structural information is used by the Structure Generator. Using
the instruction specifications from ADL, the Static Instruction Decoder decodes the target program one instruction at a
time, as described in Section �3.2. It then generates the optimized source code of the decoded instructions using IS-CS
technique (Section �3.3) that is loaded in the instruction memory.

 The Structure Generator compiles the structural information of the ADL into components and objects that keep
track of the state of the simulated processor. It generates proper source code for instantiating these components at run
time.

Figure 2- Instruction-Set Compiled Simulation Flow

The target independent components are described in the Library. This library is finally combined with the Structural
Information and the Decoded Instructions and is compiled on the host machine to get the final ISA simulator. Figure 2
shows the flow of the simulation engine. This engine fetches the decoded instructions from the instruction memory and
executes them. If the simulator detects that the program code of a previously executed address has changed it initiates a
re-decoding and then updates the instruction memory. This technique combines the performance of traditional compiled
simulators with the flexibility of interpretive simulation and achieves the highest possible performance due to two reasons.
First, the time consuming instruction decoding process is moved to compile time. Second, we use a novel instruction
abstraction technique to generate aggressively optimized decoded instructions that further improves simulation
performance as described in the section �3.3.

In the remainder of this section, we describe the generic instruction model, followed by how we capture instructions
in the ADL using the generic model. Then, we explain how the decoding algorithm decodes the program binary using the
description of instructions in the ADL. Finally, we show how the IS-CS technique achieves its speed and flexibility using
the optimized decoded instructions.

3.1 Generic Instruction Model
A major challenge in retargetable simulation is the ability to capture a wide variety of instructions. In this section we

propose an instruction model that is generic enough to capture variations of instruction formats of contemporary
processors such as RISC, CISC, VLIW and variable length instruction set processors. As an illustrative example, we use
integer arithmetic instructions of the Sparc V7 processor to explain this model.
Example 1: Sparc V7 �[22] is a single-issue processor with 32-bit instruction. The integer-arithmetic instructions,

IntegerOps (as shown below), are a subset of the instruction set that perform certain arithmetic operation on two source
operands and write the result to the destination operand. So the behavior of these instructions can be defined as:
dest=fopcode(src1, src2). The destination and the first source operand are always a register, but the second source operand
can be a register or an immediate integer constant. This subset of instructions is distinguished from the others by the
following bit mask:

 IntergerOps: <opcode dest src1 src2>
A bit mask is a string of ‘1’ , ‘0’ and ‘x’ symbols and it matches a bit pattern of the binary instruction if and only if

for each ‘1’ or ‘0’ in the mask, the binary instruction has a 1 or a 0 value in the corresponding position respectively. The
‘x’ symbol matches with both 1 and 0 values.

In this model, an instruction of a processor is composed of a series of slots, ><= ,...1sl,0sl I , and each slot contains

only one operation from a subset of operations. All the operations in an instruction execute in parallel. For example, in the
TI C6x architecture a VLIW instruction has 8 slots; hence it can have up to 8 concurrent operations. Each operation is
distinguished by a mask pattern. Therefore, each slot (sli) contains a set of operation-mask pairs (opi, mi) and is defined in
the following format. The length of an operation is equal to the length of mask pattern.

><= ...|)
1

i
m,

1

i
(op|)

0

i
m,

0

i
(op

i
sl

An operation class refers to a set of similar operations in the instruction set that can appear in the same instruction
slot. The previous slot description can be rewritten using an operation class clOps: >=<)

i
m ,

i
(clOps

i
sl . An instruction in

the Sparc V7 processor of Example 1 can have only one slot (one operation). For example, integer arithmetic instructions
in Sparc V7 can be grouped in a class (IntegerOps) as shown below:

ISPARC = <(IntegerOps, 10xx-xxx0 xxxx-xxxx xxxx-xxxx xxxx-xxxx)| … >
An operation class is composed of a set of symbols and an expression that describes the behavior of the operation

class in terms of the values of its symbols. For example, the operation class in Example 1 has four symbols: opcode, dest,
src1 and src2. The expression for this example will be: dest = fopcode(src1, src2). Each symbol may have a different type
depending on the bit pattern of the operation instance in the program. For example, the possible types for src2 symbol in
Example 1 are register and immediate integer. The value of a symbol depends on its type and can be static or dynamic.
For example, the value of a register symbol is dynamic and is known only at run time, whereas the value of an immediate
integer symbol is static and is known at compile time. In general, each symbol in an operation has a possible set of types.
A general operation class is then defined as:

Bitmask: 10xxxxx0 xxxxxxxx xxxxxxxx xxxxxxxx

>=< ,...)s,exp(s|),....)T,(s),T,(sclOps 101100
, where (si, Ti) are (symbol, type) pairs and exp(s0,s1,…) is the

 behavior of the operations based on the values of the symbols.

The type of a symbol can be defined as a register (∈Registers) or an immediate constant (∈Constants) or can be

based on certain micro-operations (∈Operations). For example, a data processing instruction in ARM (e.g., add) uses
shift (micro-operation) to compute the second source operand, known as ShifterOperand. Each possible type of a symbol
is coupled with a mask pattern that determines what bits in that operation must be checked to find out the actual type of
the corresponding symbol. In general, possible types of a symbol are defined as:

x)* }|0|(1m Constants,RegistersOperationst|m){ (t,T ∈∪∪∈=
For example, the opcode symbol in Example 1 can be any of valid integer arithmetic operations and can be described

as:
 OpTypes = {
 (Add, xxxx-xxxx 0000-xxxx xxxx-xxxx xxxx-xxxx),
 (Sub, xxxx-xxxx 0100-xxxx xxxx-xxxx xxxx-xxxx),
 …
 }

Usually the registers of a processor are divided into groups known as register classes. For example, the SPARC

processor has three register classes: integer registers, floating point registers and control registers. The actual register in a
processor is defined by its class and its index. The index of a register in an instruction is defined by extracting a slice of
the instruction bit pattern and interpreting it as an unsigned integer. An instruction can also use a specific register with a
fixed index as in a branch instruction that update the program counter. In general a register is defined by

index][regClass, | j]i,[regClass,r = where i and j define the boundary of index bit slice in the instruction. For example, the
dest symbol (in Example 1) is 25th to 29th bits in the instruction, and is an integer register. Its type can be described as:
DestType= (IntegerRegClass, 29, 25).

SPARCInst = $
 (InegerOps, 10xx-xxx0 xxxx-xxxx xxxx-xxxx xxxx-xxxx) | …
$;
IntegerOp = <
 (opcode, OpTypes), (dest, DestType), (src1, Src1Type), (src2, Src2Type)
 | {
 dest = opcode(src1, src2);
 }
>;
OpTypes = {
 (Add, xxxx-xxxx 0000-xxxx xxxx-xxxx xxxx-xxxx),
 (Sub, xxxx-xxxx 0100-xxxx xxxx-xxxx xxxx-xxxx),
 (Or , xxxx-xxxx 0010-xxxx xxxx-xxxx xxxx-xxxx),
 (And, xxxx-xxxx 0001-xxxx xxxx-xxxx xxxx-xxxx),
 (Xor, xxxx-xxxx 0011-xxxx xxxx-xxxx xxxx-xxxx),
 …
} ;
DestType = [IntegerRegClass, 29, 25];
Src1Type = [IntegerRegClass, 18, 14];
Src2Type = {
 ([IntegerRegClass,4,0], xxxx-xxxx xxxx-xxxx xx0x-xxxx xxxx-xxxx),
 (#int,12,0#, xxxx-xxxx xxxx-xxxx xx1x-xxxx xxxx-xxxx)
} ;

Figure 3- Integer ar ithmetic instcutions in SPARC

Similarly a portion of an instruction may be considered as a constant. For example, one bit in an instruction can be
equivalent to a Boolean type or a set of bits can make an integer immediate. It is also possible to have constants with fixed
values in the instructions. In general a constant type is defined by value#type,# | j#i,type,#c = where i and j show the bit
positions of the constant and type is a scalar type such as integer, Boolean, float, etc.

Figure 3 shows the complete description of integer-arithmetic instructions in SPARC processor (Example 1). This
simple example also shows how similar operations can be grouped together and described easily. We are able to describe
instruction sets of a wide range of architectures using our generic instruction model. Figure 4 describes how to capture
instruction set of the ARM processor using the instruction model.

The ARM instructions are 32-bit wide and all are conditional. In data-processing instructions, if the condition is true,
some arithmetic operation is performed on the two source operands and the result is written in the destination operand.
The destination and the first source operand are always registers. The second source operand, called ShifterOperand, has
three fields: shift operand (register/immediate), shift operation (5 types) and shift value (register/immediate). The shift
value shows the number of shifts that must be performed on the shift operand by the specified shift operation. For
example, the “ADD r1, r2, #10 sl r3” is equivalent to “ r1=r2+(10 << r3)” expression. If indicated in the instruction
opcode, the flag bits (Z, N, C, and V) are updated.

We defined a set of macros that can be used for compact description. For example, to avoid long mask strings with
many don’ t care bits, the mask macro can be used. This macro gets the length of a mask, a bit position and a string. It then
generates a bit mask with the specified size and copies the string at the corresponding bit position and fills the rest of the
bit mask with ‘x’ symbols. For example mask(8, 2,“ 10”) generates an 8 bit mask that has a ‘10’ at position 2 i.e. xxxx-
x10x.

ARMInst = $
 (DPOperation, xxxx-001x xxxx-xxxx xxxx-xxxx xxxx-xxxx) |
 (DPOperation, xxxx-000x xxxx-xxxx xxxx-xxxx xxx0-xxxx) |
 (DPOperation, xxxx-000x xxxx-xxxx xxxx-xxxx 0xx1-xxxx) |
 …
$;
DPOperation = <
 (cond, Conditions), (opcode, Operations), (dest, [intReg,15,12]), (src1, [intReg,19,16]), (src2, ShifterOperand),
 (updateFlag, { (true, mask(32, 20, “1”), (false, mask(32, 20, “0”)})
 | {
 if (cond()) {
 dest = opcode(src1, src2);
 if (updateFlags) { /*Update flags* /}
 }
 }
>;
Conditions = {
 (Equal, mask(32, 31, “0000”), (NotEqual, mask(32, 31, “0001”), (CarrySet, mask(32, 31, “0010”),
 (CarryClear, mask(32, 31, “0011”), …, (Always, mask(32, 31, “1110”), (Never, mask(32, 31, “1111”)
} ;
Operations = {
 (And, mask(32, 24, “0000”), (XOr, mask(32, 24, “0001”), (Sub, mask(32, 24, “0010”), (Add, mask(32, 24, “0100”), …
} ;
ShifterOperand = <
 (op, { ([intReg,11,8], mask(32,4,“0”)), (#int,11,7#, mask(32,7,“0xx1”))}),
 (sh, { (ShiftLeft, mask(32,6,”00)), (ShiftRight, mask(32,6,”01)), …}),
 (val, { ([intReg,3,0], mask(32,25,“0”)), (#int,7,0#, mask(32,25,“1”))})
 | { sh(op, val) }
>;

Figure 4- Data processing instructions in ARM

To see how compact and efficient this model is, consider the number of different instructions that this small
description in Figure 4 defines. The data processing instructions in ARM processor can have 16 conditions and 16
operations. The shifter operand supports 5 shift operations and the parameters can be register or immediate (5x2x2). Each
instruction may or may not update the flag bits (2). Therefore there will be 16x16x(5x2x2)x2=10240 possible formats in
this category. In the next sections, we show how all these possibilities are explored for generating an optimized code for
each type of instruction. In this model, instructions that have similar format are grouped together into one class. Most of
the time this information is readily available from the instruction set architecture manual. For example, we defined six
instruction classes for the ARM processor viz., Data Processing, Branch, LoadStore, Multiply, Multiple LoadStore,
Software Interrupt, and Swap.

In this section, we have demonstrated two key features of our instruction model: first, it is generic enough to capture
architectures with varied instruction sets; second, it captures the instructions efficiently by allowing instruction grouping.

3.2 Generic Instruction Decoder
A key requirement in a retargetable simulation framework is the ability to automatically decode application binaries

of different processors architectures. This necessitates a generic decoding technique that can decode the application
binaries based on instruction specifications. In this section we propose a generic instruction decoding technique that is
customizable depending on the instruction specifications captured through our generic instruction model.

Algor ithm 1: StaticInstructionDecoder
Input: Target Program Binary Appl, Instruction Specifications InstSpec;
Output: Decoded Program DecodedOperations;
Begin
 Addr = Address of first instruction in Appl;
 While (Appl not processed completely)
 BinStream = Binary stream in Appl starting at Addr;
 (Exp, AddrIncrement) = DecodeOperation (BinStream, InstSpec);
 DecodedOperations = Append (Exp, Addr, DecodedOperations);
 Addr = Addr + AddrIncrement;
 EndWhile;
 return DecodedOperations ;
End;

Algorithm 1 describes how Static Instruction Decoder of Figure 1 works. This algorithm accepts the target program

binary and the instruction specification as inputs and generates a source file containing decoded instructions as output.
Iterating on the input binary stream, it finds an operation, decodes it using Algorithm 2, and adds the decoded operation to
the output source file. Algorithm 2 also returns the length of the current operation that is used to determine the beginning
of the next operation.

Algor ithm 2: DecodeOperation
Input: Binary Stream BinStream, Specifications Spec;
Output: Decoded Expression Exp, Integer DecodedStreamSize;
Begin
 (OpDesc, OpMask) = findMatchingPair(Spec, BinStream);
 OpBinary = initial part of BinStream whose length is equal to OpMask;
 Exp = the expression part of OpDesc;
 ForEach pair of (s, T) in the OpDesc
 Find t in T whose mask matches the OpBinary;
 v = ValueOf(t, OpBinary);
 Replace s with v in Exp;
 EndFor
 return (Exp , size(OpBianry));
End;

Algorithm 2 gets a binary stream and a set of specifications containing operation or micro-operation classes. The

binary stream is compared with the elements of the specification to find the specification-mask pair that matches with the
beginning of the stream. The length of the matched mask defines the length of the operation that must be decoded. The
types of symbols are determined by comparing their masks with the binary stream. Finally, using the symbol types, all
symbols are replaced with their values in the expression part of the corresponding specification. The resulting expression
is the behavior of the operation. This behavior and the length of the decoded operation are produced as outputs.

Consider the following SPARC Add operation example and its binary pattern:

31 23 15 7

Add g1, #10, g2 1000-0100 0000-0000 0110-0000 0000-1010

In the first line of Algorithm 2, the (InegerOps, 10xx-xxx0 xxxx-xxxx xxxx-xxxx xxxx-xxxx) pair matches with the
instruction binary. This means that the IntegerOps operation class matches this operation. It calls Algorithm 3 to decode
the symbols of IntegerOps viz. opcode, dest, src1, src2.

Algor ithm 3: ValueOf
Input: Type t, Operation Binary OpBinary;
Output: Extracted Value extValue;
Begin
 Switch (t)
 case #type, value#: extValue = (type) value; endcase
 case #type, i, j#: extValue = (type) OpBinary[i:j]; endcase
 case [regClass, index]: extValue = REGS[regClass][index]; endcase
 case [regClass, i, j]: extValue = REGS[regClass][OpBinary[i:j]]; endcase
 case Operation Spec:
 (extValue, tmp) = DecodeOperation(OpBinary, t);
 endcase
 EndSwitch;
 return extValue;
End;

Algorithm 3 gets a symbol type and an operation binary (OpBinary), and returns the actual value of the

corresponding symbol. If the type itself is a micro-operation specification, the decode algorithm (Algorithm 2) is called
again and the result is returned. If the type is not a fixed constant (register), the value is calculated by interpreting the
proper portion of the operation binary (OpBinary[i:j]) as a constant (register index).

In the previous example, the 4 symbols (opcode, dest, src1, src2) are decoded using Algorithm 3. Symbol opcode’s
type is OpTypes in which the mask pattern of Add matches the operation pattern. So the value of opcode is Add function.
Symbol dest’s type is DestType which is a register type. It is an integer register whose index is bits 25th to 29th (00010),
i.e. 2. Similarly, symbol src1’s type is Src1Type which is a register type. It is a register integer whose index is bits 14th to
18th (00001), i.e. 1. Likewise, symbol src2’s type is Src2Type in which the mask pattern of #int,12,0# matches the
operation binary pattern. This means that the bits 0th to 12th (0000000001010) must be interpreted as an integer, i.e. 10. By
replacing these values in the expression part of the IntegerOps the final behavior of the operation would be: g2 = Add(g1,
10); which means g2 = g1 + 10.

The complexity of the decoding algorithm is O(n*m* log2m), where n is the number of operations in the input binary
program, m is the number of operations in the architecture instruction set.

3.3 IS-Compiled Simulation (IS-CS)
We developed the instruction set compiled simulation (IS-CS) technique with the intention of combining the full

flexibility of interpretive simulation with the speed of the compiled principle. The basic idea is to move the time-
consuming instruction decoding to compile time as shown in Figure 5. The application program, written in C/C++, is

compiled using the gcc compiler configured to generate binary for the target machine. The instruction decoder decodes
one binary instruction at a time to generate the decoded program for the input application. The decoded program is
compiled by C++ compiler and linked with the simulation library to generate the simulator. The simulator recognizes if
the previously decoded instruction has changed and initiates re-decoding of the modified instruction. If any instruction is
modified during execution and subsequently re-decoded, the location in instruction memory is updated with the re-
decoded instruction.

Figure 5- Instruction Set Compiled Simulation Flow

To improve the simulation speed we use a novel instruction abstraction technique that generates optimized decoded

instructions as described in Section 3.1. As a result the computation during run-time is minimized.
In traditional interpretive simulation (e.g., Simplescalar �[21]) the decoding and execution of binary instructions are

done using a single monolithic function. This function has many if-then-else and switch/case statements that perform
certain activities based on bit patterns of opcode, operands, addressing modes etc. In advanced interpretive simulation
(e.g., LISA �[2]) the binary instruction is decoded and the decoded instruction contains pointers to specific functions. There
are many variations of these two methods based on efficiency of decode, complexity of implementation, and performance
of execution. However, none of these techniques exploit the fact that a certain class of instructions may have a constant
value for a particular field of the instruction. For example, a majority of the ARM instructions execute unconditionally
(condition field has value always). It is a waste of time to check the condition for such instructions every time they are
executed.

Clearly, when certain input values are known for a class of instructions, the partial evaluation [13] technique can be
applied. The effect of partial evaluation is to specialize a program with part of its input to get a faster version of the same

program. To take advantage of such situations we need to have separate functions for each and every possible format of
instructions so that the function could be optimized by the compiler at compile time and produce the best performance at
run time. Unfortunately, this is not feasible in practice. For example, consider the ARM data processing instructions. It
can have 16 conditions, 16 operations, an update flag (true/false), and one destination followed by two source operands.
The second source operand, called shifter operand, has three fields: operand type (reg/imm), shift options(5 types) and
shift value (reg/imm). In total, the ARM data processing instructions have 16 x 16 x 2 x 2 x 5 x 2 = 10240 possible
formats.

Our solution to this problem is to define instruction classes, where each class contains instructions with similar
formats. Most of the time this information is readily available from the instruction set architecture manual. For example,
we defined six instruction classes for the ARM processor viz., Data Processing, Branch, LoadStore, Multiply, Multiple
Load-Store, Software Interrupt, and Swap. Next, we define a set of masks for each instruction class. The mask consists of
'0', '1' and 'x' symbols. A '0' ('1') symbol in the mask matches with a '0' ('1') in binary pattern of the instruction at the same
bit position. An 'x' symbol matches with both '0' and '1'. For example, the masks for the data processing instructions are
shown below: "xxxx-001x xxxx-xxxx xxxx-xxxx xxxx-xxxx" "xxxx-000x xxxx-xxxx xxxx-xxxx xxx0-xxxx" "xxxx-000x
xxxx-xxxx xxxx-xxxx 0xx1-xxxx" We use C++ templates to implement the functionality for each class of instructions.
For example, the pseudo code for the data processing template is shown below. The template has four parameters viz.,
condition, operation, update flag, and shifter operand. The shifter operand is a template having three parameters viz.,
operand type, shift options and shift value.

Example 1: Template for Data Processing Instructions
template <class Cond, class Op, class Flag, class SftOper>
 class DataProcessing :
 {
 SftOper _sftOperand;
 Reg _dest, _src1;
 public:

 virtual void execute()
 {
 if (Cond::execute())
 {
 _dest = Op::execute(_src1, _sftOperand.getValue());
 if (Flag::execute())
 {
 // Update Flags
 }
 }
 }
} ;

We illustrate the power of our technique to generate an optimized decoded instruction using a single data processing
instruction. We show the binary as well as the assembly of the instruction below.

Binary: 1110|000|0100|0|0010|0001|01010|00|0|0011

(cond|000| op |S| Rn | Rd |shift immed|shift|0|Rm)
Assembly: ADD r1, r2, r3 LSL #10

(op{ <cond>} { S} Rd, Rn, Rm shift #<immed>)

The DetermineTemplate function returns the DataProcessing template (shown in Example 1) for this binary
instruction. The CustomizeTemplate function generates the following customized template for the execute function.

void DataProcessing<Always, Add, False,
SftOper<Reg, ShiftLeft, Imm>>::execute()
{

 if (Always::execute()) {
 _dest = Add::execute(_src1, _sftOperand.getValue());
 if (False::execute()) {
 // Update Flags
 ...
 }
 }
}

After compilation using a C++ compiler, several optimizations occur on the execute() function. The
Always::execute() function call is evaluated to true. Hence, the check is removed. Similarly, the function call
False::execute() is evaluated to false. As a result the branch and the statements inside it are removed by the compiler.
Finally, the two function calls Add::execute(), and sftOperand.getValue() get inlined as well. Consequently, the execute()
function gets optimized into one single statement as shown below:

void DataProcessing<..skipped..>::execute() {
 _dest = _src1 + _sftOperand._operand << 10;
}

Furthermore, in many ARM instructions, the shifter operand is a simple register or immediate. Therefore, the shift
operation is actually a no shift operation. Although the manual says that the case is equivalent to shift left zero, we use a
no shift operation that enables further optimization. In this way, an instruction similar to the above example would have
only one operation in its execute() method.

Similarly, Figure 6 shows the code generation process for the Sparc description shown in Figure 3.

/* generated template for integer arithmetic operations of Sparc* /
template<class OpTypes, class DestType, class Src1Type, class Src2Type>
class IntegerOps
{
 DestType dest; Src1Type src1; Src2Type src2;
 public:
 virtual void execute() { dest = OpTypes::f(src1, src2); }
 …
} ;

/* customized template for Add g1, #10, g2 instruction*/
void IntegerOps<Add, Register, Register, int>::execute(){
 REGS[IntegerRegClass][dest] = Add:f(REGS[IntegerRegClass][src1], src2);
}

/* optimized template for Add g1, #10, g2 instruction* /
void IntegerOps<Add, Register, Register, int>::execute(){
 REGS[IntegerRegClass][dest] = REGS[IntegerRegClass][src1] + src2;
}

Figure 6- Code generation for a Sparc instruction

4 Experiments
In order to evaluate the applicability of our framework to generate fast, flexible and retargetable simulator, we

performed several experiments using various processor models. In this section, we present simulation results using two
contemporary processors: ARM7 �[20] and SPARC �[22] to demonstrate the usefulness of our approach.

4.1 Experimental Setup
The ARM7 processor is a RISC machine with fairly complex instruction set. We used arm-linux-gcc for generating

target binaries for ARM7 and validated the generated simulator by comparing traces with Simplescalar-arm �[21]
simulator.

The Sparc V7 is a high performance RISC processor with 32-bit instructions. We used gcc3.1 running on Solaris to
generate the target binaries for Sparc and validated the generated simulator by comparing traces with Shade �[18]
simulator.

Performance results for simulators were obtained using a 1 GHz PentiumIII with 256 MB RAM running Windows
2000 Professional. The generated simulator code was compiled using the Microsoft Visual Studio .NET compiler with all
optimization enabled. We also used a 400 MHz UltraSparc-II with 1 GB RAM and gcc3.1 with all optimizations to
compare the performance of the simulator against running the program natively. In both cases, the same C++ compiler
was used for compiling the decoded program.

We have used benchmarks from SPEC 95 and DSP domains. In this section we show the results using three
application programs: adpcm from DSP benchmark suite, 099.go and 129.compress from SPEC 95.

4.2 Results
 Figure 7 shows the simulation performance of our technique using the ARM7 model. The first bar shows the

simulation performance with dynamic checking of program modification. The second bar presents the performance
without checking run time changes.

0

2

4

6

8

10

12

14

adpcm 129.compress 099.go

Benchmark

P
er

fo
rm

an
ce

 (
M

IP
S)

Check

Nocheck

Figure 7- Simulation Results – ARM7

Our simulation performance is superior to all variations of interpretive simulation techniques published in the

literature. To the best of our knowledge the best performance of a simulator having the flexibility of interpretive
simulation has been JIT-CCS �[2]. The JIT-CCS technique could achieve a performance up to 8 MIPS on an Athlon at 1.2
GHz with 768 MB RAM for adpcm benchmark on ARM7 simulator. Our simulation technique delivers up to 46%
performance improvement (11.7 MIPS with dynamic checking) using a slower machine (P3 1.0 GHz with 256 MB
RAM). The performance improvement is even higher (12.9 MIPS) when dynamic checking is disabled. There are two
reasons for the superior performance of our technique: moving the time consuming decoding out of the execution loop,
and generating aggressively optimized code for each instruction.

0

2

4

6

8

10

12

14

adpcm 129.compress 099.go

Benchmark

P
er

fo
rm

an
ce

 (
M

IP
S)

Check

NoCheck

Figure 8- Simulation Results - Sparc

Figure 8 shows the simulation performance of our technique using Sparc model. The first bar shows the simulation

performance with dynamic checking of program modification. The second bar presents the performance with checking
disabled.

Note that in IS-CS, each instruction is optimized and hence depending on their complexity, different instructions
have different performance. For example, in both Sparc and ARM architectures, the most complex instructions are those
that are used for context switching. These instructions are used to save or restore a group of registers. The reason for the
poor performance of the compress benchmark in both simulators is mainly because of too many Save and Restore
operations.

Also note that, the overall performance of ARM simulator is slightly better than that of Sparc. ARM instructions are
more complex and in most cases are equivalent to more than one Sparc instruction. Therefore optimizing one ARM
instruction is equivalent to optimizing multiple instructions in Sparc.

Table 1 compares the simulation results of our Sparc simulator (with dynamic checking disabled) against native
execution. We ran both the simulator and the application program on a 400 MHz UltraSparc-II with 1 GB RAM. Our
simulator is approximately 100 times slower than the native execution. The poor performance for compress benchmark is
due to the simulation of too many save and restore instructions.

Table 1- Native Execution Vs Simulation Per formance

Benchmarks Native Execution(MIPS) Simulation(MIPS) Ratio
adpcm 390.71 3.9 100
compress 487.12 2.9 167
go 202.07 4.0 50

We have demonstrated that our framework can generate retargetable simulators that deliver the performance of

compiled simulation while maintaining the flexibility of interpretive simulation. Our simulation technique delivers better
performance than any simulators in this category, as demonstrated in this section.

5 Summary
In this paper, we presented a framework for generating fast, flexible, and retargetable ISA simulator. We proposed a

generic instruction model as well as a generic decode algorithm that can specify and decode many variations of
instructions. Besides, due to the simple interpretive simulation engine and optimized pre-decoded instructions, our

instruction set compiled simulation (IS-CS) technique achieves the performance of compiled simulation while maintaining
the flexibility of interpretive simulation. The IS-CS technique achieves its superior performance for two reasons: moving
time-consuming decode to compile time, and using templates to produce aggressively optimized code for each instance of
instructions. We demonstrated performance improvement of up to 46% over the best published results on an ARM7
model. Our framework uses the EXPRESSION ADL to capture the processor architecture and generate retargetable
simulator. The generic instruction model coupled with decoding algorithm form the backbone of our retargetable
framework. Future work will concentrate on using this framework for modeling other real world architectures.

6 Acknowledgements
This work was partially supported by NSF grants CCR-0203813 and CCR-0205712. We would like to acknowledge Dan
Nicolaescu, Radu Cornea�and the members of the ACES laboratory for their inputs, .

7 Reference
[1] V. Zivojnovic et al. LISA - machine description language and generic machine model for HW/SW co-design. In

IEEEWorkshop on VLSI Signal Processing, 1996.
[2] A. Nohl et al. A Universal Technique for Fast and Flexible Instruction-Set Architecture Simulation. DAC,2002.
[3] S. Pees et al. Retargeting of Compiled Simulators for Digital Signal Processors using a Machine Description

Language. DATE, 2000.
[4] G. Braun et al. Using Static Scheduling Techniques for the Retargeting of High Speed, Compiled Simulators for

Embedded Processors from an Abstract Machine Description. ISSS, 2001.
[5] J. Zhu et al. A Retargetable, Ultra-fast Instruction Set Simulator. DATE, 1999.
[6] P. Paulin et al. FlexWare: A flexible firmware development environment for embedded systems. In Proc. Dagstuhl

Code GenerationWorkshop, 1994.
[7] G. Hadjiyiannis et al. ISDL: An instruction set description language for retargetability. In Proc. DAC, 1997.
[8] M. Freericks. The nML machine description formalism. Technical Report TR SMIMP/DIST/08, TU Berlin CS Dept.,

1993.
[9] Trimaran Release: http://www.trimaran.org. The MDES User Manual, 1998.
[10] R. Leupers, J. Elste, and B. Landwehr. Generation of interpretive and compiled instruction set simulators. In

Proceedings of the Asia and South Pacific Design Automation Conference (ASP-DAC), Jan. 1999.
[11] E. Schnarr, M. Hill, and J. Larus. Facile: A language and compiler for high-performance processor simulators. In

Proceedings of ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), Utah,
USA, Jun. 2001.

[12] F. Engel, J. N¨uhrenberg, and G. Fettweis. A generic tool set for application specific processor architectures. In
Proceedings of the Eighth International Workshop on Hardware/Software Codesign (CODES), pages 126–130, San
Diego, CA USA, May 2000.

[13] A. Halambi et al. EXPRESSION: A Language for Architecture Exploration through Compiler/Simulator
Retargetability. DATE, 1999.

[14] E. Schnarr et al. Fast Out-of-Order Processor Simulation using Memoization. PLDI, 1998.
[15] E. Witchel et al. Embra: Fast and Flexible Machine Simulation. MMCS, 1996.
[16] M. Hartoog et al. Generation of Software Tools from Processor Descriptions for Hardware/Software Codesign.

DAC, 1997.
[17] R. Leupers et al. Generation of Interpretive and Compiled Instruction Set Simulators. DAC, 1999.
[18] Robert. F. Cmelik, David Keppel. Shade: A fast instruction set simulator for execution profiling. Proceedings of 1994

ACM SIGMETTRICS Conference on Measurment and Modeling of computer systems, Philadelphia, 1996.
[19] Texas Instruments, TMS320C6201 CPU and Instruction Set Reference Guide, 1998.
[20] The ARM7 User Manual, http://www.arm.com.
[21] Simplescalar Home page: http://www.simplescalar.com
[22] Sparc Version 7 Instruction set manual:

http://www.atmel.com/dyn/resources/prod_documents/doc3b8b88df7a415.pdf

