
ENERGY-AWARE SCHEDULING AND DYNAMIC RECONFIGURATION IN
REAL-TIME EMBEDDED SYSTEMS

By

WEIXUN WANG

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2011

1

c© 2011 Weixun Wang

2

To my wife and my parents

3

ACKNOWLEDGMENTS

Time flies by, four years of graduate school life here at UF elapsed like a shuttle.

Looking back after going through this challenging journey, all I can see are maturations,

achievements and triumphs. However, I’m not alone on my way to Ph.D. but surrounded

by many other people to whom I am sincerely grateful.

First of all, I really appreciate my adviser Prof. Prabhat Mishra for what he has

done for me. It was him who led me to open the door of computer science. I will

never forget all his kind instructions and enduring support. He not only guided me to

overcome challenging problems, not also taught me how to explore new directions. More

importantly, he is always considerate for me and helps me building my own career. He is

the person who made this dissertation come true.

I would also like to thank my other Ph.D. committee members: Prof. Sartaj Sahni,

Prof. Tao Li, Prof. Greg Stitt and Prof. Ann Gordon-Ross for their precious advises

and criticisms. I appreciate Prof. Sanjay Ranka with whom I collaborated for two years.

His profound knowledge in algorithms helped me a lot in my research. I also thank my

lab-mates, Mingsong Chen, Kanad Basu, Xiaoke Qin, Chetan Murthy, Kartik Shrivastava,

Hadi Hajimiri and Kamran Rahmani. It was my great pleasure to work with them. I

really enjoyed our friendship and I hope it will last forever.

Last but not least, I sincerely thank my family for their love, encouragement and

support. I wouldn’t be able to achieve anything without my parents’ raising since my

childhood. Their all-embracing love and care – guiding me patiently, supporting my

decisions, forgiving my faults – makes me grow up freely. My most special appreciation is

dedicated to my wife Yan. Her love and devotion paved the road to my doctoral degree.

She always held my hands and gave me courage whenever I need. I have realized how

lucky I am to marry her.

This work was partially supported by grants from National Science Foundation (NSF)

grant CCF-0903430 and Semiconductor Research Corporation (SRC) grant 2009-HJ-1979.

4

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 9

LIST OF FIGURES . 10

ABSTRACT . 14

CHAPTER

1 INTRODUCTION . 15

1.1 Optimizations in Real-Time Embedded Systems 16
1.2 Opportunities and Challenges . 18

1.2.1 Dynamic Reconfiguration Techniques 18
1.2.2 Potential Optimization Opportunities 19
1.2.3 Challenges . 20

1.3 Research Contributions . 21

2 MODELING OF REAL-TIME AND RECONFIGURABLE SYSTEMS 25

2.1 System Model . 25
2.2 Energy Models . 25

2.2.1 Cache Energy Model . 25
2.2.2 Processor Energy Model . 26
2.2.3 Bus Energy Model . 28
2.2.4 Main Memory Energy Model . 28

2.3 Thermal Model . 29
2.4 Summary . 29

3 DYNAMIC CACHE RECONFIGURATION FOR SOFT REAL-TIME SYSTEMS 30

3.1 Related Work . 31
3.1.1 Caches in Real-Time Systems . 31
3.1.2 Reconfigurable Cache Architectures 32
3.1.3 Caches Tuning Techniques . 33

3.2 SACR: Scheduling-Aware Cache Reconfiguration 35
3.2.1 Overview . 35
3.2.2 Phase-based Optimal Cache Selection 36
3.2.3 Statically Scheduled Systems . 43
3.2.4 Dynamically Scheduled Systems . 43

3.2.4.1 Conservative Approach . 43
3.2.4.2 Aggressive Approach . 46

3.2.5 Impact of Storing Multiple Cache Configurations 50

5

3.3 Design Space Exploration for Two-Level Cache Reconfiguration 52
3.3.1 Exhaustive Exploration . 53
3.3.2 Same Level One Cache Tuning – SLOT 54
3.3.3 Two-Step Tuning – TST . 54
3.3.4 Independent Level One Cache Tuning – ILOT 55
3.3.5 Interlaced Tuning – ILT . 57

3.4 Experiments . 59
3.4.1 Experiments Setup . 59
3.4.2 Results: Single-level SACR . 60

3.4.2.1 Energy Saving . 60
3.4.2.2 Suitability of Statically Determined Configurations 65
3.4.2.3 Impact of Storing Multiple Cache Configurations 67
3.4.2.4 Analysis of Input Variations 69
3.4.2.5 Hardware Overhead . 70

3.4.3 Results: Multi-level SACR . 73
3.4.3.1 Optimal Cache Configuration Selection 74
3.4.3.2 Energy Saving . 75
3.4.3.3 Insights behind Results . 76
3.4.3.4 Exploration Efficiency . 77

3.5 Summary . 78

4 ENERGY-AWARE SCHEDULING WITH DYNAMIC VOLTAGE SCALING . 80

4.1 Related Work . 81
4.2 PreDVS: Preemptive Dynamic Voltage Scaling 83

4.2.1 Overview . 83
4.2.2 Problem Formulation . 85
4.2.3 Approximation Scheme . 88

4.2.3.1 Problem Transformation 88
4.2.3.2 Approximation Algorithm 95

4.2.4 Efficient PreDVS Heuristics . 101
4.2.4.1 Heuristic Without Problem Transformation 101
4.2.4.2 Heuristic With Problem Transformation 104

4.3 DSR: Dynamic Slack Reclamation . 105
4.3.1 Overview . 105
4.3.2 Dynamic Slack Reclamation Algorithm 107

4.3.2.1 Tasks without Arrival Time Constraints 109
4.3.2.2 Tasks with Arrival Time Constraints 110

4.3.3 Algorithm . 113
4.4 Experiments . 116

4.4.1 PreDVS . 116
4.4.1.1 Experimental Setup . 116
4.4.1.2 Results . 117

4.4.2 DSR . 123
4.4.2.1 Experimental Setup . 123

6

4.4.2.2 Results . 124
4.5 Summary . 130

5 SYSTEM-WIDE ENERGY OPTIMIZATION WITH DVS AND DCR 132

5.1 Related Work . 133
5.2 System-wide Leakage-aware DVS and DCR 135

5.2.1 Power Estimation Framework . 136
5.2.2 Two-Level Cache Tuning Heuristic 137
5.2.3 Critical Speed . 138

5.2.3.1 Processor + L1 Cache . 139
5.2.3.2 Processor + L1/L2 Cache 140
5.2.3.3 Processor + L1/L2 Cache + Memory 141
5.2.3.4 Processor + L1/L2 Cache + Memory + Bus 142

5.2.4 Real-Time Voltage Scaling and Cache Reconfiguration 144
5.2.4.1 Profile Table . 144
5.2.4.2 Reconfiguration Selection Heuristics 145

5.2.5 Procrastination . 146
5.3 A General Dynamic Reconfiguration Algorithm 148

5.3.1 Overview . 148
5.3.2 Algorithm . 149

5.3.2.1 Extended Complete Bipartite Graph 151
5.3.2.2 Minimum-Cost Path Algorithm 153

5.4 Experiments . 157
5.4.1 System-wide Energy Optimization 157

5.4.1.1 Experiments Setup . 157
5.4.1.2 Results . 159

5.4.2 General Algorithm for Dynamic Reconfiguration 163
5.4.2.1 Experiments Setup . 163
5.4.2.2 Results . 164

5.5 Summary . 172

6 TEMPERATURE- AND ENERGY-CONSTRAINED SCHEDULING 174

6.1 Related Work . 176
6.2 Background . 177
6.3 TCEC Scheduling Approach . 177

6.3.1 Overview . 177
6.3.2 Modeling with Extended Timed Automata 179
6.3.3 Problem Variants . 184

6.4 Experiments . 185
6.4.1 Experiments Setup . 185
6.4.2 Results . 185

6.4.2.1 Solving TCEC Problems 185
6.4.2.2 Running Time Variations 185

6.5 Summary . 187

7

7 ENERGY OPTIMIZATION OF CACHE HIERARCHY IN MULTICORE SYSTEMS188

7.1 Related Work . 189
7.2 Background and Motivation . 190

7.2.1 Architecture Model . 190
7.2.2 Motivation . 192

7.3 Dynamic Cache Reconfiguration and Partitioning 193
7.3.1 Problem Formulation . 193
7.3.2 Static Profiling . 195
7.3.3 DCR + CP Algorithm . 196
7.3.4 Task Mapping . 199
7.3.5 Varying Cache Partitioning Scheme 203
7.3.6 Gated-Vdd Shared Cache Lines . 206

7.4 Experiments . 206
7.4.1 Experimental Setup . 206
7.4.2 Results . 208

7.4.2.1 Energy Savings . 208
7.4.2.2 Deadline Effect . 209
7.4.2.3 Task Mapping Effect . 210
7.4.2.4 Effect of Varying Cache Partitioning 211
7.4.2.5 Gated-Vdd Cache Lines Effect 212

7.5 Summary . 213

8 CONCLUSIONS AND FUTURE WORK . 214

8.1 Conclusions . 214
8.2 Future Research Directions . 216

A LIST OF PUBLICATIONS . 218

REFERENCES . 221

BIOGRAPHICAL SKETCH . 233

8

LIST OF TABLES

Table page

2-1 Constants for 70nm technology . 28

3-1 Optimal cache configurations for task phases. Each configuration is denoted by
the total cache size in kilobytes (kb), followed by the associativity in number of
ways (w), followed by the line size in bytes (b). 38

3-2 (a) Static profile table and (b) Task list entry for task i for the conservative approach 45

3-3 (a) Static profile table and (b) Task list entry for task i for the aggressive approach 47

3-4 Benchmark task sets . 61

3-5 Task performance variations for conservative approach 66

3-6 Task performance variations for aggressive approach 66

3-7 Current phases of deadline violated tasks when they are discarded. 67

3-8 Input variation exploration. 71

3-9 Input pattern changes. 72

3-10 Overhead of different lookup tables (180nm technology) 73

3-11 Overhead of different lookup tables (65nm technology) 73

3-12 Task sets consisting of real benchmarks. 74

3-13 Cache hierarchy configuration explored using different exploration methods. . . 78

4-1 Task sets consisting of real benchmarks. 117

4-2 Algorithm running time comparisons (in seconds). 122

4-3 Task sets consisting of real benchmarks. 124

5-1 Task sets consisting of real benchmarks. 158

5-2 Task sets consisting of real benchmarks. 163

6-1 TCEC results on different task sets . 186

7-1 Optimal partition factors for selected benchmarks 202

7-2 Multi-task benchmark sets. 207

9

LIST OF FIGURES

Figure page

1-1 Real-Time Systems. 16

1-2 System-wide power consumption breakdown of a typical SoC. 17

1-3 Optimization targets, objectives and techniques. 22

1-4 Dissertation outline. 23

3-1 Reconfigurable cache architecture: (a) base cache bank layout, (b) way concatenation,
(c) way shutdown, and (d) configurable line size. 34

3-2 Cache configurations selected based on task phases 35

3-3 Dynamic cache reconfigurations for tasks T1 and T2 36

3-4 Task partitioning at n potential preemption points (Pi) resulting in n phases.
Each phase comprises execution from the invocation/resumption point to task
completion. Ci denotes the cache configuration used in each phase. 37

3-6 Effective range where a higher partition factor makes a difference 42

3-7 Task set and sample scheduling . 49

3-12 Miss rate for epic under different cache configurations. 65

3-14 Normalized energy consumption of the searched energy-optimal cache configuration
using heuristics. 75

3-15 Normalized execution time of the searched performance-optimal cache configuration
using heuristics. 76

3-16 Cache hierarchy energy consumption using four heuristics. 77

4-1 Power consumption and clock cycle length of Crusoe processor (Pdyn, Psta and
Pon denote dynamic power, leakage power and the intrinsic power required to
keep the processor on, respectively). 80

4-2 Inter-task DVS, PreDVS and Intra-task DVS. 85

4-3 Distinct block and distinct block set. 89

4-4 Profile table generation for distinct block set. 92

4-5 Aggregated profile table generation for each task. 94

4-6 Illustration of PreDVS heuristic without problem transformation. 103

4-7 Execution blocks after static slack allocation. 108

10

4-8 Dynamic slack generated by early finished task. 108

4-9 Dynamic slack allocation example. 110

4-10 Dynamic slack allocation with arrival time constraints. 111

4-11 Slack reclamation with task rescheduling. 112

4-12 Task rescheduling example. 113

4-13 Exploration window partitions into groups according to MaxRS. 114

4-16 PreDVS Approximation Algorithm Running Time Comparison. 122

4-17 Effect of Window size on the total energy savings. 125

4-18 Results for StrongARM processor (synthetic task sets). 126

4-19 Results for Transmeta Crusoe processor with constant effective capacitance values
(synthetic task sets). 127

4-20 Results for Transmeta Crusoe processor with application-specific effective capacitance
values (synthetic task sets). 128

4-21 Results for Transmeta Crusoe processor with application-specific effective capacitance
values (real benchmark task sets). 129

4-22 Problem variations comparison. 130

4-23 Running time overhead. 130

5-1 Workflow of our approach. 135

5-2 Overview of our power estimation framework. 137

5-3 Conceptual system bus architecture. 138

5-4 Processor energy consumption Eproc for executing cjpeg : EprocDyn is the dynamic
energy, EprocSta is the static energy and EprocOn is the intrinsic energy needed to
keep processor on. 140

5-5 Overall system energy consumption Etotal of the processor and L1 caches for
executing cjpeg : EL1Dyn and EL1Sta are the dynamic and static L1 cache energy
consumption, respectively. 140

5-6 Overall system energy consumption Etotal of the processor, L1 caches and L2
cache (configured to 64KB,128B,8-way) for executing cjpeg : EL2Dyn and EL2Sta
are the dynamic and static L2 cache energy consumption, respectively. 141

11

5-7 Overall system energy consumption Etotal of the processor, L1/L2 caches and
memory for executing cjpeg : EmemDyn and EmemSta are the dynamic and static
memory energy consumption, respectively; Ecache represents the total energy
consumption of both L1 and L2 caches. 142

5-8 Overall system energy consumption Etotal of the processor, L1/L2 caches, memory
and system buses for executing cjpeg : EbusDyn and EbusSta are the dynamic and
static bus energy consumption, respectively. 143

5-9 Processor voltage scaling impact on various system components. 143

5-10 Total energy consumption across all L1 cache configurations (with L2 cache configured
to 64KB,128B,8-way) for executing cjpeg. 145

5-11 Tasks and execution blocks. 150

5-12 ECBG model of ℘. 152

5-13 Illustration of our algorithm. 154

5-14 Ensuring the time constraints. 156

5-15 Illustration of the approximate version of our algorithm. 157

5-16 Total energy consumption of single-benchmark task sets. 160

5-17 System-wide overall energy consumption using different approaches. 161

5-19 Energy consumption compared with two heuristics: DVS+DCR. 165

5-20 Energy consumption compared with two heuristics: (a) DCR; (b) DVS. 166

5-21 Time discretization effect for DCR. 167

5-22 Time discretization effect for DVS. 168

5-23 Variable overhead aware effect in DVS. 168

5-24 Variable overhead aware effect in DCR. 169

5-25 Comparison of our exact approach and approximate approach: (a) energy consumption
normalized to uniform slowdown heuristic; (b) running time. 170

5-26 Comparison of our exact approach and approximate approach under various
reconfiguration overhead. 171

6-1 Workflow of our model checking approach. 178

6-2 TCEC problem modeled in extended timed automata. 182

6-3 Problem modeling when every task has own deadline (partial graph). 183

12

6-4 Running time with different constraints. 186

7-1 Typical multicore architecture with shared L2 cache. 190

7-2 Way-based cache partitioning example (four cores with a 8-way associative shared
cache). 191

7-3 L1 DCR impact on L2 CP in performance. 193

7-4 Illustration of our algorithm. 197

7-5 Optimal partition factor variation with L1 caches of 4KB with 2-way associativity
and 32-byte line size. 201

7-6 Task mapping effect. 202

7-7 Varying partitioning scheme. 203

7-9 Deadline effect on total energy consumption. 210

7-10 Task mapping heuristic effect on total energy consumption. 211

7-11 Varying partitioning scheme effect on total energy consumption. 211

7-12 Gated-Vdd cache lines effect on total energy consumption. 212

13

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

ENERGY-AWARE SCHEDULING AND DYNAMIC RECONFIGURATION IN
REAL-TIME EMBEDDED SYSTEMS

By

Weixun Wang

August 2011

Chair: Prabhat Mishra
Major: Computer Engineering

Energy is one of the key design considerations in embedded systems. Optimization

techniques based on dynamic reconfiguration are widely employed for achieving various

design objectives. Dynamic cache reconfiguration (DCR) is promising for improving

both energy efficiency and performance of the memory hierarchy. Dynamic voltage

scaling (DVS) is capable of reducing processor energy dissipation. While these techniques

have been studied for general-purpose systems, it is a major challenge to apply them to

real-time embedded systems. Applications in such systems have timing constraints that

need to be satisfied during execution otherwise it can lead to performance degradation

or even catastrophic consequences. This dissertation presents novel reconfiguration

techniques and scheduling algorithms for energy optimization in real-time embedded

systems. My research has made five major contributions: i) it proposes scheduling-aware

cache reconfiguration algorithms and design space exploration techniques for soft real-time

systems; ii) it proposes energy-aware scheduling algorithms based on DVS; iii) it effectively

integrates DVS and DCR together for system-wide energy minimization; iv) it verifies task

schedulability in temperature- and energy-constrained real-time systems; and v) it presents

cache hierarchy energy optimization based on dynamic reconfiguration in multicore

systems. Extensive experimental results demonstrate significant improvement in overall

energy efficiency, performance and thermal control without affecting timing constraints.

14

CHAPTER 1
INTRODUCTION

Design and optimization of real-time multitasking systems has received significant

attention from both academia and industry in recent years. Figure 1-1 illustrates

the typical structure and application domains of real-time systems. These systems

require unique design considerations since timing constraints are imposed on the

workloads (i.e., tasks). In general, tasks could be heterogeneous in terms of timing

constraints (e.g., deadlines, arrival times) and characteristics (e.g., periodic/sporadic,

preemptive/non-preemptive etc.). Tasks have to complete execution by their deadlines in

order to ensure correct system behavior. In hard real-time systems, such as safety-critical

applications like medical devices and aircrafts, violating task deadlines could lead to

catastrophic consequences. Due to these stringent constraints, the real-time scheduler

must perform task schedulability analysis based on task characteristics such as priorities,

periods, and deadlines [69]. A task set is considered to be schedulable only if there exists

a valid schedule that satisfies all the deadlines. As embedded systems become ubiquitous,

real-time systems with soft timing constraints also become widespread in applications

such as gaming, housekeeping and multimedia equipments. Minor deadline violations may

only result in temporary service quality degradation, but will not lead to incorrect system

behavior. For example, users of video-streaming on mobile devices can tolerate occasional

jitters caused by frame droppings.

Existing low-power computing techniques tune the system at runtime (dynamically

reconfigure) to meet optimization goals by changing tunable system parameters. It is a

major challenge to determine when and how to dynamically reconfigure the system in

order to achieve lower power consumption, higher performance, lower peak temperature

and balance system behavior. My research mainly focuses on energy optimization in

real-time embedded systems based on dynamic scheduling and reconfiguration techniques.

The rest of the chapter is organized as follows. Section 1.1 discusses various optimization

15

Real-Time Operating System (RTOS)

Hard Real-Time Systems Soft Real-Time Systems

Real-Time Tasks

Applications

Figure 1-1. Real-Time Systems.

objectives in real-time embedded systems. Section 1.2 presents promising reconfiguration

techniques, and studies potential improvement opportunities as well as major challenges in

implementing them. Finally, Section 1.3 summarizes the contributions of this dissertation.

1.1 Optimizations in Real-Time Embedded Systems

Energy conservation is the primary optimization objective in almost every system

design. It is important for desktop-based conventional computing since a significant

amount of electricity is consumed by computers nowadays [1]. For embedded systems,

which are generally driven by batteries with a limited energy budget, reduction in

power and energy dissipation is even more critical. The benefits of such optimizations

include battery life improvement, cost and area reduction due to less energy and

cooling requirements as well as improved design of power supply, voltage regulators

and interconnect dimensions.

Figure 1-2 shows system-wide energy consumption distribution for a typical

System-on-Chip (SoC) [65]. It can be seen that processor, cache hierarchy, main memory

and bus are the four main comparable contributors to the overall power consumption. The

16

processor is the primary contributor due to the most intensive switching activities in the

circuit. Recent studies have shown that memory hierarchy, especially the cache subsystem,

has become comparable to the processor with respect to energy consumptions [72] due to

its increasing access frequency and on-chip areas. Therefore, they are the main targets for

optimization in both uniprocessor systems and multicore architectures.

Processor

38.86%

Cache

23.32%

Memory

18.85%

Bus

14.64%

Others

4.34%

Figure 1-2. System-wide power consumption breakdown of a typical SoC.

In the past, leakage energy was negligible compared to its dynamic counterpart.

However, in the last decade, we have observed a continuous CMOS device scaling in which

higher transistor density and smaller device dimension have led to increasing leakage

(static) power consumption. Therefore, energy optimization techniques should take both

dynamic and static consumption into consideration, from various system components, to

achieve overall energy reduction. This is also the primary focus of this dissertation.

Along with the performance improvement in state-of-art microprocessors, power

densities are rising more rapidly due to the fact that feature size scales faster than

voltages [105]. Since energy consumption is converted into heat dissipation, high heat flux

increases the on-chip temperature. This trend is observed in both desktop and embedded

processors [117] [138]. Thermal increase will lead to a series of adverse effects including

reliability and performance degradation [131], frequent transient errors or even permanent

damage, and higher leakage power dissipation [124]. Due to the severe detrimental impact,

17

we have to control the instantaneous temperature so that its peak value is minimized or

does not go beyond a certain level. Thermal management schemes are widely studied

for general-purpose systems. However, in the context of embedded systems, traditional

packaging and cooling solutions are not applicable due to the limits on device size and

cost. This dissertation also examines temperature management schemes.

1.2 Opportunities and Challenges

Tremendous optimization opportunities exist based on the design objectives. In this

section, we briefly describe various reconfiguration techniques that we explore in this

dissertation. Next, we discuss opportunities and challenges to employ them in real-time

embedded system optimizations.

1.2.1 Dynamic Reconfiguration Techniques

Dynamic cache reconfiguration (DCR) offers the ability to tune the cache configuration

parameters at runtime to reflect each application’s memory access behavior and meet its

unique requirement. Different applications may have distinct preferences for cache

configurations with respect to both performance and energy efficiency. Specifically, the

working set of the application decides the favored cache capacity, while the spatial and

temporal locality reflect the cache line size and associativity requirements, respectively.

Research shows that specializing the cache configuration for the application can lead

to significant reduction of memory subsystem energy consumption [31] [33] [122]. In

multicore architectures, cache partitioning (CP) is another form of reconfiguration which

helps to eliminate interferences and improve performance.

Many general as well as specific-purpose processors support dynamic voltage/frequency

scaling (DVFS, or simply DVS) nowadays [74] [54] supporting multiple operating voltage

levels. DVS takes advantage of the fact that linear reduction in the supply voltage

can quadratically reduce the power consumption while the operating frequency is

approximately lowered linearly [38]. Therefore, it will be beneficial to reduce the supply

voltage whenever possible to achieve energy savings. Using dynamic power management

18

(DPM) [8], the overall energy consumption can be reduced by putting the system into a

low-power sleep mode when there is no valid activity. Research has shown that it is always

advantageous to exploit DVS prior to DPM in the processor [52] while DPM could be

beneficial after DVS is applied or when DVS is not available.

Task scheduling, along with DCR/DVS, also plays an important role in optimizations

of real-time multitasking systems. For uniprocessor systems, DCR/DVS has to be

considered systematically together with static scheduling, dynamic rescheduling as

well as runtime task management. For multicore systems, task mapping and sequencing

schemes should be exploited together with dynamic reconfigurations.

1.2.2 Potential Optimization Opportunities

Although real-time systems are constrained by task deadlines, idle time still exists

when there is no task executing in the system. We denote system idle time as time slack

or, simply, slack. There are two categories of time slack. Static slack is intrinsic for a given

set of tasks assuming every task takes its worst-case execution time (WCET) to complete.

Dynamic slack is generated at runtime due to early-finished tasks. DVS and DPM can

take advantage of time slacks to either slow down or switch off the processor to save

energy without violating any timing constraint. DCR, however, is even more promising

since energy-efficient cache configurations do not necessarily have inferior performance. In

other words, for a specific application, one cache configuration could possibly be superior

in both energy efficiency and performance. Therefore, both DVS and DCR would be

employed for energy optimization by wisely utilizing time slacks.

Real-time systems, especially those with hard timing constraints, normally have

highly deterministic characteristics [89], e.g., release time, deadline, input and execution

behavior. This fact provides great opportunities for energy optimization, especially for

cache reconfiguration. Off-line analysis is most suitable for time consuming works (e.g.,

determining appropriate schedulings and/or cache configurations) which may not be

feasible to compute at runtime for real-time systems. We believe that utilizing static

19

analysis information during runtime with minimum amount of overhead is the most

appropriate and beneficial strategy for real-time system optimization.

1.2.3 Challenges

There are major challenges in achieving design objectives mentioned in Section 1.1.

The key issue is when and how to reconfigure the system. Different strategies should

be adapted for different techniques, systems and task characteristics. The problem

difficulty varies depending on optimization scenarios. In certain cases, tradeoff has to be

made between design quality (e.g., energy savings) and runtime complexity as well as

reconfiguration overhead.

Cache behavior is very difficult to predict in terms of performance and energy

efficiency. Since precision (i.e., timing constraints) is crucial for real-time systems,

estimation based on program trace or dynamic evaluation is not acceptable. Aperiodic and

sporadic tasks may arrive at any time and potentially preempt the currently running task.

In this case, there is no way to know the exact preemption positions during design time.

Since application’s behavior and cache preference vary during execution, it is challenging

to profile each task. It is also hard to utilize static profiling information at runtime along

with task scheduling. Moreover, for multi-level cache hierarchy, the design space to be

explored may become prohibitively large since the number of possible combinations of each

individual cache configuration is huge.

Although DVS has been widely studied recently, we believe that there is enough

potential for further energy conservation especially in preemptive real-time systems. By

assigning multiple voltage levels to each task instance, we can no longer simply rely on the

EDF schedulability condition to guide the DVS algorithm. Moreover, it is also important

to minimize additional overhead. Since the original inter-task DVS problem is NP-hard,

this aggressive strategy is even more difficult to solve, especially if close-to-optimal

solutions are desired. It is also challenging to design algorithms to efficiently exploit

20

dynamic time slack during runtime given the fact that tasks may have distinct energy

profile and thus shows different energy saving abilities.

While DCR and DVS can be successfully employed independently, effectively

combining them simultaneously to achieve system-wide energy optimization remains

an open question. It is even more challenging when leakage power become significant and

all major system components are taken into account. In that case, the processor voltage

level cannot be scaled down indefinitely to reduce dynamic energy even if the time slack

is adequate since leakage power can dominate. As a result, DPM has to play a more

important role in energy optimization by putting the system into sleep mode. In other

words, collaboration of DVS, DCR, DPM and task rescheduling need to be explored in a

systematic way.

While the task schedulability in terms of timing can be easily checked through

well-established theorems, it remains a major challenge to verify the schedulability in a

system which is constrained by both limited energy and tolerable operating temperature.

An effective modeling method needs to be devised for this specific problem. The model

needs to be compatible with formal techniques such as model checking. Moreover, the

approach needs to address state space explosion problem for larger problem instances.

Multicore architecture imposes new challenges over uniprocessor systems and creates

new optimization opportunities. Different optimization strategies should be applied to the

private caches in each core and the shared cache of all cores. For example, private caches

can benefit from DCR whereas the shared cache can take advantage of cache partitioning.

It is challenging to efficiently integrate cache reconfiguration and partitioning techniques

simultaneously for energy optimization. Moreover, given the real-time workloads, how to

efficiently map tasks to each core also remains to be explored.

1.3 Research Contributions

My research proposes novel techniques to address design challenges mentioned

in Section 1.2. The objective of my research is to develop efficient tools, scheduling

21

algorithms and reconfiguration techniques for real-time embedded system optimizations.

Figure 1.3 summarizes the key contributions of this dissertation. It also outlines the

comprehensive nature of my research. The proposed research will focus on major system

components (i.e., processor, cache, memory) with various optimization objectives (i.e.,

power, energy, temperature and performance) using a wide variety of reconfiguration

techniques (i.e., DCR, DVS and scheduling) for both single-core and multicore systems.

This research achieves the goals by involving both dynamic and static approaches in terms

of information collection, evaluation, analysis and decision-making.

 Processor

Cache

Memory

Energy

Power

Thermal

DVS

DCR

Scheduling

Single-core Multi-core

Timing

Figure 1-3. Optimization targets, objectives and techniques.

Figure 1-4 outlines the five major research contributions of this dissertation that are

summarized as follows.

• Dynamic Cache Reconfiguration: This dissertation exploits dynamic cache
reconfiguration in both statically and dynamically scheduled soft real-time systems.
The research proposes design-time profiling techniques specifically for systems with
reconfigurable cache and preemptive tasks. It also presents design space exploration
heuristics for multi-level cache hierarchy tuning. The static profiling information
is efficiently utilized during runtime for energy minimization while maintain the
system’s quality of service.

22

Scheduling-aware Cache

Reconfiguration

(Chapter 3)

Multi-level Cache

Tuning

(Chapter 3)

Static Slack Allocation

(Chapter 4)

Dynamic Slack

Reclamation

(Chapter 4)

DVS DCR

DVS

+

DCR

System-wide

Energy

Optimization

 (Chapter 5)

Cache Reconfiguration

and Partitioning in

MPSoC

(Chapter 7)

Energy- and Temperature-

Constrained Scheduling

 (Chapter 6)

System Modeling (Chapter 2)

Figure 1-4. Dissertation outline.

• Dynamic Voltage Scaling and Task Scheduling: This dissertation proposes
novel algorithms based on processor voltage/frequency scaling and task scheduling
for preemptive hard real-time systems. The proposed approach outperforms existing
inter-task techniques and is based on approximation algorithms that can guarantee to
generate solutions within a specified quality bound (e.g., within 1% of the optimal).
It also examines and resolves dynamic slack reclamation problem that involves slack
reallocation and task rescheduling at runtime.

• System-wide Energy Minimization: This dissertation systematically employs
DVS and DCR simultaneously for system-wide leakage-aware energy minimization.
The proposed research approaches the problem by devising an energy estimation
framework for major system components, studying their impact on DVS assignments
and proposing algorithms for configuration selection as well as task procrastination.
Based on these insights, we also develop a general algorithm for real-time dynamic
reconfiguration which accounts for varying runtime overhead.

• Temperature- and Energy-Constrained Scheduling: This dissertation proposes
a formal method based approach to verify the schedulability in temperature- and
energy-constrained systems. Timed automaton is used to model the problem, which is
automatically solved by the model checker. The research uses SAT solver to alleviate
state explosion problems.

• Energy Optimization in Multicore Systems: This dissertation presents a
novel energy optimization technique which employs both DCR and CP for real-time
multicore systems. Our static profiling based algorithm is designed to judiciously find
beneficial cache configurations (of private caches) for each task as well as partitioning

23

schemes (of the shared cache) so that the cache energy consumption is minimized
while the task deadline is satisfied. We study both fixed and varying CP schemes. We
also explore task mapping heuristics and Gated-Vdd cache line technique in our study.

The rest of this dissertation is organized as follows. Chapter 2 describes modeling

of real-time multitasking systems as well as models for power, energy, performance

and temperature. In Chapter 3, we present our scheduling-aware cache reconfiguration

techniques for soft real-time systems. Chapter 4 presents our DVS-based energy-aware

scheduling algorithms that can exploit both static and dynamic time slacks. Chapter 5

discusses our approaches for system-wide energy minimization. Scheduling problem

in energy- and temperature-constrained systems is presented in Chapter 6. Chapter 7

presents our energy optimization techniques for cache hierarchy in multicore architecture.

Finally, Chapter 8 discusses future directions and concludes the dissertation.

24

CHAPTER 2
MODELING OF REAL-TIME AND RECONFIGURABLE SYSTEMS

In this chapter, we describe various models used in this dissertation. Modeling

plays an important role in developing real-time scheduling and dynamic reconfiguration

techniques in real-time embedded systems. In this chapter, we first describe how to model

a real-time system supporting dynamic reconfigurations. Next, we describe system-wide

energy and thermal models. These models will be used in all subsequent chapters. In

certain cases, some of these models will be modified and better reflect the specific context.

2.1 System Model

The target uniprocessor system can be modeled as:

• A highly configurable cache architecture which supports h different configurations

C{c1,c2, ... ,ch} and/or,

• A voltage scalable processor which supports l discrete voltage levels V{v1,v2, ... ,vl},

• A set of m independent tasks T{τ1, τ2, ... ,τm}.

The two main categories of real-time tasks that we consider are:

• Periodic task τi ∈ T has known attributes including worst-case workload, arrival

time ai, deadline di and period pi,

• Aperiodic/sporadic task τi ∈ T has known has known attributes including workload

and inter-arrival time.

In some problems, we consider frame-based tasks all of which have common arrival

time and deadline. For dynamic algorithms, we assume the actual-cast execution time

follows a distribution.

2.2 Energy Models

2.2.1 Cache Energy Model

For each individual cache, the energy consumption is modeled as the sum of dynamic

energy Edyn
cache and static energy Esta

cache:

Ecache = Edyn
cache + Esta

cache (2–1)

25

The number of cache accesses naccesscache , cache misses nmissescache and clock cycles CC are

obtained from microarchitectural simulation for given tasks and cache configurations. In

multi-level cache subsystems, the L1 cache access are issued by the processor while L2

cache accesses are from L1 caches whenever there is a L1 cache miss. We use tcycle to

denote the clock cycle length. Let Eaccess and Emiss denote the energy consumed by one

cache access and miss, respectively. Therefore, we have:

Edyn
cache = naccesscache · Eaccess + nmissescache · Emiss (2–2)

Emiss = Eoffchip + EµP stall + Eblock fill (2–3)

Esta
cache = P sta

cache · CC · tcycle (2–4)

where Eoffchip is the energy required for fetching data from lower levels of memory

hierarchy, EµP stall is the energy consumed when the processor is stalled due to cache miss,

Eblock fill is for cache block refilling after a miss and P sta
cache is the static power consumption

of cache. For system-wide energy optimization (Chapter 5) where lower-level memory

and buses are modeled separately, Eoffchip and EµP stall in Equation (2–3) are counted

during the computation of corresponding components (e.g., for L2 cache misses, Eoffchip is

incorporated in the energy consumption of off-chip buses and main memory). Here, values

of Eaccess, P
sta
cache and Eblock fill for different cache configurations are collected from CACTI

[41].

2.2.2 Processor Energy Model

Since short circuit power is negligible [115], the energy consumed in a processor

mainly comes from dynamic and static power. The dynamic power can be computed as:

P dyn
proc = Ceff · V 2

dd · f (2–5)

where Ceff is the total effective switching capacitance of the processor, Vdd is the supply

voltage level and f is the operating frequency. We adapt the analytical processor energy

model based on [73], whose accuracy has been verified with SPICE simulation. The

26

threshold voltage Vth is presented as:

Vth = Vth1 −K1 · Vdd −K2 · Vbs (2–6)

where Vth1, K1, K2 are all constants and Vbs represents the body bias voltage. Static

current mainly consists of the subthreshold current Isubth and the reverse bias junction

current Ij. Hence, the static power is given by:

P sta
proc = Lg · (Vdd · Isubth + |Vbs| · Ij) (2–7)

where Lg is the number of devices in the circuit, Ij is approximated as a constant and

Isubth can be calculated by:

Isubth = K3 · eK4Vdd · eK5Vbs (2–8)

where K3, K4 and K5 are constant parameters. Obviously, to avoid junction leakage power

overriding the gain in lowering Isubth, Vbs has to be constrained (between 0 and -1V).

Let P on
proc be the intrinsic energy needed for keeping the processor on (idle energy). The

processor power consumption can be computed as:

Pproc = P dyn
proc + P sta

proc + P on
proc (2–9)

The cycle length, tcycle, is given by a modified α power model:

tcycle =
Ld ·K6

(Vdd − Vth)α
(2–10)

where K6 is a constant. Ld can be estimated as the average logic depth of all instructions’

critical path in the processor. The constants mentioned above are technology and design

dependent. Table 2-1 lists the constants for a 70nm technology processor.

The processor energy consumption then becomes:

Eproc = Pproc · CC · tcycle (2–11)

27

Table 2-1. Constants for 70nm technology

Const Value Const Value Const Value

K1 0.063 K6 5.26× 10−12 Vth1 0.244
K2 0.153 K7 −0.144 Ij 4.80× 10−10

K3 5.38× 10−7 Vdd [0.5, 1.0] Ceff 0.43× 10−9

K4 1.83 Vbs [−1.0, 0.0] Ld 37
K5 4.19 α 1.5 Lg 4× 106

2.2.3 Bus Energy Model

The average dynamic power consumption of various system buses can be calculated

by [28]:

P dyn
bus =

1

2
· Cbus · V 2

dd · ntrans · f (2–12)

where Cbus is the load capacitance of the bus, Vdd is the supply voltage, f is the bus

frequency and ntrans denotes the average number of transitions per time unit on the bus

line, as shown below:

ntrans =

∑T−1
t=0 H(B(t), B(t+1))

T
(2–13)

where T is the total number of discretized units of the system execution time and

H(B(t), B(t+1)) gives the Hamming distance between the binary values on the bus at

two neighboring time units in T . Therefore, the total energy consumption of a bus is

determined by its dynamic power P dyn
bus and static power P sta

bus :

Ebus = (P dyn
bus + P sta

bus) · CC · tcycle (2–14)

2.2.4 Main Memory Energy Model

Memory consists of DRAM has three main sources of power consumption: dynamic

energy due to accesses Edyn
mem, static power P sta

mem and refreshing power P ref
mem. Specifically,

we have:

Edyn
mem = naccessmem · Eaccess (2–15)

28

where naccessmem is the number of memory accesses and Eaccess denotes the dynamic energy

required per access. Therefore, we have:

Emem = Edyn
mem + (P sta

mem + P ref
mem) · CC · tcycle (2–16)

Values of Eaccess, P
sta
mem and P ref

mem can be collected from CACTI [41].

2.3 Thermal Model

A thermal RC circuit is normally utilized to model the temperature variation

behavior of a microprocessor [138]. Here we introduce the RC circuit model proposed

in [106], which is widely used in recent researches [138], to capture the heat transfer

phenomena in the processor. If P denotes the power consumption during a time interval,

R denotes the thermal resistance, C represents the thermal capacitance, Tamb and T0 are

the ambient and initial temperature, respectively, the temperature at the end of the time

interval t can be calculated as:

T = P ·R + Tamb − (P ·R + Tamb − Tinit) · e
−t
RC (2–17)

where t is the length of the time interval. If t is long enough, T will approach a steady-state

temperature Ts = P ·R + Tamb.

2.4 Summary

This chapter presented system models for describing real-time reconfigurable systems

as well as associated energy and thermal models. They will be extensively used in

following chapters.

29

CHAPTER 3
DYNAMIC CACHE RECONFIGURATION FOR SOFT REAL-TIME SYSTEMS

Research has shown that cache subsystem has become significant contributor

in the overall energy consumption comparable to other components of the processor

[72][96]. Since different programs may have distinct requirements on cache configuration

during execution, we can achieve significant energy efficiency as well as performance

improvements by employing dynamic cache reconfiguration (DCR) in the system.

Although reconfigurable caches are highly beneficial in general-purpose platforms such as

desktop and embedded systems [136] [33] recently, it has not been considered in real-time

systems due to several fundamental challenges. How to employ and make efficient use

of reconfigurable caches in such systems remains unsolved. Determining the appropriate

cache configuration typically requires time-consuming evaluation of different candidates.

Furthermore, any change in cache configuration on-the-fly may arbitrarily alter task

execution time. In hard real-time systems, the benefit of reconfiguration is limited since

both of these facts can make scheduling decisions difficult and eventually may lead to

unpredictable system behavior. However, soft real-time systems offer much more flexibility,

which can be exploited to achieve considerable energy savings at the cost of minor impacts

to user experiences.

This chapter presents a novel methodology for applying cache reconfiguration

in soft real-time systems with preemptive task scheduling. The proposed approach

provides an efficient scheduling-aware cache tuning strategy based on static profiling

and is applicable for both statically and dynamically scheduled soft real-time systems.

Generally speaking, this technique is useful in any multitasking systems. The goal is to

optimize energy consumption with performance considerations via reconfigurable cache

tuning while ensuring that the majority of the task deadlines are met. We first consider

single-level cache reconfiguration. As shown in [114], L1 cache energy consumption can be

a significant part in overall energy optimization. In fact, some small embedded systems

30

executing light-weight kernels are very likely to not even have L2 cache. Our approach

is independent of the actual cache sizes and is applicable for both large systems with

larger L1 caches and small systems with smaller L1 caches. Next, we study dynamic

cache reconfiguration in systems with two-level cache hierarchy. We investigate the

unique challenge in multi-level cache tuning and propose several design space exploration

heuristics that can be employed to make tradeoff between energy savings and static

profiling time.

The rest of this chapter is organized as follows. Section 3.1 discusses background

and related work in cache reconfiguration. Section 3.2 presents our scheduling-aware

cache reconfiguration techniques in detail. Section 3.3 describes multi-level cache

tuning heuristics. Experimental results are presented in Section 3.4. Finally, Section 3.5

summarizes this chapter.

3.1 Related Work

3.1.1 Caches in Real-Time Systems

Cache systems are included in nearly all computing systems to temporarily store

frequently accessed instructions and data. Since caches have a much faster access time

compared to main memory, caches effectively alleviate the increasing performance

disparity between the processor and memory by exploiting the temporal and spatial

locality properties of programs. However, historically, incorporating caches into real-time

embedded system faces serious difficulties due to the unpredictability imposed on the

system. Cache affects data access pattern and hence creates variations in data access time.

For example, in a preemptive system, since a task may be interrupted by a higher-priority

task and resumed again at a later time, the data of preempted tasks may be evicted

from the cache. This may result in a period of cold-start compulsory cache misses, many

of which may have been cache hits if the task had not been preempted. This makes

it difficult to calculate task’s worst-case execution time (WCET), knowing which is a

prerequisite of most traditional scheduling algorithms.

31

Since caches introduce intra-task interference so that a specific task’s execution time

becomes variable at runtime, a great deal of research efforts are directed at employing

caches in real-time systems either by proving schedulability through WCET analysis or

avoiding hazardous compulsory miss uncertainty altogether. Cache-aware WCET analysis

is a static, design time analysis of tasks in the presence of caches to predict cache impact

on task execution times [86]. Cache locking [87] is a technique in which useful cache lines

are “locked” in the cache when a task is preempted so that these blocks will not be evicted

to accommodate the new incoming task. Through cache line locking, the WCET and

cache behavior becomes more predictable since the major delay from data replacement

and access is avoided. Cache partitioning [125] is a similar but more aggressive approach

where the cache is partitioned into reserved regions, each of which can only cache data

associated with a dedicated task. However, a potential drawback to both cache locking

and cache partitioning is per-task reduction of cache resources. To alleviate this limitation,

cache-related preemption delay analysis [112][108] features tight delay estimation so that

prediction accuracy is higher than traditional WCET analysis. This improved accuracy

can in turn result in a durable task schedule. Scratch-pad memories, like caches, are also

on-chip RAMs but mapped onto the address space of the processor at a specified range.

Puant et al. [88] proposed an off-line content-selection algorithm for both scratch-pad

memory and cache with line locking ability to improve both predicability and WCET

estimation. Our approach is applicable to real-time systems that employ caches.

3.1.2 Reconfigurable Cache Architectures

There are many existing general or application specific reconfigurable cache

architectures. Motorola M*CORE processor [72] provides way shut-down and way

management, which has the ability to specify the content of each specific way (instruction,

data, or unified way). Settle et al. [98] proposed a dynamically reconfigurable cache

specifically designed for chip multi-processors. The reconfigurable cache architecture

proposed by Zhang et al. [136] imposes no overhead to the critical path, thus cache

32

access time does not increase. Furthermore, the cache tuner consists of a small custom

hardware or a lightweight process running on a co-processor, which can alter the cache

configuration via hardware or software configuration registers. The underlying cache

architecture consists of four separate banks as shown in Figure 3-1 (a), each of which acts

as a separate way. The cache tuner can be implemented either as a small custom hardware

or lightweight software running on a co-processor which changes the cache configuration

through special registers. In order to reconfigure associativity, way concatenation, shown

in Figure 3-1 (b), logically concatenates ways together so that the associativity can be

changed accordingly without affecting total cache size. The required configure circuit

consists of only eight logic gates and two single-bit registers. Varying cache size is achieved

by shutting down certain ways, as shown in Figure 3-1 (c), using gated-Vdd technique.

An extra transistor is used for every array of SRAM cells. Cache line size is configured

by setting a unit-length base line size and then fetching subsequent lines if the line size

increases as illustrated in Figure 3-1 (d). Therefore, the configurable cache architecture

achieves configurability using rather simple hardware thus requires very minor overhead

which makes this architecture especially suitable for embedded systems [136].

3.1.3 Caches Tuning Techniques

Given a runtime reconfigurable cache, determining the best cache configuration

is a difficult process. Dynamic and static analysis are two possible techniques. With

dynamic analysis, cache configurations are evaluated during runtime to determine the best

configuration. Two methods are possible for runtime cache analysis. The first method

is intrusive and physically changes the cache to each configuration in the design space,

examines the effects of each configuration, and chooses the best cache configuration.

This method is inappropriate for real-time systems since it imposes unpredictable

performance overhead during exploration. To eliminate this performance overhead, a

second method employs an N-experts based analysis [33]. In this technique, an auxiliary

structure evaluates all cache configurations simultaneously. The best cache configuration is

33

(b)

2kB 2kB

4kB 2-way

Physical

line size

Fetch

subsequent

blocks to

increase

line size
1kB

16B

16B

b
an

k

1kB

4kB 4-way

b
an

k

1kB

b
an

k

1kB

b
an

k

1kB

1
k

B

1
k

B

1
k

B

1
k

B

4kB 1-way

1
k

B

1
k

B

1
k

B

1
k

B

2kB 2-way

1
k

B

1
k

B

2
k

B

2
k

B

2kB 2-way

1
k

B

1
k

B

2
k

B

2
k

B

(a)

(c) (d)

Figure 3-1. Reconfigurable cache architecture: (a) base cache bank layout, (b) way
concatenation, (c) way shutdown, and (d) configurable line size.

determined by inspecting this auxiliary structure, allowing the cache to change to the best

configuration in one-shot, without incurring any performance overhead. Even though this

method is non-intrusive, the auxiliary data structure is too power hungry to continuously

evaluate the system, and thus can only operate periodically.

With static analysis, various cache alternatives are explored and the best cache

configuration is selected for each application in its entirety [32] – application-based

tuning, or for each phase of execution within an application [99] – phase-based tuning.

Since applications tend to exhibit varying execution behavior throughout its execution,

phase-based tuning allows for the cache configuration to be specialized to each particular

period, resulting in greater energy savings than application-based tuning. Regardless

of the tuning method, the predetermined best cache configuration (based on design

requirements) could be stored in a look-up table or encoded into specialized instructions.

The static analysis approach is most appropriate for real-time systems due to its

non-intrusive nature. Previous methods focus solely on energy savings or Pareto-optimal

34

points trading off energy consumption and performance. However, none of these methods

consider task deadlines, which are imperative in real-time systems. In other words, the

existing approaches were designed for desktop applications but not applicable for real-time

systems.

3.2 SACR: Scheduling-Aware Cache Reconfiguration

3.2.1 Overview

This section presents a simple illustrative example to show how reconfigurable caches

benefit real-time systems. This example assumes a system with two tasks, T1 and T2.

Traditionally if a reconfigurable cache technique is not applied, the system will use a base

cache configuration Cachebase, which is defined in Definition 1.

Definition 1. The term Base cache refers to the configuration selected as the optimal

one for tasks in the target system with respect to energy as well as performance based on

static analysis. Caches in such systems are chosen to ensure durable task schedules and

their configurations are fixed throughout all task executions.

In the presence of a reconfigurable cache, as shown in Figure 3-2, different optimal

cache configurations are determined for every “phase” of each task. For ease of illustration,

we divide each task into two phases: phase1 starts from the beginning to the end, and

phase2 starts from the half position of the dynamic instruction flow (midpoint) to the

end. The terms Cache1T1, Cache2T1, Cache1T2, and Cache2T2 represent the optimal cache

configurations for phase1 and phase2 of task T1 and T2, respectively. These configurations

are chosen statically to be more energy efficient (with same or better performance), in

their specific phases, than the global base cache, Cachebase.

CacheT1

1 CacheT2
1

CacheT1
2

T1 T2

CacheT2
2

Figure 3-2. Cache configurations selected based on task phases

35

Figure 3-3 illustrates how energy consumption can be reduced by using our approach

in real-time systems. Figure 3-3 (a) depicts a traditional system and Figure 3-3 (b)

depicts a system with a reconfigurable cache (our approach). In this example, T2 arrives

(at time P1) and preempts T1. In a traditional approach, the system executes using

Cachebase exclusively. With a reconfigurable cache, the first part of T1 executes using

Cache1T1. Similarly, Cache1T2 is used for execution of T2. Note that the actual preemption

point of T1 is not exactly at the same place where we pre-computed the optimal cache

configuration (midpoint) since tasks may arrive at any time. When T1 resumes at time

point P2, the cache is tuned to Cache2T1 since the actual preemption point is closer to

the midpoint compared to the starting point. The overall energy consumed using a

reconfigurable cache results in the energy savings due to use of different energy optimal

caches for each phase of task execution compared to using one global base cache in the

traditional system. Our experimental results suggest that the proposed approach can

significantly reduce energy consumption of the memory subsystem with only very little

performance penalty.

Cachebase Cachebase

Cachebase

CacheT1
1 CacheT2

1

CacheT1

2

(a) Traditional system

(b) Our approach

P2

P1 P2

T2 T1

P1

Figure 3-3. Dynamic cache reconfigurations for tasks T1 and T2

3.2.2 Phase-based Optimal Cache Selection

This section describes our static analysis approach to determine the optimal cache

configurations for various task phases. In a preemptive system, tasks may be interrupted

and resumed at any point of time. Each time a task resumes, cache performance for

36

the remainder of task execution will differ from the cache performance for the entire

application due to its own distinguishing behaviors as well as cold-start compulsory cache

misses. Therefore, the optimal cache configuration for the remainder of the task execution

may be different.

Definition 2. Phase is defined as the execution period between one potential preemption

point (also called partition points) and task completion. The phase that starts at ith

partition point is denoted as phase pin, where n is the total number of phases of that task.

Figure 3-4 depicts the general case where a task is divided by n-1 predefined potential

preemption points (P1, P2 ... Pn−1). P0 and Pn are used to refer to the start and end point

of the task, respectively. Here, C0, C1 ... Cn−1 represent the optimal cache configuration

(either energy or performance) for each phase, respectively. To observe the variation

in cache requirements for each phase, Table 3-1 shows variation in energy-optimal and

performance-optimal instruction and data caches for each phase1 . For example, the

energy-optimal cache configuration for the phase starting from the half point to the

completion (C2) of benchmark cjpeg has 2048-byte capacity, 16-byte block and 2-way

associativity.

……

P1 P2 Pn-1

Task Execution Time

phase 𝑝𝑛
0

C0

C1

phase 𝑝𝑛
1

phase 𝑝𝑛
2

C2

Cn-1

phase 𝑝𝑛
𝑛−1

P0

Pn

Figure 3-4. Task partitioning at n potential preemption points (Pi) resulting in n phases.
Each phase comprises execution from the invocation/resumption point to task
completion. Ci denotes the cache configuration used in each phase.

1 In this dissertation, for example, 4KB 2W 16B means a cache configuration with
4096-byte capacity, 16-byte line size and 2-way associativity.

37

Table 3-1. Optimal cache configurations for task phases. Each configuration is denoted by
the total cache size in kilobytes (kb), followed by the associativity in number of
ways (w), followed by the line size in bytes (b).

CJPEG
I-Cache D-Cache

Energy
Optimal

Performance
Optimal

Energy
Optimal

Performance
Optimal

C0 4KB 2W 16B 4KB 4W 16B 4KB 4W 16B 4KB 4W 16B

C1 4KB 2W 16B 4KB 4W 32B 4KB 4W 16B 4KB 4W 16B

C2 2KB 2W 16B 4KB 4W 16B 2KB 2W 32B 4KB 4W 16B

C3 2KB 2W 16B 4KB 4W 16B 2KB 2W 32B 4KB 4W 16B

RAWCAUDIO
I-Cache D-Cache

Energy
Optimal

Performance
Optimal

Energy
Optimal

Performance
Optimal

C0 1KB 1W 16B 4KB 2W 64B 2KB 2W 16B 2KB 2W 16B

C1 1KB 1W 16B 2KB 2W 16B 2KB 2W 16B 4KB 4W 16B

C2 1KB 1W 16B 4KB 4W 16B 2KB 2W 16B 4KB 4W 16B

C3 1KB 1W 16B 4KB 2W 16b 2KB 2W 32B 4KB 4W 16B

A2TIME01
I-Cache D-Cache

Energy
Optimal

Performance
Optimal

Energy
Optimal

Performance
Optimal

C0 4KB 4W 16B 4KB 4W 16B 4KB 2W 32B 4KB 4W 16B

C1 4KB 4W 16B 4KB 4W 16B 2KB 2W 32B 4KB 4W 16B

C2 4KB 4W 16B 4KB 4W 16B 2KB 2W 16B 4KB 4W 16B

C3 4KB 4W 16B 4KB 4W 16B 2KB 2W 16B 2KB 2W 16B

During static profiling, a partition factor is chosen that determines the number of

potential preemption points and resulting phases. Partition granularity is defined as

the number of dynamic instructions between two partition points and is determined by

dividing the total number of dynamically executed instructions by the partition factor.

Intuitively, the optimal partition granularity should be a single instruction, potentially

leading to the largest amount of energy savings. However, such a tiny granularity would

result in a prohibitively large look-up table, which is not feasible due to area as well as

searching time constraints. Due to cache locality over time, the optimal performance

cache is tend to be the largest cache [37] and the optimal energy cache is not necessarily

38

the smallest dynamic energy cache [30]. Thus, a trade-off should be made to determine a

reasonable partition factor based on energy-savings potential and acceptable overheads.

An important question one can raise is whether a larger partition factor (finer granularity)

always reveals more energy savings. However, to answer this question, we need to address

the following two issues.

The first issue is how the optimal cache configuration for each phase varies when

the partition factor increases. We noticed that, for each task, once the partition factor

is larger than a certain threshold, more and more neighboring partitions share the same

optimal cache configuration. We explored how partition factor can affect the variation

of optimal (both energy and performance) cache configurations for each benchmark in

MediaBench [66] and EEMBC [25] – the two benchmark suites we use in Section 3.4.

Figure 3-5 shows the results for some of them (cjpeg, epic and rawdaudio) using partition

factor 6, 12 and 18. For the same benchmark, the optimal cache configuration for each

phase varies in a consistent pattern across different partition factors. For example,

the energy-optimal instruction cache configuration for benchmark cjpeg (cjpeg I$ E)

is 4096B 2W 16B for the first several phases and then changes to 2048B 2W 16B

starting from about one third of the program: phase p2
6, phase p4

12 and phase p6
18 when

partition factor is 6, 12 and 18, respectively. In other words, larger partition factor

makes more and more phases share the same optimal cache configuration with their

neighboring phases. Exception can happen when partition factor increases, different

optimal cache configuration from lower partition factor case is found. For example, the

performance-optimal instruction cache configuration of benchmark cjpeg (cjpeg I$ P

in Figure 3-5 (b)) with partition factor 12 differs at phase p3
12 compared to the similar

position when partition factor is 6 (Figure 3-5 (a)). Our experimental result shows that

though discrepancies do happen, their impact on energy savings is normally negligible

because the energy/performance difference between the newly picked cache configuration

and the original one is usually very small. From this observation, one can derive the

39

fact that application behavior can sufficiently be captured by a certain partition factor.

This is evident due to the well-established 90/10 law of execution – 90% of the execution

time is spent in only 10% of the code – in which the 90% of the time is typically spent

executing loops. For each loop iteration, except the first and last iterations, execution

behavior is typically similar, thus resulting in the same optimal cache configuration for all

other iterations. For a loop with N iterations, the partition factor only need to be large

enough to capture all dynamic instructions of iterations 2 through (N - 1), as any smaller

granularity would capture a subset of iterations, each of which may have the same optimal

configuration. Thus, we define a stage of execution as a range of consecutive dynamic

instructions in which a common optimal cache configuration exists.

The second issue is whether finer partition granularity always brings more energy

savings than a coarser one. With finer granularity, if there is no extra variation in the

optimal cache configuration across phases, there will be no additional energy savings since

the same cache configurations are being used. If variations can be observed, according to

our experiments, they only happen at stage boundaries, which is a very limited portion in

the entire program. Figure 3-6 gives an example explaining why this is the case. Suppose

there are two tasks: T1 and T2 in the system and partition factor (p) can be chosen

as 4 or 8. A valid schedule of them is shown in Figure 3-6. Since T2 is executed as a

whole, the cache configuration used is the optimal one for the entire task, which are

the same using both partition factors. T1 is preempted by T2. So when T1 resumes, a

different cache configuration should be picked based on the preemption point as well as

the partition factor. As discussed in the first issue, higher partition factor shows consistent

variation pattern of optimal cache configuration with only minor exceptions. Suppose

when partition factor is 4, for task T1, the cache configuration picked for phase p0
4, phase

p1
4, phase p2

4 and phase p3
4 are CA, CA, CB and CB, respectively. And when partition factor

is 8, they are CA, CA, CA, CC , CB, CB, CB and CB for phase p0
8 to phase p7

8, respectively.

Using the nearest-neighbor technique as discussed in Section 3.2.4.1, the advantage of

40

1024B_1W_16B
1024B_1W_32B
1024B_1W_64B
2048B_1W_16B
2048B_1W_32B
2048B_1W_64B
2048B_2W_16B
2048B_2W_32B
2048B_2W_64B
4096B_1W_16B
4096B_1W_32B
4096B_1W_64B
4096B_2W_16B
4096B_2W_32B
4096B_2W_64B
4096B_4W_16B
4096B_4W_32B
4096B_4W_64B

0 1 2 3 4 5 6

Partition factor (p) = 6

cjpeg_I$_E

cjpeg_I$_P

epic_I$_E

epic_I$_P

rawdaudio_I$_E

rawdaudio_I$_P

phase pi

(a)

1024B_1W_16B
1024B_1W_32B
1024B_1W_64B
2048B_1W_16B
2048B_1W_32B
2048B_1W_64B
2048B_2W_16B
2048B_2W_32B
2048B_2W_64B
4096B_1W_16B
4096B_1W_32B
4096B_1W_64B
4096B_2W_16B
4096B_2W_32B
4096B_2W_64B
4096B_4W_16B
4096B_4W_32B
4096B_4W_64B

0 1 2 3 4 5 6 7 8 9 10 11 12

Partition factor (p) = 12

cjpeg_I$_E

cjpeg_I$_P

epic_I$_E

epic_I$_P

rawdaudio_I$_E

rawdaudio_I$_P

phase pi

(b)

1024B_1W_16B
1024B_1W_32B
1024B_1W_64B
2048B_1W_16B
2048B_1W_32B
2048B_1W_64B
2048B_2W_16B
2048B_2W_32B
2048B_2W_64B
4096B_1W_16B
4096B_1W_32B
4096B_1W_64B
4096B_2W_16B
4096B_2W_32B
4096B_2W_64B
4096B_4W_16B
4096B_4W_32B
4096B_4W_64B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Partition factor (p) = 18

cjpeg_I$_E

cjpeg_I$_P

epic_I$_E

epic_I$_P

rawdaudio_I$_E

rawdaudio_I$_P

phase pi

(c)

Figure 3-5. Optimal cache configuration variation under different partition factors (a)
Partition factor = 6, (b) Partition factor = 12, (c) Partition factor = 18 (Here
I$ represents instruction cache. ‘E’ stands for energy-optimal and ‘P’ stands
for performance-optimal)

41

using partition factor 8 over 4 become effective only when the preemption happens within

the range from 5/16 to 7/16 of T1 (effective area) since CC will be chosen instead of CA

or CB. Note that CC may be more energy/performance efficient for the rest part of T1

than CA and CB. From the entire system’s point of view, higher partition factor (8) does

not help for T2 as well as T1 if them never get preempted or the preemption does not

happen in the effective area. Based on our experiments, merely 3 - 8% additional energy

saving (for that one task) is possible only if the preemption occurs within the effective area

of the dynamic instruction flow. Empirically, the effective area is usually 5 - 8% of the

task. Due to these two small probabilities multiplied together, merely 0.4% on average,

finer granularity partition can bring only minor benefit.

T1

T2

Task

Time

Preemption point

p = 4

p = 8

Effective area

1

4

2

4

3

4

1

8

2

8

3

8

4

8

5

8

6

8

7

8

7

16

5

16

Figure 3-6. Effective range where a higher partition factor makes a difference

Thus, the goal of a system designer is to find a partition factor which leads to

maximized energy reduction and minimizes the number of partition points that need

to be stored. The rule of thumb is to find a partition factor minimizing the number of

neighboring partitions that share the same optimal cache configuration. It could be a local

optimal factor for each task if varying number of table entries for different tasks is allowed

or it could be a global optimal factor for the task set. Based on our experience, a partition

factor ranging from 4 to 7 is sufficient to make our technique working efficiently.

42

Static profiling generates a profile table that stores the potential preemption points

and the corresponding optimal cache configurations for each task. Section 3.2.3 and

3.2.4 describe how this profile table is used during runtime in statically and dynamically

scheduled systems.

3.2.3 Statically Scheduled Systems

With static scheduling, arrival times, execution times, and deadlines are known a

priori for each task and this information serves as scheduler input. The scheduler then

provides a schedule detailing all actions taken during system execution. According to this

schedule, we can statically execute and record the energy-optimal cache configurations

that do not violate any task’s deadline for every execution period of each task. For soft

real-time systems, global (system-wide) energy-optimal configurations can be selected

as long as the configuration performance does not severely affect system behavior. After

this profiling step, the profile table is integrated with the scheduler so that the cache

reconfiguration hardware (cache tuner) can tune the cache for each scheduling decision.

3.2.4 Dynamically Scheduled Systems

With dynamic scheduling (online scheduling), scheduling decisions are made during

runtime. In this scenario, task preemption points are unknown since new tasks may enter

the system at any time with any time constraint. In this section, we present two versions

of our technique based on the nature of the target system.

3.2.4.1 Conservative Approach

In some soft real-time systems where high service quality is required thus time

constraints are pressing, only an extremely small number of violations are tolerable. The

conservative approach could ensure that given a carefully chosen partition factor, almost

every task could meet their deadlines with only few exceptions. To ensure the largest task

schedulability, any reconfiguration decision will only change the cache into a lowest energy

configuration whose execution time is not longer than that of the base cache. In other

words, to maintain a high quality of service, only cache configurations with equal or higher

43

performance than the base cache are chosen for each task phase. Note that the chosen

energy-optimal configuration may not be the global lowest energy configuration but is the

one with lowest energy consumption given a specific time constraint. We denote them as

deadline-aware energy-optimal cache configurations.

The scheduler chooses the appropriate cache configuration from the generated profile

table that contains the energy-optimal cache configurations for each task phase. Table 3-2

(A) shows the profile table for task i with a partition factor p. EOi(n/p) represents the

energy-optimal cache configuration for phase pnp of task i. Here, n/p represents the nth

phase out of p phases. The total dynamic instruction count (TIN) refers to the number of

dynamic instructions executed in a single run of that task.

During system execution, the scheduler maintains a task list keeping track of all

existing tasks as shown in Table 3-2 (B). In addition to the static profile table Table 3-2

(A), runtime information such as arrival time (Ai), deadline (Di), and number of already

executed dynamic instructions (EIN) are also recorded. This information is stored not

only for the scheduler, but also for the cache tuner. When a newly arrived task2 begins

execution for the first time, the deadline-aware energy-optimal cache configuration

EOi(0/p) is obtained from the task list entry, and the cache tuner adjusts the cache

appropriately. If preemption happens, the number of the preempted task’s executed

instructions (EIN) is calculated and stored in its task list entry.

As indicated in Section 3.2.2, potential preemption points are pre-decided during the

profile table generation process. However, it is highly unlikely that the actual preemptions

will occur precisely on these potential preemption points. Hence, a nearest-neighbor

method is used to determine which cache configuration should be used. Essentially, if

2 To be more specific, we actually mean “jobs” (execution instance of tasks). For
simplicity, a more general term “task” is used in this chapter.

44

Table 3-2. (a) Static profile table and (b) Task list entry for task i for the conservative
approach

Task ID: i Partition Factor: p

Total Instruction Number (TIN)

EOi(0/p)

EOi(1/p)

EOi(2/p)

......

EOi(p-1/p)

(A)

Task ID: i Partition Factor: p

Arrival time (Ai) Deadline (Di)

Total Instruction
Number (TIN)

Executed Instruction
Number (EIN)

EOi(0/p)

EOi(1/p)

EOi(2/p)

......

EOi(p-1/p)

(B)

the preemption point falls between partition points n/p and (n+1)/p, the nearest point

will be referred to select the current cache configuration. Algorithm 1 illustrates cache

tuning algorithm for our conservative approach. This algorithm is called when a previously

preempted task resumes its execution. It runs in a time complexity of O(p), where p is

the partition factor. Note that the returned cache configuration information is sent to the

cache tuner.

As our experimental result shows, conservative approach obtains significant energy

savings with little or no impact on quality of service. Minor number of time constraint

violations are caused by cache behaviors in which optimal cache configuration for the

period from the one preemption point to another preemption point and that for the

pre-decided phase differ greatly. In other words, the chosen cache configuration may

happen to be inefficient for the execution period between two actual preemption points

such that the lost time is not reparable by the subsequent selected cache configurations in

that task. Fortunately, this kind of behavior is relatively rare.

45

Algorithm 1: Selection of cache configuration for resumed preempted task in
conservative approach

Input: Task list entry
Output: A deadline-aware cache configuration for the resumed task Tc.
for i = 0 to p− 2 do

if TINTc×i/p ≤ EINTc< TINTc×(i+ 1)/p then
if (EINTc−TINTc×i/p) < (TINTc×(i+ 1)/p− EINTc) then
PHASETc= i/p;

else
PHASETc= (i+ 1)/p;

end if
end if

end for
if EINTc≥ TINTc×(p− 1)/p then
PHASETc= (p− 1)/p;

end if
CacheTc= EOi(PHASETc);
Return: CacheTc

3.2.4.2 Aggressive Approach

For soft real-time systems in which only moderate service quality is needed, a more

aggressive version of our approach can reveal additional energy savings at the cost of

possibly violating several future task deadlines, but remain in an acceptable range.

Similar to the conservative approach, a profile table is associated with every task

in the system; however this profile table contains the performance-optimal cache

configuration (whose execution time is the shortest) in addition to the energy-optimal

configuration (the one with lowest energy consumption among all candidates) for every

task phase. In order to assist dynamic scheduling, the profile table also includes the

corresponding phase’s execution time (in cycles) for each configuration. Table 3-3 (A)

shows the profile table for task i with a partition factor of p. The terms EO, EOT, PO,

and POT stand for the energy-optimal cache configuration, the energy-optimal cache

configuration’s execution time, the performance-optimal cache configuration, and the

performance-optimal cache configuration’s execution time, respectively. Notice that, the

performance and energy efficiency of a cache configuration is not in inverse proportion.

The energy-optimal one does not necessarily have the worst performance. Compared to

the base cache, it could have both better energy efficiency and performance.

46

Table 3-3 (B) shows the task list entry for the aggressive approach. The difference

from the conservative approach (shown in Table 3-2 (B)) is that every task list entry also

holds a Current Phase (CPi) identifier. CPi denotes the partition point that this task’s

execution just passed and is useful for cache reconfiguration upon task resumption. Note

that newly inserted task’s CP is initialized to 0. In addition to the task list, the scheduler

also maintains another runtime data structure called the Ready Task List (RTL), which

contains an identifier of each existing task currently ready to execute in the system.

Table 3-3. (a) Static profile table and (b) Task list entry for task i for the aggressive
approach

Task ID: i Partition Factor: p

Total Instruction Number (TIN)

EOi(0/p) EOTi(0/p) POi(0/p) POTi(0/p)

EOi(1/p) EOTi(1/p) POi(1/p) POTi(1/p)

EOi(2/p) EOTi(2/p) POi(2/p) POTi(2/p)

......

EOi(p-1/p) EOTi(p-1/p) POi(p-1/p) POTi(p-1/p)

(A)

Task ID: i Partition Factor: p

Arrival time (Ai) Deadline (Di)

Total Instruction
Number (TIN)

Executed Instruction
Number (EIN)

Current Phase (CP)

EOi(0/p) EOTi(0/p) POi(0/p) POTi(0/p)

EOi(1/p) EOTi(1/p) POi(1/p) POTi(1/p)

EOi(2/p) EOTi(2/p) POi(2/p) POTi(2/p)

......

EOi(p-1/p) EOTi(p-1/p) POi(p-1/p) POTi(p-1/p)

(B)

To explain the aggressive approach, we use an illustrative example in which there

are three tasks (jobs), T1, T2, and T3, with absolute deadlines DT1, DT2, and DT3, where

DT2 < DT1 < DT3. According to EDF, the priority sequence is simply the opposite of the

deadlines, which is Pri2 > Pri1 > Pri3. Figure 3-7 shows a schedule for these tasks. Note

that P0, P1, P2, and P3 represent the time instances when any event (arrival, completion,

etc.) occurs. At time point P0, T1 arrives and the scheduler generates the task list entry

47

for T1 and adds T1 to the RTL. Since T1 is currently the only task in the system, the

scheduler instructs the cache tuner to configure the cache to EOT1(0/p) if and only if P0

+ EOT1(0/p) < DT1, otherwise the cache will be tuned to POT1(0/p), which ensures that

T1 ’s deadline will be met. At time point P1, T2 arrives with priority higher than the

currently active task T1. The scheduler calculates T1 ’s current phase CPT1 and updates

T1 ’s task list entry. Note that T1 ’s deadline may be violated if the following inequality

holds:

P1 + POTT1((CPT1 + 1) / p) + POTT2(0 / p) > DT1 (3–1)

This is obviously an underestimation of the execution time that the remaining portion of

T1 will take, thus more aggressive, but it favors tasks with higher priority (T2). However,

if we use POTT1(CPT1/p) in Equation 1, T2 may have a lower chance of being accepted,

but the lower priority task T1 would more likely meet its deadline.

If Equation 1 does not hold, the scheduler determines T2 ’s cache configuration CT2 as

follows (assuming Pi + POTi(0/p) < Di for all tasks i otherwise task i is not schedulable

in any situation):

if (P1 + EOTT2(0/p) > DT2) then

CT2 = POT2(0/p)

else if (P1 + EOTT2(0/p) + POTT1((CPT1 + 1)/p) < DT1) then

CT2 = EOT2(0/p)

else if (P1 + EOTT2(0/p) + POTT1((CPT1 + 1)/p) > DT1) then

CT2 = POT2(0/p)

At time point P2, T2 completes and T1 resumes since it is the only ready task.

The scheduler utilizes CPT1 to determine the appropriate partition to choose a cache

configuration. This technique is similar in principle to the nearest neighbor method

used in Section 3.2.4.1, except that a decision should be made whether to use the

energy-optimal or performance-optimal configuration based on the remaining time budget.

At some point during T1 ’s execution, T3 arrives but since T3 has a lower priority than

48

T1, T3 begins execution after T1 completes execution. By this time, T3 is the only task

and its cache configuration decision is made using the same method as task T1 at time

P0.

T1

P0 P1 P2 P3

T2 T1 T3

T1 arrives T2 arrives,

preempts T1
T2 completes,

T1 resumes
T3 arrives T1 completes,

T3 begins

Figure 3-7. Task set and sample scheduling

Algorithm 2: Selection of cache configuration for aggressive approach
Input: Task list entry, ready task list and preemption point
Output: A appropriate cache configuration
Step 1: Calculate CP for the preempted task Tp. Insert Tp to RTL.
for i = 0 to p− 1 do

if TINTp×i/p ≤ EINTp< TINTp×(i+ 1)/p then
CPTp= i/p;

end if
end for
Step 2: Remove the task with maximum priority Tc from RTL.
Step 3: Sort all tasks in RTL by priority, T1 to Tm, from highest to lowest. C represents the current
time instant.
for j = 1 to m do

if C + POTTc(CPTc/p)+

j∑
i=1

POTTi((CPTi+1)/p)>DTj then

Task DTj is subject to be discarded;
end if

end for
Step 4: Select cache configuration for Tc. Let m′ be the number of tasks in RTL left after Step 3.
if C + EOTTc(CPTc/p)>DTc then
CacheTc= POTc;

else
EO OK = true;
for j = 1 to m′ do

if C + EOTTc(CPTc/p)+

j∑
i=1

POTTi((CPTi+1)/p)>DTj then

EO OK = false;
end if

end for
end if
if EO OK == true then
CacheTc= EOTc;

else
CacheTc= POTc;

end if
Return: CacheTc

49

Algorithm 2 illustrates the general cache configuration selection algorithm for

preempted tasks of our aggressive approach. This algorithm is called either when a new

task with a higher priority than the current executing task arrives or when the current

task finishes execution. In the former case, Step 1 uses the executed instruction number

(EIN) to calculate the Current Phase (CP) for the preempted task. While in the latter

case, this step should be omitted. Step 2 picks the highest priority3 task Tc from RTL.

In the former case, the newly arrived task in inserted into RTL and, obviously, Tc refers

to that task. Step 3 checks the schedulability of all the tasks in RTL by iteratively

checking whether each task can meet its deadline if all the preceding tasks, including

itself, use performance-optimal cache configurations. This process is done in the order

of tasks’ priority (from highest to lowest) to achieve least discarded tasks. In Step 4,

the appropriate cache configuration for Tc is selected based on whether it is safe to use

energy-optimal cache configuration. This algorithm runs in time of O(max(p,m)) where p

is the partition factor and m is the total number of tasks in RTL.

3.2.5 Impact of Storing Multiple Cache Configurations

This section investigates the extent at which individual cache configuration candidates

are required during scheduling. In the approaches proposed in Section 3.2.4.1 and 3.2.4.2,

the scheduler only considers either the energy-optimal cache in the conservative approach,

or the energy- and performance-optimal caches in the aggressive approach, for each

task phase. As justified by our experiments, we can achieve considerable amount of

energy savings at the cost of very low system overheads by just storing these cache

configurations in the static profile table. However, there exists other configurations

which offer Pareto-optimal tradeoff points. Simply because the energy-optimal cache

cannot satisfy a particular task’s deadline, it does not mean that there is no cache

configuration of that task which can meet the deadline and consume less energy than the

3 Here the priority means the dynamic scheduling priority decided by EDF.

50

performance-optimal cache. For example, as described in Algorithm 2, when the scheduler

finds that using energy-optimal cache for a task is unsafe, it has no choice but to pick the

performance-optimal cache. But if the second energy-optimal cache is also available to the

scheduler and is able to meet the time constraint (has higher performance), the scheduler

can pick that cache configuration to potentially save more energy. Figure 3-8 (a) illustrates

this extension of the profile table.

Original Profile Table

(Each task phase)

Energy-optimal cache

Performance-optimal cache

Extended Profile Table

(Each task phase)

Energy-optimal cache

Performance-optimal cache

Second beneficial energy-optimal cache

Second beneficial performance-optimal

cache

……

……

(a)

P
er

fo
rm

an
ce

Energy efficiency

Performance optimal

Second beneficial performance-optimal

Energy optimal

Second beneficial energy-optimal

Pareto-optimal configurations

(b)

Figure 3-8. (a) Storing multiple optimal cache configurations for each task phase, (b)
Second beneficial optimal cache selection on the Pareto-optimal curve

Note that we use the phrase second beneficial energy-optimal cache and second

beneficial performance-optimal cache in Figure 3-8 (a). Figure 3-8 (b) shows how we

51

choose them. We only consider those cache configurations on the Pareto-optimal curve

which have either better energy efficiency or higher performance than other ones. In

the extreme case, if we can store all these cache configurations for every task phase

in the profile table, the scheduler will be capable of choosing the lowest energy cache

configuration that is capable of meeting time constraints of all the existing task in the

system. Thus this is a tradeoff between potential energy savings and system overhead in

the form of table storage and scheduler complexity. Note that storing information for one

more cache configuration in the table will potentially double the area overhead as well as

increase power consumption and access time. Section 3.4.2.3 provides experimental results

of this approach.

3.3 Design Space Exploration for Two-Level Cache Reconfiguration

So far, we have explored the use of one-level reconfigurable cache in soft real-time

systems. It remains a challenge to dynamically tune multi-level caches since the

exploration space is prohibitively large4 . It is because a cross product of two configuration

spaces of both cache levels needs to be considered. In this section, we efficiently employ

cache reconfiguration in a unified two-level cache hierarchy. We develop four exploration

heuristics for our static analysis to effectively decrease the exploration time while keeping

the generated profile results beneficial. Our target architecture has separate level one

caches – instruction L1 cache (IL1) and data L1 cache (DL1) – as well as a unified level

two cache (L2).

4 After static profiling, the idea of scheduling-aware multi-level cache reconfiguration
is similar to single-level cache scenario. The only difference is that now L2 cache
configuration needs to be considered with L1 configurations whenever applicable.
For example, in phase-based optimal cache selection, Ci represents for three cache
configurations (IL1, DL1 and L2). In profile tables, we also needs to store energy- and
performance-optimal L2 cache configurations for each phase. Similarly, in Algorithm 1 and
2, the determined L2 cache configurations will be returned.

52

Tuning a two-level cache faces the difficulty of exploring an enormous configuration

space. Here we examine typical exploration parameters of conventional embedded

systems. We explore cache sizes of 1KB, 2KB and 4KB, line sizes of 16, 32 and 64

bytes, and direct-mapped, 2- and 4-way set associativity for the L1 cache. We use a

4KB cache architecture proposed in [135] with four banks each of which is 1KB. Since

the reconfiguration of associativity is achieved by way concatenation as described in

Section 3.1.2, 1KB L1 cache can only be direct-mapped as other three banks are shut

down. For the same reason, 2KB cache can only be configured to direct-mapped or 2-way

associativity. Therefore, there are 18 (=3+6+9) configuration candidates for L1 caches.

Let Sil1 and Sdl1 denote the size of exploration space for IL1 cache and DL1 caches,

respectively. So we have Sil1 = 18 and Sdl1 = 18. For simplicity, which is also practically

true in most scenarios, IL1 and DL1 has the same exploration space which is denoted by

Sl1. For L2 cache, we choose 8KB, 16KB and 32KB as cache sizes; 32, 64 and 128 bytes

as line sizes; 4-, 8- and 16-way set associativity with a 32KB cache architecture composed

of four separate banks. Similarly, there are 18 possible configurations (Sul2 = 18). For

comparison, a base cache hierarchy is chosen which reflects a fixed configuration for

all the tasks if cache reconfiguration is not available, consisting of two 2KB, 2-way set

associative L1 caches with a 32 byte line size (2KB 2W 32B), and a 16KB, 8-way set

associative unified L2 cache with a 64 byte line size (16KB 8W 64B). The remainder of

this section describes the proposed exploration techniques.

3.3.1 Exhaustive Exploration

Intuitively, if the two levels of caches can be explored independently, one can easily

profile one level at a time while holding the other level to a typical configuration, which

will result in a much small exploration space. However, it is not reasonable to claim that

the combination of three independently found energy-optimal configurations actually is or

ever close to the global optimal one. The two cache levels affect each other’s behavior in

various ways. For instance, L2 cache’s configuration determines the miss penalty of the L1

53

caches. Also, the number of L2 cache accesses directly depends on the number of L1 cache

misses.

Therefore, the only way to obtain the optimal configuration is to search the entire

space exhaustively. Since the instruction cache and the data cache could have different

configurations, there are 324 (=Sil1*Sdl1) possible configurations for L1 cache. Addition of

the L2 cache increases the design space size to 47525 . Moreover, the phase-based static

profiling strategy we use makes this number even larger. For a single task, if the partition

factor is 4, we have to explore for all four phases, leading to a total of 19008 task phase

executions. Obviously it is infeasible. We use the exhaustive method for comparison with

the heuristics presented in the following sections.

3.3.2 Same Level One Cache Tuning – SLOT

As discussed above, the design space explosion is resulted from the cross-product of

three separate design spaces: IL1, DL1 and L2. The most straightforward optimization

is to remove one dimension (i.e., space) so that the total exploration time is drastically

reduced while the solution quality is mostly preserved. Our studies show that, for many

real applications, the favored (both in terms of energy efficiency and performance) IL1 and

DL1 cache configurations are similar to each other (at least in cache size).

Therefore, we propose SLOT – Same Level One Cache Tuning heuristic – during

which IL1 and DL1 caches always use the same configuration while exploring with all L2

cache configurations. This method results in a total of 288 configurations – a considerable

cut down (94%) of the original quantity (4752), though still not small enough.

3.3.3 Two-Step Tuning – TST

By examining the results generated by SLOT, we find that some very unprofitable

L1 cache configurations are also explored 18 (=Sul2) times with L2 cache, resulting in still

5 Not equal to Sil1 * Sdl1 * Sul2 because candidates whose L2 cache’s line size is smaller
than L1 are eliminated

54

relatively inferior energy efficiency and performance when combined together as the cache

hierarchy configuration. These non-beneficial configurations are likely to be discarded.

Therefore, just like in single level cache tuning, we only have to consider configurations

which offer Pareto-optimal tradeoff points. In other words, for each individual cache,

candidates which have both lower performance and higher energy consumption than any

other one(s) can be safely eliminated during exploration. Then, the design space which

contains the cross-product of all three sets of Pareto-optimal points is explored. Our

proposed Two-Step Tuning (TST) heuristic is summarized below:

1. Hold DL1 and L2 as the base cache. Tune IL1 and record all its Pareto-optimal

configurations. Let Pil1 denote the number of recorded IL1 configurations.

2. Hold IL1 and L2 as the base cache. Tune data cache and record all its Pareto-optimal

configurations. Let Pdl1 denote the number of recorded DL1 configurations.

3. Hold both L1 caches as the base cache. Tune L2 and record all its Pareto-optimal

configurations. Let Pul2 denote the number of recorded L2 configurations.

4. Explore all the combinations from each set of Pareto-optimal configurations recorded

in the previous steps and find the energy- and performance- optimal cache hierarchy

configurations.

The first three steps explore 54 (= Sil1 + Sdl1 + Sul2) candidates while the last step

explores Pil1 ∗ Pdl1 ∗ Pul2 candidates. Based on our experimental results, the number of

Pareto-optimal configurations varies from application to application but normally around

3 to 5. Therefore, the total exploration space is reduced to 81 - 179 (a reduction of 38%

to 72%), though in some worst cases the number could be larger than SLOT’s space size

(288).

3.3.4 Independent Level One Cache Tuning – ILOT

While different cache levels are dependent on each other, our experimental results

demonstrate that instruction cache and data cache are relatively independent. In this

study, we fix one’s configuration while changing the other’s to see whether the varying one

55

has impact on the fixed one. We observe that the profiling statistics for the instruction

cache almost remain identical with different data caches and vice versa. It is mainly

due to the fact that access pattern of L1 cache is purely determined by the application’s

characteristics, and the instruction and data streams are relatively independent from each

other. Furthermore, factors affecting the instruction cache’s energy consumption as well

as performance (such as hit energy, miss energy and miss penalty cycles) have very little

dependency on the data cache and vice versa.

This observation offers an opportunity to further reduce the exploration space.

We can use the same configurations for IL1 and DL1 while L2 is fixed to base cache to

find the “local optimal” configurations for L1 caches. Specifically, throughout the static

analysis, we record the energy consumptions and miss cycles of each cache individually.

The local energy-optimal IL1 cache is the one with the lowest energy consumption of

itself (and same for DL1 cache and L2 cache). The local performance-optimal cache is

determined by the number of miss cycles for each cache. ILOT is summarized as below:

1. Hold L2 as the base cache. Explore all L1 cache configurations during which IL1 and

DL1 are always configured to the same configuration. Local optimal (both energy-

and performance-) configurations for both IL1 and DL1 are recorded.

2. Hold IL1 and DL1 as the energy-optimal configurations found in the last step.

Explore all L2 cache configurations and record local energy-optimal L2 cache

configuration. The process is repeated for performance-optimal L2 configuration also.

3. The energy- (performance-) optimal configuration for the cache hierarchy is

composed of the three local energy- (performance-) optimal caches for each separate

cache.

Clearly, the first step simulates 18 (= Sl1) configurations while the second step

requires 36 (= Sul2 ∗ 2) explorations. If some local optimal IL1 and DL1 configurations

happen to be identical, the second step may take less number of explorations. The last

56

step potentially takes 2 simulations. In total, discarding repeating configurations, ILOT

has a exploration space of no more than 54 configurations.

3.3.5 Interlaced Tuning – ILT

Gordon-ross et al. [30] designed a tuning heuristic named TCaT – Two-level Cache

Tuning – in a interlaced manner for desktop systems with unified level one and level two

caches. In their approach, cache parameters are tuned in the order of their importance

to the overall energy consumption, which is cache size followed by line size and finally

associativity. TCaT claims to find the configuration with energy consumption close to

the optimal one by only exploring tens of candidates. We adapt the strategy used in

TCaT and propose ILT – Interlaced Tuning heuristic – which finds both energy- and

performance- optimal parameters throughout the exploration. Therefore, as opposed to

[30], in each step other than the first, we need to set the already-explored parameters to

energy- and performance- optimal ones separately during the exploration of the current

parameter. In order to increase the chances of finding optimal L2 cache size, which we

found has the highest importance, we combine the exploration of L2 cache’s size and

associativity together. We sacrifice a certain amount of exploration time for better

profiling results. ILT is summarized as below:

1. First, tune by cache size. Hold the IL1’s line size, associativity as well as DL1 to

the smallest configuration. L2 is set to the base cache. Explore all three instruction

cache sizes (1KB, 2KB and 4KB) and find out the energy- and performance-

optimal one(s). Same explorations are performed for DL1 cache size. In L2 size

exploration, we try all the associativities (4W, 8W and 16W) with each L2 cache

size (8KB, 16KB and 32KB) and repeat the process twice to find the energy-

and performance-optimal size(s), separately. We set L1 sizes to the energy-

(performance-) optimal ones in the corresponding process of finding energy-

(performance-) optimal L2 size(s).

57

2. Next, tune by line size. We set the cache sizes and L2 cache’s associativity to the

energy- (performance-) optimal ones found in the first step during exploring energy-

(performance-) optimal line sizes for each cache (16B, 32B and 64B for L1 caches

while 32B, 64B and 128B for L2 cache), respectively. These two tasks are repeated

for both L1 caches and L2.

3. Finally, tune by associativity. We set the cache sizes and line sizes to the energy-

and performance-optimal ones when we explore for the energy- and performance-optimal

associativity (1W, 2W and 4W), respectively. Note that we only explore associativities

for L1 caches in this step. During the process of finding DL1’s optimal associativities,

we already have all the other parameters we need to compute the total numbers of

execution cycles that are required in the profile table.

At the beginning of the first step, we do not have any explored parameter so the

L1 cache size tuning is done in one-shot for both IL1 an DL1, which lead to 6 (=3+3)

configurations. During L2 cache size tuning, there are 9 (=3*3) possible combinations

with the associativity and the process has to be done twice for both energy- and

performance- optimal L1 cache sizes. Hence, the first step requires to explore 24 (=6+9*2)

configurations. Similarly, the second step explores all three lines sizes for each cache

separately twice which leads to 18 (=3*2*3) candidates. The final step explores 12

(=3*2*2) configurations since L2 associativity has already been examined in the first

step. Therefore, in the worst case, ILT explores 54 (=24+18+12) configurations. However,

in most cases, we observe that there are a lot of repetitive configurations throughout

the process which we only have to profile once. For example, the L1 configuration

2KB 1W 16B in the second step has already been explored in the first step. Furthermore,

all the configurations composed of invalid cache parameter combinations are also

discarded. In practice, ILT has a exploration space size of around 35 configurations.

58

3.4 Experiments

3.4.1 Experiments Setup

To quantify energy savings using the proposed approaches, selected benchmarks from

MediaBench [66], MiBench [35] and EEMBC [25] benchmark suites, representing typical

tasks that might be present in a soft real-time systems, are examined. These benchmarks

are all specially designed for embedded systems and suitable for the cache configuration

parameters described in Section 3.3. All applications were executed with the default input

sets provided with the benchmarks suites.

We utilized the configurable cache architecture described in [136]. The access latency

(e.g., in ns) to read particular data from the cache remains the same when we reconfigure

the cache because the clock frequency is fixed determined by the base cache size. The

data transfer time during a cache miss is determined by the cache line size as well as the

bandwidth between memory levels. In general, larger line sizes will lead to more data

transfer cycles thus higher access latencies. This variance, for both L1 and L2 caches,

are incorporated in our model considering different miss cycles for cache configurations

with various line sizes. We adopt these values from the study in [136]. To obtain cache

hit and miss statistics, we used the SimpleScalar toolset [14] to simulate the applications.

We assume an in-order issue core with a four-stage pipeline. It supports out-of-order

completion but the pipeline is stalled whenever a data hazard is detected. It also

supports speculation and a branch predictor with 2-bit saturating counter. We use PISA

architecture in our experiments and the compiler is the default little-endian PISA compiler

(sslittle-na-sstrix-gcc) which comes with SimpleScalar 3.0, with cc options CFLAGS= -O

-I$(srcdir). To populate the static profile tables for each task, we utilize SimpleScalar’s

external I/O trace files (eio file), checkpointing, and fastforwarding capabilities. This

method allows for every benchmark phase to be individually profiled via fastforwarding

execution to each potential preemption point. Once we have the profile tables for all

the tasks, we use a task scheduler to simulate the system. The scheduler calls another

59

script which contains the cache configuration selection algorithm (e.g., Algorithm 2) to

reconfigure the cache.

For single-level scheduling-aware cache reconfiguration evaluation (Section 3.2), we

assume a four-bank cache of base size 4 KB which offers the same configuration space

as described in Section 3.3 for L1 caches. For comparison purposes, we define the base

cache configuration to be a 4 KB, 2-way set associative cache with a 32-byte line size, a

reasonably common configuration that meets the needs of the benchmarks studied. The

L2 cache is fixed to a 64K unified cache with 4-way associativity and 32B line size. We

used partition factors ranging from 4 to 7. Driven by Perl scripts, the design space of 18

L1 cache configurations is exhaustively explored during static analysis to determine the

energy-, performance-, and deadline-aware energy-optimal cache configurations for each

phase of each benchmark. For multi-level cache reconfiguration, we implemented the cache

tuning heuristics using Perl scripts, which are then used to drive SimpleScalar to do the

phase-based task profiling.

3.4.2 Results: Single-level SACR

To model sample real-time embedded systems, we created seven different task sets

as shown in Table 3-4. In each task set, the three selected benchmarks have comparable

dynamic instruction sizes in order to avoid behavioral domination by one relatively large

task. For system simulation, task arrival times and deadlines are randomly generated. To

achieve effective and fair comparison, we make the system utilization ratio close to the

schedulability condition [69]. We examine varying preempting points and average these

values so that our results represent a generic degree of scheduling decisions.

3.4.2.1 Energy Saving

We compare the energy consumption for each task set using different schemes: a

fixed base cache configuration, the conservative approach, and the aggressive approach.

Energy consumption is normalized to the fixed base cache configuration such that value of

60

Table 3-4. Benchmark task sets

Task 1 Task 2 Task 3

Task Set 1 epic* pegwit* rawcaudio*

Task Set 2 cjpeg* toast* mpeg2*

Task Set 3 A2TIME01** AIFFTR01** AIFIRF01**

Task Set 4 BITMNP01** IDCTRN01** RSPEED01**

Task Set 5 djpeg* rawdaudio* untoast*

Task Set 6 BaseFP01** CACHEB01** IIRFLT01**

Task Set 7 TBLOOK01** TTSPRK01** PUWMOD01**

*MediaBench **EEBMC

1 represents our baseline. Figure 3-9 presents energy savings for the instruction and data

cache subsystems. Energy savings in the instruction cache subsystem ranges from 22%

to 54% for the conservative approach, while it reaches as high as 74% for the aggressive

approach. Energy savings average 33% and 52% for the conservative and aggressive

approaches, respectively. In the data cache subsystem, energy saving is generally less

than that of the instruction cache subsystem due to less variation in cache configuration

requirements. In the data cache subsystem, energy savings range from 15% to 47% for the

conservative approach, while it reaches as high as 64% for the aggressive approach, and

the average are 16% and 22% for the conservative and aggressive approaches, respectively.

It is worth investigating the insights behind the experimental results: why instruction

cache and data cache reveal such different energy savings when executing tasks from

different benchmark suites (MediaBench and EEMBC)? Note that we use benchmarks

from MediaBench in task sets 1 and 2 while benchmarks from EEMBC in task sets 3

and 4. As shown in Figure 3-9, task set 1, for example, has more energy savings in data

cache than in instruction cache using aggressive approach. By looking at the properties

of each benchmark in that task set, we found that they have common characteristics in

their energy-optimal and performance-optimal cache configurations stored in the profile

table. To illustrate this, we sort each task’s all cache configurations by their energy

consumption as well as performance. Figure 3-10 depicts the layout of each configuration

61

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Average

Base Cache SACR Conservative SACR Aggressive

En
er

gy
 c

o
n

su
m

p
ti

o
n

 n
o

rm
al

iz
ed

 t
o

th

e
b

as
e

ca
ch

e
co

n
fi

gu
ra

ti
o

n

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Average

Base Cache SACR Conservative SACR Aggressive

En
er

gy
 c

o
n

su
m

p
ti

o
n

 n
o

rm
al

iz
ed

 t
o

th

e
b

as
e

ca
ch

e
co

n
fi

gu
ra

ti
o

n

(b)

Figure 3-9. Cache subsystem energy consumption normalized to the base cache
configuration for each task set (a) Instruction cache (b) Data cache

ranking by its energy and performance for benchmark epic6 . We can see that in data

cache, the chosen energy-optimal cache’s performance and performance-optimal cache’s

energy consumption are relatively much better than in instruction cache. The higher the

performance an energy-optimal cache configuration has, the higher the chance that it will

6 Due to space limit, results for one task in test set 1 is shown here. But other tasks in
that set also have the similar pattern. For the same reason, though only results for the
entire benchmark is shown there, other phases also show the same property.

62

be chosen by the scheduler. On the other side, the less energy an performance-optimal

cache configuration consumes, the less penalty (extra energy consumption) it has to

pay when the scheduler has to choose the performance-optimal one due to tight timing

constraints. These two factors explain why for test case 1, data cache reveals more

energy savings than instruction cache. For those task sets containing benchmarks from

EEBMC, the situation is just the opposite. Task sets 3 and 4 do very well in instruction

cache but show very little energy saving in data cache. Figure 3-11 illustrates the reason

for this observation. Again, though only A2TIME01 is shown, we found almost all the

benchmarks in EEMBC have the same property. In instruction cache, the performance of

the energy-optimal cache is very close to that of the performance-optimal one. Similarly,

the energy consumption of the performance-optimal cache is very close to that of the

energy-optimal one. Interestingly, in many cases they are the same cache configuration, for

example, A2TIME01 in Figure 3-11 (a). However, in data cache, the energy-favored caches

and performance-favored caches differ tremendously. For this reason, benchmarks from

EEMBC are doing extremely bad in data cache.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

epic_I$

energy_rank performance_rank

Best

Worst

EO

PO

(a)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

epic_D$

energy_rank performance_rank

Best

Worst

EOPO

Best

Worst

(b)

Figure 3-10. Cache configuration candidate’s energy and performance rank layout (a)
Instruction Cache (epic), (b) Data Cache (epic)

It is also helpful to discuss how miss rate plays its role in the cache model and thus

affects the optimal cache configuration variations. Figure 3-12 shows the miss rates for

63

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

A2TIME01_I$

energy_rank performance_rank

Best

Worst

EO & PO

(a)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

A2TIME01_D$

energy_rank performance_rank

Best

Worst

EO
PO

(b)

Figure 3-11. Cache configuration candidate’s energy and performance rank layout (a)
Instruction Cache (A2TIME01), (b) Data Cache (A2TIME01)

epic, which explains the insights behind Figure 3-10 showing each data cache configuration

behaving similarly in terms of both performance and energy efficiency (e.g. Figure 3-10

(b)) while the instruction caches behaves just the opposite. The reason for 4K 4W 16B

and 4K 4W 32B being superior in both energy and performance is the following. On

one hand, the benchmark’s data region in the footprint is relatively large and thus the

capacity of the data cache is critical. In other words, configurations with smaller sizes

cannot satisfy the benchmark’s footprint and thus suffer from high miss rates. Therefore,

with same associativity, configurations with larger capacity always win over those with

smaller size in both performance and energy. On the other hand, as shown in Figure 3-12,

1K configurations with 2-way associativity7 have similar miss rates as 2K direct-mapped

caches while 2K and 2-way associativity configurations have lower miss rates than 4K

direct-mapped caches. Therefore, temporal locality of the benchmark which reflects in

the number of conflict misses (which further reflect in the desired cache associativity) also

play an important role in deciding optimal cache configurations. The code region in the

7 Although 1K cache with 2-way associativity is not valid in our reconfigurable cache
architecture, we include here for illustration purpose only.

64

footprint is relatively small and thus can be easily satisfied, each configuration will show

similar low miss rates thus smaller configurations could win in energy efficiency due to its

low power dissipation.

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%
16.00%
18.00%
20.00%
22.00%
24.00%
26.00%

1
0

2
4

B
_1

W
_1

6
B

1
0

2
4

B
_1

W
_3

2
B

1
0

2
4

B
_1

W
_6

4
B

1
0

2
4

B
_2

W
_1

6
B

1
0

2
4

B
_2

W
_3

2
B

1
0

2
4

B
_2

W
_6

4
B

2
0

4
8

B
_1

W
_1

6
B

2
0

4
8

B
_1

W
_3

2
B

2
0

4
8

B
_1

W
_6

4
B

2
0

4
8

B
_2

W
_1

6
B

2
0

4
8

B
_2

W
_3

2
B

2
0

4
8

B
_2

W
_6

4
B

4
0

9
6

B
_1

W
_1

6
B

4
0

9
6

B
_1

W
_3

2
B

4
0

9
6

B
_1

W
_6

4
B

4
0

9
6

B
_2

W
_1

6
B

4
0

9
6

B
_2

W
_3

2
B

4
0

9
6

B
_2

W
_6

4
B

4
0

9
6

B
_4

W
_1

6
B

4
0

9
6

B
_4

W
_3

2
B

4
0

9
6

B
_4

W
_6

4
B

IL1 DL1

Figure 3-12. Miss rate for epic under different cache configurations.

3.4.2.2 Suitability of Statically Determined Configurations

System’s performance variations when using our approaches are shown in Table 3-5

and Table 3-6. We keep tracking of each task’s performance during the system execution

and find the percentage of those jobs of that task whose performance are higher (and

lower but deadlines are met) using the selected cache configuration compared to the base

cache. As discussed in Section 3.2.4.1, the cache configuration selected by our approach

(nearest-neighbor nature) may possibly be inefficient in performance for the execution

period between the actual preemption points. The percentage deadline misses are also

provided for each task to evaluate the system service level. Though lower performance

jobs do potentially have impact on the system performance, they are not harmful since

no task deadline is missed. As the results show, our approach achieves significant energy

savings at a very low cost of small amount of task deadline misses which are acceptable

in soft real-time systems. For example, among epic’s all executions (jobs), 75% of them

took shorter time using the cache configurations selected by conservative approach than

using base cache while 21% of them took longer time but still met the time constraints.

65

Only 4% of all its jobs actually miss their deadlines. As Table 3-5 demonstrates, our

conservative approach leads to very minor deadline misses (0 - 4%). Our aggressive

approach can generate drastic reduction in energy requirements with slight higher

deadlines misses (1% - 18%).

Table 3-5. Task performance variations for conservative approach

Task Sets Tasks
Higher

performance
jobs

Lower
performance

jobs

Deadline
misses

1
epic 75% 21% 4%

pegwit 99% 1% 0%
rawcaudio 94% 3% 3%

2
cjpeg 94% 5% 1%
toast 89% 4% 7%

mpeg2 94% 2% 4%

3
A2TIME01 98% 2% 0%
AIFFTR01 82% 15% 3%
AIFIRF01 99% 1% 0%

4
BITMNP01 100% 0% 0%
IDCTRN01 96% 2% 2%
RSPEED01 99% 1% 0%

Table 3-6. Task performance variations for aggressive approach

Task Sets Tasks
Higher

performance
jobs

Lower
performance

jobs

Deadline
misses

1
epic 63% 29% 8%

pegwit 89% 10% 1%
rawcaudio 76% 12% 12%

2
cjpeg 90% 6% 4%
toast 72% 16% 12%

mpeg2 75% 17% 8%

3
A2TIME01 94% 2% 3%
AIFFTR01 52% 30% 18%
AIFIRF01 97% 2% 1%

4
BITMNP01 62% 27% 11%
IDCTRN01 94% 3% 3%
RSPEED01 91% 2% 7%

66

To show how early/late in the execution the deadlines are missed, for each low-priority

job that is discarded, we collected its current phase (CP) as defined in Section 3.2.4.2, as

shown in Table 3-7. In other words, among all the jobs that missed their deadlines (e.g.

4% of all jobs), different jobs are dropped at different stages of execution (CP). For

example, in case of epic, among the 8% of jobs that are dropped, 23% of them have

executed over one-fourth (CP = 1), 54% of them have executed over half (CP = 2) and

23% of them are over three-fourth (CP = 3).

Table 3-7. Current phases of deadline violated tasks when they are discarded.

Task Sets Tasks CP = 1 CP = 2 CP = 3

1
epic 23% 54% 23%

pegwit 0% 0% 100%
rawcaudio 33% 34% 33%

2
cjpeg 14% 34% 52%
toast 10% 25% 65%

mpeg2 18% 32% 50%

3.4.2.3 Impact of Storing Multiple Cache Configurations

As discussed in Section 3.2.5, storing multiple beneficial cache configurations may lead

to more energy savings. We explore the effect of using extended profile table by running

task set 1 - 4 in Table 3-4. The profile table size is doubled to accommodate the second

beneficial energy- and performance-optimal cache configuration. Algorithm 2 is modified

to be aware of this extension. We call this method Extended approach and Figure 3-13

shows its energy consumption compared to the conservative and aggressive approaches.

On average, the extended approach achieves 4.6% more energy savings than aggressive

approach in instruction caches while 5.9% more in data caches. In some cases, like set 3 in

instruction cache and set 1 in data cache, no extra energy saving is observed due to lack of

beneficial cache configurations.

As already discussed in Section 3.2.5, extended profile table will cause exponential

increase in system overheads. Energy overhead of the profile table can be safely ignored

because it only accounts for a very less proportion of the gained energy savings. However,

67

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set 1 Set 2 Set 3 Set 4 Average

SACR Conservative SACR Aggressive SACR Extended

En
er

gy
 c

o
n

su
m

p
ti

o
n

 n
o

rm
al

iz
ed

to

 S
A

C
R

 C
o

n
se

rv
at

iv
e

ap
p

ro
ac

h

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set 1 Set 2 Set 3 Set 4 Average

SACR Conservative SACR Aggressive SACR Extended

En
er

gy
 c

o
n

su
m

p
ti

o
n

 n
o

rm
al

iz
ed

to

 S
A

C
R

 C
o

n
se

rv
at

iv
e

ap
p

ro
ac

h

(b)

Figure 3-13. The effect of using extended profile table: cache subsystem energy
consumption normalized to conservative approach for each task set (a)
Instruction cache (b) Data cache

increase in area and access time of the table affect the feasibility of applying this extended

approach. When the number of different tasks is relatively small such that system

overhead is not serious, extended approach is favorable than other two approaches. Since

it is common to have large number of tasks in the system, applying extended approach

may not be a good idea in these cases because the profile table’s area could exceed the

chip area constraints and increased access time may impact the system’s critical path. In

68

extreme cases, it may lead to longer clock cycle length and lower system frequency, which

should obviously be avoided.

3.4.2.4 Analysis of Input Variations

Program’s cache behavior, especially the data cache, can vary when being fed with

different inputs. Essentially, input varies in its size, structure, and its contents. For

example, different inputs may drastically affect the program’s dynamic execution path

(such as number of loop iterations), thus both energy- and performance-optimal caches

may differ from what are stored in the profile table.

Obviously, it is impossible to exhaustively explore all possible inputs. Energy-aware

task scheduling techniques face the same problem. In real-time systems, scheduler should

be fed with the task set information which includes task’s execution time (in cycles). The

potential solutions include use of i) fixed input set (execution time is known beforehand)

[42] [94], ii) Worst Case Execution Time (WCET) [137] [51] [97] [101] and iii) probabilistic

execution time distribution [83] [139] [40].

It is worth exploring how varying input would impact each task’s cache behavior.

In our experiments, we examine inputs with different sizes and observe the variation

of optimal cache configurations. For the instruction cache, the energy optimal cache

configuration parameters (cache size, line size and set associativity) reduce as the

input size decreases. Results are similar for the data cache. The performance optimal

instruction cache configuration’s line size reduces as input size decreases, but cache

size and associativity remain the same. However, in this case, the data cache shows

non-deterministic behavior. The reason for such kind of variations in instruction cache

is the size of critical data processing code sections which accounts for 90% of the time

(loops etc.) may be a comparatively small segment of the entire program due to the 90/10

law. Since critical data processing code sections (instruction cache working set) remains

in the cache, the line size tends to be smaller in order to reduce the time spent on cache

misses, and thus static energy consumed. For the data cache, as the input size increases,

69

spatial locality is more critical than temporal locality, thus, the cache size nearly remains

the same, or even decreases, but line size increases. It is important to note that drastic

changes in input size is not usual in real-time systems. We also studied the impact of

changing input pattern on our approach. We observed that a change in input pattern

(data structure and the absolute values change but not the size) shows a minor impact on

the cache behavior. Both energy and performance optimal cache configurations show very

little variation.

Here are the experimental results that support our arguments. We examined cjpeg

benchmark from MediaBench. In the first set of experiments, we selected six differently

sized input image files (a.ppm, b.ppm, c.ppm, d.ppm, e.ppm, f.ppm) and found that the

energy/performance optimal cache configurations for both instruction and data caches,

with partition factor of 4, as shown in Table 3-8. In the second experiment, we selected

two similarly sized images files (man.ppm and woman.ppm) with different content and

exploited the cache behavior under partition factor of 4, 5 and 6. As shown in Table 3-9,

there is very little variation in terms of the optimal cache configuration selection for the

two inputs. Therefore, our approach is applicable when the input for each task is known

during design time so that it can be statically profiled. Our approach is also applicable

when there are changes in input pattern. This is a realistic assumption for real-time

systems.

3.4.2.5 Hardware Overhead

This section describes the overhead of implementing the profile table in hardware.

The profile table is stored in SRAM and accessed by the cache tuner to fetch the cache

configuration information. The size of the table depends on the number of tasks in the

system and the partition factor used. For conservative approach, each table entry consists

of five bits since the configurable cache architecture used in this study offers 18 possible

cache configurations. We have implemented the profile table using Verilog HDL and

70

Table 3-8. Input variation exploration.

a.ppm: Size of input: 8431 bytes

EO icache PO icache EO dcache PO dcache

4096B 2W 16B 4096B 4W 16B 4096B 2W 16B 4096B 4W 16B

4096B 2W 16B 4096B 4W 16B 4096B 2W 16B 4096B 4W 16B

4096B 2W 16B 4096B 4W 16B 4096B 2W 16B 4096B 4W 16B

b.ppm: Size of input: 101484 bytes

EO icache PO icache EO dcache PO dcache

4096B 2W 16B 4096B 4W 16B 4096B 4W 16B 4096B 4W 16B

2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B

2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B

c.ppm: Size of input: 306915 bytes

EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 4W 32B 4096B 4W 16B 4096B 4W 16B

2048B 2W 16B 4096B 4W 32B 4096B 2W 32B 4096B 4W 16B

2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B

d.ppm: Size of input: 530895 bytes

EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 4W 32B 4096B 2W 32B 4096B 4W 16B

2048B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B

2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B

e.ppm: Size of input: 1476015 bytes

EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 4W 16B 4096B 2W 16B 4096B 4W 16B

2048B 2W 16B 4096B 2W 64B 2048B 2W 32B 4096B 4W 16B

2048B 2W 16B 4096B 2W 64B 2048B 2W 32B 4096B 4W 16B

f.ppm: Size of input: 3832336 bytes

EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 2W 64B 4096B 2W 16B 4096B 4W 16B

2048B 2W 16B 2048B 2W 64B 2048B 2W 32B 4096B 4W 16B

2048B 2W 16B 2048B 2W 64B 2048B 2W 32B 4096B 4W 16B

synthesized using Synopsis Design Compiler with TSMC 0.18 cell library. We estimate

a table lookup frequency of once per three million nanoseconds during dynamic power

computation, which means that there is a table lookup every one million instructions using

a 500 MHz CPU with an average CPI of 1.5. It is clearly an overestimation (which is

safe) since the benchmarks we used have around 10 to 200 million dynamic instructions.

Table 3-10 illustrates our results. Each row in the table indicates the area, dynamic

power, leakage power, and critical path length for profile table with different sizes. We

also calculate overhead using 65nm technology as shown in Table 3-11. We observed that

71

Table 3-9. Input pattern changes.

man.ppm: Size of input: 336165 bytes

Partition factor p = 4

EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B

2048B 2W 16B 4096B 4W 32B 4096B 4W 16B 4096B 4W 16B

2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B

Partition factor p = 5

EO icache PO icache EO dcache PO dcache

4096B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B

2048B 2W 16B 4096B 4W 32B 4096B 4W 16B 4096B 4W 16B

2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B

2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B

Partition factor p = 6

EO icache PO icache EO dcache PO dcache

4096B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B

2048B 2W 16B 4096B 4W 64B 4096B 4W 16B 4096B 4W 16B

2048B 2W 16B 4096B 4W 32B 4096B 2W 16B 4096B 4W 16B

2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B

2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B

woman.ppm: Size of input: 312999 bytes

Partition factor p = 4

EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B

2048B 2W 16B 4096B 4W 32B 4096B 4W 16B 4096B 4W 16B

2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B

Partition factor p = 5

EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B

2048B 2W 16B 4096B 4W 32B 4096B 4W 16B 4096B 4W 16B

2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B

2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B

Partition factor p = 6

EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B

2048B 2W 16B 4096B 4W 64B 4096B 4W 16B 4096B 4W 16B

2048B 2W 16B 4096B 4W 32B 4096B 2W 16B 4096B 4W 16B

2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B

2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B

on average for each task set, the energy overhead of our approach only account for less

than 0.02% (450 nJ compared to 2825563 nJ) of the total energy savings. Admittedly,

72

aggressive approach requires more bits per lookup table entry (74 bits8). However,

Table 3-10 and 3-11 illustrate that the power dissipation is about linearly proportional

to the table size. Therefore, even if the table entry size is increased by 15 times (5 bits

to 74 bits), the total energy overhead is no more than 0.3% of the total energy savings.

Therefore, we can safely conclude that the overhead for profile tables are negligible

compared to the energy saving for both conservative and aggressive approaches.

Table 3-10. Overhead of different lookup tables (180nm technology)

Table size
(# of

entries)

Area
(µm2)

Dynamic
Power
(µW)

Leakage
Power
(µW)

Critical
Path

Length

64 61416 38.13 114.37 0.91

128 121200 84.25 224.90 0.91

256 244520 187.68 461.30 1.08

512 483416 327.90 904.70 1.20

Table 3-11. Overhead of different lookup tables (65nm technology)

Table size
(# of

entries)

Area
(µm2)

Dynamic
Power
(µW)

Leakage
Power
(µW)

64 6756 12.23 154.52

128 13332 27.02 303.86

256 26897 60.19 623.25

512 53176 105.16 1222.32

3.4.3 Results: Multi-level SACR

To evaluate our exploration heuristics and scheduling algorithm, we selected six

benchmarks from each of the following benchmark suits: MediaBench [66] (cjpeg, epic,

pegwit, rawcaudio, mpeg2, toast), MiBench [35] (CRC32, dijkstra, FFT, pktflow, qsort,

rijndael, susan) and EEMBC [25] (A2TIME01, AIFFTR01, AIFIRF01, BITMNP01,

8 74 bits are needed to store both energy- and performance-optimal cache configurations
(5 + 5 bits) as well as the corresponding execution times (32 + 32 bits).

73

IDCTRN01, RSPEED01). Table 3-12 shows our seven task sets, each of which consists of

six selected benchmarks. Task set 1 consists of benchmarks from MediaBench, set 2 from

MiBench, set 3 from EEMBC and set 4 - 7 are mixtures from all threes suites. In order

to avoid the situation where one or two tasks dominate the total energy consumption,

tasks in each set are chosen to have comparable sizes. All the tasks are executed with the

default input sets provided with the benchmark suites.

Table 3-12. Task sets consisting of real benchmarks.

Sets Tasks

Set 1 cjpeg, epic, pegwit, rawcaudio, mpeg2, toast
Set 2 CRC32, dijkstra, FFT, pktflow, qsort, rijndael
Set 3 A2TIME01, AIFFTR01, AIFIRF01, BITMNP01, IDCTRN01, RSPEED01
Set 4 cjpeg, pegwit, qsort, susan, A2TIME01, IDCTRN01
Set 5 epic, rawcaudio, dijkstra, CRC32, AIFFTR01, BITMNP01
Set 6 mpeg2, toast, pktflow, rijndael, AIFIRF01, RSPEED01
Set 7 pegwit, mpeg2, qsort, FFT, BITMNP01, IDCTRN01

3.4.3.1 Optimal Cache Configuration Selection

First we evaluate our proposed design space exploration heuristics by comparing the

energy- (performance-) optimal cache configurations found using each heuristic to the

exhaustive approach. This comparison directly reflects the effectiveness of each heuristic

(the closer to the exhaustive approach the better). Since these design space exploration

results are used to construct the profile table, it will have impact on the scheduling-aware

reconfiguration algorithm.

Figure 3-14 and 3-15 show the heuristic searching results for selected benchmarks.

From Figure 3-14, we can observe that, for most of the time, all four heuristics behaves

well in finding energy-optimal cache hierarchy configurations. For example, for benchmark

dijkstra, cjpeg, rawcaudio and RSPEED01, all four heuristics are able to find configurations

which are very close to the optimal. However, in certain cases, some heuristics may lead to

inferior exploration results. For example, both ILOT and ILT do not work well for pegwit.

74

Generally speaking, with respective to energy consumption, SLOT and TST behave

consistently well among all benchmarks. ILOT behaves very close to TST, sometimes even

better (e.g., cjpeg, AIFIRF01), but could be inferior in other cases. ILT, though having

the smallest exploration space and thus being fastest, is only able to find the optimal

configurations with the quality 30% away from the optimal on average.

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Exhaust SLOT TST ILOT ILT

Figure 3-14. Normalized energy consumption of the searched energy-optimal cache
configuration using heuristics.

Figure 3-15 shows the exploration results in terms of performance. In other words, the

execution time of the performance-optimal cache configuration found by each heuristic is

compared with the exhaustive search. It can be observed that SLOT and TST are able to

consistently find the actual performance-optimal configurations or at least very close ones.

On the other hand, although behaves very well in terms of energy consumption, ILOT is

not good at finding the performance-optimal configuration for a number of benchmarks. In

this aspect, ILT outperforms ILOT.

3.4.3.2 Energy Saving

We quantify the cache subsystem energy savings using our approach by comparing to

the base cache scenario. We use five cache exploration methods – exhaustive, SLOT, TST,

ILOT and ILT – to generate profile tables for all the task sets. Figure 3-16 presents the

75

0.8
0.85

0.9
0.95

1
1.05

1.1
1.15

1.2
1.25

1.3
1.35

1.4
1.45

1.5

N
o

rm
al

iz
e

d
 E

xe
cu

ti
o

n
 T

im
e

Exhaust SLOT TST ILOT ILT

Figure 3-15. Normalized execution time of the searched performance-optimal cache
configuration using heuristics.

total cache hierarchy energy consumption normalized to the base cache for all the seven

task sets using each exploration technique. As expected, exhaustive exploration generated

the highest energy saving (58% on average). SLOT achieves 56% average energy saving

which is comparable to the exhaustive approach. TST outperforms SLOT in some task

sets but on average saves 52% of the energy consumption. While ILOT and ILT perform

the worst, we can still achieve 46% and 40% of energy savings, respectively. Figure 3-16

also shows the relative comparison of each heuristic. On an average, SLOT, TST, ILOT

and ILT make the system consume 2.8%, 9.1%, 25.6% and 43.1% more energy than the

exhaustive method.

3.4.3.3 Insights behind Results

It is helpful to examine some insights behind the results shown above. SLOT simply

discards the flexibility and benefit of running IL1 and DL1 cache separately. Therefore,

when optimal configurations for IL1 and DL1 are different, SLOT will have to suffer from

decreased energy efficiency and/or performance in either IL1 or DL1. TST only considers

Pareto-optimal configurations at the cost of losing the chance of finding more efficient

cache combinations which actually consists of non-beneficial ones. Specifically, when

76

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7

N
o

rm
al

iz
e

d
 T

o
ta

l E
n

e
rg

y
C

o
n

su
m

p
ti

o
n

Base Exhaust SLOT TST ILOT ILT

Figure 3-16. Cache hierarchy energy consumption using four heuristics.

searching for the Pareto-optimal points for each cache, the other two caches are fixed to

the base case. In other words, it is assumed that the Pareto-optimal configuration set

for each individual cache is independent of the other cache’s configuration. However, the

assumption does not always hold. One of the reason is that a less energy efficient (due to

oversize) L1 cache may cause less accesses to L2 cache. Hence an appropriate L2 cache

may make this non-beneficial L1 cache overall better. The reason for ILOT not finding the

optimal configurations is that, although relatively independent from each other, IL1 and

DL1 both have impact on the L2 cache which has effect back on L1 caches. So they are

essentially indirectly dependent on each other through the L2 cache. Furthermore, varying

one of them, say DL1, will lead to different total execution time and thus the static power

consumption of the other (IL1) is also going to change. Therefore, although miss rate is

unaffected, IL1 and DL1 do have impact on each other in terms of energy consumption

as well as performance. ILT behaves worst due to the fact that it could miss the optimal

parameter easily when exploring with other unknown but fixed parameters.

3.4.3.4 Exploration Efficiency

The four heuristics, though exhibits less energy savings, are much more efficient than

exhaustive method in the static profiling stage. Table 3-13 presents the total number of

77

cache configurations explored by each exploration heurstics9 for each benchmark. Our

experience is that it normally takes days to profile a task using exhaustive method while a

few minutes if ILT is employed. For example, exhaustive exploration of all configurations

for qsort takes about 5 days and 16 hours while only 44 minutes are required for ILT

heuristic. Designers can decide which heuristic to use based on the profiling time they

have and the overall energy savings.

Table 3-13. Cache hierarchy configuration explored using different exploration methods.

Exhaust SLOT TST ILOT ILT
cjpeg 4752 288 192 54 31
epic 4752 288 70 54 31

pegwit 4752 288 128 36 36
rawcaudio 4752 288 452 54 33

CRC32 4752 288 318 54 33
dijkstra 4752 288 92 54 32

FFT 4752 288 165 52 36
pktflow 4752 288 114 54 37
qsort 4752 288 116 54 37

rijndael 4752 288 58 54 31
susan 4752 288 352 54 33

A2TIME01 4752 288 92 54 34
AIFFTR01 4752 288 120 54 31
AIFIRF01 4752 288 79 54 38

BITMNP01 4752 288 68 54 38
IDCTRN01 4752 288 84 54 36
RSPEED01 4752 288 116 53 37

3.5 Summary

Dynamic cache reconfiguration is a promising approach to improve both energy

consumption and overall performance in embedded systems. This chapter presented a

novel scheduling-aware dynamic cache reconfiguration technique for soft real-time systems.

9 For simplicity, these numbers only count for the task on the whole in each set but not
for every phase.

78

This methodology employs an ideal combination of static analysis and dynamic tuning

of cache parameters with minor or no impact on timing constraints. We also presented

a novel methodology for tuning two-level configurable cache hierarchy in soft real-time

systems. Four cache exploration heuristics, which greatly improve the static analysis

efficiency, are designed and compared with the exhaustive method. Experimental results

demonstrated a 50% reduction on average in the overall energy consumption of the

single-level cache subsystems and up to 40 - 58% of the multi-level cache hierarchy in soft

real-time embedded systems.

79

CHAPTER 4
ENERGY-AWARE SCHEDULING WITH DYNAMIC VOLTAGE SCALING

Dynamic voltage scaling (DVS) [38] is widely acknowledged as one of the most

effective processor energy saving techniques. The reason behind its capability to save

energy is that linear reduction in the supply voltage leads to approximately linear slow

down of performance while the power can be decreased quadratically. Many general as

well as specific-purpose processors nowadays support DVS [74] [75] [54] with multiple

available voltage levels. Figure 4-1 shows how power consumption and clock cycle length

vary on the Crusoe processor in 70nm technology. The processor supply voltage (Vdd)

is varied from 1V to 0.5V in one step of 0.05V. We can observe that both dynamic and

static power reduce along with the voltage while the operating frequency drops at a lower

pace (down to 0.60V in this case). Therefore, it will be beneficial to reduce the supply

voltage whenever possible to achieve energy savings. Processor idle time (i.e., time slack)

also provides a unique opportunity to reduce the overall energy consumption by putting

the system into a low-power sleep mode using Dynamic Power Management (DPM) [8].

Research has shown that DVS should be used as the primary low-power technique for

processor [52] while DPM could be beneficial after applying DVS.

0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

0

0.5

1.0

1.5

2.0

2.5

3.0

P
o
w
er

(W
)

C
y
cl
e
L
en

g
th

(n
s)

Vdd

Pdyn
Psta

Pon

tcycle

Figure 4-1. Power consumption and clock cycle length of Crusoe processor (Pdyn, Psta and
Pon denote dynamic power, leakage power and the intrinsic power required to
keep the processor on, respectively).

80

Employing DVS in real-time multitasking systems involves assigning different

processor voltage levels to tasks based on characteristics of the task set as well as the

target system. In this chapter, we present novel algorithms for energy-aware processor

voltage scaling and task scheduling in real-time systems. The proposed research mainly

focuses on hard real-time systems with preemptive task sets. Generally, the objective is

to minimize energy consumption without violating any task timing constraint. We first

present a novel DVS scheme – PreDVS – which assigns multiple voltage levels to each

task instance based on preemptive scheduling. PreDVS targets on static slack allocation

and is called during design time. Our approach is based on an approximation scheme

that can ensure the solution quality to be within a specified boundary of the optimal.

Next, we describe our dynamic slack reclamation algorithm (DSR) which runs at runtime

to adjust voltage assignments and reschedule tasks for further energy savings. The two

methodologies proposed in this chapter can be employed together to achieve maximum

energy optimizations.

The rest of this chapter is organized as follows. Section 4.1 summarizes existing

research works on DVS. Section 4.2 describes PreDVS in details. Section 4.3 presents the

dynamic slack reclamation algorithm. Experimental results are presented in Section 4.3.

Finally Section 4.5 concludes this chapter.

4.1 Related Work

A great deal of research has been carried out on dynamic voltage scaling in real-time

systems. Early researches [130] [39] [102] [4] assumed an ideal processor with continuously

variable voltage/frequency (i.e. infinite number of voltage levels) which is unpractical in

real systems. Ishihara et al. [45] relieved this limitation by using two available neighboring

voltage levels above and below the desired one for only a single task. Kwon et al. [64]

combined the approaches from [130] and [45] to give optimal voltage schedule for given

task sets which allows voltage scaling at specific calculated points during task execution.

However, it suffers from the large number of voltage transitions (nearly double the

81

number needed by inter-task DVS and PreDVS). Furthermore, monitoring whether the

pre-determined optimal scaling point has been reached at runtime also requires certain

overhead as well as hardware complexity. Another way to convert the solution for ideal

processors to the practical discrete voltage scenario is always choosing the next available

voltage level above the desired one. Aydin et al. [6] and Quan et al. [89] adopted this

strategy for dynamic-priority periodic tasks and fixed-priority mixed tasks, respectively.

However, it is very inefficient and could result in 15 - 17% more energy consumption [6].

Most of the recent works focused on inter-task DVS, which uses a single voltage

level throughout each task’s execution, using heuristic algorithms [128] [78] [76] [110]

[139] [142] [79] [50] [44] while others are based on approximation algorithms [16] [140]

[137]. Mejia-Alvarez et al. [76] first proposed DVS scheduling problem as Multiple-Choice

Knapsack Problem (MCKP) and presented a greedy heuristic algorithm. Swaminathan

et al. [110] modeled and solved the problem using network flow techniques to assign a

single voltage level to every job. Zhong et al. [139] considered voltage scaling for sporadic

task sets whose characteristics are not known a priori and provided statistical real-time

guarantees. Zhuo et al. [142] employed DVS to achieve system-wide (with a processor

supporting continuous voltage levels) energy saving by combining static speed setting

and preemption minimization together. Irani et al. [44] used both DVS and DPM and

presented heuristics that give solutions within constant factor of the optimal algorithm.

Chen et al. [16] formulated inter-task scaling problem as a Subset Sum problem and

proposed an approximation algorithm with performance guarantee. Zhong et al. [140]

considered processor and peripheral devices energy consumptions at the same time. They

proposed pseudo-polynomial time optimal algorithm and fully polynomial approximation

algorithm for both periodic and sporadic task sets. Zhang et al. [137] solved the same

problem with an approximation algorithm which has lower complexity than the one in

[140].

82

Intra-task DVS, which assigns multiple voltage levels to each task instance based

on runtime information, also gained significant research interest [45] [141] [83] [127] [97]

[126] [100]. Ishihara et al. [45] formulated the intra-task DVS problem as an integer

linear programming problem but no more than two voltage levels can be assigned to each

task. Seo et al. [97] presented a comprehensive technique based on execution profile of

each task to determine the voltage scheduling of each individual block. However, only

minimum average energy consumption is guaranteed. Zhu et al. [141] considered task

execution time variation and introduced a DVS scheme with feedback control which

handles dynamic workloads. Xie et al. [126] took switching costs into consideration and

proposed exponential-time optimal algorithm as well as a linear-time heuristic with various

scaling granularity. Shin et al. [100] analyzed the program profile and data-flow to improve

the estimation of remaining execution cycles and optimize the voltage scaling points.

Dynamic slack reclamation techniques are proposed in [5] [84] [62] [49] [48]. Aydin

et al. [5] presented an online algorithm for utilizing unused task running time and a more

aggressive speculative mechanism based on expected workload. Pillai et al. [84] adjusted

the processor voltage on each job arrival based on the current system utilization or future

task’s WCET. Kim et al. [62] considered this problem on an ideal continuously scalable

processor. Jejurikar et al. [49] presented an algorithm for non-preemptive task sets.

Leakage-aware dynamic slack reclamation technique is proposed in [48]. It is based on the

theorem proved in [5] that every task instance can fully reclaim slacks with higher or equal

scheduling priority.

4.2 PreDVS: Preemptive Dynamic Voltage Scaling

4.2.1 Overview

In this section, we present a novel voltage scaling technique which generates a

voltage assignment based on the preemptive schedule of the target task set. We develop

a fully polynomial approximation scheme which can guarantee to give solutions within

specified quality bounds. We also propose two efficient heuristics which can lead to

83

comparable energy savings in certain cases. Our approach, named PreDVS, differs from

inter-task and intra-task DVS as illustrated in Figure 4-2. Specifically, PreDVS differs

from existing inter-task scaling techniques in that inter-task DVS assigns only single

profitable voltage level to all instances of each task, whereas PreDVS can adjust processor

voltage level multiple times throughout each task instance’s execution, without introducing

any extra scaling overhead, to potentially achieve more energy savings. In Figure 4-2,

if the deadline of task τ1 is 7, inter-task DVS cannot further lower any task’s voltage

level otherwise deadline will be missed since it requires reduction of voltage for all task

instances. However, PreDVS is able to further reduce the energy consumption by lowering

the voltage level for the first segment of τ1 from 0.75 to 0.50. Note that, although only

an illustrative example is given here, the number of segments for one task instance could

be excessive due to preemptions in real systems (e.g., tasks with long execution time

and period are preempted by short tasks many times). PreDVS also differs from existing

intra-task DVS techniques [97] [100] [83] in the following ways. Existing intra-task scaling

methods assume that static slack allocation has already been done. They only consider

one task instance (local optimization) and focus on exploiting dynamic time slacks

generated at runtime due to early finished task execution. They require excessive analysis,

runtime tracking and modification of the task source code, which makes them difficult

to be implemented and thus not always feasible in real systems [110]. Furthermore, they

normally result in large number of additional voltage switching points and most of them

assume continuous voltage levels. PreDVS aims at static slack exploitation and is carried

out during design time. In fact, our technique is complementary to existing intra-task

DVS techniques. Any intra-task scaling can be applied after PreDVS to further reduce

energy consumption at runtime.

PreDVS considers the problem globally and find a voltage assignment for all task

instances so that the total energy consumption can be minimized while no deadline

is violated. Off-line analysis (i.e., static slack exploitation) is of great importance in

84

Figure 4-2. Inter-task DVS, PreDVS and Intra-task DVS.

energy-efficiency scheduling techniques in real-time systems [89]. Since our approach

focuses on static slack exploitation, we assume every task takes its worst-case execution

time to complete as most existing inter-task DVS works do. We focus on hard real-time

systems with preemptive periodic task sets in this work. The system can be executed

on any processor with discrete voltage/frequency levels. We formulate the problem in

Section 4.2.2. The problem transformation scheme and an pseudo-polynomial algorithm

which can give optimal solutions are presented in Section 4.2.3. We then propose the fully

polynomial-time approximation scheme in the same section. In Section 4.2.4, we describe

two heuristics with and without using problem the transformation scheme.

4.2.2 Problem Formulation

In this section, we formulate our problem, prove its NP-hardness and then discuss

its unique difficulties. Specifically, we are given a set of m independent periodic tasks

T{τ1,τ2, ... ,τm} with each task τi ∈ T has known period pi, deadline di and worst-case

execution cycles (WCEC) ci. Task τi ∈ T has energy consumption eki and execution time

85

tki at processor voltage vk ∈ V. Note that we use WCEC ci here to reflect the worst-case

workload of each task since it is independent of processor frequency level. eki and tki can

be computed based on the underlying processor energy model. The average switched

capacitance of each task could be constant or variable, although research has shown that

there is very little variation among real-time tasks in practice [104]. In order to avoid

leakage power consumption compromising the energy saving, we can eliminate all the

voltage levels in V which have the frequency level below the critical speed [51]. We assume

that each task is released at the beginning of every period and the relative deadline is

equal to the period. We prove that our voltage scaling problem is NP-hard by considering

a simplified version of our problem – inter-task scaling – in which each task τi ∈ T is

uniquely assigned a fixed voltage level throughout all its jobs. The system schedulability

can be guaranteed by restricting the total utilization rate of task set under the scheduler’s

bound U . Note that it is sufficient to consider the task scheduling over its hyper-period

P (equal to the least common multiple of all tasks’ periods) since periodic task set has

repetitive execution pattern during every P. To be more specific, the simplified problem

can be stated as:

min(E =
m∑
i=1

l∑
k=1

P

pi
· xki · eki) (4–1)

subject to,
m∑
i=1

l∑
k=1

xki ·
tki
pi

6 U (4–2)

∀i
l∑

k=1

xki = 1 (4–3)

In Equation (4–1), xki is a 0/1 variable which denotes whether task τi is assigned with

voltage level vk and Equation (4–3) presents the temporary assumption we make that

only one voltage level is used throughout each task’s execution. Equation (4–2) shows

the sufficient condition of schedulability which must be satisfied. According to [137], the

inter-task DVS problem formulated above is NP-hard, as shown below:

86

Theorem 1. The simplified version of our problem stated above by Equation (4–1), (4–2)

and (4–3) is NP-hard.

Proof. This problem can be proved to be NP-hard by showing that it is reducible from

an existing NP-hard problem – Multiple-Choice Knapsack Problem (MCKP) [58]. This

reduction can be performed in polynomial time by a transformation of the goal from

energy consumption minimization to energy saving maximization. It is done by changing

the objective to maximize in Equation (4–1) and replacing eki with (emaxi - eki) where emaxi

= max(eki), vk ∈ V. Finding the optimal voltage assignments for each task is equivalent

to finding an optimal solution for MCKP which picks one and only one object from each

class.

Now let’s switch back to our original problem. By assigning multiple voltage levels

at different places throughout each task’s execution, more energy savings can be achieved

since we have more flexibility during decision making. Nevertheless, the issue of when

and how to apply scaling remains to be solved. Clearly, it is not feasible to consider all

possible positions. Task preemption, which creates multiple segments of a single job,

provides natural opportunities to assign different voltage levels to each task. In this

work, we examine the EDF schedule1 when the system is executed without DVS and

change the processor frequency whenever a job starts execution or resumes after being

preempted. Since inter-task scaling techniques also have to perform voltage switching in

all these occasions, our strategy does not introduce any additional runtime overhead. It is

important since voltage scaling overhead can have significant negative impact on overall

energy consumption as well as performance [97] [83]. Note that PreDVS leads to distinct

1 Our approach is also similarly applicable with RM scheduling but is not discussed in
this dissertation.

87

energy consumption and execution time for each task’s different jobs. As the simplified

version has been shown to be NP-hard, the original problem is NP-hard as well.

4.2.3 Approximation Scheme

Since PreDVS problem has shown to be NP-hard (and thus does not admit a

polynomial time optimal algorithm), the best option is to devise an efficient method

that can lead to approximate-optimal solutions. As described in Section 4.2.2, our original

problem (PreDVS) essentially adds another dimension (voltage/frequency selection for

a task’s each segment) to the simplified version (Inter-task DVS). This fact prevents us

from solving the problem directly by adapting approximation algorithms for MCKP or

inter-task DVS [137]. In this section, we present our two primary contributions. First, we

develop a problem transformation scheme that can eliminate this complexity. Next, we

propose an fully polynomial-time approximation algorithm which can efficiently solve the

problem.

4.2.3.1 Problem Transformation

This section describes four important steps of our problem transformation scheme.

Step 1 : As in traditional systems without a voltage scalable processor, all the tasks

are executed at a fixed frequency. We use the case in which the processor is running

solely at the highest voltage as the baseline and further assume that the given task set

is schedulable in this case otherwise applying DVS is not meaningful. We simulate and

generate an EDF schedule of the task set on the target system. Each task is set to take its

WCEC ci to finish. During simulation, we let the scheduler generate the distinct block list

and distinct block set list of each task, which are defined as:

Definition 3. A distinct block is an execution segment (interval) of a task with a

distinct pair of start and end point.

Definition 4. A distinct block set is a set of distinct blocks which compose a whole job

of a task. Every distinct block set has a different set of distinct block(s).

88

Let bji and sji denote the jth distinct block and distinct block set of task τi, respectively.

Figure 4-3 illustrates these two terms. In this example, we consider three tasks: τ1{3,3,1}2 ,

τ2{5,5,2} and τ3{12,12,4}. For task τ1, it never gets preempted and has only one distinct

block b11 that is of its entirety, which forms its only distinct block set s11 = {b11}. Task τ2,

however, has three distinct blocks: b12 appears from time 1 to 3, which is of its entirety;

b22 appears from time 5 to 6, which is its first half; b32 appears from time 7 to 8, which is

its second half. Therefore, τ2 has two distinct block sets: s12 = {b12} and s22 = {b22, b32}.

Task τ3, during its first period, experiences two preemptions which result in three distinct

blocks: b13 which is its first quarter, b23 which is its second quarter and b33 which is the rest

half. These three distinct blocks compose a distinct block set s13 = {b13, b23, b33}. Note that

τ3 may have more distinct blocks (and sets) since only first 12 time units are shown here.

In practice, one needs to consider the whole hyper-period P to collect all the distinct

blocks (and sets) for each task. We denote |sji | as the number of blocks in sji and δi as the

number of distinct block sets for task τi.

0 2 5 7 9 8 Time

τ3

τ2

τ1

1 3 4 6 10 11 12

b1
1 b1

1 b1
1 b1

1

b2
1 b2

2 b2
3

b3
1 b3

2 b3
3

Figure 4-3. Distinct block and distinct block set.

Step 2 : Once we have a list of all distinct blocks for each task, static profiling is

carried out to collect the energy consumption as well as execution time for each block. We

calculate these two values for each distinct block under all voltage levels in V. Let ej,ki and

2 The three elements in the tuple here denote period, deadline and worst-case execution
time, respectively.

89

tj,ki denote these two values of task τi’s j
th distinct block bji under voltage vk. Note that

energy and time overhead for voltage transition are incorporated in them, respectively.

In other words, we generate a profile table for every bji which stores ej,ki and tj,ki for all l

voltage levels in V.

Step 3 : For each distinct block set sji , different voltage assignments for every distinct

block in it will effect the total energy consumption as well as execution time for the

entire set, which essentially forms a whole job. In order to take all possible scenarios into

account, we calculate the total energy consumption and execution time of all voltage level

combinations, each of which comprises of one voltage level chosen for each distinct block

in sji . Let Ej,h
i and T j,hi stand for the total energy consumption and execution time of

sji using voltage level combination h. Specifically, Ej,h
i =

∑
b∈sji

∑l
k=1 x

b,k
i eb,ki and T j,hi

=
∑

b∈sji

∑l
k=1 x

b,k
i tb,ki where sji is used to represent the index set comprising of distinct

blocks in itself, and xb,ki has the same meaning as xki in Equation (4–1). Each pair of

Ej,h
i and T j,hi are stored in the profile table for sji . Furthermore, non-beneficial voltage

combinations, whose energy consumption and execution time are dominated by another

combination in the same set, are eliminated. We use a dynamic programming based

algorithm to generate the profile table for each distinct block set as shown in Algorithm 3.

The outermost loop iterates over all the blocks in sji . In each iteration, we maintain a list

Lb containing all beneficial voltage combinations of the first b blocks. We enumerate all

combinations by merging l lists of Lk
′ which consist of all the elements in the previous

list Lb−1 with each of them having their energy and execution time value added by the

currently considered block’s energy and execution time under voltage vk. We use
⊕

to

denote the element-wise addition. The merged list is then sorted in non-decreasing order

of the total energy. We examine each of the elements in the merged list in the sorted order

and append it to Lb only when it has shorter execution time than the latest added entry in

Lb to ensure it is beneficial. Obviously, the number of Pareto-optimal combinations in sji ’s

profile table is πji 6 l|s
j
i |.

90

Algorithm 3: Profile table generation for distinct block set sji .

1: L0 = {(0, 0)}
2: for b = 1 to |sji | do
3: for all vk ∈ V do
4: Lk

′ = Lb−1
⊕

(eb,ki , tb,ki)
5: end for
6: Merge all lists of Lk

′ into one profile table Lb
′ = {(e′r, t

′
r)}

7: Sort Lb
′ in non-decreasing order of energy sum e′r

8: Lb = ∅
9: Add the first element of Lb

′, (e′1, t
′
1), into Lb

10: for all elements in Lb
′, starting from r = 2 do

11: Let (e′′, t
′′
) denote the latest added entry in Lb

12: if t
′
r < t

′′
then

13: if e′r == e′′ then
14: Replace (e′′, t

′′
) with (e′r, t

′
r) in Lb

15: else
16: Add element (e′r, t

′
r) to the end of Lb

17: end if
18: end if
19: end for
20: end for
21: return L|sji |

Figure 4-4 shows a simple illustrative example. Here we show the profile table

generation for task τ3’s distinct block set s13 shown in Figure 4-3. For simplicity, assume

only two voltage levels are available. For instance, the 3rd entry in the final profile table,

{E1,3
3 =18, T 1,3

3 =22}, is derived by selecting voltage level {e1,13 =5, t1,13 =8} for b13, {e
2,1
3 =3,

t2,13 =6} for b23 and {e3,23 =10, t3,23 =8} for b33 and then by adding them together.

Step 4 : So far we have obtained complete profiling information for all the jobs of

each task. In other words, we know each task occurrence’s total energy and execution

time under all possible voltage level assignments. In the original schedulability condition∑m
i=1

ti
pi

6 1 [69], ti represents task τi’s worst-case execution time. In order to guarantee

that the task set is still schedulable after applying PreDVS, we have to ensure task τi’s

each job does not execute longer than some specific value ti.

91

Figure 4-4. Profile table generation for distinct block set.

In order to ensure schedulability, we decide a threshold execution time tthi for each

task to be used in the above schedulability condition as ti that will act as the upper

bound on each job’s execution time. Now the original problem has become how to select

one voltage combination for each distinct block set of a task so that the total energy

consumption E =
∑m

i=1

∑δi
j=1 λ

j
i · E

j,h′

i (where h′ is the selected profile table entry’s index

for sji and λji is the number of times sji occurs in the hyper-period P) is minimized while

∀i ∀j T j,h
′

i 6 tthi is satisfied. An important question is how to decide tthi . In this step,

we give every voltage combination in the profile tables a chance to use its execution time

as the threshold for the corresponding task. Once a voltage combination of one distinct

block set is picked as the threshold for task τi, all the other distinct block set’s decisions

can be made in a greedy manner, that is, the one with lowest energy consumption while

execution time is less than or equal to the chosen threshold is selected. Note that if, for

some other distinct block sets, no voltage combination can make its execution time under

the threshold, the chosen threshold is infeasible and thus discarded. After all the decisions

92

are made, we calculate the total energy consumption of that entire task and then put

them along with the threshold execution time into the aggregated profile table, which is

used as input to our approximation algorithm. Algorithm 4 illustrates this process. Note

that h denote the index of the distinct block set profile table entry which is currently

chosen to act as the threshold.

Algorithm 4: Aggregated profile table generation for τi.

1: Sort each sji ’s profile table in the ascending order of Ej,h
i

2: for j = 1 to δi do
3: for h = 1 to πji do
4: isFeasible = true
5: h′j = h {h′j denotes the selected index of sji .}
6: for k = 1 to δi; k 6= j do
7: for u = 1 to πji do
8: if T j,ui 6 T j,hi then
9: h′u = u

10: break
11: end if
12: end for
13: if h′u is not updated then
14: isFeasible = false
15: break {T j,hi is an infeasible threshold.}
16: end if
17: end for
18: if isFeasible is true then
19: ei =

∑δi
j=1 λ

j
i · E

j,h′j
i {Total energy consumption of τi}

20: Add (ei, T
j,h
i) into task τi’s aggregated profile table

21: end if
22: end for
23: end for

Figure 4-5 shows an illustrative example of aggregated profile table generation.

Suppose task τ3 in Figure 4-3 has three distinct block sets in P and for each of them

we have generated profile table in Step 3 as shown on the top-part of Figure 4-5. For

simplicity, we assume that each of them only occurs once in P . The first entry in τ3’s

aggregated profile table is calculated as follows. We choose execution time (26) of the first

entry in s13’s profile table as the threshold. For s23, the first entry cannot be selected since

93

Figure 4-5. Aggregated profile table generation for each task.

its execution time is higher than the threshold. Hence the second entry is chosen. For the

same reason, the second entry is selected for s33. The total energy consumption and the

selected threshold execution time for τ3 are inserted into its aggregated profile table. The

rest of the table can be generated similarly.

After applying Algorithm 4, non-beneficial entries in the aggregated profile table

are filtered out. Note that Algorithm 4 assigns the same voltage combination to every

occurrence (job) of each distinct block set. Theorem 2 shows that it is reasonable and safe

to do so in finding optimal assignments.

Theorem 2. An optimal solution of our problem must assign the same voltage combina-

tion for each occurrence of a distinct block set.

Proof. Suppose in the optimal assignment, distinct block set sji is assigned two different

voltage combinations vc1 and vc2. Assume that the threshold execution time chosen is tthi .

94

Thus the execution time of both vc1 and vc2 are less than tthi . Since it is always safe to use

voltage combinations with execution time under threshold, one can get a better solution

by replacing the higher energy consuming one with the lower one, which contradicts the

fact that the solution is optimal.

Complexity Analysis: We now analyze the complexity of our problem transformation

scheme. Step 1 performs scheduling of the task set. Step 2 requires
∑m

i=1

∑δi
j=1 |s

j
i |

calculations. Step 3 has a time complexity of O(
∑m

i=1

∑δi
j=1 |s

j
i | · |Lb′| · log(|Lb′|)), where

|Lb′| is the upper bound of the length of list Lb
′ in Algorithm 3. Step 4 needs a running

time of O(
∑m

i=1

∑δi
j=1 δi · (π

j
i)

2). Each step takes only polynomial time. It is important to

note that the problem transformation introduces only design-time computation overhead.

Although the static overhead depends on the nature of the input task set, our experiments

show that it normally takes only in the order of minutes for common task sets.

4.2.3.2 Approximation Algorithm

The program transformation results in an aggregated profile table for each task.

Each entry of the aggregated profile table (say jth entry of task τi) represents one possible

voltage assignment of all distinct block sets for task τi and keeps the corresponding total

energy consumption as well as execution time, denoted by eji and tji , respectively. Note

that here tji is actually the selected threshold time. We divide each tji by period pi to

represent the utilization rate (tji/pi) of the task. Furthermore, let ρi denote the number of

entries in task τi’s aggregated profile table.

We now convert our problem from a minimization version to a maximization one.

Let emaxi = max{e1i , e2i , ... , eρii }. For each eji , we calculate energy saving eji = emaxi − eji .

Now the objective becomes to maximize total energy saving E =
∑m

i=1 e
ri
i while satisfy the

schedulability condition T =
∑m

i=1 t
ri
i 6 U by choosing one and only one entry from the

aggregated profile table for each task (here ri is the index of the chosen entry).

Dynamic Programming Dynamic programming gives the optimal solution to our

problem. Let emaxi defined as max{e1i , e2i , ... , eρii }. Clearly, E ∈ [1,memaxi]. Let SEi denote

95

a solution in which we make decisions for the first i tasks and the total energy saving is

equal to E while the utilization rate T is minimized. A two-dimensional array is created

where each element T[i][E] stores the utilization rate of SEi . Therefore, the recursive

relation for dynamic programming is:

T [i][E] = minj∈[1,ρi](T [i− 1][E − eji] + tji) (4–4)

Using this recursion, we fill up T[i][E] for all E ∈ [1,memaxi]. Finally, the optimal energy

saving E
∗

is found by:

E
∗

= {max E | T [m][E] 6 U} (4–5)

Dynamic programming achieves the optimal energy saving by iterating over all the tasks

(1 to m), all possible total energy saving value (from 1 to memaxi) and all entries in each

task’s aggregated profile table (from 1 to ρi). This algorithm fills the array in order so

that when calculating the ith row (T[i][]), all the previous (i - 1) rows are all filled. Hence,

the time complexity is O(m2 ·max{ρi} · emaxi), which is pseudo-polynomial since the last

term is unbounded.

Approximation Algorithm The approximation algorithm proposed in this section

is based on dynamic programming. It reduces the time complexity by scaling down

every eji value by a constant K such that emaxi /K can be bounded by m (as well as the

approximation ratio ε) – which reduces the complexity to polynomial. By doing so, we

actually decrease the size of the design space. Our goal is to guarantee that the energy

saving achieved by our approximation algorithm is no less than (1− ε)E∗.

In order to obtain the constant K, we need to get the lower and upper bound on

E
∗
. This is done by employing a LP-relaxation version of our problem by removing the

integral constraint (choose only one entry out of each task’s aggregated profile table), that

is, “fractional” entries are allowed to be chosen. Algorithm 5 shows the polynomial-time

greedy algorithm which can give the optimal solution to the LP-relaxation problem. Note

that ẽji is the incremental energy saving – a measure of how much more energy saving

96

can be gained if the jth entry is chosen instead of the (j − 1)th entry from task τi’s table.

Here, p̃ji represents the incremental energy saving efficiency (eji/t
j
i). Ũ keeps the residual

utilization rate. The algorithm terminates when Ũ is exhausted. The LP-relaxation

optimal choice for task τi, found by the algorithm, is ri where xrii = 1. The split task,

τs, has two fractional entries being picked: rs and rs′ (p̃rss < p̃
rs′
s). We have the following

lemma:

Lemma 1. If the optimal solution SLP to the LP-relaxation version of our problem has no

split task, it is already the optimal solution to our original problem. Otherwise, SLP has

at most one split task τs in which the two chosen fractional entries must be adjacent in its

aggregated profile table.

Proof. Since this scenario can be mapped to MCKP, we can reuse the proof shown in

[58].

Let E0 be the maximum of the following three values: 1) total energy saving when the

split task τs is discarded; 2) energy saving generated by the first fractional entry; 3) energy

saving generated by the second fractional entry. That is,

E0 = max{
m∑

i=1;i 6=s

erii , e
rs
s x

rs
s , ers′s xrs′s } (4–6)

Note that according to Lemma 1, the last two terms belong to the same task. Now we can

give the upper and lower bound of E
∗
, as shown in the following lemma:

Lemma 2. E0 dictates the lower and upper bound of the optimal energy saving as:

E0 6 E
∗
6 3E0.

Proof. If E0 =
∑m

i=1;i 6=s e
ri
i , we can safely obtain higher overall energy saving by adding

erss . If E0 equals to either of the other two terms, more energy saving can be achieved by

adding
∑m

i=1;i 6=s e
min
i where emini = min{e1i , e2i , ..., e

ρi
i }. Hence, we have E

∗
> E0. Clearly,

the solution to the LP-relaxation version must not be worse than the one for the original

97

Algorithm 5: Greedy algorithm for LP-relaxation problem.

1: for i = 1 to m do
2: Sort τi’s aggregated profile table in ascending order of tji .
3: p̃1i = e1i /t

1
i

4: for j = 2 to ρi do
5: ẽji = eji − e

j−1
i

6: t̃ji = tji − t
j−1
i

7: p̃ji = ẽji/t̃
j
i

8: end for
9: end for

10: Ũ = U −
∑m

i=1 t
1
i

11: Ẽ =
∑m

i=1 e
1
i

12: Sort all the entries from each task’s aggregated profile table together in descending
order of p̃ji , associating with the original indices i and j.

13: for each entry (i,j) in the sorted order of p̃ do

14: if Ũ − t̃ji < 0 then
15: s = i; t = j {Indices of the entry to be split.}
16: break {Utilization rate exceeds the bound.}
17: end if
18: Ẽ = Ẽ + p̃ji
19: Ũ = Ũ − t̃ji
20: xji = 1; xj−1i = 0 {entry (i,j) is chosen instead of (i,j-1)}
21: end for
22: xts = Ũ/t̃ts; x

t−1
s = 1− xts

23: Ẽ = Ẽ + p̃tsx
t
s

24: return Ẽ

problem. In other words, Ẽ > E
∗
. Since Ẽ =

∑m
i=1;i 6=s e

ri
i + erss x

rs
s + e

rs′
s x

rs′
s 6 3E0, we have

E
∗
6 3E0.

Now we decide the scaling down factor K using the bounds described above. We

prove that approximation ratio and polynomial time complexity can be guaranteed if we

assign K = εE0

m
, as shown in the following lemmas:

Lemma 3. The K-scaled dynamic programming algorithm generates a (1 − ε) approxima-

tion voltage assignment.

98

Proof. Let the scaled energy saving value e′ji = beji/Kc, we have Ke′ji 6 eji < K(e′ji + 1),

hence eji −Ke′
j
i < K. Therefore, by accumulating all m tasks, we have:

m∑
i=1

ehii −K
m∑
i=1

e′
hi
i < Km (4–7)

where hi is the index of the selected aggregated profile table entry for task τi.

Note that the left term of Equation (4–7) is the approximation scaling error. Since

K = εE0

m
, we have Km = εE0. Since E

∗
> E0, according to Lemma 2, we have Km 6 εE

∗
.

Therefore, the approximation error
∑m

i=1 e
hi
i − K

∑m
i=1 e

′hi
i < Km 6 εE

∗
. Hence the

approximation ratio ε holds.

Lemma 4. The time complexity of the K-scaled dynamic programming algorithm is

O(m
2·max{ρi}

ε
).

Proof. Given the upper bound of E
∗

(E
∗
6 3E0), the dynamic programming method

can be improved to search in the range of [1, 3E0], resulting in a time complexity of

O(m·max{ρi}·E0). For the scaled version, the complexity is reduced to O(m·max{ρi}·E0

K
).

Given K = εE0

m
, we have E0

K
= m

ε
, thus the complexity becomes O(m

2·max{ρi}
ε

), which is

independent of any pseudo-polynomial energy values.

Theorem 3. The proposed algorithm is a fully polynomial time (1 - ε) approximation

scheme for the maximization version of our problem.

Proof. Directly follows from Lemma 3 and 4.

Now let’s evaluate the quality of the solution generated by the converted problem

with respect to our original problem. Let E∗ denote the optimal result (the minimum

energy consumption) and α denote the approximation ratio for the original problem.

Given an approximation ratio ε for the maximization version, α can be quantified as:

(1 + α)E∗ =
m∑
i=1

emaxi − (1− ε)E∗ (4–8)

99

Hence,

α =

∑m
i=1 e

max
i − E∗ + εE

∗ − E∗

E∗
(4–9)

Since for a specific solution, according to our conversion strategy, we have: E∗ =∑m
i=1 e

max
i − E∗. Therefore,

α =
E
∗

E∗
ε (4–10)

Equation (4–10) illustrates that α is related to ε by the factor of E
∗
/E∗, which is the

ratio of the total energy saving to total energy consumption over all tasks. In the worst

case, when the overall utilization is low enough so that entries with the lowest energy

consumption are selected for each task, this ratio reaches maximum. Let vmax and vmin

denote the maximum and minimum voltage available, respectively. We have,

α 6

∑m
i=1(e

max
i − emini)∑m
i=1 e

min
i

ε 6
vmax

2 − vmin2

vmin2
ε (4–11)

Let γ denote this maximum ratio (thus α 6 γ · ε). In practice, given a voltage scalable

processor, we first calculate its γ value. If γ 6 1, it means that by solving the converted

maximization problem using approximation ratio ε, we can get a solution with an equal

or better quality bound (6 ε) to the original problem. Otherwise, if needed, we can

set ε = α/γ so that the specified approximation ratio (α) to the original problem can

be achieved firmly. As a result, the time complexity of our approximation scheme with

respect to the original problem is O(m
2·max{ρi}·γ

α
). As shown in the experimental results,

for common voltage scalable processors, γ is usually very small and in some cases (e.g.,

StrongARM [74]) is less than 1.

Now we have obtained an approximated optimal solution based on the original EDF

schedule which is generated without voltage scaling. Note that running the task set with

the new voltage assignment given by PreDVS could potentially result in a slightly different

schedule since we essentially changed the execution time of each block. Therefore, we

need to store all the voltage scaling points (along with their corresponding voltage levels)

in a lookup table which can be easily accessed by the operating system to change the

100

voltage level at each point in the order of occurrence time. As described in Section 4.2.3.1,

we have ensured that the utilization bound of EDF is observed, the modified task set

is guaranteed to be schedulable. The solution we give is essentially with respect to the

original schedule. Certainly, more iterations can be carried out based on the new schedule

until it becomes steady. Based on our observations, such costly iterations contribute very

little in overall energy savings, and therefore not beneficial.

4.2.4 Efficient PreDVS Heuristics

In this section, we propose two heuristics for PreDVS that can be used as alternatives

to the approximation algorithm. The goal is to trade off design quality for running time

compared to the approximation algorithm. The first heuristic does not require problem

transformation steps described in Section 4.2.3.1. Therefore, it is the fastest approach and,

as shown by our experimental results, can achieve better energy savings than the optimal

inter-task DVS in certain scenarios. The second heuristic is based on the aggregated

profile table that is generated by the problem transformation scheme. Hence it can lead to

better solutions than the first one but with higher time complexity.

4.2.4.1 Heuristic Without Problem Transformation

Let S{s1, s2, ..., sl} denote the set of processor operating speeds (i.e., frequencies),

in descending order, corresponding to the voltage levels in V. Suppose all the speeds are

normalized to the highest one s1 = 1.0. Aydin et al. [6] proved that, in an ideal system

where we have continuously scalable processor speed, the constant and optimal speed

for all tasks is sopt = max{sl, η}. Note that η represents the utilization ratio of the task

set in the base case (e.g., all tasks execute at the highest voltage level). For real systems

with discrete speed levels, using the two neighboring available speeds in S above and

below sopt, denoted by sabove and sbelow, has shown to be sufficient to minimize the energy

consumption optimally in practice [45] [64]. Specifically, for each task instance, we run

tabove and tbelow of time using the two neighboring speeds which are calculated as:

101

tabove =
sopt − sbelow
sabove − sbelow

· topt (4–12)

tbelow = topt − tabove (4–13)

where topt is the time required to execute the task using sopt. For example, as illustrated

in Figure 4-6 (a), suppose two tasks τ1 and τ2 have optimal speed at sopt = 0.60. However,

the processor only supports four speed levels of 0.25, 0.50, 0.75 and 1.00. According to

Equation (4–12) and (4–13), task τ1 should execute at sabove (i.e., 0.75) for tabove = 1.6

time units and sbelow (i.e., 0.50) for tbelow = 2.4 time units, as shown in Figure 4-6 (b).

Using the method in [64], we end up with the schedule shown in Figure 4-6 (c). However,

as pointed out in Section 4.1, this strategy suffers from a large number of scaling points

which may not be feasible in real systems [89].

In our PreDVS heuristic, we first simulate the task set and generate the schedule

using the optimal speed sopt for all tasks. Then, we simply assign each distinct block

in the schedule with sabove or sbelow depending on whether it starts before or after the

optimal scaling point decided by tabove, respectively. In other words, when a task instance

resumes after being preempted, it lowers the speed to sbelow if the preemption happens

after the optimal scaling point (in terms of workload). Otherwise, in order to guarantee

all deadlines, sabove is used. Figure 4-6 (d) gives an example. Here, the first part of task

τ1 runs at sabove since it starts at cycle 0 in τ1. Task τ2 is not preempted thus can only

use sabove. The second part of τ1, however, can run at the lower level sbelow since it starts

after the optimal scaling point. There is only negligible extra runtime overhead since the

schedule can be determined off-line. Obviously, it can achieve more energy savings than

the uniform slowdown heuristic which simply round-up to the next available higher speed

level [5].

For those blocks assigned sabove, it creates a time slack with the length of topt − tabove.

This time slack can be potentially reclaimed by the very next block to further lower its

voltage level to achieve more energy savings. In order to satisfy all the deadlines while

102

0 2 5 Time 1 3 4 6

1.00

0.75

0.50

0.25

0.60

S

0 2 5 Time 1 3 4 6

1.00

0.75

0.50

0.25

S

0 2 5 Time 1 3 4 6

1.00

0.75

0.50

0.25

S

0 2 5 Time 1 3 4 6

1.00

0.75

0.50

0.25

S

Optimal scaling point for

(a) Optimal speed (b) Optimal scaling point [25]

(c) Kwon et al. [26] (d) For PreDVS

Figure 4-6. Illustration of PreDVS heuristic without problem transformation.

keeping our heuristic simple, if the next block starts at the corresponding job’s arrival

time and thus is not able to start earlier, we do not reclaim the slack since otherwise task

rescheduling is required. Whenever the next block can be moved up, we lower its voltage

level to the next available one if the time slack is sufficient to do so.

Algorithm 6 illustrates this heuristic in detail. The task set is scheduled under the

optimal speed sopt. Similarly as step 1 of the problem transformation scheme, let δi and

|sji | denote the number of distinct block sets of task τi and the number of blocks in sji .

tiopt and tiabove represent the time required to execute the task τi using sopt and sabove,

respectively. ciabove denotes the number of cycles needs to be executed under siabove. For

each block bj,ki (kth block in the jth distinct block set of task τi), we compare its start cycle

with ciabove and lower down the speed if the former one is larger. Note that dumping out

each block’s start cycle is easy during the simulation under sopt. Clearly, it has a time

complexity of O(n) where n =
∑m

i=1

∑δi
j=1 |s

j
i | is the total number of distinct blocks for all

tasks in the system.

The voltage assignment given by Algorithm 6 will not affect the schedulability of the

task set. This is because, compared with the method in [64], we use the same schedule

103

Algorithm 6: Heuristic based on ideal optimal voltage level.

1: η =
∑m

i=1
ti
pi
{Utilization ratio when there is no DVS.}

2: sopt = max(sl, η)
3: for i = 2 to l do
4: if si 6 sopt then
5: sabove = si−1
6: sbelow = si
7: break
8: end if
9: end for

10: Schedule the task set under fixed sopt.
11: for i = 1 to m do
12: tiopt = ci

sopt

13: tiabove = sopt−sbelow
sabove−sbelow

· tiopt
14: ciabove = tiabove · sabove
15: for j = 1 to δi do
16: for k = 1 to |sji | do
17: if bj,ki .startCycle 6 ciabove then
18: bj,ki .speed = sabove
19: else
20: bj,ki .speed = sbelow
21: end if
22: end for
23: end for
24: end for
25: Reclaim available slacks by a linear scan of n blocks.

and the execution time of each execution block in the schedule is no longer than [64] after

assignment of sabove and sbelow. Note that the slack reclamation phase does not make any

execution block finish later than before. Therefore, we can safely conclude that the task

set is ensured to be schedulable.

4.2.4.2 Heuristic With Problem Transformation

The problem transformation scheme, as described in Section 4.2.3.1, generates

the aggregated profile table for each task. Each entry in the aggregated profile table

represents one possible voltage assignment for all the distinct block sets of that task. The

corresponding threshold execution time of the entry is essentially the worst-case execution

time for all the task instances under that voltage schedule. Substantially, the aggregated

104

profile table provides much finer granularity in decision making for the entire task set

than inter-task DVS. In other words, we have much more choices within the schedulability

bound. This advantage can be efficiently exploited combining with the simple uniform

slowdown method.

As shown in Algorithm 7, we first calculate base case utilization ratio η. Here ti

denote the execution time for task τi under the highest voltage level. For each task,

we calculate the execution time required if sopt is used (line 3), denoted by topti . After

problem transformation is applied, we choose the aggregated profile table entry with the

minimum total energy consumption while the threshold execution time is lower than topti .

This heuristic has time complexity of O(m ·max{ρi}) plus the time required by problem

transformation.

Algorithm 7: Uniform slowdown after problem transformation.

1: η =
∑m

i=1
ti
pi
{Utilization ratio when there is no DVS.}

2: for all task τi ∈ T do
3: topti = ti/η;
4: Do problem transformation for τi and generate the aggregated profile table using

Algorithm 4.
5: Select the entry ri in the aggregated profile table with: 1) Minimum total energy

consumption erii ;
2) Threshold execution time trii 6 topti ;

6: end for
7: return ri, ∀i ∈ [1,m]

4.3 DSR: Dynamic Slack Reclamation

4.3.1 Overview

DVS stretches the clock cycle length (thus increases task execution time) resulting in

energy reduction whenever time slack is available. Static slack is determined based on the

Worst Case Execution Time (WCET) of each task. It is analyzed and exploited during

the off-line scheduling process. However, in many cases, task’s execution time may vary

and thus complete earlier than expected at runtime. This could be caused by different

input parameter values, environmental conditions, variable execution paths or mix of the

105

above. Dynamic slack created due to early completed tasks can be exploited to further

reduce the power dissipation of subsequent tasks. Existing dynamic slack reclamation

techniques are either based on certain assumptions or for dynamic energy minimization

only. Furthermore, they did not consider various energy saving potentials across different

tasks which our approach takes advantage of to utilize the slacks more efficiently. In [48],

a priority queue is maintained for dynamic slacks generated and each newly arrival task

simply fetches all the eligible slacks and scales down the voltage level until the critical

speed3 is reached, which is then followed by procrastination.

In this section, we develop a dynamic slack reclamation (DSR) algorithm for

energy-aware scheduling in uniprocessor multitasking systems with the following

innovative properties.

1. Our approach iteratively considers multiple tasks for utilizing the dynamic slack

available along with necessary task rescheduling. This leads to higher energy savings

compared to existing techniques (e.g. [48]), especially when tasks have different

power characteristics [4].

2. Our approach can be parameterized to limit the search space of tasks (the number

of subsequent tasks) to be considered for slack allocation. This effectively allows

tradeoffs between energy saving versus runtime overhead.

Same as PreDVS, this algorithm also adjusts the voltage level multiple times within

each task instance (i.e. job). It carefully allows task rescheduling to make more benefit

from the available slack. Furthermore, our approach is relatively independent of the

system characteristics and scheduling policy. It works, for example, either with or without

earliest start time constraints. It can also incorporate scaling overhead if necessary. This

leads to an extensive and flexible approach and is shown to lower the energy requirements

3 Critical speed is the point lower than which the total energy per cycle will start
increasing rather than decreasing [48] [120].

106

as compared to [48] with a minor runtime overhead. Extensive experimental results show

that our technique can achieve significant reduction in energy requirements after applying

static DVS (e.g., PreDVS). It also outperforms existing techniques for dynamic slack

allocation by 2 - 12%.

4.3.2 Dynamic Slack Reclamation Algorithm

Energy optimization techniques dedicated to static slack allocation derive a scheduling

scheme which minimizes energy consumption while guaranteeing all task deadlines. If

we execute the tasks under this scheme assuming each of them requires its worst-case

workload and let the scheduler record the execution trace, we can get a series of execution

blocks each of which is a piece of task execution. For example, in Figure 4-7, we show a

preemptive schedule of three periodic tasks4 . The execution blocks are linearly indexed,

e.g. b1, b2, ... , b10 in Figure 4-7. Specifically, the input to our problem can be further

refined as:

• A set of n execution blocks B{b1, b2, ... ,bn}. Each block is associated with its

corresponding task id and job id.

• Each block bi ∈ B has its arrival time (earliest start time) ai if it is the first block in

the corresponding job and an absolute deadline constraint di if it is the last block.

• Each block bi has its current voltage assignment (thus start time and finish time)

after applying the static slack allocation.

• Each block bi has execution time tki and energy consumption eki at processor voltage

level vk ∈ V in the worst-case scenario.

As part of the static analysis, we calculate tki and eki for ∀i ∈ [1, n] and ∀k ∈ [1, h]

based on either the existing processor datasheets or the energy model described in

4 Although the example shown in this section is for a preemptive periodic task set, our
approach is applicable to other kinds of tasks as long as the characteristics are known a
priori and thus the static slack allocated schedule is pre-determined.

107

Time

τ1

τ3

τ2

Time

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

Figure 4-7. Execution blocks after static slack allocation.

Chapter 2. We store all the entries for each block with tki lower than the execution time

corresponding to its critical speed in a profile table with an increasing order of tki (thus

decreasing order of eki). In other words, non-beneficial voltage levels are eliminated so

that the increase in leakage energy will not compromise the reduction in dynamic energy

consumption. Note that varying task’s power characteristics lead to different critical

speeds. This information is exploited at runtime by our algorithm.

As discussed in Section 4.3.1, during actual execution, task instances may take less

dynamic instructions (hence shorter time) to complete than the worst-case scenario. The

difference between ACET and WCET hence is the generated dynamic slack, as shown in

Figure 4-8 where the first job of task τ2 (b2) finishes earlier by 3 time units. Note that if

one job consists of multiple blocks due to preemption, its earlier completion can result in

multiple discrete pieces of dynamic slack.

Time

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

exploration window

slack

Figure 4-8. Dynamic slack generated by early finished task.

108

To reclaim dynamic slack, we reassign the voltage levels of one or more subsequent

blocks after the slack at runtime. We define exploration window as the range of subsequent

execution blocks from which the targets of slack reclamation are selected. In other words,

we look forward within the exploration window and try to allocate the generated dynamic

slack to these tasks in the most beneficial way. Let w denote the size of the exploration

window. Clearly, since different blocks may have variable potential for energy reduction

(based on the power characteristic and current voltage level assignment), larger w should

generally result in better solution but introduce longer time overhead.

There are several design considerations which lead to several variations and finally

the full description of our algorithm: 1) whether the tasks have earliest start time (or

arrival time) constraints, and 2) whether the preemption schedule of a task is allowed to

be modified at runtime (i.e. decomposition/agglomeration of the execution blocks). We

describe each of these variations in the following subsections.

4.3.2.1 Tasks without Arrival Time Constraints

In order to lower some subsequent tasks’ voltage level (i.e. stretch their execution

time) to reduce energy requirements, they have to be able to start earlier by the same

amount of time. The basic idea of our algorithm is to bring forward (start earlier) every

block which receives slack by the difference between the execution time of its previous

and new voltage assignments. By doing this, we ensure that no block (in the exploration

window) after dynamic slack reclamation finishes later than before. Otherwise, deadline

constraints may be violated in the future since it is always possible that all subsequent

jobs finish in their WCET. Consider the case when there is no arrival time constraint

(Figure 4-8). If b4 and b6 are selected to be assigned the dynamic slack, b4 and b6 as well

as all the blocks between them and the one which creates the slack (b2), which are b3 and

b5 in this case, should be started earlier as illustrated in Figure 4-9. Clearly, no deadline

will be violated since we ensure no block in the exploration window gets its completion

delayed. Note that when making the decision, we assume that b4 and b6 still require

109

WCET to complete. However, they may also finish earlier and create additional slacks

later.

Time

b1 b2 b4 b5 b6 b7 b8 b9 b10 b3

exploration window

Figure 4-9. Dynamic slack allocation example.

Clearly, in the scenario where there is no arrival time constraint (e.g. all tasks are

ready when the system begins), it is allowed to freely make any subsequent block start

earlier to assign the slack within the exploration window. In other words, all the blocks

within exploration window have equal opportunity to take the advantage of reclaiming full

amount of slack. Algorithm for assigning the slack will be described in Section 4.3.3.

4.3.2.2 Tasks with Arrival Time Constraints

When tasks have arrival time constraints, e.g. periodic tasks, we may not have the

freedom to start the execution of a subsequent block earlier to fully reclaim the slacks,

i.e., it is possible that not all the blocks within the exploration window have the same

capability to receive the slack. In the example shown in Figure 4-10, if b2 finishes earlier to

create 3 units of time slack, b5, unlike b3 and b4, is not able to receive the full benefit since

it can only be started earlier by at most 1 time unit. Similarly, b6 cannot be further slowed

down without affecting subsequent tasks since it starts right at its arrival time. We define

the term maximum reclaimable slack (MaxRS) for each block as the maximum amount of

available slack it can exploit. In this example, b3 and b4 have MaxRS of 3 units but b5 has

only 1 unit. This observation leads to two variations of our approach.

Without Task Rescheduling As discussed above, in order to let one block start

earlier, all the preceding blocks should also be moved up by the same amount of time.

Therefore, within the exploration window, every block’s MaxRS is no more than any of

its predecessors. If it is not allowed to change the original schedule (i.e. block execution

110

Time

τ1

τ3

τ2

b3

b10

b9

b8

b7

b6

b5

b4

b2

b1

Figure 4-10. Dynamic slack allocation with arrival time constraints.

order), once a block B ’s MaxRS gets reduced and becomes lower than its precedent

block, all the blocks after B will also have their MaxRS reduced to the same amount.

In other words, even if some subsequent blocks can be moved up by the extent more

than B can, they will still end up with their MaxRS at most equal to B ’s since they can

only start after B finishes. For example, in Figure 4-10, b6 and all the subsequent blocks

are not capable of using any dynamic slack since none of them can start earlier without

rescheduling.

With Task Rescheduling We can prevent the MaxRS of block bi (MaxRSi) from

being reduced due to arrival time constraints by changing the task execution order. It is

beneficial since it can increase the number of eligible blocks that can receive more slack in

the exploration window. By doing this, potentially more energy savings can be achieved.

This can be done by bringing forward the execution of some subsequent blocks (or part

of them), say bj where j > i, before bi. As illustrated in Figure 4-11, for example, some

block before b1 finishes earlier and creates a piece of slack with length s. While we have

MaxRS1 = s, however, b2 is not able to take any advantage since it starts at its arrival

time and thus cannot be moved up (MaxRS2 = 0). It will be inferior in terms of energy

reduction in this case if b2 has higher potential in energy reduction by claiming the time

slack than b1. Therefore, we can let the job consisting of b1 and b4 start earlier so that

b2 can be eligible to slowdown without affecting any other block’s deadline. Essentially,

we need to move part of b4’s execution with a length of s before b2’s arrival time. In this

example, note that moving up b3 does not help as b3 itself arrives later than b2. But b3 also

111

benefits from task rescheduling: it now can reclaim full amount of the slack. As another

example, using the previous scenario, as shown in Figure 4-12, b6 to b10 are now legal

to reclaim 1 unit of slack by moving one unit of b7 before b6. In general, by making the

suggested changes in the schedule, MaxRS values of blocks in the exploration window

will be larger than the case when no task rescheduling is applied. Effectively, it is equal to

judiciously changing the priority of the dynamic slack (defined in [48]) so that it can be

better utilized as compared to a strategy that reclaims it as soon as possible by allocating

it to the very next task [48]. Note that rescheduling is attempted for deciding MaxRS

but only actually happens when the corresponding block is selected as the target of slack

reclamation.

b2

b2

b1 b4

b1 b4

b3

b3

slack = s

slack = s

Figure 4-11. Slack reclamation with task rescheduling.

Obviously, in case of Figure 4-11, the amount of slack that b2 as well as b3 can reclaim

depends on how much of b4 can be brought forward. It is possible that b1 itself has

smaller MaxRS than what is available due to its own arrival time constraint. Besides,

112

Time

τ1

τ3

τ2

b1

b2

b4

b5

b6

b7

b8

b9

b10

b3

Figure 4-12. Task rescheduling example.

if the length of b4 (under its current voltage assignment), say tk4, before rescheduling is

shorter than the slack s, b2 can only accept a slack with length of tk4 after rescheduling.

However, on the other hand, it is also possible that b2 and b3 themselves are not able to

slowdown by s due to their own deadline constraints5 . These scenarios will all result

in reduced MaxRS for subsequent blocks inevitably. In general, there may be multiple

candidates that can be moved forward for maintaining higher MaxRSi. We can simply

choose the one which would result in maximum value of MaxRSi. Note that if b1 and b4

have different voltage assignments before rescheduling, an extra scaling is needed which

may lead to certain amount of overhead and need to be taken into account during decision

making. It is also possible that, for some block bi, no subsequent block of it has earlier

arrival time. In this case, there is no remedy and bi as well as all subsequent blocks can

only receive a reduced MaxRS.

4.3.3 Algorithm

In this section, we describe the details of our algorithm. For tasks without arrival

time constraints, all blocks in the exploration window share the same MaxRS which is

equal to the total amount of slack. However, for tasks with arrival time, there will be a

series of n′ groups with all blocks in each group having equal MaxRS and the groups’

MaxRS values are in decreasing order as shown in Figure 4-13. This is because MaxRS

5 Our study shows that it is rare and only happens when there are very few tasks (e.g.,
2).

113

remains the same for each block, but may monotonically decrease for consecutive blocks

due to additional constraints discussed above. Therefore, we have MaxRS1 > MaxRS2 >

... > MaxRSn′ .

 Group 1 Group 2 Group n’ ……

MaxRS1 MaxRS2 MaxRSn’

……

Exploration window

 ……

Figure 4-13. Exploration window partitions into groups according to MaxRS.

We define the minimum amount of slack time that can allow block bi to lower down

its current voltage level to the next available lower level as minimum reclaimable slack

(MinRSi). Note that a slack smaller than MinRSi will have no benefit for bi since no

energy saving can be achieved. If the block is already in the lowest voltage level of its

profile table (thus further slow down will drop below its critical speed), its MinRS is set

to ∞. This process is applied iteratively for the available slack. A greedy approach is

used in which the energy saving per unit of slack (ESpU) is maximized in each iteration.

Specifically, for block bi, we have:

ESpUi =
ehii − e

hi+1
i

MinRSi
(4–14)

where hi is the index of the current voltage level of bi and MinRSi = thi+1
i − thii . We

assign MinRS units of slack to the block which has the maximum ESpU value, but has

MinRS 6 MaxRS. After each iteration, the target block’s MinRS is recalculated and

each group’s MaxRS needs to be updated sequentially in a cascading fashion. Specifically,

if bi in group i′ is allocated MinRSi units of slack, we let MaxRSj = MaxRSj −MinRSi

for all blocks bj in group i′ (including bi) as well as all the groups before i′ along the

timeline. If the blocks in group i′ still have their common MaxRS larger than the ones in

the next group, no update is required for all the subsequent groups. If the MaxRS value

for group i′ drops below its next group i′ + 1, we have to make them equal. Since group

114

i′ + 1’s MaxRS also gets changed, the update process repeats until it reaches the last

group or the next group has lower MaxRS.

Algorithm 8: Dynamic slack reclamation algorithm.

1: Input: startIdx, s, w.
2: Output: New scheduling for subsequent blocks.
3: Step 1: Calculate MaxRS for all the blocks in the window.
4: Step 2: Dynamic slack reclamation.
5: endIdx← startIdx+ w;
6: minMinRS ← min(MinRSi),∀i ∈ [startIdx, endIdx];
7: Calculate MinRSi and ESpUi, ∀i ∈ [startIdx, endIdx];
8: while s > minMinRS do
9: Find bj in the window with:

10: 1) MinRSj 6 s;
11: 2) MinRSj 6MaxRSj;
12: 3) ESpUj is the maximum for ∀j ∈ [startIdx, endIdx];
13: Allocate MinRSj units of slack to bj and apply task rescheduling if needed;
14: s← s−MinRSj;
15: Update MinRSj, ESpUj, minMinRS and MaxRS for all the blocks in the window;
16: end while

Algorithm 8 shows the outline of our approach. Let startIdx denote the index

of the early finished block that creates slack with duration s. Here w represents the

exploration window size. Note that line 13 and 15 are done based on the problem

requirements (with/without arrival time constraints, allow/deny task rescheduling)

accordingly. If multiple slack pieces are created due to one early-finished job, Algorithm 8

is called separately in a reverse order starting from the latest slack with the same size

of exploration window. In this case, we use a simple scheme that all the blocks in the

examined windows are procrastinated by the residual amount of slack if possible. By

doing that, the unused slacks tend to combine together to form a larger idle period.

For single piece slack reclamation, our algorithm inherently maintains all unused slack

before all the subsequent blocks. Since our approach considers multiple candidates for

slack allocation, the residual slack is normally very small (i.e. the system utilization U

is close to 1). Earlier work has shown that static procrastination has no benefit [51] and

dynamic procrastination can at most improve the total energy efficiency by 1% when U

115

is larger than 60% [48]. Therefore, our scheme that does not consider procrastination

during scheduling will only lead to negligible solution quality degradation since there is

no need to apply dynamic slack reclamation when U is smaller than 50%. This is because

static scheduling already makes each task operating at or near the critical speed. We only

consider the scenarios where U is no smaller than 0.6, which are reasonable and practical

cases.

4.4 Experiments

4.4.1 PreDVS

4.4.1.1 Experimental Setup

To demonstrate the effectiveness of PreDVS, two DVS-capable processors are

considered: StrongARM [74] and XScale [75]. The former one supports four voltage -

frequency levels (1.5V - 206MHz, 1.4V - 192Mhz, 1.2V - 162MHz and 1.1V - 133MHz)

with γ = 0.866 and the latter one supports five levels (2.05V - 1000MHz, 1.65V - 800MHz,

1.3V - 600HMz, 0.99V - 400MHz and 0.7V - 200MHz) with γ = 7.58. We compare our

results with two scenarios: when no DVS is used and when optimal inter-task scaling is

employed [137]. In the former scenario, every task is running under the highest voltage

level. While in the latter scenario, a dynamic programming based algorithm is used to

obtain the optimal solution as discussed in Section 4.2.3.2. Approximation ratio α of 0.01,

0.05, 0.10, 0.15 and 0.20 are considered7 . We implemented the EDF scheduling simulator

along with all the algorithms in C++.

Real Benchmarks Four task sets are constructed for evaluation with each of which

consists of real benchmark applications selected from typical embedded system benchmark

suites (MediaBench [66], EEMBC [25] and MiBench [35]) as shown in Table 4-1. Task Set

6 As a remainder, γ is defined in Section 4.2.3.2.

7 Approximation ratio ε for the maximization version of our problem is calculated as
described in Section 4.2.3.2

116

1 consists of tasks from MediaBench, Set 2 from EEMBC, Set 3 from MiBench, and Set

4 is a mixture from all three suites. We set each task’s utilization rate (under the highest

voltage level) randomly in the interval of [0.5
m
, 1.5
m

]. The accumulated overall utilization rate

is controlled to be within [0.7,0.9] for StrongARM and [0.5,0.7] for XScale.

Table 4-1. Task sets consisting of real benchmarks.

Task
sets

Tasks

Set 1 cjpeg, djpeg, epic, mpeg2, pegwit, toast, untoast, rawcaudio

Set 2
A2TIME01, AIFFTR01, AIFIRF01, BaseFP01, BITMNP01, IDCTRN01,

RSPEED01, TBLOOK01
Set 3 qsort, susan, dijkstra, patricia, rijndael, adpcm, CRC32, FFT, stringsearch
Set 4 cjpeg, epic, pegwit, A2TIME01, RSPEED01, qsort, susan, dijkstra

Synthetic Tasks PreDVS is also evaluated by randomly generated synthetic task sets

with 5 to 10 tasks per set with different overall utilization rates. We define the effective

bound of a DVS processor as the following: any task set with an overall utilization rate

equal to or lower than the effective bound can achieve the optimal voltage assignment by

trivially choosing the lowest voltage for all the tasks. Clearly, the effective bound is the

ratio of the lowest frequency to the highest one. In other words, the effective bound is

0.64 for StrongARM and 0.2 for XScale. Hence, in the former case, we vary the overall

utilization rate of each task set from 0.65 to 0.95 at one step of 0.05 while from 0.3 to 0.9

at one step of 0.01 for the latter one. Given each overall utilization rate, we randomly

generate task periods in the interval of [100,30000]. Similarly, each task’s utilization rate is

evenly distributed between [0.5∗U
m

, 1.5∗U
m

].

4.4.1.2 Results

Real Benchmarks Figure 4-14 shows the results for real benchmark task sets under

both processors. The energy consumption values are normalized to no-DVS case. On

StrongARM processor, our approximation scheme saves up to 34% energy compared to

no-DVS and outperforms the optimal inter-task scaling by up to 17% even when the

117

approximation ratio is set to 0.2 (α = 0.2). On XScale processor, due to larger span

between available voltage levels and lower overall utilization rate, up to 67% energy saving

is achieved over no-DVS scenario and on average 19% extra saving than optimal inter-task

voltage scaling.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Set 1 Set 2 Set 3 Set 4

N
o
rm

a
li
ze
d
E
n
er
g
y
C
o
n
su

m
p
ti
o
n

Task Sets

No DVS
Inter-task Optimal
PreDVs Optimal
PreDVS α = 0.01
PreDVS α = 0.05
PreDVS α = 0.10
PreDVS α = 0.15
PreDVS α = 0.20

(a) StrongARM processor

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Set 1 Set 2 Set 3 Set 4

N
o
rm

a
li
ze
d
E
n
er
g
y
C
o
n
su

m
p
ti
o
n

Task Sets

No DVS
Inter-task Optimal
PreDVs Optimal
PreDVS α = 0.01
PreDVS α = 0.05
PreDVS α = 0.10
PreDVS α = 0.15
PreDVS α = 0.20

(b) XScale processor

Figure 4-14. Results for real benchmark task sets.

Synthetic Tasks Figure 4-15 shows the results which are the average of 10 randomly

generated task sets for each utilization rate on both DVS processors. Here, energy

consumption values are normalized to PreDVS optimal solutions. Clearly, in all cases, our

approximation algorithm achieves closely approximated overall energy consumption with

respect to the optimal solution and outperforms inter-task optimal scaling consistently

118

up to 12% for StrongARM and 24% for XScale. On average of all scenarios, PreDVS

can save 8.7% and 16.7% for both processors, respectively. Figure 4-15 also reveals that

our approximation algorithm is capable of generating solutions that are very close to the

optimal. For example, for α = 0.01, the total energy consumption of the approximated

solution is on average merely 0.15% more than the optimal case for StrongARM and

0.51% for XScale. Even for large α = 0.20, the actual bound is 2.48% and 5.67% on

average, respectively. As shown in the next section, our approximation algorithm is

efficient enough in terms of running time when α = 0.01. Therefore, we can always expect

PreDVS solutions that are no worse than the optimal by 1%.

Our two heuristics proposed in Section 4.2.4 seem to show unpredictable performance

in Figure 4-15 at the first glance. At some utilization ratios, they are more energy efficient

than optimal inter-task scheduling while in other scenarios are similar or even worse. The

reason behind is that the energy saving achieved by heuristics actually depends on the

relative position of the ideal optimal speed between its two neighboring available levels

sabove and sbelow. For example, the normalized speed levels for StrongARM processor is

S{1.00, 0.932, 0.786, 0.646}. When the system utilization ratio is 0.80, sopt = 0.80 is very

far away from its sabove = 0.932 and close to sbelow = 0.786. Although in this case the

optimal scaling point is relatively early in each task thus there is more chance to use

sbelow, the sacrifice when sabove is used is extremely high that can easily compromise the

achieved energy savings. Therefore, generally, in such scenarios when sopt lies in the lower

part of [sbelow, sabove], inter-task DVS shows its advantages over PreDVS heuristics. On

the other hand, when the system utilization ratio (thus sopt) is close to sabove, PreDVS

heuristics perform better than optimal inter-task DVS in all task sets. It is because, just

as the opposite, using sabove only consumes a little bit more energy while lower down to

sbelow saves a lot. In other words, when sopt lies in the upper part of [sbelow, sabove], PreDVS

heuristics are preferable over optimal inter-task DVS. Note that optimal inter-task

DVS can only be achieved in exponential time while our heuristics have either linear or

119

1.00

1.05

1.10

1.15

1.20

0.65 0.70 0.75 0.80 0.85 0.90 0.95

N
o
rm

a
li
ze
d
E
n
er
g
y
C
o
n
su

m
p
ti
o
n

Overall Utilization

Inter-task DVS Optimal
PreDVS Heuristic w.o. PT
PreDVS Heuristic w. PT

PreDVS Optimal
PreDVS α = 0.01
PreDVS α = 0.05
PreDVS α = 0.10
PreDVS α = 0.15
PreDVS α = 0.20

(a) StrongARM processor

1.00

1.07

1.14

1.21

1.28

1.35

0.30 0.40 0.50 0.60 0.70 0.80 0.90

N
o
rm

a
li
ze
d
E
n
er
g
y
C
o
n
su

m
p
ti
o
n

Overall Utilization

Inter-task DVS Optimal
PreDVS Heuristic w.o. PT
PreDVS Heuristic w. PT

PreDVS Optimal
PreDVS α = 0.01
PreDVS α = 0.05
PreDVS α = 0.10
PreDVS α = 0.15
PreDVS α = 0.20

(b) XScale processor

Figure 4-15. Results for synthetic task sets.

polynomial time complexity. Since the base case utilization η is known a priori, we should

easily decide which approach to use.

It is also interesting to observe that the heuristic without problem transformation

behaves similarly or sometimes even better than the other heuristic when the overall

utilization is low. For example, as shown in Figure 4-15 (b), the former heuristic achieves

more energy savings than the later one when U = 0.4. However, the scenario becomes

120

just opposite when U = 0.8. The reason behind is that schedule the task set under the

optimal speed sopt in Algorithm 6 will lead to more execution blocks compared with the

base case schedule particularly when the utilization is low. With higher system utilization,

there is less extra number of blocks and the heuristic with problem transformation shows

its advantage of finer voltage assignment granularity.

Algorithm Running Time Comparison Table 4-2 compares the running time of

optimal inter-task DVS, optimal PreDVS, PreDVS approximation algorithm (α = 0.01)

and two PreDVS heuristics for four randomly selected task sets. The time spent on

problem transformation, which has been included in the relevant columns (heuristic

with problem transformation, PreDVS optimal algorithm and PreDVS approximation

algorithm), is also listed separately for illustration purpose. For optimal solution,

our PreDVS algorithm, as expected, requires longer running time than inter-task

DVS. It is because the number of entries (ρi) in each task’s profile table used by

PreDVS is much larger than inter-task DVS which only requires l entries. However, our

approximation algorithm can cut down the running time drastically. For example, PreDVS

optimal algorithm takes 1.5 hour for a task set with 10 tasks, while the approximation

algorithm only requires less than 6 minutes. As a matter of fact, the time spent on

problem transformation turns out to be a dominating factor for PreDVS approximation

algorithm which itself takes merely a few seconds. Therefore, our approximation

scheme takes slightly longer running time than the optimal inter-task DVS. However,

as shown in Figure 4-15, it is able to achieve much more energy savings thus is worth

the effort. In fact, for the same reason, PreDVS approximation algorithm under different

approximation ratio requires very similar running time as shown in Figure 4-16. Hence,

small approximation ratio (e.g., α = 0.01) can always be efficiently used to minimize

energy consumption without excessive increase in running time. The heuristic without

problem transformation for PreDVS (Section 4.2.4.1) takes almost negligible running

121

time while the other one (Section 4.2.4.2) requires problem transformation thus consumes

running time close to the approximation algorithm.

Table 4-2. Algorithm running time comparisons (in seconds).

Task
Set

Inter-task
Optimal

Algorithm

Heuristic
w.o. PT

Heuristic
w. PT

PreDVS
Optimal

Algorithm

PreDVS
Approxi-
mation

Algorithm
(α = 0.01)

(Problem
Transfor-
mation)

1 29.8 0.4 294.9 2418.0 299.1 (294.7)

2 36.2 0.5 385.5 4986.8 393.8 (385.2)

3 31.2 0.3 115.1 2215.8 121.2 (114.9)

4 39.7 0.4 374.6 5465.0 382.9 (374.3)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Optimal α = 0.01 α = 0.05 α = 0.10 α = 0.15 α = 0.20

N
o
rm

a
li
ze
d
R
u
n
n
in
g
T
im

e

Approximation Ratio

StrongARM
XScale

Figure 4-16. PreDVS Approximation Algorithm Running Time Comparison.

Discussion While choosing among proposed techniques, designers can trade-off between

solution quality and running time. In case of small problems, it may be possible to

generate PreDVS optimal solution in reasonable amount of time. However, for large

piratical systems, our PreDVS approximation algorithm is recommended. In case the

time requirement for approximation algorithm is not acceptable (e.g., during early design

space exploration), our first heuristic is most suitable unless optimal speed is in the

lower part of the range [sbelow, sabove]. If sopt is in the lower part, one can choose between

optimal inter-task DVS and PreDVS approximation algorithm depending on expected

design quality and running time. When problem transformation time dominates, our

122

approximation algorithm is preferable, otherwise, in some extreme case, our second

heuristic is suitable.

4.4.2 DSR

4.4.2.1 Experimental Setup

We evaluate our dynamic slack reclamation algorithms through simulation using

two DVS-capable processors: Marvell StrongARM processor [74] and Transmeta Crusoe

processor [113]. The former one supports four voltage - frequency levels (1.5V - 206MHz,

1.4V - 192Mhz, 1.2V - 162MHz and 1.1V - 133MHz) and its characteristics are collected

from manufacturer’s datasheets. The latter one has scalable voltage level from 1.1V

to 1.5V in steps of 0.1V. Its operating frequency and power consumption values are

calculated by the detailed energy model described in Chapter 2. We use a static slack

allocation algorithm adapted from [5]. Voltage/frequency assignment for task τi is the one

with minimum energy consumption but has execution time no longer than min(thi /U, t
crit
i),

where thi and tcriti is the execution time under the highest frequency level and the critical

speed, respectively. Our proposed dynamic slack reclamation algorithm is implemented

with a discrete-event simulator written in C++.

Real Benchmarks We also evaluate our approach using real benchmarks selected

from MediaBench [66], MiBench [35] and EEMBC [25] to from four task sets as shown

in Table 4-3. Task Set 1 consists of tasks from MediaBench, Set 2 from EEMBC, Set 3

from MiBench and Set 4 is a mixture of all three suites. In Set 4, the two benchmarks

from EEMBC are set to iterate 100 times in order to make their size comparable with

others. We use SimpleScalar [14] as the underlying micro-architectural simulator to get

the number of cycles for each task execution to act as its WCET. We define λ as the

probability for a job to finish earlier than its WCET. If a job completes earlier, its ACET

is generated using a normal distribution with a mean of (BCET + WCET)/2 and a

standard deviation of (WCET −BCET)/6. BCET for each task is based on a percentage

123

of its WCET and is varied from 10% to 100% in steps of 10%. Let δ denote the value of

BCET/WCET .

Table 4-3. Task sets consisting of real benchmarks.

Sets Tasks

Set 1 cjpeg, pegwit, untoast, epic, mpeg2
Set 2 A2TIME01, BaseFP01, BITMNP01, RSPEED01, TBLOOK01
Set 3 susan, dijkstra, rijndael, qsort, stringsearch
Set 4 cjpeg, pegwit, A2TIME01, RSPEED01, pktflow, dijkstra

Synthetic Tasks We consider seven randomly generated synthetic task sets. Each set

consists of 3 to 10 tasks. The workload of each task under the highest voltage level and

the period (for periodic tasks) or inter-arrival time (for non-periodic tasks) are randomly

chosen within pre-determined ranges so that at any moment U is maintained under the

schedulability constraint (e.g. 1.00 for EDF). For each task set, we vary U from 0.6 to 0.9

in steps of 0.1. Task sets are formed with similar characteristics as real benchmark task

sets.

4.4.2.2 Results

Window Size Effect We first show the effect of adjusting the exploration window

size in DSR algorithm. Here, the window size is varied from 1 to 10 with U = 0.8 and

δ = 20%. Figure 4-17 shows the average results over all synthetic task sets assuming

no arrival time constraints on StrongARM processor. It shows that window size of 4 or

5 is good enough to capture most of the energy savings. Furthermore, larger window

size also lead to more overhead and a higher chance that some blocks that are allocated

slacks finish earlier than expected. This can compromise the total energy saving achieved.

Therefore, we use window size of 4 in the following experiments.

Energy Saving Comparison To illustrate effectiveness of our approach, we compare

the following three techniques across different values of U and δ as discussed above:

• No-DSR: Tasks are executed based on the static scheduling and no dynamic slack

reclamation is utilized.

124

0.64

0.67

0.7

0.73

0.76

0.79

0.82

0.85

0.88

0.91

0.94

0.97

1

1 2 3 4 5 6 7 8 9 10

N
o

rm
al

iz
e

d
 T

o
ta

l E
n

e
rg

y

Window Size
DSR-Ours with λ = 0.5 DSR-Ours with λ = 0.8

Figure 4-17. Effect of Window size on the total energy savings.

• DSR-Jejurikar: Dynamic slack reclamation algorithm proposed in [48].

• DSR-Ours: Our approach on dynamic slack reclamation.

Synthetic Tasks : Figure 4-18 shows energy comparison results using synthetic task

sets on StrongARM processor. We examine both scenarios of (a) λ = 0.5 and (b)

λ = 0.8 with window size of 4. The total energy consumption values for all techniques

are normalized to No-DSR scenario. These have been averaged over multiple runs of all

task sets and all values of U , where each run consists of a combination of a task set and a

value of U . For both values of λ, our approach can achieve average energy savings of 14%

and 18% over No-DSR (can be as large as 23% and 31% when δ = 10%). Our approach

also outperforms DSR-Jejurikar across all δ values by 2 - 12% in terms of total energy

requirements. In practice, the ACET of a program is smaller than its WCET by at least

80% (i.e. δ = 20%) [5], especially when the WCET estimation is pessimistic. In such cases,

our technique can reduce the energy consumption by more than 10% compared with the

state-of-the-art algorithm.

Figure 4-19 and 4-20 show the results for the same set of experiments on Transmeta

Crusoe processor with constant effective capacitance and application-specific effective

capacitance, respectively. For the latter case, we randomly generate K in the energy model

within a range of [0.2, 1.0] for each task. In other words, we have Ceff ∈ [0.2 · Ctotal, Ctotal].

125

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
o

rm
al

iz
e

d
 T

o
ta

l E
n

e
rg

y

BCET%
No-DSR DSR-Jejurikar DSR-Ours

(a) λ = 0.5

0.67

0.7

0.73

0.76

0.79

0.82

0.85

0.88

0.91

0.94

0.97

1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
o

rm
al

iz
e

d
 T

o
ta

l E
n

e
rg

y

BCET%
No-DSR DSR-Jejurikar DSR-Ours

(b) λ = 0.8

Figure 4-18. Results for StrongARM processor (synthetic task sets).

In both scenarios, it can be observed that energy savings are less significant than

StrongARM processor. It is possibly due to the fact that leakage energy consumption

is much higher in 70nm technology. Therefore, the energy reduction created by DSR

(lower subsequent job’s voltage level) decreases. However, our approach still consistently

outperforms DSR-Jejurikar. Another important observation is that in the scenario

where tasks have different effective capacitance (Ceff), our approach can result in

more additional energy savings compared with DSR-Jejurikar. The reason is that

126

application-specific Ceff leads to more variation in task’s energy saving potential during

dynamic slack reclamation, which clearly makes our approach more beneficial.

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
o

rm
al

iz
e

d
 T

o
ta

l E
n

e
rg

y

BCET%
No-DSR DSR-Jejurikar DSR-Ours

(a) λ = 0.5

0.67

0.7

0.73

0.76

0.79

0.82

0.85

0.88

0.91

0.94

0.97

1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
o

rm
al

iz
e

d
 T

o
ta

l E
n

e
rg

y

BCET%
No-DSR DSR-Jejurikar DSR-Ours

(b) λ = 0.8

Figure 4-19. Results for Transmeta Crusoe processor with constant effective capacitance
values (synthetic task sets).

Real Benchmarks : Figure 4-21 shows total energy consumption comparisons across

four real benchmark task sets with δ = 10% and (a) λ = 0.5, (b) λ = 0.8 on Transmeta

Crusoe processor. Here, similar observation can be made as shown in Figure 11. On

average, 7% and 10% extra savings in total energy consumption can be achieved in both

scenarios, respectively.

127

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
o

rm
al

iz
e

d
 T

o
ta

l E
n

e
rg

y

BCET%
No-DSR DSR-Jejurikar DSR-Ours

(a) λ = 0.5

0.67

0.7

0.73

0.76

0.79

0.82

0.85

0.88

0.91

0.94

0.97

1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
o

rm
al

iz
e

d
 T

o
ta

l E
n

e
rg

y

BCET%
No-DSR DSR-Jejurikar DSR-Ours

(b) λ = 0.8

Figure 4-20. Results for Transmeta Crusoe processor with application-specific effective
capacitance values (synthetic task sets).

Problem Variations To demonstrate the breadth of applicability of our approach, we

compare the experimental results for the following three scenarios: 1) No-AT: task sets

without arrival time constraints (Section 4.3.2.1); 2) AT-NoRS: Tasks with arrival time

constraints but task rescheduling is not allowed (Section 4.3.2.2); 3) AT-RS: Tasks with

arrival time constraints but task rescheduling is applied (Section 4.3.2.2). λ and U are set

to 0.8. It can be observed from Figure 4-22 that task rescheduling is very effective and

can achieve energy savings very close to No-AT. Thus, our approach is able to exploit the

128

0.7

0.75

0.8

0.85

0.9

0.95

1

Set 1 Set 2 Set 3 Set 4 Average

N
o

rm
al

iz
e

d
 T

o
ta

l E
n

e
rg

y

No-DSR DSR-Jejurikar05 DSR-Ours

(a) λ = 0.5

0.7

0.75

0.8

0.85

0.9

0.95

1

Set 1 Set 2 Set 3 Set 4 Average

N
o

rm
al

iz
e

d
 T

o
ta

l E
n

e
rg

y

No-DSR DSR-Jejurikar05 DSR-Ours

(b) λ = 0.8

Figure 4-21. Results for Transmeta Crusoe processor with application-specific effective
capacitance values (real benchmark task sets).

available slack effectively even when significant constraints on task rescheduling and arrival

times are considered.

Running Time Overhead We also investigated the runtime overhead of our DSR

algorithm for all three scenarios above. Figure 4-23 shows the average running time

requirement (of one time of dynamic slack reclamation) over all task sets with λ and δ

equal to 0.8 and 0.2, respectively. The window size is varied from 1 to 10. We can observe

that the running time overhead of AT-RS is very low (e.g. less than one fourth millisecond

129

0.64

0.67

0.7

0.73

0.76

0.79

0.82

0.85

0.88

0.91

0.94

0.97

1

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

N
o

rm
al

iz
e

d
 T

o
ta

l E
n

e
rg

y

BCET%
No-DSR No-AT AT-NoRS AT-RS

Figure 4-22. Problem variations comparison.

for window size of 4). Therefore, our algorithm is efficient enough at runtime for normal

task sets which normally takes hundreds of milliseconds [138].

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

1 2 3 4 5 6 7 8 9 10

R
u

n
n

in
g

Ti
m

e
 (

m
s)

Window Size
No-AT AT-NoRS AT-RS

Figure 4-23. Running time overhead.

4.5 Summary

This chapter presented processor energy optimization techniques based on dynamic

voltage/frequency scaling and task scheduling in real-time systems. Approaches are

proposed for both static slack allocation and dynamic slack reclamation.

For the former problem, we presented a preemptive dynamic voltage scaling scheme

– PreDVS – which can achieve significant energy savings by assigning different voltage

130

levels to each task instance. PreDVS does not introduce any additional voltage switching

overhead compared to inter-task scaling techniques. Moreover, it exploits static time slack

only and thus can be employed together with any existing intra-task scaling techniques.

We showed that the problem is NP-hard and presented an approximation scheme by

developing a novel transformation mechanism and a fully polynomial time approximation

algorithm. We also proposed two efficient heuristics that can lead to significant energy

improvement over optimal inter-task DVS in certain predictable cases. The approximate

solutions given by our approach outperforms optimal inter-task scaling techniques by up to

24%. Experimental results demonstrated that PreDVS can generate solutions very close to

the optimal.

For the later problem, we presented a dynamic slack reclamation algorithm for

energy-aware scheduling in real-time multitasking systems. Our approach aims at

minimizing total energy consumption, both dynamic and leakage, when some tasks finish

earlier than their worst case. Unlike existing techniques, we systematically allocate the

available slack among multiple jobs and apply task rescheduling whenever it is beneficial.

By restricting the exploration window, tradeoffs can be made between solution quality and

runtime overhead. Experimental results show that our approach can achieve significant

energy saving over static energy-aware scheduling and also outperforms state-of-the-art

technique by up to 12%.

131

CHAPTER 5
SYSTEM-WIDE ENERGY OPTIMIZATION WITH DVS AND DCR

In Chapter 3 and 4, we elaborate our approaches and algorithms for employing DCR

and DVS in real-time systems separately. However, as shown in Figure 1-2, both processor

and cache subsystem as well as other components contribute to the system’s overall power

dissipation. Therefore, it will be important and promising to employ DVS and DCR

simultaneously to achieve system-wide energy optimization.

In the last decade, we have observed a continuous CMOS device scaling process

in which higher transistor density and smaller device dimension have led to increasing

leakage (static) power consumption. This is mainly due to the proportionally reduced

threshold voltage level with the supply voltage which decreases along with the power

supply at a speed of 0.85X per generation [24]. Lower threshold voltage results in larger

leakage current which mainly consists of subthreshold current [15] and reverse bias

junction current [73]. Study has shown that leakage power is increased by about five

times in each technology generation [11]. It is responsible for over 42% of the overall

power dissipation in the 90nm generation [55] and can exceed above half of the total in

recent 65nm technology [24] [59]. On-chip caches nowadays contribute a significant share

of the system leakage power. Static energy is projected to account for near 70% of the

cache subsystem’s budget in 70nm technology [59]. Furthermore, higher temperature

have adverse impact on leakage power in both processor [133] and cache [81]. Leakage

power also constitute a major fraction of the total consumption from on-chip buses –

almost comparable to dynamic part even when leakage control scheme is employed [91].

Memory modules, both with DRAM and SRAM, can also consume significant amount of

leakage power (i.e., standby power) [53] [41], especially when DVS is employed so that

the standby time of those components increases [47] [140]. Therefore, decisions should

be made judiciously on whether to slow down the system to save dynamic power or to

finish task execution faster and switch the system to sleep mode to reduce static power.

132

While existing techniques try to control the leakage power along with DVS [51], extra

consideration needs to be taken when DCR is also employed and other system components

are taken into account.

The proposed research in this chapter integrates DVS and DCR together in hard

real-time systems to minimize system-wide energy consumption. The main contribution is

that, unlike existing DVS approaches which either ignore various system components other

than the processor or assume application-independent constant power consumption values,

we systematically incorporate power consumptions from the processor, cache hierarchy,

system buses and main memory based on the same set of application simulation statistics.

The power estimation framework that we propose uses separate power analyzers for

different system components. We take a step forward by examining the correlation among

the energy models of all the components and find that they have significant impact on

the decision making of both DVS and DCR. Based on the analysis and observations, DVS

and DCR decisions can be made at design time, and task procrastination is carried out

at runtime to achieve more idle energy savings. We also propose a general algorithm for

dynamic reconfiguration in real-time multitasking systems. This algorithm takes varying

runtime reconfiguration overhead into account and can be flexibly parameterized to make

tradeoff between energy saving and running complexity.

The rest of this chapter is organized as follows. Related works are discussed in

Section 5.1. Section 5.2 presents our system-wide leakage-aware energy optimization

algorithm based on both DVS and DCR. Section 5.3 describes the general algorithm

for dynamic reconfiguration in real-time multitasking systems. Section 5.4 provides

experimental results for evaluating the proposed approaches. Section 5.5 summarizes this

chapter.

5.1 Related Work

A great deal of research work exists on applying DVS in real-time systems. A lot of

them focus on minimizing dynamic power consumption and ignoring the static portion by

133

slowing down the processor as much as possible through various directions including task

scheduling, voltage selection and worst-case execution time estimation [76] [16] [50] [137]

[83]. Meanwhile, a number of existing works pay attention to control processor leakage

power in real-time systems [67] [51] [47] [140] [19] [20] [121]. Lee et al. [67] propose a

scheduling algorithm to minimize leakage energy consumption by procrastinating currently

ready tasks to enlarge system idle periods based on a non-DVS platform. Jejurikar et

al. [51] present a leakage-aware DVS scheme which does not allow to slow down the

processor speed below a certain level called critical speed to avoid growing static energy

consumption to compensate the reduction in dynamic energy. They also propose a

procrastination scheduling technique to maximize processor idle intervals. Chen et al.

[19] address the same problem in a rate-monotone scheduling system. They also propose

a procrastination scheme based on energy consumption evaluation [20]. However, none

of the above techniques considered DCR. Furthermore, they did not take other system

components including cache hierarchy, bus and memory into account which potentially

limits the benefit of their approaches. Jejurikar et al. [47] and Zhong et al. [140] proposed

leakage-aware DVS techniques for system-wide energy minimization. However, the system

components considered in their work (e.g. memory, flash drives) are only mock units

whose power consumptions are assumed to be application-independent constants. In

other words, their approaches use over-simplified models and cannot incorporate other

power-hungry components including cache and buses whose power dissipations are

determined by the application executing at runtime. Moreover, cache reconfiguration is

not considered by any of them.

Micro-architecture level techniques are proposed at the aim of saving leakage energy

in cache subsystem by switching unused cache sub-arrays into low-power mode [85] [60].

Chi et al. [22] applied these techniques in hard real-time systems. Data compression is

also proposed for cache energy reduction in [116] [36]. However, none of these approaches

takes processor voltage scaling or other system components into consideration. Nacul et al.

134

[80] presented preliminary results to demonstrate the benefit of combining DVS and DCR

together in real-time systems but they did not consider leakage power which may make

their solution inferior when leakage energy dominates the total consumption.

5.2 System-wide Leakage-aware DVS and DCR

Our approach addresses major challenges including design space exploration,

system-wide energy analysis, configuration selection and task procrastination to

significantly reduce overall energy consumption while meeting all task deadlines.

Figure 5-1 illustrates the workflow of our approach. Each real application in the task

set is fed into a simulation process which is driven by a design space exploration heuristic.

For each simulation, its total system energy consumption is calculated by our energy

estimation framework and put into the task’s profile table along with the corresponding

execution time. Based on the task set characteristics and the profile tables as well as

the scheduling policy, processor voltage level and cache configuration can be selected for

each task. Task DVS/DCR assignments and procrastination algorithm are then used

in a one-pass task scheduling which produces the total energy consumption of the task

set during its hyper-period P . Extensive experiments show that our approach can result

on average 47.6% energy savings compared to DVS-only systems and up to 23.5% extra

savings compared to leakage-oblivious DVS + DCR technique [80]. This section describes

each of these steps in detail.

Task Set

(Applications)

Simulation

Energy Estimation

Framework

Tuning

Heuristic

Configuration

Selection Heuristic

DVS/DCR

Assignments

Figure 5-1. Workflow of our approach.

135

5.2.1 Power Estimation Framework

Since we do not focus on system design which requires to minimize development time

and costs, our energy estimation framework, as shown in Figure 5-2, targets at a specific

SoC micro-architecture and is able to trade more design time for higher accuracy than the

one proposed in [29] [111]. We use SimpleScalar [14] as the underlying micro-architectural

simulator in our approach. For each application (task) and cache configuration, we run a

simulation and collect the execution statistics, memory access statistics and bus activity

traces. These information, along with the processor voltage levels, are provided to energy

models for each system components, based on which the total system energy can be

computed. Note that in our framework, the inputs to each energy model are all from one

single micro-architectural simulation thus are more comprehensive and systematic, as

opposed to [29] and [111] in which the inputs are collected separately using instruction-set

simulator, memory trace profiler, cache simulator and bus simulator. Furthermore, by

doing this, the impact on DVS/DCR decisions from other system components as well as

their correlations, which is not considered in [29] and [111], can be reflected in an accurate

manner. This framework still provides flexibility to allow different energy models and

analyzers to be used.

We consider on-chip separate L1 caches, an off-chip unified L2 cache and DRAM

memory. As shown in Figure 5-3, system buses consist of a 32-bit address bus and a

32-bit data bus between processor and L1 caches, L1 caches and L2 cache, as well as L2

cache and the main memory. Hence, there are totally 8 bus lines. For on-chip bus lines,

their frequency must match with the processor otherwise instructions and data cannot

be fetched on time from L1 caches. Off-chip bus lines are assumed to have constant and

lower frequencies. As indicated by the arrows in Figure 5-3, bit streams flowing between

those components have their directions. For example, the data bus between processor

and IL1 cache only carries fetched instructions while the data bus between processor

and DL1 cache also carries the data to be written issued by processor. We modified

136

Micro-architectural

Simulator

Memory Access

Statistics

Bus Activity

Traces

Execution

Statistics

Processor

Energy Model

Cache

Energy Model

Memory

Energy Model

Bus

Energy Model

∑

Cache

Configuration

Processor

Voltage Level

Figure 5-2. Overview of our power estimation framework.

SimpleScalar [14] to record activity traces (bits transmitted) for all bus lines during

program execution, which is used in the bus energy model to calculate average transitions

ntrans in Equation (2–12). Note that bus energy model calculates the energy consumption

of each bus line separately. Obviously, which is also shown by our studies, DCR have

major impact on off-chip bus’s activities which mainly come from L1/L2 cache misses.

However, on-chip bus activities, which are sourced from the processor, are not affected by

DCR.

5.2.2 Two-Level Cache Tuning Heuristic

As discussed in Chapter 3, it is a major challenge to employ multi-level cache

reconfiguration since the exploration space is prohibitively large. Section 3.3 describes

efficient tuning heuristics for two-level cache hierarchy which can be applied here. We

use L1 cache sizes of 4KB, 8KB and 16KB, line size of 16, 32 and 64 bytes with set

associativity of 1-way, 2-way and 4-way. For L2 cache, the capacity is selected to be 32KB,

64KB and 128KB with line sizes of 64, 128 and 256 bytes and set associativity of 4-way,

8-way and 16-way. Therefore, there are 18 configurations for each individual cache and

totally 5832 different configurations for the cache hierarchy [119]. We employ ILOT –

137

Processor

Instruction

L1 Cache

Data

L1 Cache

Unified

L2 Cache

Memory

Address Bus

Data Bus

Figure 5-3. Conceptual system bus architecture.

Independent Level One Cache Tuning – here to reduce the simulation time while still

preserve the most amount of accuracy. Note that other heuristics described in Section 3.3

are also applicable.

5.2.3 Critical Speed

The critical speed for processor voltage scaling defines a point beyond which the

processor speed cannot be slowed down otherwise DVS will no longer be beneficial

[51]. The dynamic power consumption of processor, which is exclusively considered in

traditional DVS, is usually a convex and increasing function of the operating frequency.

However, since lowering processor speed makes the task execution time longer which leads

to higher static energy consumption, the total energy consumed per cycle in the processor

will start increasing due to further slowdown.

By taking DCR into consideration, we find that cache configuration has significant

impact on the critical speed with respect to the overall system energy consumption.

Note that as described in Chapter 2, there exists strong correlation among the energy

models of processor, cache subsystem and other system components. Since different cache

configurations lead to different miss ratios and miss penalty cycles, the number of clock

138

cycles (CC) required to execute an application is decided by the cache configuration,

which directly affects the energy consumption of other components, as shown in

Equation (2–11), (2–14) and (2–16). On the other hand, the length of each clock cycle

(tcycle), which is determined by the processor voltage/frequency level, also directly affects

the energy consumption of other components as shown in Equation (2–3), (2–14) and

(2–16). In other words, DVS and DCR will affect the overall system energy consumption.

On the other hand, due to leakage power, all system components will have impact

on decision making of DVS/DCR, especially the critical speed. Specifically, when the

processor is slowed down by DVS, increasing static energy consumed by cache hierarchy,

bus lines and memory will compromise the benefit gained from reduced processor dynamic

energy thus lead to higher system-wide energy dissipation. Therefore, considering DCR

and other system components effects, we found that the critical speed is going to increase

drastically.

5.2.3.1 Processor + L1 Cache

We use a motivating example in which a single benchmark1 (cjpeg from MediaBench

[66]) is executed under all processor voltage levels. It can be observed that in Figure 5-4,

when only processor energy is considered, the critical speed is achieved at Vdd = 0.7V ,

which matches the results in [51]. However, as shown in Figure 5-5, with respect to

the total amount of energy consumption, combining processor and L1 caches (both

configured to 8KB of capacitance, 32B line size and 2-way associativity) increases the

critical speed slightly to around Vdd = 0.75V , due to the effect from L1 cache’s leakage

power dissipation. This highlights the importance of considering other system components

for accurate analysis when applying DVS. In other words, if L1 caches are incorporated,

Vdd = 0.7V is no longer a beneficial choice with respect to the overall energy savings. Note

1 Although results for cjpeg is shown in this section, similar observations have been
made for other benchmarks.

139

that in Figure 5-5, dynamic energy consumption of L1 caches only includes access energy

Eaccess and block refilling energy Eblock fill. Energy consumed on buses and lower-level

memory hierarchy during L1 cache misses will be incorporated when we gradually add the

corresponding components into consideration, as shown in following sections.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

E
n
er
g
y
C
o
n
su

m
p
ti
o
n
(m

J
)

Vdd (V)

Critical Speed

EprocDyn
EprocSta

EprocOn
Eproc

Figure 5-4. Processor energy consumption Eproc for executing cjpeg : EprocDyn is the
dynamic energy, EprocSta is the static energy and EprocOn is the intrinsic energy
needed to keep processor on.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

E
n
er
g
y
C
o
n
su

m
p
ti
o
n
(m

J
)

Vdd (V)

Critical Speed

Eproc
EL1Dyn
EL1Sta

EL1
Etotal

Figure 5-5. Overall system energy consumption Etotal of the processor and L1 caches for
executing cjpeg : EL1Dyn and EL1Sta are the dynamic and static L1 cache
energy consumption, respectively.

5.2.3.2 Processor + L1/L2 Cache

Figure 5-6 shows the impact on the critical speed if L2 cache (with capacity of 64KB,

line size 128B and 8-way associativity) is considered in the overall energy consumption.

140

The critical speed increases to the frequency corresponding to Vdd = 0.85V . For L1

caches, as shown in Figure 5-5, dynamic energy dominates and leakage energy becomes

comparable only when the processor voltage level drops below 0.6V . However, in L2 cache,

for cjpeg, leakage energy dissipation dominates while dynamic energy is almost negligible.

It is expected since L1 access rate is much higher than L2 while the capacity, thus leakage

power, of L2 cache is much larger than L1. Note that, although some other benchmarks

(e.g. qsort from MiBench [35]) shows non-negligible dynamic energy consumption in

L2 cache, the leakage part still dominates when the voltage level goes below a certain

point. Therefore, when processor voltage decreases, the total leakage energy consumption

increases drastically due to the L2 cache. Generally, when DCR is applied, different cache

configurations will lead to different critical speed variations.

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

E
n
er
g
y
C
o
n
su

m
p
ti
o
n
(m

J
)

Vdd (V)

Critical Speed

Eproc
EL1

EL2Dyn

EL2Sta
EL2

Etotal

Figure 5-6. Overall system energy consumption Etotal of the processor, L1 caches and L2
cache (configured to 64KB,128B,8-way) for executing cjpeg : EL2Dyn and EL2Sta
are the dynamic and static L2 cache energy consumption, respectively.

5.2.3.3 Processor + L1/L2 Cache + Memory

Figure 5-7 illustrates the fact that memory energy consumption also makes the

critical speed increase. The memory we considered is modeled as a common DRAM with

size of 8MB. It can be observed that memory has a similar effect on the critical speed

as L2 cache. In fact, for the configurations we used, the static energy consumptions

are comparable for L2 cache and the memory. Although DRAM needs to have its

141

capacitor charge refreshed all the time (which consumes relatively negligible power in

70nm technology [41]), it requires only one transistor to store one bit. Therefore, it

consumes much less leakage power per bit compared to cache, which is smaller but made

of more power expensive SRAM.

0.0

3.0

6.0

9.0

12.0

15.0

18.0

21.0

24.0

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

E
n
er
g
y
C
o
n
su

m
p
ti
o
n
(m

J
)

Vdd (V)

Critical Speed

Eproc
Ecache

EmemDyn

EmemSta
Emem
Etotal

Figure 5-7. Overall system energy consumption Etotal of the processor, L1/L2 caches and
memory for executing cjpeg : EmemDyn and EmemSta are the dynamic and static
memory energy consumption, respectively; Ecache represents the total energy
consumption of both L1 and L2 caches.

5.2.3.4 Processor + L1/L2 Cache + Memory + Bus

System bus lines, as described in Section 5.2.1, have double effect on the critical

speed in overall system energy consumption. On one hand, since on-chip buses should

have equal frequency as the processor (which makes them dominate in terms of energy

among all system buses), DVS will lead to dynamic energy reduction in them. On the

other hand, like other system components, static power dissipation on system buses is also

going to increase along with voltage scaling down, which compensates the dynamic energy

reduction. As a result, system buses make very minor impact on critical speed as shown in

Figure 5-8.

For ease of demonstration, we show how energy consumption (both dynamic and

static) of each system components vary with voltage scaling in Figure 5-9. When DVS is

not applied (Vdd = 1V), the processor accounts for over half of overall energy consumption

while others also take considerable share. This observation matches what we have shown

142

0.0

3.0

6.0

9.0

12.0

15.0

18.0

21.0

24.0

27.0

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

E
n
er
g
y
C
o
n
su

m
p
ti
o
n
(m

J
)

Vdd (V)

Critical Speed

Eproc
Ecache
Emem

EbusDyn

EbusSta
Ebus
Etotal

Figure 5-8. Overall system energy consumption Etotal of the processor, L1/L2 caches,
memory and system buses for executing cjpeg : EbusDyn and EbusSta are the
dynamic and static bus energy consumption, respectively.

in Figure 1-2. When the voltage level decreases, we can see that the energy consumed by

the cache hierarchy and memory subsystem increases drastically and, after certain point,

it becomes comparable with the processor or even larger. For system buses, due to the

reason explained above, this effect is less significant compared to cache and memory.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

E
n
er
g
y
C
o
n
su

m
p
ti
o
n
(m

J
)

Vdd (V)

Eproc
Ecache

Emem
Ebus

Figure 5-9. Processor voltage scaling impact on various system components.

In conclusion, the discussion above leads to several interesting observations and

important questions. The critical speed is going to change as different system components

are considered – increases when leakage energy dominant components are added and

decreases when dynamic energy dominant components (DVS-controllable) are added. One

143

would wonder whether DVS is really practically beneficial since our case study shows that

the critical speed is at Vdd = 0.9V and potentially adding more components may increase

it further (possibly close to 1.0V)? A simple answer is yes but it has to be evaluated

using leakage-aware DVS and DCR. It is also important to notice that system properties,

application characteristics and reconfiguration decisions together will affect the critical

speed, which typically varies between Vdd = 0.65V and 0.9V in our case.

5.2.4 Real-Time Voltage Scaling and Cache Reconfiguration

This section briefly describes three important aspects in performing real-time DVS

and DCR: profile table creation, configuration selection and task procrastination.

5.2.4.1 Profile Table

We define a configuration point as a pair of processor voltage level and cache

hierarchy configuration: (vj,ck) where vj ∈ V and ck ∈ C. Note that each ck represents a

configuration of the cache hierarchy which includes L1 caches and L2 cache. For each task,

we can construct a profile table which consists of all possible configuration points as well

as the corresponding total energy consumption Ei(vj, ck) and execution time Ti(vj, ck).

Clearly, all points with the voltage level lower than the critical speed are eliminated.

Furthermore, non-beneficial configuration points, which is inferior in both energy and time

compared to some other points, are also discarded. In other words, we only consider those

Pareto-optimal tradeoff points.

An important observation is that cache configurations behave quite consistently across

different processor voltage levels. For example, as shown in Figure 5-10, the L1 cache

configuration favored by cjpeg, 8KB cache size with 32B line size and 2-way associativity,

outperforms all the other configurations with respect to the total energy consumption.

Similar observations can be made when we fix L1 cache configuration while vary L2 cache.

Therefore, the profile table for each task actually consists of favored cache configuration

combinations with voltage levels equal to or higher than the corresponding critical speed.

In fact, we find that only the most energy-efficient cache hierarchy configuration with

144

the voltage level equal to or higher than the critical speed exist in the profile table

with slightly lower energy consumption but much longer execution time compared with

other entries. It can be explained, for example, as shown in Figure 5-8, that Etotal only

decreased by 1.78% when Vdd is lowered down from 1V to 0.9V but the execution time is

increased by 27.45%. In other words, generally speaking, the energy reduction caused by

DVS is not worth the loss in performance when the voltage level is close to the critical

speed.

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90 0.95 1.00

T
o
ta
l
E
n
er
g
y
(m

J
)

Vdd (V)

C1
C2
C3
C4
C5
C6

C7
C8
C9
C10
C11
C12

C13
C14
C15
C16
C17
C18

Figure 5-10. Total energy consumption across all L1 cache configurations (with L2 cache
configured to 64KB,128B,8-way) for executing cjpeg.

5.2.4.2 Reconfiguration Selection Heuristics

Existing DVS algorithms for hard real-time systems are not applicable when DCR

is employed since the energy consumption as well as the impact on task’s execution time

from system components other than the processor cannot be simply calculated from

energy models. DCR algorithms proposed in Chapter 3 are also not applicable since

they only support soft task deadlines. Given a static slack allocation, we can assign the

most energy efficient configuration point which does not stretch the execution time over

the allocated slack. As long as the slack allocation is safe, we can always ensure that

the schedulability condition is satisfied. Therefore, we use a simple heuristic algorithm

motivated by the uniform constant slowdown scheme which is proved to be optimal in

continuous voltage scaling [5]. The optimal common slowdown factor η is given by the

145

system utilization rate. In our approach, we only consider a finite number of discrete

configuration points as defined above. Therefore, as shown in Algorithm 9, for each task,

we select the configuration point with minimum energy consumption but equal or shorter

execution time compared to the one decided by the optimal slowdown factor. Note that we

use each task’s execution under the highest voltage in V and largest cache configuration in

C as the base case (vbase, cbase), which is used in the optimal slowdown factor calculation.

Algorithm 9: Configuration selection heuristic.

η =
∑m

i=1
Ti(vbase,cbase)

pi
for all task τi ∈ T do
T boundi = Ti(vbase, cbase)/η;
Assign τi with (vji , cki) which satisfied:
1) Ei(vji , cki) is the minimum;
2) Ti(vji , cki) 6 T boundi ;

end for
return (vji , cki), ∀i ∈ [1,m]

5.2.5 Procrastination

To further control static energy consumption, it is beneficial to put the system

into a sleep mode instead of keep it idle since the static power could be lower by

order-of-magnitude. As discussed in Section 5.2.3, taking various system components into

consideration leads to much higher critical speed compared to leakage-aware DVS-only

scenario. In other words, for the same task set, the idle periods during which there is no

active task are getting longer. However, bringing the system into sleep mode and vice

versa requires certain amount of overhead in terms of energy and time. In order to reduce

the number of processor mode switches, we need to make the busy/idle periods as long

as possible. One way to achieve this is to procrastinate task execution when no time

constraint will be violated. We adapt the task procrastination algorithm from [67] into our

EDF scheduler. We ensure that when the system gets shut down, there is no unfinished

job in the system. This avoids cold start penalty being introduced since otherwise resumed

task after wakeup has to refetch its data from memory. Hence, the shutdown overhead

146

consists of the energy consumed for circuit logic recharging and dirty data flushing-back in

the cache subsystem provided write-back policy is used.

Algorithm 10 outlines our procrastination scheme. A timer is enabled when idle

period starts and disabled when busy period starts. A newly arrived task during idle

period will update the timer if it has earlier absolute deadline compared to the current

earliest deadline. Upon timeout, all delayed ready tasks are executed in EDF order.

Arriving tasks during busy period are allowed to preempt as normal EDF scheduler does.

Note that time represents the current time instant and (vji , cki) stands for the chosen

configuration point for task τi. Here, isEarlier[i] records whether the current job of τi’s

deadline is earlier than all the pending tasks in the system at the time when it arrives.

Also, pr · d timepr
e and pr · b timepi

c are essentially the absolute deadline and the arrive time of

τi’s current job.

Algorithm 10: Task procrastination algorithm.

isEarlier[i] is initialized to be all false;
Current earliest deadline of delayed jobs δ = 0;
On arrival of a new job of task τr:
dr = pr · d timepr

e;
actUtil =

∑m
i=1

Ti(vji ,cki)

pi
;

if System is in sleep mode or is idle then
if timer is disabled then
timer = b(1− actUtil) · prc;
δ = dr; isEarlier[r] = true;

else
if dr < δ then

for all τi in ready task queue do
if isEarlier[i] is true then

delayed = delayed+
time−pi·b time

pi
c

pi
;

end if
timer = b(1− actUtil − delayed) · prc;
δ = dr; isEarlier[r] = true;

end for
end if

end if
end if

147

5.3 A General Dynamic Reconfiguration Algorithm

5.3.1 Overview

Existing techniques, as well as previous approaches presented by this dissertation,

are either designed for specific systems (e.g., soft real-time systems in which missing task

deadlines are tolerable) or specific task characteristics (e.g., periodic tasks). Moreover,

they are also based on certain assumptions which do not always hold, e.g., negligible or

fixed reconfiguration overhead. Swaminathan et al. [110] modeled the uniprocessor voltage

scaling for real-time system as a generalized network flow problem and solved it using

network flow algorithms. However, their method does not support cache reconfiguration

and only considered voltage switching at task boundaries. Moreover, their method cannot

incorporate variable runtime overhead nor make tradeoff between running time and design

quality. We address these limitations in the methods proposed in this section.

We develop a general algorithm that comprehensively solves energy-aware reconfiguration

problems in uniprocessor multitasking systems. The contribution can be summarized as:

1. The algorithm assumes that each task can be executed under one or multiple

configurations and finds the optimal configuration assignment to minimize energy

consumption while ensuring all the time constraints. Each configuration could

correspond to one cache configuration, one voltage level or a combination of them.

Therefore the algorithm can either separately or simultaneously accommodate DCR

and DVS techniques.

2. It allows differential cost of switching from one configuration to another. Thus, it

has advantages over existing techniques that it can effectively take variable runtime

overhead into account.

3. The algorithm can be flexibly parameterized to tradeoff between algorithm running

time and solution quality. Our experimental results show that the running time can

be drastically reduced while only minor quality degradation is observed.

148

Furthermore, this algorithm is relatively independent of the scheduling policy and

task properties. It can support tasks with/without time constraint, preemptive/non-preemptive

scheduling or periodic/aperiodic tasks.

5.3.2 Algorithm

The proposed approach accepts a trace of execution blocks as the input. Given a task

set and a scheduling policy, we first execute all the tasks under the base case (under the

base cache configuration in DCR or the highest voltage level for DVS) assuming each of

them requires its worst-case workload. The scheduler generates the execution blocks in

temporal order. Note that for non-preemptive scheduling, execution blocks are essentially

a sequence of task instances (jobs) with each of them having an absolute deadline and

earliest start time (arrival time). In preemptive systems, however, execution blocks can be

segments of tasks produced by preemptions. Figure 5-11 illustrates the relation between

execution blocks and the tasks which they belong to. Suppose there are three periodic

tasks τ1, τ2 and τ3 with the characteristics of (1, 3, 3)2 , (2, 5, 5) and (4, 12, 12). Under

EDF schedule, there are 10 execution blocks (b1, b2, ... , b10) before time unit 12. Our

algorithm makes reconfiguration decisions on the granularity of each execution block.

Thus, it is optimal in non-preemptive systems with inter-task manner DVS/DCR. It can

also generate more energy savings in preemptive systems without introducing additional

runtime overhead since a context switching has to be carried out during task preemption.

Static profiling for each execution block can be similarly carried out using techniques

described in Section 5.2 as well as previous chapters. Only Pareto-optimal configurations,

which are not dominated by any other configuration in terms of both energy consumption

and performance, are considered for each block. Specifically, for DVS, since leakage

power is considered, the minimum voltage level is lower bounded by the critical speed

2 Here the three numbers stand for execution time, period and relative deadline,
respectively.

149

0 2 5 7 9 8 Time

τ1

τ2

τ3

1 3 4 6 10 11 12

𝑏1 𝑏3

b1
1

𝑏6

b1
1

𝑏9

b1
1

𝑏2 𝑏5 𝑏7

𝑏4 𝑏8 𝑏10

Figure 5-11. Tasks and execution blocks.

as discussed in Section 5.2. In this section, we define a general term configuration which

could be a cache configuration, a voltage level, a combination of them (i.e., configuration

point in Section 5.2.4.1) or any other form of system configuration. Let h and hi

denote the total number of available configurations and the number of Pareto-optimal

configurations for the ith execution block, respectively.

We model the runtime reconfiguration overhead as variables depending on the

transition from one configuration to another. For example, the overhead for reconfiguring

a 4KB cache to a 8KB cache is generally larger than just changing the line size from 16

bytes to 32 bytes since the former requires waking up cache banks but the later is done by

line concatenation. The input to our algorithm can be formally represented as:

• A set of n execution blocks B{b1, b2, ... , bn}.

• Execution block bi ∈ B has an arrival time ai if it is the first block in the task

instance and an absolute deadline di if it is the last block.

• Execution block bi has execution time tki and energy consumption eki under

configuration k (ck).

• Reconfiguration energy overhead ρ(i, j) and time overhead σ(i, j) for converting from

configuration ci to configuration cj.

Note that ai and di correspond to the task to which the execution block belongs. ai

and di are set to -1 when they are not applicable to block bi. If we denote ti as the start

150

time and ki as the index of the configuration assigned to block bi given in the solution, the

general dynamic reconfiguration problem ℘ can be formulated as3 :

minimize E =
n∑
i=1

(ekii + ρ(cki−1
, cki)) (5–1)

subject to,

ti > ai,∀ai > 0 (5–2)

ti + σ(cki−1
, cki) + tkii 6 di,∀di > 0 (5–3)

ti+1 > ti + σ(cki−1
, cki) + tkii ,∀i ∈ [1, n) (5–4)

Equation (5–2) represents the timing constraint that all the execution blocks must

start executing after the task instance’s arrival time. Equation (5–3) ensures deadline is

not violated for any task. Note that time overhead is accounted at the beginning of task

execution. Since we stick to the original schedule, Equation (5–4) guarantees the execution

order of all the blocks in the final solution. The goal is to find ki for all blocks in B so that

Equation (5–1) can be achieved. The described modelling method makes our approach

generally applicable – it does not depend on any task set characteristic or scheduling

algorithm.

5.3.2.1 Extended Complete Bipartite Graph

We formulate the dynamic reconfiguration problem ℘ as a minimum-cost path finding

problem in an extended complete bipartite graph (ECBG) as shown in Figure 5-12. Unlike

traditional complete bipartite graph, an ECBG has multiple (specifically, n) disjoint sets

{V1, V2, ..., Vn} and a single source node as well as a single destination node. Every node

in one set is connected to every node in its neighboring sets. The source node is fully

3 ck0 denotes the initial configuration.

151

connected with all the nodes in the first set and all the nodes in last set is connected to

the destination node. Formally, an ECBG can be defined as ECBG{V1 + V2 + ... + Vn, E}

such that for any two nodes vki ∈ Vi and vji+1 ∈ Vi+1, there is an edge (vki , v
j
i+1) in E.

......

......

......

......

……

(

idle node

block node

 ,

(

(

Figure 5-12. ECBG model of ℘.

Semantically, each disjoint set Vi represents an execution block bi in B. Each node

in the disjoint set stands for one configuration for that block. Hence, the number of

nodes in set Vi is hi. Each edge (vki , v
j
i+1) in E is associated with two values: eki and

tki . It means that, by moving from set Vi to Vi+1 through this edge (choosing ck), it

requires tki time units and eki units of energy to execute block bi. The runtime overhead

is also taken into account on each edge. Specifically, edge (vki , v
j
i+1) carries a pair of

values: (eki + ρ(ck, cj), t
k
i + σ(ck, cj)). Therefore, the objective shown in Equation (5–1) is

algorithmically equal to finding a path from the source node to the destination node in

the ECBG which has the minimum accumulative energy E. This path contains one and

only one node from each disjoint set (choosing one edge between neighboring sets), which

corresponds to selecting one configuration for each block. Moreover, all the constraints

shown in Equation (5–2), (5–3) and (5–4) have to be satisfied in the path. For those nodes

with arrival time constraint, say bi, it is possible that the finish time of its previous node

bi−1 is earlier than ai. To ensure ti > ai, there is an idle node before every block node to

represent the possible idle intervals. Note that edge (v11, v
1
2) does not involve any overhead

152

since no reconfiguration is carried out (i.e. k1 = k2). However, edge (v12, v
2
3) includes

reconfiguration overhead ρ(c1, c2) and σ(c1, c2).

5.3.2.2 Minimum-Cost Path Algorithm

In this section, we employ a dynamic programming based algorithm to find the

minimum-cost path. Let Ei and Ti denote the total energy consumption (cost) and

execution time up to node bi. Starting from the first node, for each node bi, we find the

lowest cost Ei under each possible value of Ti and possible configuration choice for bi (i.e.

cki), in a node by node manner until the destination node is reached. If there is no such

partial path which has an accumulative execution time no larger than a specific value of

Ti and ends up with a specific configuration for bi, the corresponding Ei is set to infinity.

The calculation of all Ei values for each node is based on the lowest cost values of its

previous node calculated in last step. At each step, say bi, we know the lowest total energy

of last i − 1 nodes under each possible value of Ti−1 and configuration for bi−1. Based this

information and various overhead, we can easily find the minimum Ei under all possible Ti

and cki .

Since the execution time is continuous but the design space is actually discrete

(consists of finite number of choices), it is neither possible nor necessary to consider

all possible values of Ti. Hence, we discretize Ti into a finite set of values. The interval

between two adjacent discretized values is regarded as one time unit, which could be as

small as one clock cycle or as large as one millisecond in practice. To reduce running

time, we can limit Ti within the rage of [Tmin, Tmax]. We set Tmin =
∑n

i=1 t
h
i where

thi is the execution time under the most performance efficient configuration. Tmax can

be set to the deadline constraint of last task instance or the common deadline for all

tasks. In other words, all blocks need to be completed before Tmax. A three-dimensional

array D is created for dynamic programming in which each element D[i][τ][j] stores the

lowest total cost for nodes b1, b2, ..., bi while total execution time Ti is equal or less than τ

(Ti 6 τ) and configuration choice for bi is cj. As a result, there are n rows in D with each

153

row consisting of (Tmax − Tmin) vectors and each vector has h elements. Therefore, the

recursive relation for our dynamic programming scheme can be represented as:

D[i][τ][j] = min
k∈[1,hi−1]

{D[i− 1][τ − tji − σ(ck, cj)][k] + eji + ρ(ck, cj)} (5–5)

D is filed up in a row by row manner and in an order so that all the previous i − 1

rows are filled when the ith row is being calculated. Note that only those elements

corresponding to the Pareto-optimal configuration of bi is calculated in each vector of

D[i][τ][]. Finally, the solution quality is decided by min{D[n][τ][j]}, for τ ∈ [Tmin, Tmax]

and j ∈ [1, hn], which is the lowest value in last row of D. Figure 5-13 provides a pictorial

representation of our algorithm. A possible solution and one of the configuration on the

path are shown for illustrative purpose.

n blocks

Tmax – Tmin time units

h configurations

D[i][][j]

Figure 5-13. Illustration of our algorithm.

Complexity Analysis: Our algorithm iterates over all the nodes (1 to n). In other

words, the input size of our algorithm is actually the number of execution blocks. In each

iteration, all discretized Ti values (Tmax − Tmin) as well as all Pareto-optimal configuration

points (1 to hi) for current and previous nodes are examined. Hence the time complexity

is O(n·(max{hi})2·(Tmax−Tmin)). The memory requirement of our algorithm is determined

by the size of D, which stores n · (Tmax − Tmin) · h · sizeof(element) bytes. To reduce the

memory complexity, in each entry of D, we can simply use minimum number of bits to

remember the configuration choice instead of real Ei values. For calculation purposes, two

154

two-dimensional arrays are used for temporarily storing Ei values for current and previous

nodes.

Deadline Constraint: To ensure that the solution we find does not violate any

task’s deadline, during each step of the dynamic programming process, if bi has deadline

constraint, all the entries with Ti value larger than di are set to infinity. As a result, in the

next step, those entries will be regarded as invalid.

Arrival Time Constraint: In the final solution, we have to guarantee that none of

the initial blocks of each task instance starts execution before the task’s arrival time as

shown in Equation (5–2). However, since it is possible that one execution block finishes

earlier than its very next block (thus creating an idle interval), the entries (each of which

is a vector) with Ti 6 ai+1 in the ith row of D are valid. One important observation is

that, for block bi+1, it does not really matter when exactly bi ends if bi finishes before

bi+1’s arrival time. In other words, the Ti values of these entries have no impact on the

decision making in bi+1. Hence, in the final solution, if bi actually ends before ai+1, the

choice we make for bi must be the one that results in the lowest Ei value.

We partition the ith row into three ranges by the next block’s arrive time ai+1 and

the current block’s deadline di as shown in Figure 5-14. The first range, named range

A, in which entries with finish time earlier than ai+1, are all valid but not all are needed

during decision making. The ones with minimum Ei, for each configuration choice of bi,

are selected and stored in the vector D[i][ai+1][]. All entries in range A are then set to

infinity. By doing this, without losing any precision, we force bi+1 to start no earlier than

its arrival time. The second range (range B) in which entries with Ti values between ai+1

and di are all valid for the calculation of next iteration since they make bi+1 start after

ai+1. The last range are all discarded due to deadline constraint of bi.

For periodic task set, if each task’s deadline is equal to its period, ai+1 is always

earlier than di. It can be proved by contradiction. If ai+1 is larger than di, it implies

that the next job of the task corresponding to bi arrives before bi+1 does. Therefore,

155

there exists a ready-to-execute task between bi and bi+1, which contradicts the fact that

bi+1 is the very next execution block of bi. In cases where ai+1 may be after di (e.g. for

aperiodic task set), range B vanishes and, as a result, the problem essentially becomes

two independent subproblems (one consists of blocks before bi while the other consists of

blocks after bi+1, inclusively).

bi+1.arriveTime (ai+1)

bi.deadline (di)

i
th

 row of D

Range A Range B

Effective Area

Invalid

Figure 5-14. Ensuring the time constraints.

Tradeoff by Time Discretization: As discussed above, the time complexity of

our algorithm is dominated by the term (Tmax − Tmin). A tradeoff can be made between

solution quality and algorithm performance by further discretizing the execution time

Ti. During the dynamic programming, instead of calculating for every time unit, we

can compute in interval of multiple units. We define this number of time units as a

parameter δ. For example, if δ = 2, every row of D will contain dTmax−Tmin

δ
e vectors

which are {Tmin, Tmin + 2, Tmin + 4, ..., Tmax}. The time complexity is reduced to O(n ·

(max{hi})2 · Tmax−Tmin

δ
). By doing this, we actually examine every possible path at

a coarser granularity. Our experimental results demonstrate that time discretization

only brings minor design quality degradation in terms of energy consumption while the

algorithm efficiency can be greatly improved.

Approximate Approach: To further reduce the algorithm complexity, we can use

an approximate version of our approach by storing only one element instead of a vector in

D[i][τ][]. In other words, D is now a two-dimensional array in which each element D[i][τ]

stores the lowest Ei for nodes b1, b2, ..., bi while Ti 6 τ , disregarding the end configuration

(for bi) of that specific path. As a result, the approximate version cannot support variable

156

time overhead since we do not know the configuration of the previous block without

knowing the variable time overhead (which contradictorily depends on the previous block’s

configuration) during each step. Although variable energy overhead is used in actual

calculation, we do not consider it for all possible configurations of the previous block in

order to make tradeoff for efficiency. Therefore, the recursive relation becomes:

D[i][τ] = min
j∈[1,h]

{D[i− 1][τ − tji − σ] + eji + ρ(ck, cj)} (5–6)

where σ represents the constant time overhead and ck stands for the configuration of

D[i − 1][τ − tji − σ]. For safety, σ can be set to the worst case time overhead. Similarly,

the solution quality is decided by min{D[n][τ]}, τ ∈ [Tmin, Tmax]. The time complexity is

reduced to O(n ·max{hi} · Tmax−Tmin

δ
). This is reduction of a factor of max{hi} over the

exact algorithm. Figure 5-15 shows a pictorial illustration of our approximate approach.

n blocks

Tmax – Tmin time units

D[i][]

Figure 5-15. Illustration of the approximate version of our algorithm.

5.4 Experiments

5.4.1 System-wide Energy Optimization

5.4.1.1 Experiments Setup

To evaluate the effectiveness of our system-wide energy optimization approach, we

select benchmarks from MediaBench [66], MiBench [35] and EEMBC [25] to from four task

sets with each consists of 5 to 8 tasks. While DVS techniques usually use synthetic tasks

for evaluation, we choose real benchmarks so that bus and memory hierarchy behaviors of

real applications can be revealed. Table 5-1 lists our task sets. Task Set 1 consists of tasks

157

from MediaBench, Set 2 from EEMBC, Set 3 from MiBench and Set 4 is a mixture of all

three suites. In Set 4, the two benchmarks from EEMBC are set to iterate 100 times in

order to make their size comparable with others.

Table 5-1. Task sets consisting of real benchmarks.

Sets Tasks

Set 1 cjpeg, djpeg, mpeg2, pegwit, rawcaudio
Set 2 A2TIME01, BaseFP01, BITMNP01, RSPEED01, TBLOOK01
Set 3 CRC32, susan, dijkstra, rijndael, adpcm, qsort, FFT, stringsearch
Set 4 cjpeg, rawdaudio, pegwit, A2TIME01, RSPEED01, pktflow, FFT, dijkstra

Processor constants described in Chapter 2 are adapted from [51]: Vbs = −0.7V ,

Ld = 37, α = 1.5. The on-chip buses and off-chip buses have capacitance of 5pF and 60pF ,

respectively. We believe they are reasonable numbers based on the bit line capacitance

estimation described in [9] as well as the per unit of length capacitance estimation [21].

Similar set of numbers are also used in [28]. The on-chip buses have equal frequency as the

processor (decided by the current voltage level) while off-chip buses (from L1 to L2 and

from L2 to memory) have a frequency of 400MHz and 200MHz, respectively. The bus

static power is assumed to be 50% of the average dynamic power consumption, which is a

conservative estimation [91].

We assume cache dirty data write back and circuit logic recharging penalty for

shutdown to be 85µJ and 300µJ . Therefore, the total shutdown overhead is 385µJ [51].

Based on our energy model, idle power dissipation for the system, which comes from the

static energy consumption of processor, cache hierarchy, bus lines and memory, is assumed

to be 240 + 200 + 58 + 291 = 789mW . System in sleep mode is assumed to consume

80µW of power. Hence, the shutdown threshold interval is 0.49ms and any interval whose

length is shorter than this threshold will not lead to a shutdown. The energy estimation

framework (whose input is gathered from SimpleScalar [14]) as well as the scheduling

simulator are implemented in C++.

158

5.4.1.2 Results

We consider the following techniques:

• DVS: Traditional DVS without DCR which assigns the lowest feasible4 voltage level

at the aim of minimizing the processor dynamic energy consumption.

• CS-DVS: Leakage-aware DVS without DCR which assigns lowest feasible voltage

level above the critical speed decided by processor energy consumption.

• CS-DVS-G: Leakage-aware DVS without DCR which assigns lowest feasible voltage

level above the critical speed decided by system-wide energy consumption5 .

• DVS-DCR: Traditional DVS + DCR which assigns the configuration point for

minimizing the dynamic energy consumption of processor and cache subsystem.

• CS-DVS-DCR: Leakage-aware DVS + DCR which assigns the most energy-efficient

while feasible configuration point above the critical speed decided by the energy

consumption of processor and cache subsystem.

• CS-DVS-DCR-G: Leakage-aware DVS + DCR which assigns the most energy-efficient

while feasible configuration point above the critical speed decided by system-wide

energy consumption.

• CS-DVS-DCR-G-P: Leakage-aware DVS + DCR for system-wide energy

minimization which also employs task procrastination.

Single Benchmark Figure 5-16 shows comparison of the overall energy consumption

using three different techniques (CS-DVS, CS-DVS-G and CS-DVS-DCR-G) assuming

that there is only one task in the system (i.e. no limitation on available slack). In other

words, it represents the system-wide energy consumption of the configuration point with

4 By saying “feasible”, it refers to the configuration points that satisfy the slack
allocation described in Section 5.2.4.

5 In other words, the difference of CS-DVS-G from CS-DVS is that it considers other
system components including caches, buses and memory in determining processor voltage
level.

159

longest execution time in the profile table generated by each technique. Six selected

benchmarks from Table 5-1 are considered and results are normalized to CS-DVS. It can

be observed that considering other system components (CS-DVS-G) reduces the overall

energy consumption compared to original leakage-aware DVS (CS-DVS) by 27.5% on

average. Furthermore, by reconfiguring the cache hierarchy (CS-DVS-DCR-G), significant

additional energy savings can be achieved (46.6% averagely).

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

cjpeg rawcaudio pegwit qsort dijkstrastringsearch

E
n
er
g
y
N
o
rm

a
li
ze
d
to

C
S
-D

V
S

CS-DVS-DCR-G
CS-DVS-G

CS-DVS

Figure 5-16. Total energy consumption of single-benchmark task sets.

Task Set For all the task sets described in Table 5-1, we compare all the above listed

techniques across various system utilizations (from 0.1 to 0.9 in a step of 0.1). All the

results are the average of all task sets and are normalized to DVS scenario. Figure 5-17

shows the normalized system-wide overall energy consumption using different approaches.

The first observation is that, for DVS-only approaches, considering other system

components (CS-DVS-G) can achieve 12.8% additional energy savings on average (up

to 26.6%) compared with traditional leakage-aware DVS (CS-DVS). Generally, applying

DVS and DCR together (DVS-DCR) outperforms traditional DVS (DVS) and CS-DVS-G

across all utilization rates by 66.3% and 42.1% on average, respectively. Our approach,

system-wide leakage-aware DVS + DCR (CS-DVS-DCR-G), outperforms CS-DVS-G by

47.6% on average. It can be observed that leakage-aware and leakage-oblivious DVS +

160

DCR approaches behave similarly when the system utilization ratio is beyond 0.5. It

is because both of them are inclined to select similar configuration points which have

voltage levels above the critical speed (Vdd is around 0.8 to 0.9). In other words, in these

scenarios, DVS-DCR does not make inferior DVS decisions, which can lead to dominating

leakage power, due to limited available slack. However, when the utilization ratio is low,

CS-DVS-DCR-G can achieve around 4.6 - 23.5% more energy savings than DVS-DCR

since CS-DVS-DCR-G does not lower down the voltage level below the critical speed.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
n
er
g
y
C
o
n
su

m
p
ti
o
n
N
o
rm

a
li
ze
d
to

D
V
S

Utilization

DVS
CS-DVS

CS-DVS-G
DVS-DCR

CS-DVS-DCR-G

Figure 5-17. System-wide overall energy consumption using different approaches.

Figure 5-18 (a) shows the reduction in static energy consumption by using CS-DVS-DCR-G

compared to DVS-DCR as well as CS-DVS-DCR. CS-DVS-DCR-G gains averagely about

26.5% static energy savings over DVS-DCR across all utilizations and around 44.4% in

low utilization cases. Compared with CS-DVS-DCR, taking memory and system buses

into consideration results in 7.1% static energy savings on average (up to 14.4%). This

improvement is not as significant as the difference between CS-DVS and CS-DVS-G since,

as shown in Section 5.2.3, memory and bus lines have relatively less impact on the critical

speed compared with cache subsystem.

In our study, dynamic procrastination does not bring remarkable savings with respect

to overall energy consumption. The reason is that the shutdown threshold is relatively

161

short compared with the execution time of real benchmarks in our approach. Therefore,

even without procrastination, the idle periods during system execution normally are longer

than the threshold which makes them beneficial to shutdown the system. In other words,

the total sleep time for both CS-DVS-DCR-G and CS-DVS-DVS-G-P are close. It is

expected, however, if the task sizes are small, reductions of overall energy will be more

significant [51]. To illustrate the effectiveness of procrastination, Figure 5-18 (b) shows

the result in idle energy savings. It can be observed that 26.9% savings on average can be

achieved across all utilization rates by using CS-DVS-DCR-G-P.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
n
er
g
y
N
o
rm

a
li
ze
d
to

D
V
S
-D

C
R

Utilization

DVS-DCR
CS-DVS-DCR

CS-DVS-DCR-G

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

E
n
er
g
y
N
o
rm

a
li
ze
d
to

C
S
-D

V
S
-D

C
R
-G

Utilization

CS-DVS-DCR-G
CS-DVS-DCR-G-P

(b)

Figure 5-18. Results: (a) Static energy consumption using DVS-DCR and cs-DVS-DCR;
(b) Idle energy consumption using cs-DVS-DCR and cs-DVS-DCR-P.

162

5.4.2 General Algorithm for Dynamic Reconfiguration

5.4.2.1 Experiments Setup

DCR: To demonstrate the effectiveness of our algorithm on DCR, we use selected

benchmarks from MediaBench [66], MiBench [35] and EEMBC [25] to form four task

sets, each consisting 4 to 7 tasks, as shown in Table 5-2. In order to avoid scenarios

where some task dominates the others in terms of energy consumption, we select the

benchmarks such that all the tasks in the same set have comparable sizes. For each

task set, we consider both cases of periodic and aperiodic/sporadic tasks. In the former

scenario (periodic tasks), we assign the period and task’s worst-case workload so that the

system utilization varies in the range of 0.3 to 0.96 in incremental step of 0.1. In the later

scenario (aperiodic/sporadic tasks), for each task, all the jobs are randomly generated

with total accumulative system utilization at any moment under the schedulability

constraint (e.g., 1). The job inter-arrival time is generated based on an exponential

distribution. Note that, since we consider a preemptive system (although the simpler case,

non-preemptive system, is also supported), the input size of our algorithm is actually the

number of execution blocks as described in Section 5.3.2. Different task set characteristics

will result in drastically different number of blocks.

Table 5-2. Task sets consisting of real benchmarks.

Sets Tasks

Set 1 ospf, susan, pegwit, pktflow
Set 2 cjpeg, epic, dijkstra, FFT, qsort

Set 3
CANRDR01, PUWMOD01, AIFIRF01, BITMNP01,

CACHEB01, AIFFTR01
Set 4 stringsearch, ospf, CRC32, pegwit, untoast, qsort, toast

6 This is a practical and reasonable range since below 0.3 the solution can be trivially
found by selecting most energy-efficient configurations for all tasks.

163

The reconfigurable cache architecture is a four-bank cache with tunable cache sizes

of 4KB, 8KB and 16KB, line sizes of 16 bytes, 32 bytes and 64 bytes and associativity

of 1-way, 2-way and 4-way. Therefore, we have h = 18 different cache configurations.

Empirically, there are around 3 to 5 Pareto-optimal cache configurations for conventional

applications [119]. Runtime reconfiguration overhead is dependent on the original cache

configuration (ci) and the one tuned to (cj). We use SimpleScalar [14] to collect the static

profiling information.

DVS: To evaluate our algorithm for DVS, we consider Marvell’s StrongARM [74]

as the underlying DVS-enabled processor as described in Section 4.4.1.1. We randomly

generate four synthetic task sets, with similar characteristics for evaluating DCR, both for

periodic and aperiodic/sporadic scenarios.

DVS+DCR: We also evaluate our approach in the case where both DVS and DCR

are employed in the system. We use the same task sets as described in Table 5-2. The

total energy consumption is therefore Etotal = Ecache + Eprocessor. Task execution time

is dependent on both voltage level (which decides the length of each cycle) and cache

configuration (which decides the total number of cycles). Runtime overhead is thus the

sum of both the cache reconfiguration overhead and the voltage scaling overhead.

5.4.2.2 Results

Energy Reduction We compare our algorithm with two heuristics which are applicable

to both DVS and DCR, namely Uniform Slowdown and Greedy Repairing, since the

techniques proposed in [122] and [119] are only for soft real-time systems and thus not

applicable to our case. These two heuristics are adapted from DVS techniques [5] [95].

Generally, in uniform slowdown, we choose the configuration for task τi which consumes

minimum energy while has equal or less execution time compared to tbasei /η, where tbasei is

the execution time under base case and η is the system utilization. In greedy repairing, we

first assign the most energy efficient configuration to every task. If the task set becomes

unschedulable, we run a greedy repairing phase, during which the next more performance

164

efficient configuration for one of the tasks is selected which leads to minimum ratio of

energy increase to system utilization decrease. The process repeats until the task set

becomes schedulable. This heuristic is also used in [47]. Note that these two heuristics

assign only one configuration per task and are not able to consider variable overhead.

Figure 5-19 and 5-20 show the comparison results for both the scenarios where DVS and

DCR are employed simultaneously and separately, respectively. The time discretization

parameter δ is set to 1, 2, 4 and 8 milliseconds7 . As normalized to the uniform slowdown

heuristic, 25% of energy savings for DCR and 17% for DVS on average can be achieved

using our approach. Compared with the greedy repair method, the energy savings are 17%

and 11% for DCR and DVS, respectively. When both techniques are employed, the energy

saving achieved are less compared with employing them separately.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Task Sets

Uniform Slowdown Greedy Repair
g = 1 ms g = 2 ms
g = 4 ms g = 8 ms

Figure 5-19. Energy consumption compared with two heuristics: DVS+DCR.

Time Discretization Effect Figure 5-21 and 5-22 illustrates the flexibility of our

algorithm by varying the time discretization. Results are the average of both periodic and

aperiodic scenarios and normalized to the δ = 1ms scenario. δ is increased exponentially

from 1 millisecond to 128 milliseconds. The important observation is that, although

7 In DCR, since tasks in set 3 has smaller sizes in terms of energy consumption and
execution time than other sets, the unit of δ is microsecond.

165

 (a) DCR

 (b) DVS

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Task Sets

Uniform Slowdown Greedy Repair g = 1 ms
g = 2 ms g = 4 ms g = 8 ms

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Task Sets

Uniform Slowdown Greedy Repair g = 1 ms
g = 2 ms g = 4 ms g = 8 ms

Figure 5-20. Energy consumption compared with two heuristics: (a) DCR; (b) DVS.

our algorithm running time is drastically reduced, the design quality (total energy

consumption) is only slightly sacrificed and still very close to the case where δ = 1ms. For

example, for task set 4 in DCR which has 679 execution blocks in the hyper-period, our

algorithm gives the solution in 1.5 seconds with δ = 128ms. The energy consumption of

this solution is only 7% worse than the one generated with δ = 1ms, which requires 19

seconds of execution time.

Variable Overhead Aware Effect For both DVS and DCR, we compare two different

versions of our algorithm: one is aware of variable reconfiguration overhead and the other

assumes constant overhead (which is the average of all variable overhead values). For

DVS, the variable overhead matrix is generated so that each value depends on and is in

166

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

1 ms 2 ms 4 ms 8 ms 16 ms32 ms64 ms 128
msTime Discretization Gap

(Task Set 1)

Energy
Runtime

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

1 ms 2 ms 4 ms 8 ms 16 ms32 ms64 ms 128
msTime Discretization Gap

(Task Set 2)

Energy
Runtime

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

1 µs 2 µs 4 µs 8 µs 16 µs 32 µs 64 µs 128
µsTime Discretization Gap

(Task Set 3)

Energy
Runtime

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

1 ms 2 ms 4 ms 8 ms 16 ms32 ms64 ms 128
msTime Discretization Gap

(Task Set 4)

Energy
Runtime

Figure 5-21. Time discretization effect for DCR.

proportion to how much voltage/frequency is increased or decreased. For DCR, the matrix

is similarly generated except that the overhead for tuning the cache capacity from one

level to another is 10 times larger than tuning the line size and associativity. Therefore,

the actual overhead is the sum of all three cache parameters.

First we show how the amount of overhead affect the design quality in DVS. We

vary the average of the variable energy overhead from 5% to 30% of the average of all

block’s energy consumption. Figure 5-23 shows the result averaged over all task sets.

Clearly, variable overhead awareness brings more benefit when the amount of overhead

is larger. Figure 5-24 demonstrates that effectively utilize the variable overhead can lead

to substantial energy saving improvements for all task sets in DCR. Same observation

can be made for DVS scenario. However, variable overhead awareness in DCR can

lead to averagely 10% more energy savings than in DVS, which is because the size and

167

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

1 ms 2 ms 4 ms 8 ms 16 ms32 ms64 ms 128
msTime Discretization Gap

(Task Set 1)

Energy
Runtime

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

1 ms 2 ms 4 ms 8 ms 16 ms32 ms64 ms 128
msTime Discretization Gap

(Task Set 2)

Energy
Runtime

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

1 ms 2 ms 4 ms 8 ms 16 ms32 ms64 ms 128
msTime Discretization Gap

(Task Set 3)

Energy
Runtime

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

1 ms 2 ms 4 ms 8 ms 16 ms32 ms64 ms 128
msTime Discretization Gap

(Task Set 4)

Energy
Runtime

Figure 5-22. Time discretization effect for DVS.

variability of DCR’s design space is much larger than DVS. Note that although DVS

and DCR are used as the examples here, our approach is generally applicable to any

kind of optimization problem based on reconfiguration – where the actual overhead of

reconfiguration could be substantial.

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

5% 10% 15% 20% 25% 30%

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Average Energy Overhead Percentage

Variable Overhead

Constant Overhead

Figure 5-23. Variable overhead aware effect in DVS.

168

89000
90000
91000
92000
93000
94000
95000
96000
97000
98000
99000

100000

1 ms 2 ms 4 ms 8 ms

En
e

rg
y

C
o

n
su

m
p

ti
o

n

Time Discretization Gap
(a) Task Set 1

Variable Overhead Constant Overhead

230000
232000
234000
236000
238000
240000
242000
244000
246000
248000
250000
252000

1 ms 2 ms 4 ms 8 ms

En
e

rg
y

C
o

n
su

m
p

ti
o

n

Time Discretization Gap
(b) Task Set 2

Variable Overhead Constant Overhead

150000
155000
160000
165000
170000
175000
180000
185000
190000
195000
200000

1 µs 2 µs 4 µs 8 µs

En
e

rg
y

C
o

n
su

m
p

ti
o

n

Time Discretization Gap
(c) Task Set 3

Variable Overhead Constant Overhead

100000
110000
120000
130000
140000
150000
160000
170000
180000
190000
200000

1 ms 2 ms 4 ms 8 ms

En
e

rg
y

C
o

n
su

m
p

ti
o

n

Time Discretization Gap
(d) Task Set 4

Variable Overhead Constant Overhead

Figure 5-24. Variable overhead aware effect in DCR.

Approximate Approach Effect We study the performance of the approximate

version of our approach using a 2-D array dynamic programming with respect to the

exact approach using a 3-D array, as discussed in Section 5.3.2. Figure 5-25 (a) and (b)

demonstrate the normalized energy consumption and absolute running time, respectively,

under different δ values considering DCR. It can be observed that the approximate

approach requires only 1 to 1.5% more total energy consumption (averaged over all

task sets) but requires significantly less running time (for task set 1 with utilization of

0.8). However, exact approach is observed to experience relatively less design quality

degradation with larger time discretization (δ).

We also investigate the impact from various reconfiguration overhead on the relative

energy efficiency of the our approximate approach and exact approach. Figure 5-26 shows

the comparison in energy consumption (normalized to the exact approach with δ = 1ms)

using DCR under various cache reconfiguration overhead values. We vary the overhead,

169

0.7
0.71
0.72
0.73
0.74
0.75
0.76
0.77
0.78
0.79

0.8
0.81
0.82
0.83
0.84
0.85

1 ms 2 ms 4 ms 8 ms 16 ms 32 ms 64 ms 128
ms

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Time Discretization Gap

Approximate Approach
Exact Approach

(a)

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

1 ms 2 ms 4 ms 8 ms 16 ms 32 ms 64 ms 128
ms

R
u

n
n

in
g

Ti
m

e
 (

s)

Time Discretization Gap

Approximate Approach
Exact Approach

(b)

Figure 5-25. Comparison of our exact approach and approximate approach: (a) energy
consumption normalized to uniform slowdown heuristic; (b) running time.

both energy and time, for tuning the cache size from one level to its neighboring one (e.g.,

from 4K to 8K or vise versa) as 1%, 2%, 4%, 8%, 12% and 16%8 (as shown in Figure 13

(a), (b), (c), (d), (e) and (f), respectively) of the average consumption of all the blocks.

The overhead matrix is generated as described above.

The important observation here is that when the reconfiguration overhead increases,

the approximate version of our approach consumes more energy than the exact approach.

Specifically, when only 3% differences is observed in Figure 5-26 (c), it becomes as large as

8 In other words, the overhead for changing the line size and associativity is 0.1%, 0.2%,
0.4%, 0.8%, 1.2% and 1.6%, respectively.

170

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1 ms 2 ms 4 ms 8 ms 16 ms 32 ms 64 ms 128
ms

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Time Discretization Gap

Approximate Approach

Exact Approach

(a) 1% overhead

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1 ms 2 ms 4 ms 8 ms 16 ms 32 ms 64 ms 128
ms

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Time Discretization Gap

Approximate Approach

Exact Approach

(b) 2% overhead

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1 ms 2 ms 4 ms 8 ms 16 ms 32 ms 64 ms 128
ms

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Time Discretization Gap

Approximate Approach

Exact Approach

(c) 4% overhead

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1 ms 2 ms 4 ms 8 ms 16 ms 32 ms 64 ms 128
ms

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Time Discretization Gap

Approximate Approach

Exact Approach

(d) 8% overhead

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1 ms 2 ms 4 ms 8 ms 16 ms 32 ms 64 ms 128
ms

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Time Discretization Gap

Approximate Approach

Exact Approach

(e) 12% overhead

1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

1.2

1 ms 2 ms 4 ms 8 ms 16 ms 32 ms 64 ms 128
ms

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Time Discretization Gap

Approximate Approach

Exact Approach

(d) 16% overhead

Figure 5-26. Comparison of our exact approach and approximate approach under various
reconfiguration overhead.

10% when the overhead percentage increases. It is because the approximate approach does

not consider all possible end configuration of the last step (i.e., block) during dynamic

programming process and thus variable overhead is not fully incorporated. Moreover, the

approximate approach also scales worse when δ increases. For example, in Figure 5-26 (d),

171

when δ becomes 128ms, the approximate approach gives a solution with very bad quality

while the exact approach behaves acceptably.

Another interesting observation is that, as shown in Figure 5-25 and 5-26, in certain

scenarios, the exact algorithm with larger δ may have very similar or lower running

time while achieve comparable or even better energy saving than the approximate

approach with smaller δ. For example, in Figure 5-26 (c), the exact approach with

δ = 8ms outperforms the approximate one with δ = 1ms in terms of energy using almost

identical running time. In general, when the overhead is significant, our exact approach is

preferable over the approximate version. However, when the overhead is small or negligible

(e.g., Figure 5-26 (a) and (b)), the approximate approach is more efficient since it can

achieve almost identical energy savings at small δ as the exact approach while requires

significantly short time frame.

5.5 Summary

Leakage power can adversely impact any system energy optimization techniques

including both dynamic voltage scaling and cache reconfiguration. Employing both

DVS and DCR together can lead to greater system energy savings than using them

independently. This chapter presented an efficient approach to integrate DVS and

DCR that is aware of leakage power. Our studies demonstrate that considering only

one optimization aspect (e.g., dynamic energy) or one component (e.g., DVS-capable

processor) can lead to inaccurate conclusion in terms of overall energy, since critical

speed will vary depending on the various components in the system. The proposed

approach focuses on reducing system-wide energy consumption. It also integrates

task procrastination to further save the energy consumption when the system is idle.

Our approach is shown to be superior than both leakage-aware DVS techniques and

leakage-oblivious DVS + DCR techniques.

This chapter also proposed a general algorithm for employing dynamic reconfiguration

in multitasking systems with timing constraints. Our approach has the following

172

advantages. First, it can lead to more energy savings than inter-task manner DVS/DCR

techniques. Secondly, it can effectively take variable reconfiguration overhead into

consideration. Finally, our algorithm can be flexibly parameterized so that only slight

solution quality degradation can be traded for drastically reduced running time requirement.

It is also independent of task characteristics and scheduling policy. Extensive experiments

demonstrates the effectiveness of our approach.

173

CHAPTER 6
TEMPERATURE- AND ENERGY-CONSTRAINED SCHEDULING

Along with the performance improvement in state-of-art microprocessors, power

densities are rising more rapidly due to the fact that feature size scales faster than

voltages [105]. In last five years, though the processor frequency is only improved by 30%,

the power density is more than doubled and expected to reach over 250W/cm2 [26]. Since

energy consumption is converted into heat dissipation, high heat flux increases the on-chip

temperature. The “hot spot” on current microprocessor die, caused by nonuniform peak

power distribution, could reach up to 120◦C [12]. This trend is observed in both desktop

and embedded processors [117] [138].

Thermal increase will lead to reliability and performance degradation since CMOS

carrier mobility is dependent on the operating temperature. High temperature can result

in more frequent transient errors or even permanent damage. Industrial studies have

shown that a small difference in operating temperature (10-15◦C) can make 2 times

difference in the device lifespan [117]. Yeh et al. [131] also estimate that more than half

of the electronic failures are caused by over-heated circuits. Furthermore, leakage power

is exponentially proportional to temperature, which potentially results in more thermal

runaway [124]. Studies also show that cooling cost increases super-linearly with the

thermal dissipation [34].

Since high on-chip thermal dissipation has severe detrimental impact, we have to

control the instantaneous temperature so that it does not go beyond a certain threshold.

Thermal management schemes at all levels of system design are widely studied for

general-purpose systems. However, in the context of embedded systems, traditional

packaging and cooling solutions are not applicable due to the limits on device size and

cost. Moreover, embedded systems normally have limited energy budgets since most

devices are driven by batteries. Multitasking systems with real-time constraints add

another level of difficulty since tasks have to meet their deadlines. Since such systems

174

normally have well-defined functionalities, this multi-objective problem admits design-time

algorithms.

Dynamic voltage scaling (DVS) is acknowledged as one of the most efficient

techniques used in both energy optimization [18] and temperature management [138]. In

existing literatures, temperature (energy)- constrained means there is a temperature

threshold (energy budget) which cannot be exceeded, while temperature (energy)-

aware means there is no constraint but maximum instantaneous temperature (total

energy consumption) needs to be minimized. In this chapter, we propose a formal

method based on model checking for temperature- and energy- constrained (TCEC)

scheduling problems in multitasking systems. We extend the classical timed automata

[2] with notions of task scheduling, voltage scaling, system temperature and energy

consumption. This approach is the first attempt on solving TCEC problem which

is meaningful (especially in embedded systems) and as difficult as other problems

including temperature-constrained (TC) scheduling, temperature-aware (TA) scheduling,

temperature- constrained energy-aware (TCEA) scheduling and energy- constrained

temperature-aware (TAEC) scheduling. A novel contribution of this approach is the

development of a flexible and automatic design flow which models the TCEC problem in

timed automata and solves it using formal verification techniques. Our approach is also

capable of solving other problem variations mentioned above. Furthermore, it is applicable

to a wide variety of system and task characteristics. Runtime voltage scaling overhead and

leakage power consumption can also be easily incorporated.

The rest of this chapter is organized as follows. Section 6.1 presents the related

works in this field. Section 6.2 provides background information on timed automata.

Section 6.3 describes the proposed approach in details. Experimental results are presented

in Section 6.4. Finally Section 6.5 concludes this chapter.

175

6.1 Related Work

Temperature-aware scheduling in real-time systems has drawn significant research

interests in recent years. Wang et al. [118] introduced a simple reactive DVS scheme

aiming at meeting task timing constraints and maintaining processor safe temperature.

Zhang et al. [138] proved the NP-hardness of temperature-constrained performance

optimization problem in real-time systems and proposed an approximation algorithm.

Yuan et al [134] considered both temperature and leakage power impact in DVS problem

for soft real-time systems. Chen et al. [17] explored temperature-aware scheduling for

periodic tasks in both uniprocessor and homogeneous multiprocessor DVS-enabled

platforms. Liu et al. [70] proposed a design-time thermal optimization framework which

is able to solve problem variants EA, TA and TCEA scheduling in embedded system with

task timing constraints. Jayaseelan et al. [46] exploited different task execution orders, in

which each task has distinct power profile, to minimize peak temperature. However, none

of these techniques solves TCEC problem. Moreover, they all make certain assumptions on

system characteristics that limits their applicability.

Timed automata [2] has been widely adapted in real-time system researches.

Norstorm et al. [82] first extended timed automata with a notion of real-time tasks

and showed that the traditional schedulability analysis can be transformed to a decidable

reachability problem in timed automata, which can be solved using model checking tools.

Fersman et al. [27] further generalized [82] with asynchronous processes and preemptive

tasks in continuous-time model. Abdeddäım et al. However, none of these techniques

considered energy or temperature related issues.

There are several studies on dynamic power management (DPM) using formal

verification methods for embedded systems [103] and multiprocessor platforms [71]. Shukla

et al. [103] provided a preliminary study on evaluating DPM schemes using an off-the-shelf

model checker. Lungo et al. [71] tried to incorporate verification of DPM schemes in the

early design stage. They showed that tradeoffs can be made between design quality and

176

verification efforts. None of these approaches considers temperature management in such

systems. Moreover, they did not account for energy and timing constraints, which makes

our methodology different from theirs.

6.2 Background

A classical timed automaton [2] is a finite-state automaton extended with notion

of time. A set of clock variables are associated with each timed automaton and elapse

uniformly with time in each state (i.e., location). Transitions (i.e., edges) are performed

instantaneously from one state to another. Each transition is labeled with a set of guards

which are Boolean constraints on clock variables and must be satisfied in order to trigger

the transition. Transitions also have a subset of clock variables that need to be reset by

taking the transition. Formally, we can define it as follows:

Definition 5. A timed automaton A over clock set C, state set S and transition set

T is a tuple {S, C, T , s0} where s0 is the initial state. Transition set is represented as

T ⊆ S × Φ(C) × 2C × S, where each element φ in clock constraint (guard) set Φ(C) is

a conjunction of simple conditions on clocks (φ := c 6 t | t 6 c | ¬φ | φ1 ∧ φ2 where

c ∈ C, t ∈ R). 2C represents the subset of clock variables that will be reset in each transition

and we term it as ρ.

Semantically, the current configuration of a timed automaton A is decided by a state

s ∈ S and the clock valuations V in the form of C → R+

⋃
{0}. Therefore, a legal

execution of A consists of a sequence of transitions:

(s0,V0)
φ,ρ−→ (s1,V1)

φ,ρ−→ · · · φ,ρ−→ (sn,Vn) (6–1)

6.3 TCEC Scheduling Approach

6.3.1 Overview

Figure 6-1 illustrates the workflow of our approach. The task information describes

the characteristics of the tasks running in the system and is fed into the scheduler along

with the scheduling policy. Any scheduling algorithm is applicable in our approach. The

177

scheduler executes the task set under the highest voltage level and produces a trace

of execution blocks. Here, an execution block is defined as a piece of task execution

in a continuous period of time under a single processor voltage/frequency level. Each

execution block is essentially a whole task instance in non-preemptive systems. However,

in preemptive scheduling, tasks could be preempted during execution hence one block

can be a segment of one task. The scheduler records runtime information for each

block including its corresponding task, required workload, arrival time and deadline, if

applicable.

Task Information

System

Specification

Scheduling Policy

Timed Automata

Description

Temperature/

Power Model

Properties

Result + Solution Trace

Task Execution

Trace

Temperature/

Energy

Constraints

Scheduler

Timed Automata

Generator (TAG)

Problem

Solving Driver
Model Checker

Figure 6-1. Workflow of our model checking approach.

The task execution trace, along with system specification (processor voltage/frequency

levels), thermal/power models and design objective (not shown in Figure 6-1), are fed

into the timed automata generator (TAG) that we have developed. Here the design

objective decides the nature of the problem, e.g. TCEC. TAG generates two important

outputs. One is the description of our timed automata model, which will be discussed in

178

Section 6.3.2, and the other one contains the properties reflecting the design objectives.

We use a script based program to drive the model checker to solve the problem. Finally,

the results and/or solutions are collected. Our methodology is flexible, completely

automatic, based on formal technique and hence suitable in early design stages.

6.3.2 Modeling with Extended Timed Automata

Our approach scales the processor voltage level on the granularity of each execution

block. In other words, the frequency level is changed at the beginning of each execution

block. This strategy can lead to more flexible energy and temperature management

in preemptive systems since decisions are made upon a finer granularity compared to

inter-task manner [138]. We utilize timed automata to model the voltage scaling problem

in the execution trace and extend the original automata with notions of temperature and

energy consumption. Our model supports both scenarios in which task set has a common

deadline and each task has its own deadline. For ease of discussion, the terms of task, job

and execution block refer to the same entity in the rest of this chapter.

Task set with common deadline: TAG is given a trace of n execution blocks

B{b1, b2, ..., bn}. If tasks are assumed to have the same power profile (i.e. α is constant),

the energy consumption and execution time for bi under voltage level vk ∈ V , denoted

by eki and tki respectively, can be calculated based on the given processor model.

Otherwise, they can be collected through static profiling by executing each task under

every voltage level. Let ψvi,vj and ωvi,vj denote runtime energy and time overhead,

respectively, for scaling from voltage vi to vj. Since power is constant during a execution

block, temperature is monotonically either increasing or decreasing [46]. We denote

Ti as the final temperature of bi. If the task set has a common deadline D, the safe

temperature threshold is Tmax and the energy budget is E , TCEC scheduling problem can

179

be represented as finding a voltage assignment K{k1, k2, ..., kn}1 such that:

n∑
i=1

(ekii + ψvki−1
,vki

) 6 E (6–2)

Ti 6 Tmax,∀i ∈ [1, n] (6–3)

n∑
i=1

(tkii + ωvki−1
,vki

) 6 D (6–4)

where Ti is calculated based on Equation (2–17). Here Equation (6–2), (6–3) and (6–4)

denote the energy, temperature and common deadline constraints, respectively.

For illustration, an extended timed automata A generated by TAG is shown in

Figure 6-2 assuming that there are three tasks and two voltage levels. Generally, we use l

states for each task, forming disjoint sets (horizontal levels of nodes in Figure 6-2) among

tasks, to represent different voltage selections. We also specify an error state which is

reached whenever there is deadline miss. There are also a source state and a destination

state denoting the beginning and the end of the task execution. Therefore, there are

totally (n · l + 4) states. There is a transition from every state of one task to every state

of its next task. In other words, the states in neighboring disjoint sets are fully connected.

There are also transitions from every task state to the error state. All the states of the last

task have transitions to the end state.

The system temperature and cumulative energy consumption are represented by

two global variables, named T and E, respectively. The execution time for every task

under each voltage level is pre-calculated and stored in a global array c[]. The common

deadline D is stored in variable deadline. Constants such as processor power values,

thermal capacitance/resistance, ambient temperature and initial temperature are stored

in respective variables. There are two clock variables, time and exec, which represent the

1 ki denote the index of the processor voltage level assigned to bi.

180

global system time and the local timer for task execution, respectively. The time variable

is never reset and elapses uniformly in every state. Both clock variables are initially set to

0.

The transition from the source state carries a function initialization() which contains

updates to initialize all the variables and constants. Each state is associated with an

invariant condition, in the form of exec 6 c[], which must be satisfied when the state

is active. This invariant represents the fact that the task is still under execution. Each

transition between task states carries a pair of guard: time 6 deadline && exec == c[].

The former one ensures that the deadline is observed and the latter one actually triggers

the transition, reflecting the fact that the current task has finished execution. Note that

the overhead can be incorporated here since we know the start and end voltage level, if

they are different. Each transition is also labeled with three important updates. The first

one, T = calcTemperature(P [], T, c[]), basically updates the current system temperature

after execution of one task based on the previous temperature, average power consumption

and the task’s execution time. The second one, E = calcEnergy(P [], c[]), adds the energy

consumed by last task to E. The third update resets clock exec to 0. All the transitions

to the error state are labeled with a guard in the form of time > deadline, which triggers

the transition whenever the deadline is missed during task execution. Note that not all the

transition labels are shown in Figure 6-2.

The extended timed automata’s current configuration is decided by valuations of

clock variables (time and exec) and global variables (T and E). Therefore, the system

execution now is transformed into a sequence of states from the source state to the

destination state2 . The sequence consists of one and only one state from each disjoint

set which represents a task. Solving the TCEC problem as formulated above is equal

to finding such a sequence with the following properties. First, the final state is the

2 The sequence of states follows the same characteristics of Equation (6–1).

181

TASK1V1

exec≤c[0]

TASK1V2

exec≤c[1]

TASK2V1

exec≤c[2]

TASK3V1

exec≤c[4]

TASK2V2

exec≤c[3]

TASK3V2

exec≤c[5]

initialization()

time>deadline

time>deadline

END

BEGIN
Task execution transition

Deadline miss transition

ERROR

time≤deadline && exec==c[0]

T=calcTemperature(P[0],T,c[0]),

E=calcEnergy(P[0],c[0]),

exec=0

time≤deadline && exec==c[2]

T=calcTemperature(P[0],T,c[2]),

E=calcEnergy(P[0],c[2]),

exec=0

Figure 6-2. TCEC problem modeled in extended timed automata.

destination state which guarantees the deadline constraint. Next, the temperature T is

always below Tmax in every state. Finally, the energy consumption E is no larger than E .

We can write this requirement as a property in computation tree logic (CTL) [23] as:

EG((T < Tmax ∧ E < E) U A.end) (6–5)

where A.end means the destination state is reached. Now, we can use the model checker

to verify this property and, if satisfied, the witness trace it produces is exactly the TCEC

scheduling that we want.

However, it is possible that the model checker’s property description language does

not support the operator of “until” (U), e.g. UPPAAL [7]. In that case, we can add two

Boolean variables, isTSafe and isESafe, to denote whether T and E are currently below

the constraints. These two Boolean variables are updated in functions calcTemperature()

and calcEnergy(), respectively, whenever a transition is performed. Once the corresponding

182

constraint is violated, they are set to false. We can express our requirement in CTL as:

EF(isTSafe ∧ isESafe ∧ A.end) (6–6)

Note that in the timed CTL that UPPAAL uses, the above property can be written

as follows, where Proc represents the timed automata A, which is called a “Process” in

UPPAAL.

E <> (Proc.End and Proc.isTSafe and Proc.isESafe) (6–7)

Task set with individual deadlines: In the scenario where each task has its own

deadline, e.g. periodic tasks, we have to make sure the execution blocks finish no later

than their corresponding task’s deadline. A global array, d[], is used to store the deadline

constraints of each execution block. If not applicable, i.e. the block does not end that task

instance, its entry in d[] is set to −1. Therefore, instead of Equation (6–4), we have:

i∑
j=1

(t
kj
j + ωvkj−1

,vkj
) 6 d[i], ∀d[i] > 0 (6–8)

Figure 6-3 shows part of the new timed automata. The difference lies in the guard of

transitions. Instead of time 6 deadline, the guard for transitions between task states is in

the form of ((d[] > 0 && time 6 d[]) || d[] < 0). The transition from task state to error

state now carries a guard of (d[] > 0 && time > d[]).

TASK1V1

exec≤c[0]

TASK2V1

exec≤c[2]

((d[0]>0 && time≤d[0]) || d[0]<0)

&& exec==c[0]

T=calcTemperature(P[0],T,c[0]),

E=calcEnergy(P[0],c[0]),

exec=0

d[0]>0 && time>d[0]

ERROR

Figure 6-3. Problem modeling when every task has own deadline (partial graph).

183

6.3.3 Problem Variants

Our approach is also applicable to other problem variants by modifying the property

and making suitable changes to invocation of the model checker.

TC: Temperature-constrained scheduling problem is a simplified version of TCEC.

It only needs to ensure that the maximum instantaneous temperature is always below the

threshold Tmax. Therefore, the property can be written in CTL as:

EG(T < Tmax U A.end) (6–9)

TA: To find a schedule so that the maximum temperature is minimized, we can

employ a binary search over the temperature value range. Each iteration invokes the

model checker to test the property (6–9) parameterized with current temperature

constraint Tmax. Initially, Tmax is set to the mid-value of the range. If the property is

unsatisfied, we search in the range of values larger than Tmax in the next iteration. If

the property is satisfied, we continue to search in the range of values lower than Tmax to

further explore better results. This process continues until the lower bound is larger than

the upper bound. The minimum Tmax and associated schedule, which makes the property

satisfiable during the search, is the result. Note that the temperature value range for

microprocessors is small in practice, e.g. [30◦C, 120◦C]. Hence, the number of iterations is

typically no more than 7.

TAEC: TAEC has the same objective as TA except that there is an energy budget

constraint. Therefore, we can solve the problem by using property (6–5) during the binary

search.

TCEA: TCEA can be solved using the same method as TAEC except that the

binary search is carried on energy values and temperature acts as a constant constraint.

Since energy normally has a much larger value range, to improve the efficiency, we can

discretize energy value to make trade-off between solution quality and design time. Since

184

the number of iterations has a logarithmic relationship with the length of energy value

range, only moderate discretization is enough.

6.4 Experiments

6.4.1 Experiments Setup

We evaluate our approach assuming a StrongARM processor [74] as described in

Section 4.4.1.1. We use synthetic task sets which are randomly generated with each of

them having execution time in the range of 100 - 500 milliseconds. These are suitable

and practical sizes to reflect variations in temperature, and millisecond is a reasonable

time unit granularity [138]. We adopt the thermal resistance (R) and thermal capacitance

(C) values from [46], which are 1.83◦C/Watt and 112.2mJoules/◦C, respectively. The

ambient temperature and initial temperature of the processor are set to 32◦C and 60◦C,

respectively. The scheduler and TAG shown in Figure 6-1 are both implemented in C++.

6.4.2 Results

6.4.2.1 Solving TCEC Problems

Table 6-1 shows the results on task sets with different number of blocks and

constraints. The first and the second column are the index and number of blocks of

each task set, respectively. The next three columns present the temperature constraint

(TC, in ◦C), energy constraint (EC, in mJ), and deadlines (DL, in ms) to be checked on

the model. The sixth column indicates wether the there exists a schedule which satisfies

all the constraints. The last three columns give the actual maximum temperature (AT),

total energy cost (AE), and time required to finish all blocks (AD) using the schedule

found by the model checker (UPPAAL). It can be observed that our approach can find the

solution (if exists) which satisfied all the constraints.

6.4.2.2 Running Time Variations

We have studied the impact of constraint variations on the running time required

by UPPAAL. To achieve this, we measure the model checking time using task set 2 with

185

Table 6-1. TCEC results on different task sets

TS #Blk TC EC DL Found? AT AE AD

1 10
85 180000 7000 Y 77 171612 6865
85 150000 8000 Y 77 149623 7966
80 140000 8000 N

2 12
85 70000 2500 Y 79 66375 2499
85 60000 2700 Y 76 59911 2667
80 60000 2500 N

3 14
90 90000 2600 Y 90 81287 2540
85 80000 2800 Y 79 71649 2702
90 80000 2700 N

two constraints kept constant while let the third one vary (TC, EC and DL). Figure 6-4

summarizes the results.

S S S

0

5

10

15

20

25

6500 6550 6600 6650 6700 6750

R
u

n
n

in
g

Ti
m

e
 (

s)

Energy Constraint
(a)

S S
S

S

0

5

10

15

20

25

80 82 84 86 88 90 92

R
u

n
n

in
g

Ti
m

e
 (

s)

Temperature Constraint
(b)

S
S

S

0

5

10

15

20

25

30

2450 2460 2470 2480 2490 2500 2510

R
u

n
n

in
g

Ti
m

e
 (

s)

Deadline Constraint
(c)

0

50

100

150

200

250

300

350

2 3 4 5

R
u

n
n

in
g

Ti
m

e
 (

s)

Number of Voltage Levels
(d)

Figure 6-4. Running time with different constraints.

For energy constraint (Figure 6-4(a)) and temperature constraint (Figure 6-4(b)),

we can observe that time requirement are not notably affected by the variation of these

constraints. In general, it takes more time when the constraint can be satisfied (labeled

“S” in Figure 6-4). When the constraint goes below or beyond the range shown in

186

Figure 6-4, the running time remains the same or slightly decreases in both cases because

the constraint will either be easily falsified or no longer limit the search space, respectively.

However, for the deadline constraint (Figure 6-4(c)), our experimental results show that

the running time requirement will increase with the deadline, because larger time budget

yields a larger solution search space for the model checker. We have also investigated the

relation between the number of voltage levels and the time required for model checking.

As shown in Figure 6-4(d), model checker’s running time grows rapidly when more voltage

levels are employed. This is due to the exponential growth of the search space.

6.5 Summary

This chapter proposed a model checking approach for temperature and energy-constrained

scheduling problem in multitasking systems based on processor voltage scaling. We

modeled the problem using extended timed automata which is solved by a model checker.

We proposed a flexible and automatic framework which makes our approach applicable to

temperature or energy-constrained problem as well as other variants and independent of

any system characteristic. Extensive experimental results demonstrate the effectiveness of

our approach.

187

CHAPTER 7
ENERGY OPTIMIZATION OF CACHE HIERARCHY IN MULTICORE SYSTEMS

Computation using single-core processors has hit the power wall on its way of

performance improvement. Chip multiprocessor (CMP) architectures, which integrates

multiple processing units on a single chip, have been widely adopted by major vendors

like Intel, AMD, IBM and ARM in both general-purpose computers (e.g., [43]) as well

as embedded systems (e.g., [3] [77]). Multicore processors are able to run multiple

threads in parallel at lower power dissipation per unit of performance. Despite the

inherent advantages, energy conservation is still a primary concern in multicore system

optimization. While power consumption is a key concern in designing any computing

devices, energy efficiency is especially critical for embedded systems. Real-time systems

that run applications with timing constraints require unique considerations. Due to

the ever growing demands for parallel computing, multicore processors are commonly

employed in real-time systems [129] [123].

As discussed in Chapter 3 and 5, the prevalence of on-chip cache hierarchy has made

it a significant contributor of the overall system energy consumption. For uniprocessor

systems, DCR is an effective technique for cache energy reduction by tuning the

cache configuration at runtime. For multicore systems, L2 cache typically acts as a

shared resource. Recent research has showed that shared on-chip cache may become a

performance bottleneck for CMP systems because of contentions among parallel running

tasks [92] [56]. To alleviate this problem, cache partitioning (CP) techniques judiciously

partition the shared cache and maps a designated part of the cache to each core. CP is

designed at the aim of performance improvement [90], inter-task interference elimination

[92], thread-wise fairness optimization [61], off-chip memory bandwidth minimization [132]

and energy consumption reduction [93].

In this chapter, we present novel energy optimization techniques which efficiently

integrate cache partitioning and dynamic reconfiguration in multicore architectures. Tasks

188

with timing constraints are considered in our approach. To the best of our knowledge,

this is the first work that employs DCR and CP simultaneously. Our contributions can be

summarized as:

1. We find that DCR in L1 caches has great impact on decisions of CP in shared

L2 and vice versa. Moreover, both DCR and CP play important roles in energy

conservation.

2. Our approach can minimize the cache hierarchy energy consumption while guarantee

all timing constraints.

3. We propose efficient static profiling techniques and algorithms to find beneficial L1

cache configurations and L2 partition factors for each task.

4. Our approach considers multiple tasks on each core thus is more general than

existing CP techniques which assume only one application per core [56] [93] [132].

5. We study both fixed and varying CP scheme along with DCR for multicore

architectures.

6. We also study the effect on design quality from different deadline constraints, task

mappings and gated-Vdd cache lines.

The remaining part of this chapter is organized as follows. Related works are

discussed in Section 7.1. Section 7.2 describes the architecture model and motivation of

our work. Section 7.3 presents our approach for CMPs in detail, followed by experimental

results in Section 7.4. Finally, Section 7.5 concludes this chapter.

7.1 Related Work

Cache partitioning techniques are widely studied for various design objectives for

multicore processors. Initially, majority of them focused on reducing cache miss rate

to improve performance. Suh et al. [109] utilized hardware counters to gather runtime

information which is used to partition the shared cache through the replacement unit.

Qureshi et al. [90] proposed a low-overhead CP technique based on online monitoring and

cache utilization of each application. Kim et al. [61] focused on fair cache sharing using

189

both dynamic and static partitioning. Recently, CP is employed for low-power system

designs. Reddy et al. [92] [93] showed that, by eliminating inter-task cache interferences,

both dynamic and leakage energy can be saved. Bank structure aware CP in CMP

platforms is studied in [56]. Yu et al. [132] targeted at minimizing off-chip bandwidth

through off-line profiling. Lin et al. [68] verified the effectiveness of CP in real systems.

Meanwhile, CP is also beneficial for real-time systems to improve worst-case execution

time (WCET) analysis, system predictability and cache utilization [13] [93]. Nevertheless,

existing CP techniques only focus on shared L2 cache and ignore the impact as well as the

optimization opportunities from private L1 caches.

7.2 Background and Motivation

In this section, we show important features of the underlying architecture. We also

present an illustrative example to motivate the need and usefulness of our approach.

7.2.1 Architecture Model

Figure 7-1 illustrates a typical CMP platform with private L1 caches (IL1 and DL1)

in each core and a shared on-chip L2 cache. Here, both instruction L1 and data L1 cache

associated with each core are highly reconfigurable in terms of total capacity, line size and

associativity as discussed in Section 3.1.2.

IL1

L2 Cache

Core

1

DL1

IL1

Core

2

DL1

IL1

Core

3

DL1

……
IL1

Core

m

DL1

To Memory

Figure 7-1. Typical multicore architecture with shared L2 cache.

190

Unlike traditional LRU replacement policy which implicitly partitions each cache

set on a demand basis, we use a way-based partitioning in the shared cache [98]. As

shown in Figure 7-2, each L2 cache set (here with a 8-way associativity) is partitioned in

the granularity of ways. Each core is assigned a group of ways and will only access that

portion in all cache sets. LRU replacement is enforced in each individual group which is

achieved by maintaining separate sets of “age bit”. It is also possible to divide the cache

by sets (set-based partitioning) in which each core is assigned a number of sets and each

set retains full associativity [132]. However, since real-time embedded systems usually have

small number of cores, way-based partitioning is beneficial enough for exploiting energy

efficiency. We refer the number of ways assigned to each core as its partition factor. For

example, the L2 partition factor for Core 1 in Figure 7-2 is 3.

Core 1 Core 2 Core 3 Core 4

8 ways in one cache set

Figure 7-2. Way-based cache partitioning example (four cores with a 8-way associative
shared cache).

In this work, we use static cache partitioning. In other words, L2 partitioning scheme

for each core are pre-determined during design time and remain the same throughout the

system execution. Dynamic partitioning [90] requires online monitoring, runtime analysis

and sophisticated OS support thus is not feasible for embedded systems. Furthermore,

real-time systems normally have highly deterministic characteristics (e.g., task release

time, deadline, input) which make off-line analysis most suitable [89]. By static profiling,

we can potentially search much larger design space and thus achieve better optimization

results.

191

7.2.2 Motivation

Figure 7-3 shows the number of L2 cache misses and instruction per cycle (IPC) for

two benchmarks (qsort from MiBench [35] and vpr from SPEC CPU2000 [107]) under

different L2 cache partition factors p (with a 8-way associative L2 cache) and randomly

chosen four L1 cache configurations1 . Unallocated L2 cache ways remain idle. We observe

that changing L1 cache configuration will lead to different number of L2 cache misses. It

is expected because L1 cache configuration determines the number of L2 accesses. System

performance (i.e., IPC) is also largely affected by L1 configurations. Notice that for larger

partition factors (e.g., 7), the difference in L2 misses is negligible but IPC shows great

diversity. It is because not only L2 partitioning but also L1 configurations determine the

performance.

It is also interesting to see that vpr shows larger variances at the same L2 partition

factor than qsort. For example, the number of L2 cache misses becomes almost identical

(although there is times of differences in the number of L2 accesses) at p = 4 for qsort

while it starts to converge for vpr only after p = 6. The reason behind this is that, for

qsort, there are almost only compulsory misses for p > 4. In other words, p = 4 is a

sufficient L2 partition factor for qsort in terms of performance. However, increasing p and

reducing number of accesses continue to bring benefit for vpr as shown in Figure 7-3(c)

due to the fact that vpr has more capacity and conflict misses.

Given the above observations, we see that L1 DCR has major impact on L2 CP and

there are interesting trade-offs that can be explored for optimizations. Therefore, both

DCR and CP should be exploited simultaneously for energy conservation in real-time

multicore systems. Our experimental results in Section 7.4.2.1 confirms our conjecture.

1 Here c18 and c9, for example, stands for the 18th and 9th configuration for IL1 and
DL1, respectively.

192

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

1 2 3 4 5 6 7

L
2
C
a
ch

e
M
is
se
s
(1
0
6
)

L2 Partition Factor

c18, c9c9, c7c5, c2c1, c2

(a) qsort (L2 misses)

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

1 2 3 4 5 6 7

IP
C

L2 Partition Factor
(b) qsort (IPC)

0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

1 2 3 4 5 6 7

L
2
C
a
ch

e
M
is
se
s
(1
0
6
)

L2 Partition Factor

c16, c12c8, c14c10, c13c2, c3

(c) vpr (L2 misses)

.05

.10

.15

.20

.25

.30

.35

.40

.45

.50

1 2 3 4 5 6 7

IP
C

L2 Partition Factor
(d) vpr (IPC)

Figure 7-3. L1 DCR impact on L2 CP in performance.

7.3 Dynamic Cache Reconfiguration and Partitioning

In this section, we first formulate our energy optimization problem based on

performing dynamic reconfiguration of private L1 caches and static partitioning of

shared L2 cache (DCR + CP). Next, we present our static profiling strategy. Our dynamic

programming based algorithm which utilizes the static profiling information is then

described in detail. Next we investigate the effects of task mapping to different cores.

Then we explore the effectiveness of employing dynamic cache partitioning. Finally, we

study the benefit of using Gated-Vdd shared cache lines.

7.3.1 Problem Formulation

The multicore system we consider here can be modeled as:

• A multicore processor with m cores P{p1, p2, ..., pm}.

• Each core has reconfigurable IL1 and DL1 caches both of which supports h different

configurations C{c1, c2, ..., ch}.

193

• A α-way associative shared L2 cache with way-based partitioning enabled.

• A set of n independent tasks T {τ1, τ2, ..., τn} with a common deadline D2 .

Suppose we are given:

• A task mapping M : T → P in which tasks are mapped to each core. Let ρk denotes

the number of tasks on pk.

• A L1 cache configuration assignment R : CI , CD → T in which one IL1 and one DL1

configuration are assigned to each task.

• A L2 cache partitioning scheme P{f1, f2, ..., fm} in which core pi ∈ P is allocated fi

ways.

• Task τk,i ∈ T (ith task on core pk) has execution time of tk,i(M ,R,P). Let

EL1(M ,R,P) and EL2(M ,R,P) denote the total energy consumption of all the L1

caches and the shared L2 cache, respectively.

Our goal is to find M , R and P such that the overall energy consumption E of the

cache subsystem:

E = EL1(M ,R,P) + EL2(M ,R,P) (7–1)

is minimized subject to:

max(

ρk∑
i=1

tk,i(M ,R,P)) 6 D , ∀k ∈ [1,m] (7–2)

m∑
i=1

fi = α ; fi > 1 , ∀i ∈ [1,m] (7–3)

Equation (7–2) guarantees that all the tasks in T are finished by the deadline D.

Equation (7–3) ensures that the L2 partitioning P is valid.

2 Our approach can be easily extended for individual deadlines.

194

7.3.2 Static Profiling

For the time being, we assume that the task mapping M is given (we will discuss

more about it in Section 7.3.4). A reasonable task mapping would be a bin packing of the

tasks using their base case execution time to all the m cores so that the total execution

time in each core is similar. Here the base case execution time refers to the time one

task takes in the system where L1 cache reconfiguration is not applied (using the base

configuration) and L2 cache is evenly partitioned. Theoretically, we can simply profile

the entire task set T under all possible combinations of R and P . Unfortunately, this

exhaustive exploration is not feasible due to its excessive simulation time requirement.

Similarly as in Chapter 3, in this work, the reconfigurable L1 cache contains four banks

each of which is 1 KB. Therefore, it offers total capacities of 1 KB, 2KB and 4 KB. Line

size can be tuned from 16 to 64 bytes and each set supports 1-way, 2-way and 4-way

associativity. There are total h = 18 different configurations. Even if we have four cores

with only two tasks each core and a 8-way associative L2 cache, the total number of

multicore architectural simulations will be ((182)2)4 × 35. To be specific, 182 denotes

the IL1 and DL1 cache configurations for each task. (182)2 presents all possible L1

cache combinations of the two tasks in each core. Upon that, (182)2)4 denotes all the

combinations across four cores. According to Equation (7–3), the size3 of P (|P |) equals

35. Obviously, this simulation time is even longer than the age of the universe if each

simulation takes only 1 minute.

This problem can be greatly relieved by exploiting the independence of the design

space’s each dimension. We observe that each task can actually be profiled individually.

It is because the tasks that we consider do not have application-specific interactions (e.g.,

data sharing) except the contention for the shared cache resource. Essentially, using L2

cache partitioning, each core pi is running equivalently on a uniprocessor with fi-way

3 The size of P can be calculated as Cm
α−1.

195

associative L2 cache (i.e., the capacity is fi/α of the original). L1 cache activities are

private at each core while L2 activities happen independently in each core’s partition.

Therefore, we simulate each task in T independently under all combinations of L1 cache

configurations and L2 cache partition factors (from 1 to α − 1). In other words, the total

number of single-core simulations equals to h2 · (α− 1) · n. Using the same example above,

with 8 tasks, it is (182)× 7× 8. Note that this profiling process is independent of the task

mapping M and the number of cores m. Apparently, it will take only reasonable profiling

time (e.g., at most three days).

7.3.3 DCR + CP Algorithm

Static profiling results are used to generate profile tables for each task. Each entry in

the profile table records the cache energy consumption, for both L1 and the L2 partition,

as well as the execution time of that task. The dynamic energy of L2 cache is computed

using Equation (2–2) based on the statistics (accesses) from the core to which the task

is assigned. The static energy, however, is estimated by treating the allocated ways as a

standalone cache. There are h2 · (α− 1) entries in every profile table. For task τk,i ∈ T (ith

task on core pk), let ek,i(h1, h2, fk) denote the total cache energy consumption if task τk,i

is executed with (IL1,DL1) configurations (ch1 , ch2) and L2 partition factor fk. Similarly,

let tk,j(h1, h2, fk) denote the execution time. Our problem now can be presented as to

minimize:

E =
m∑
k=1

ρk∑
i=1

ek,i(h1, h2, fk) (7–4)

subject to:

max(

ρk∑
i=1

tk,i(h1, h2, fk)) 6 D , ∀k ∈ [1,m] (7–5)

m∑
i=1

fi = α ; fi > 1 , ∀i ∈ [1,m] (7–6)

196

Our algorithm consists of two steps. Since static partitioning is used, all the tasks

on each core share the same L2 partition factor fk. This fact gives us an opportunity

to simplify our algorithm without losing any precision. In the first step, we find the

optimal L1 cache assignments for the tasks on each core separately under all L2 partition

factors. Specifically, we find R to minimize Ek(fk) =
∑ρk

i=1 ek,i(c1, c2, fk) constrained by∑ρk
i=1 tk,i(c1, c2, fk) 6 D with k and fk fixed for ∀pk ∈ P and ∀fk ∈ [1, α − 1]. This step

(sub-problem) is illustrated in Figure 7-4 for pm with fm = 2. Similar to the uniprocessor

DVS problem in Section 4.2.2, each instance of this sub-problem can be reduced from the

multiple-choice knapsack problem (MCKP) and thus is NP-hard.

…
…

𝜏1,1

𝜏1,2

𝜏1,𝜌1

…
…

𝜏2,1

𝜏2,2

𝜏2,𝜌2

…
…

𝜏𝑚,1

𝜏𝑚,2

𝜏𝑚,𝜌𝑚

……

α

ℎ2

𝑓𝑚 = 2

𝐸𝑚
∗ (2)

∑ 𝐸𝑘
∗(𝑓𝑘)

𝑚

𝑘=1

……

Figure 7-4. Illustration of our algorithm.

Since the subproblem size (measured by h2, ρk) and the embedded application size

(measured by energy value) are typically small, a dynamic programming algorithm can

find the optimal solution quite efficiently as follows. Let emaxk (fk) and emink (fk) be defined

as
∑ρk

i=1max{ek,i(h1, h2, fk)} and
∑ρk

i=1min{ek,i(h1, h2, fk)}, respectively. Hence, Ek(fk)

197

is bounded by [emink (fk), e
max
k (fk)]. In order to guarantee the timing constraint, the energy

value is discretized in our dynamic programming algorithm. Let SEk
j denote the partial

solution for the first j tasks which has an accumulative energy consumption equal to Ek

while the execution time is minimized. We create a two-dimensional table T in which

each element T [j][Ek] stores the execution time of SEk
j . The recursive relation for dynamic

programming thus is:

T [j][Ek] = min
h1,h2∈[1,h]

{T [j − 1][Ek − ek,i(h1, h2, fk)] + tk,i(h1, h2, fk)} (7–7)

Initially, all entries in T store some value larger than D. Based on the above

recursion, we fill up the table T [j][Ek] in a row by row manner for all energy values in

[emink (fk), e
max
k (fk)]. During the process, all previous i − 1 rows are filled when the ith row

is being calculated. Finally, the optimal energy consumption E∗k(fk) is found by:

E∗k(fk) = {min Ek | T [ρk][Ek] 6 D} (7–8)

Our algorithm iterates over all tasks in core pk (1 to ρk). During each iteration, all

discretized Ek values and L1 cache configurations (1 to h2) for current task are examined.

Therefore, the time complexity is O(ρk · h2 · (emaxk (fk)− emink (fk))). Note that energy values

(reflected in the last term of the complexity) can always be measured in certain unit so

that they are numerically small to make the dynamic programming efficient. The size of

table T decides the memory requirement, which is ρk ·(emaxk (fk)−emink (fk))·sizeof(element)

bytes. In each entry of T , we can use minimum number of bits to remember the L1

configuration index instead of real execution time values. For calculation purposes, two

two-dimensional arrays are used for temporarily storing time values for current and

previous iterations. The above process is repeated for ∀k ∈ [1,m] and ∀fk ∈ [1, α − 1]4 .

4 If each core has at least one task, this scope can be reduced to ∀fk ∈ [1, α−m+1] since
the minimum partition factor for each core is 1.

198

It is possible that, for some fk, there is no feasible solution for core pk satisfying the

deadline. We mark them as invalid. The results form a new profile table G for each core in

which there are [1, α − 1] entries and each entry stores the corresponding optimal solution

E∗k(fk), as shown in Figure 7-4.

In the second step, the global optimal solution E∗ can be found by calculating the

overall energy consumption for all L2 partitioning schemes in P which complies with

Equation (7–6). Given a partition factor fk for core pk, the optimal energy consumption

E∗k(fk) observing D has been calculated in the first step. Invalid partitioning schemes are

discarded. We have E∗ = min{
∑m

k=1E
∗
k(fk)} for {f1, f2, ..., fm} ∈ P . Therefore, for each

L2 partitioning scheme, the corresponding solution can be found in O(m) time. Since the

size of P is small (e.g., 455 and 4495 for 4 cores with 16-way and 32-way associative L2

cache, respectively), an exhaustive exploration is efficient enough for this step to find the

minimum cache hierarchy energy consumption in O(m · |P |) time. Otherwise, a dynamic

programming algorithm can be used. Note that E∗ is not strictly equal to the actual

energy dissipation since the L2 cache still consumes static power in its entirety after some

cores finish their tasks. Therefore, in our experimental results, we have added this portion

of static energy to make it accurate. If L2 cache lines are powered off in those partitions

using techniques such as cache decay [57] to save static power dissipation, E∗ is already

accurate. Each core along with its private caches are assumed to be turned off after it

finishes execution. Algorithm 11 outlines the major steps in our DCR + CP approach.

7.3.4 Task Mapping

Since static cache partitioning is used in our approach, it is beneficial to map tasks

with similar shared cache demand instead of the simple bin packing method described

in Section 7.3.2 so that the shared cache is partitioned in an advantageous way for most

of the time during execution. In order to characterize this demand, we define optimal

partition factor (fopt), for each benchmark, as the one larger than which the improvement

of overall performance is less than a pre-defined threshold (e.g., 5%). For example, as

199

Algorithm 11: DCR + CP Algorithm.

1: for k = 1 to m do
2: for fk = 1 to α− 1 do
3: for l = emink (fk) to emaxk (fk) do
4: for h1, h2 ∈ [1, h] do
5: if ek,1(h1, h2, fk) == l then
6: if tk,1(h1, h2, fk) < T [1][l] then
7: T [1][l] = tk,1(h1, h2, fk)
8: end if
9: end if

10: end for
11: end for
12: for i = 2 to ρk do
13: for l = emink (fk) to emaxk (fk) do
14: for h1, h2 ∈ [1, h] do
15: last = l − ek,i(h1, h2, fk)
16: if T [i− 1][last] + tk,i(h1, h2, fk) < T [i][l] then
17: T [i][l] = T [i− 1][last] + tk,i(h1, h2, fk)
18: end if
19: end for
20: end for
21: end for
22: E∗k(fk) = min{Ek | T [ρk][Ek] 6 D}
23: end for
24: end for
25: for all P i{f1, f2, ..., fm} ∈ P do
26: E∗i =

∑m
k=1E

∗
k(fk)

27: end for
28: return min{E∗i }

shown in Figure 7-5(a), we can see that fopt for swim benchmark is around 3 since further

increase in partition factor achieves very little performance improvement. Similarly, for

parser benchmark, assigning 5 shared cache ways seems to be adequate thus fopt = 5

for parser. However, gcc (Figure 7-5(b)) requires much larger shared cache resource

since the performance keeps increasing along with the partition factor (i.e., fopt = 7).

As shown in Figure 7-5(d), bitcount is an extreme case in which the performance is not

affected by increasing partition factor. Therefore, its fopt is 1. Our study shows that L1

configuration has minor impact on each benchmark’s optimal partition factor with only

200

minor exceptions. In other words, the performance trend normally remains the same for

different partition factors when DCR is applied. Table 7-1 lists the fopt values for various

benchmarks.

500

540

580

620

660

700

740

780

1 2 3 4 5 6 7

E
x
ec
u
ti
o
n
T
im

e
(m

s)

L2 Partition Factor
(a) swim

300

350

400

450

500

550

600

650

1 2 3 4 5 6 7

E
x
ec
u
ti
o
n
T
im

e
(m

s)

L2 Partition Factor
(b) parser

150

180

210

240

270

300

330

1 2 3 4 5 6 7

E
x
ec
u
ti
o
n
T
im

e
(1
0
m
s)

L2 Partition Factor
(c) gcc

200

240

280

320

360

400

440

480

1 2 3 4 5 6 7

E
x
ec
u
ti
o
n
T
im

e
(m

s)

L2 Partition Factor
(d) bitcount

Figure 7-5. Optimal partition factor variation with L1 caches of 4KB with 2-way
associativity and 32-byte line size.

To illustrate the effect of task mapping in our DCR + CP algorithm, we exhaustively

examine all the task mappings for the first four task sets in Table 7-2 with two tasks per

core (totally 105 possible mappings). Figure 7-6 compares the energy consumption of the

worst and best task mapping schemes for each task set. For task set 2 and 3, there are a

number of task mappings which cannot lead to a valid solution for the given deadline. We

observe 12% - 18% differences between the two scenarios which suggest that task mapping

has non-negligible impact on our DCR + CP approach.

201

Table 7-1. Optimal partition factors for selected benchmarks

Benchmark fopt
basicmath 7

qsort 4

ammp 4

applu 2

vpr 6

bitcount 1

sha 2
CRC32 2

dijkstra 4

toast 1

FFT 7

untoast 2

mgrid 2

lucas 3

mcf 2

gcc 7
parser 5

patricia 2

stringsearch 3

swim 3

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94
0.96
0.98
1.00

1 2 3 4N
o
rm

a
li
ze
d
E
n
er
g
y
C
o
n
su

m
p
ti
o
n

Task Sets

Worst Best

Figure 7-6. Task mapping effect.

Although it does not precisely indicate which partitioning scheme is the best,

the optimal partition factor fopt reflects task’s shared cache requirement which can

heuristically guide our task mapping scheme. Ideally, we should make the total execution

time of all cores (each running multiple tasks) as close as possible. Similarly, we should

also ensure that the optimal partition factors of different tasks (assigned to each core)

should be as close as possible. Experimental results in Section 7.4.2.3 shows that more

energy savings can be achieved by wisely grouping tasks.

202

7.3.5 Varying Cache Partitioning Scheme

Until now, as described in Section 7.3.1, we assume a static L2 cache partitioning

scheme P{f1, f2, ..., fm} which assigns a fixed number of ways to each core (fi for core

pi). As shown in Table 7-1, benchmarks have different preferred partition factor (fopt).

Intuitively, since there are multiple tasks per core, the assigned partition factor may not

be beneficial for every task of that core. For example, as shown in Figure 7-7, the first

task of each core has its fopt value of 2, 1, 6 and 3, respectively. A reasonable partitioning

scheme for them with 8-way L2 cache would be P{1, 1, 4, 2}. However, if the next task

in each core has fopt values of 7, 5, 1 and 2, respectively, P{1, 1, 4, 2} would obviously be

inferior.

We can potentially alleviate this problem by changing the partitioning scheme at

runtime for better energy efficiency and performance. For example in Figure 7-7, we can

change the partitioning scheme to P{3, 3, 1, 1} at some point (i.e., CP point) which better

reflects the requirement of the remaining tasks. It is a major challenge to find when and

how to vary the partitioning scheme at design time.

2

(1)

D

1

(1)
6

(4)

3

(2)

7

(3)

5

(3) 1

(1)

2

(1)

CP

point 𝑓𝑜𝑝𝑡

𝑓𝑖

Core 1 Core 2 Core 3 Core 4

Figure 7-7. Varying partitioning scheme.

We can solve the problem in a similar way as described in Section 7.3.2 and 7.3.3

with the following modifications. Since the change of shared cache partitioning scheme

happens simultaneously for all cores, it is possible that the partition factor changes during

one task’s execution. In order to compute the energy consumption and execution time,

203

we evenly divide each task into a number of checkpoints based on a fixed time interval. In

other words, the distance between two neighboring checkpoints is fixed, say, one million

clock cycles. During static profiling, we record the amount of energy consumed and

execution progress (in dynamic instructions) up to each checkpoint. As a result, in each

task’s profile table, for every L1 cache configuration and L2 partition factor, there are

multiple entries for all checkpoints.

We follow a two-step algorithm, namely DCR + VCP (Varying CP), similar to our

DCR + CP algorithm in Section 7.3.3. At present, we assume a set of CP points is given.

In the first step, we find the optimal L1 cache configurations for the tasks on each core

separately under all local partitioning schemes for that core. Each local partitioning

scheme Fk here consists of one partition factor for every phase defined by the CP points

(e.g., fk = 3 for the first phase from time 0 to the only CP point and fk = 1 from

the CP point to the end). Note that we only change the partition factor at those CP

points. There are (α − 1)λ+1 possible local partitioning schemes5 where α is the L2 cache

associativity and λ is the number of CP points. The dynamic programming algorithm for

this step is modified as follows:

1. We need to compute the actual energy consumption and execution time for each task

given the varying partition factor instead of simply fetching from the profile table.

2. Task’s energy consumption and execution time now depends on its start time since

it determines the moment when the partition factor changes during the task’s

execution. Therefore, for each task τk,i with i ∈ [2, ρk], we iterate all energy values

of its previous task τk,i−1 which gives the end time of τk,i−1 (from row i − 1 of table

T) thus the start time of τk,i. Specifically, line 12 to 21 of Algorithm 11 needs to

be replaced with Algorithm 12. Here, ek,i(h1, h2, Fk, start) and tk,i(h1, h2, Fk, start)

5 Similarly, it could be reduced to (α−m+ 1)λ+1.

204

denote the cache energy consumption and execution time for executing task τk,i

using the L1 configurations, local partitioning scheme and start time.

Algorithm 12: DCR + VCP Algorithm (replaces line 12-21 of Algorithm 11).

1: for i = 2 to ρk do
2: for l = emink (Fk) to emaxk (Fk) do
3: for h1, h2 ∈ [1, h] do
4: start = T [i− 1][l]
5: if start > emaxk (Fk) then
6: continue;
7: end if
8: this = l + ek,i(h1, h2, Fk, start)
9: if T [i− 1][l] + tk,i(h1, h2, Fk, start) < T [i][this] then

10: T [i][this] = T [i− 1][l] + tk,i(h1, h2, Fk, start)
11: end if
12: end for
13: end for
14: end for

The second step remains the same as our DCR + CP algorithm except all possible

global varying partitioning schemes are evaluated. Each phase in a global partitioning

scheme defines a partition factor for each core and complies with Equation (7–6). Clearly,

there are a total of |P |λ+1 such partitioning schemes and the minimum cache hierarchy

energy consumption can be found in O(m · |P |λ+1) time.

Note that there is certain error when we compute tk,i(h1, h2, Fk, start) since the CP

points may not always align with tasks’s checkpoints. As a result, the period between

that pair of checkpoints observes two partition factors: one from the first checkpoint to

the actual CP point and the other is from the actual CP point to the next checkpoint.

We do not have this partial static profiling information since, as described above, we only

record exactly at checkpoints. Therefore, we actually estimate the length of that particular

time period assuming a uniform distribution of execution time and energy consumption

based on the execution progress. However, since the length of the time interval (denoted

by ϕ) between two checkpoints is significantly short compared with the tasks’s length (i.e.,

there are hundreds of checkpoints in each task), the error introduced here can simply be

205

eliminated by setting the deadline D − λ · ϕ. In other words, we make the deadline slightly

more stringent to ensure the solution generated by DCR + VCP actually satisfies the

deadline. This modification is expected to perform at par with the original version since

λ · ϕ is negligible compared with D.

7.3.6 Gated-Vdd Shared Cache Lines

Powell et al. [85] showed that cache leakage power dissipation can be reduced by

gating the supply voltage in unused portions. Cache decay exploits the sleep transistors at

a granularity of individual cache lines [57]. Using this technique, we can switch off some

L2 cache lines in each set whenever it is beneficial. It is especially helpful when the L2

cache has larger total capacity and associativity than what all the cores actually need (i.e.,

the sum of fopt values of concurrent tasks is less than α) given the deadline. Specifically,

the constraint ensuring the validity of P is changed to:

m∑
i=1

fi 6 α ; fi > 1 , ∀i ∈ [1,m] (7–9)

The DCR + CP algorithm remains the same except that the number of all L2

partitioning schemes (the size of P) is increased. For example, |P | becomes 1820 instead

of 455 for 16-way associative L2 cache on a 4-core processor. In other words, the second

step of our algorithm may take longer time but the complexity is still O(m · |P |).

7.4 Experiments

7.4.1 Experimental Setup

To evaluate our approach’s effectiveness, we use 20 benchmarks selected from

MiBench [35] – basicmath, bitcount, CRC32, dijkstra, FFT, patricia, qsort, sha, stringsearch,

toast and untoast – and SPEC CPU 2000 [107] – ammp, applu, gcc, lucas, mcf, parser,

swim, vpr and mgrid. In order to make the size of SPEC benchmarks comparable

with MiBench, we use reduced (but well verified) input sets from MinneSPEC [63].

Table 7-2 lists the task sets used in our experiments which are combinations of the

selected benchmarks. We choose 4 task sets where each core contains 2 benchmarks, 3 task

206

sets where each core contains 3 benchmarks and 2 task sets where each core contains 4

benchmarks. As mentioned in Section 7.3.2, the task mapping is based on the role that the

total task execution time of each core is comparable. We evaluate different task mapping

strategies in Section 7.4.2.3. The deadline D is set in a way that there is a feasible L1

cache assignment for every partition factor in every core. In other words, all possible L2

partitioning schemes can be used. We will examine the effect from deadlines variation in

Section 7.4.2.2.

M5 [10], a widely used architectural simulator, is adopted in our experiments. We

enhanced M5 to make it support shared cache partitioning and different line sizes in

different caches (IL1, DL1 and L2) to support L1 cache reconfiguration in CMP mode. We

configure the simulated system with a four-core processor each of which runs at 500MHz.

The TimingSimpleCPU model [10] in M5 is used which represents an in-order core which

stalls during cache accesses and memory response handling. The L2 cache configuration

is assumed to be 32KB, 8-way associative with 64-byte lines. The memory size is set

to 256MB. The L1 cache, L2 cache and memory access latency are set to 2ns, 20ns and

200ns, respectively.

Table 7-2. Multi-task benchmark sets.
Core 1 Core 2 Core 3 Core 4

Set 1 qsort, vpr parser, toast untoast, swim dijkstra, sha

Set 2 mcf, sha gcc, bitcount patricia, lucas basicmath, swim

Set 3 applu, lucas dijkstra, swim ammp, FFT
basicmath,
stringsearch

Set 4 mgrid, FFT dijkstra, parser CRC32, swim applu, bitcount

Set 5 mcf, toast, sha
gcc, parser,
stringsearch

patricia, qsort,
vpr

basicmath,
CRC32, ammp

Set 6 mgrid, parser, gcc toast, FFT, mcf
bitcount, ammp,

patricia
applu, dijkstra,

qsort

Set 7 vpr, sha, untoast
CRC32, lucas,

qsort
mgrid, bitcount,

FFT
applu, parser,
stringsearch

Set 8
sha, mcf, untoast,

basicmath
toast, gcc,

bitcount, patricia
lucas, FFT,

CRC32, ammp
vpr, applu,

mgrid, swim

Set 9
gcc, stringsearch,
parser, dijkstra

untoast, mcf,
ammp, bitcount

lucas, patricia,
qsort, vpr

basicmath, toast,
applu, CRC32

207

7.4.2 Results

7.4.2.1 Energy Savings

We compare the following three approaches.

• CP: L2 cache partitioning only (optimal).

• DCR + UCP: L1 cache reconfiguration with an uniform L2 cache partitioning (our

approach).

• DCR + CP: L1 cache reconfiguration with judicious L2 cache partitioning (our

approach).

Here CP only approach uses optimal L2 partitioning scheme with all L1s in base

configuration. It can be achieved using our algorithm in Section 7.3.3 without the first

step. Figure 7-8 illustrates this comparison in energy consumption for all task sets

in Table 7-2. Energy values are normalized to CP. As discussed in Section 7.3.2, our

reconfigurable L1 cache has a base size of 4KB. Here, we examine two kinds of L1 base

configurations: 4KB with 2-way associativity and 32-byte line size (4KB 2W 32B),

and 4KB with 4-way associativity and 64-byte line size (4KB 4W 64B). In the former

case, DCR + CP can save 18.35% of cache energy on average compared with CP. In

the latter case, up to 33.51% energy saving (e.g., for task set 4) can be achieved and

averagely 29.29%. Compared with DCR + UCP, our approach is able to achieve up to

14% more energy savings by carefully select cache partitioning scheme P . Note that

although results for only two L1 base configurations are shown here, we observe similar

amount of improvements can be achieved for other base configurations (e.g., 19.30% for

2KB 2W 32B).

It is valuable to disclose the energy reduction ability of our approach. Using task set

4 in Figure 7-8 (b) as an example, CP selects the best P{1, 5, 1, 1} with L1 configuration

of 4KB 4W 64B. It consumes total energy of 125.8 mJ and finishes all tasks in 1600 ms.

With DCR + CP, the optimal P{2, 4, 1, 1} and the L1 caches are configured differently for

each task. For example, FFT on Core 1 uses 1KB 1W 64B and 4KB 4W 16B of IL1 and

208

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9

N
o
rm

a
li
ze
d
E
n
er
g
y
C
o
n
su

m
p
ti
o
n

Task Sets

CP DCR+UCP DCR+CP

(a)

0.5

0.6

0.7

0.8

0.9

1.0

1 2 3 4 5 6 7 8 9

N
o
rm

a
li
ze
d
E
n
er
g
y
C
o
n
su

m
p
ti
o
n

Task Sets

CP DCR+UCP DCR+CP

(b)

Figure 7-8. Cache hierarchy energy reduction with L1 base configuration of: (a)
4KB 2W 32B; (b) 4KB 4W 64B.

DL1, respectively, while swim on Core 3 uses 4KB 4W 16B and 2KB 2W 32B. Using DCR

+ CP, the energy requirement is reduced to 83.6 mJ and all tasks finishes in 1788 ms.

7.4.2.2 Deadline Effect

It is also meaningful to see how deadline constraint can affect the effectiveness of

our approach. Using the same example above, for task set 4, we vary the deadline from

1800 ms to 1520 ms in step of 10 ms (there is no solution for deadlines shorter than 1520

ms). Figure 7-9 shows the result for both CP and DCR + CP. At each step, the reduced

deadline negatively impacts the energy saving opportunity. In other words, the energy

consumption increases since the configuration that was energy efficient turns invalid due to

209

the timing constraint. We can observe that our approach can find efficient solutions and

outperforms CP consistently at all deadline levels.

70

80

90

100

110

120

130

140

150

15201560160016401680172017601800

E
n
er
g
y
C
o
n
su

m
p
ti
o
n
(m

J
)

Deadline

CP
DCR + CP

Figure 7-9. Deadline effect on total energy consumption.

7.4.2.3 Task Mapping Effect

In this section, we evaluate a simple task mapping heuristic based on optimal

partition factor discussed in Section 7.3.4. For each task set in Table 7-2, benchmarks

with equal or similar optimal partition factor (determined with L1 base configuration

4KB 2W 32B) are grouped together in the same core. Ideally, we would like to minimize

the average variance of fopt values in each core. However, it is clearly a hard problem

and our heuristic does the task mapping at the best effort. We compared the solution

quality of our DCR + CP approach with and without task mapping in Figure 7-10. It can

be observed that partition factor aware task mapping achieves more energy saving than

simple bin packing mapping. However, the improvement is not significant (up to 6.3% but

on average less than 5%). The reason behind it is that, in practice, the default bin packing

normally leads to a task mapping that is reasonable (note that Figure 7-6 compares the

best and the worst mappings). Another reason is that when tasks are grouped based on

fopt values without considering their total execution time, the imbalanced workloads on

each core will lead to more idle L2 cache ways and thus more static energy consumptions.

210

0.90

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1.00

1 2 3 4 5 6 7 8 9

N
o
rm

a
li
ze
d
E
n
er
g
y
C
o
n
su

m
p
ti
o
n

Task Sets

DCR+CP DCR+CP+TM

Figure 7-10. Task mapping heuristic effect on total energy consumption.

7.4.2.4 Effect of Varying Cache Partitioning

We compare DCR + CP and DCR + VCP in their energy saving ability to evaluate

the varying L2 cache partitioning scheme. We make the number of CP points equal to the

number of tasks per core minus one. In other words, we try to change the partition factor

when a new task starts execution. However, since the partitioning scheme can only be

altered simultaneously for all cores, the CP points are set based on the average start time

of tasks. Specifically, for example, the first CP point is at the average start time of all the

second tasks on each core under the base configuration. Figure 7-11 illustrates the results.

It is worth to note that more energy savings can be achieved in scenarios with more tasks

per core (12.1% versus 6.4% on average). The reason is that tasks sets with diverse fopt

values make varying partition factor more advantageous.

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1 2 3 4 5 6 7 8 9

N
o
rm

a
li
ze
d
E
n
er
g
y
C
o
n
su

m
p
ti
o
n

Task Sets

DCR+CP DCR+VCP

Figure 7-11. Varying partitioning scheme effect on total energy consumption.

211

The task mapping heuristic and varying partitioning scheme actually compete with

each other. As described in Section 7.3.4, a good task mapping scheme makes fopt values

of tasks in each core as close as possible. This fact compromises the advantage of changing

the partition factor at runtime. In our study, we observe less additional energy savings

applying DCR + VCP on systems with ideal task mappings. On the other hand, if DCR

+ VCP is employed, the task mapping heuristic shows limited benefit. Therefore, in

practice, one of the two alternatives can be selected for further improvements.

7.4.2.5 Gated-Vdd Cache Lines Effect

Switching-off unnecessary cache lines in our original L2 configuration (32KB with

8-way associativity) leads to limited additional energy saving since we can hardly shut

down any cache line given the timing constraint. Therefore, we evaluate the effect

from gated-Vdd shared cache lines using a larger L2 configuration (64KB with 16-way

associativity). Figure 7-12 shows the result assuming a fixed partitioning scheme. It can

be observed that 12% cache hierarchy energy consumption can be saved on average.

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00

1 2 3 4 5 6 7 8 9

N
o
rm

a
li
ze
d
E
n
er
g
y
C
o
n
su

m
p
ti
o
n

Task Sets

Without gating With gating

Figure 7-12. Gated-Vdd cache lines effect on total energy consumption.

In our study, we also observe that the energy saving achieved using power gating

technique reduces if the deadline becomes more stringent. It is expected because a tight

timing constraint requires utilizing more shared cache resources to maximize performance.

212

7.5 Summary

In this chapter, we presented an efficient approach to integrate dynamic cache

reconfiguration and partitioning for real-time multicore systems. We discovered that there

is a strong correlation between L1 DCR and L2 CP in CMPs. While CP is effective in

reducing inter-task interferences, DCR can further improve the energy efficiency without

violating timing constraints (i.e., deadlines). Our static profiling technique drastically

reduces the exploration space without losing any precision. Our DCR + CP algorithm,

which can find the optimal L1 configurations for each task and L2 partition factors

for each core, is based on dynamic programming with discretization of energy values.

Moreover, we explored varying partitioning scheme and shared cache line power gating for

more energy savings. We also studied the effect of deadline variation and task mapping

based on shared cache resource demand of each task. Extensive experimental results

demonstrate the effectiveness of our approach (29.29 - 36.01% average energy savings).

213

CHAPTER 8
CONCLUSIONS AND FUTURE WORK

Energy consumption is one of the most important design issues in industry. Energy

awareness and optimization techniques are critical especially for embedded systems which

normally have various constraints. Real-time systems which run applications with timing

constraints demand unique design considerations. This dissertation presented a set of

novel tools, techniques and methodologies for energy, power and thermal optimization in

real-time embedded systems. This chapter concludes this dissertation and outlines possible

future research directions.

8.1 Conclusions

Dynamic reconfiguration is successful in various system optimizations. Processor

and cache subsystem are the two most significant contributors in overall system energy

consumption. Dynamic cache reconfiguration (DCR) and dynamic voltage scaling (DVS)

are the major techniques for cache subsystem and processor energy optimization,

respectively. However, due to various constraints (e.g., timing, energy, thermal) in

real-time embedded system design, it is a major challenge to decide when and how

to reconfigure the system so that lower power dissipation, higher performance and lower

peak temperature can be achieved. Fortunately, as discussed in Chapter 1, there are

various optimization opportunities that can be exploited based on dynamic reconfiguration

techniques. This dissertation’s contributions are summarized as follows.

Chapter 2 described general system models, energy models for different system

components and thermal models that are used throughout this dissertation. Chapter 3

presented SACR – a scheduling-aware cache reconfiguration approach – for soft real-time

systems in which minor deadline violations are acceptable. Both statically and dynamically

scheduled systems are studied. Our approach employed a phase-based static profiling

technique whose outputs are effectively utilized during runtime to guide cache reconfiguration.

We also developed efficient heuristics for design space exploration of multi-level cache

214

hierarchy reconfiguration. Chapter 4 proposed two algorithms for DVS in hard real-time

systems. To exploit static time slack, we proposed a novel DVS scheme for preemptive

task sets named PreDVS. PreDVS assigns voltage levels to tasks at a finer granularity and

can achieve more energy savings than existing inter-task DVS schemes without additional

runtime overhead. Our approach is based on an approximation algorithm which can

guarantee to give close-to-optimal solutions. In the same chapter, we also devised an

efficient dynamic slack reclamation algorithm which allocates slacks more judiciously and

aggressively than existing approaches at runtime.

Chapter 5 described our study in systematic integration of DVS and DCR for

system-wide energy optimization. Our energy estimation framework takes all major system

components – processor, cache subsystem, buses and main memory – into consideration.

Previous studies have shown that a critical speed exists below which the processor

voltage level cannot be reduced to avoid leakage power dominating the processor energy

savings. We found that, with respect to overall system consumption, the critical speed

drastically increases when other components and DCR are accounted. Therefore, DCR

and DVS, along with task procrastination, could be employed together for system-wide

optimizations. Based on this study, we also proposed a general and flexible algorithm for

dynamic reconfiguration in real-time systems.

High temperature on chip will result in decrease in reliability, performance and

energy efficiency. In Chapter 6, we proposed a novel formal method based DVS algorithm

in temperature- and energy-constrained systems. The goal of our approach is to find a

valid voltage scaling scheme for a real-time task set given the timing, energy and peak

temperature constraints. We modeled the problem using extended timed automata, which

is verified by the model checker. If there exists a solution, our approach can generate the

corresponding DVS scheme as the witness trace.

Chapter 7 presented our research in energy optimization of the cache hierarchy in

real-time multicore systems. We effectively integrated DCR and CP simultaneously. Our

215

approach is designed to find beneficial configurations for private caches in each core and

the partition scheme for the shared cache so that the energy consumption is minimized

while the timing constraints are satisfied. We also studied the impact of varying CP at

runtime, task mapping heuristics and Gated-Vdd cache lines.

In conclusion, this dissertation presented a comprehensive and cohesive study of

energy optimization in real-time embedded systems. We developed a set of efficient

techniques and applied on a wide a variety of systems to significantly improve overall

energy consumption, system performance and thermal constraints. Our research will lead

to real-time systems with higher power efficiency, performance and reliability.

8.2 Future Research Directions

Energy consumption has been and will continue to be a critical design issue. The

research presented in this dissertation can be extended in the following possible directions:

• For dynamically scheduled systems which run aperiodic or sporadic tasks, employing
DCR will lead to a small amount of deadline violations. Therefore, in this case, the
proposed technique only works for soft real-time systems. We believe it is unlikely
that DCR can be enabled in dynamically scheduled hard real-time systems with
preemptive workloads. However, further studies are needed to check whether it can
work for nonpreemptive tasks.

• Currently, our cache reconfiguration technique for both uniprocessor and multicore
systems is based on static profiling which requires extensive design time and certain
assumptions (e.g., known inputs). We have discussed that existing dynamic analysis
techniques do not work for real-time systems. It is challenging to design an efficient,
predictable and nonintrusive online cache performance analyzer.

• We have pointed out that PreDVS can be employed together with intra-task
DVS techniques for runtime slack exploitation. Although some of the techniques
are relatively independent from each other, our research can be extended by
comprehensively integrating PreDVS, intra-task DVS, dynamic slack reclamation
and task rescheduling for overall energy optimizations.

• Our approach for temperature- and energy-constrained scheduling can be further
extended to support multicore architectures. We need to take thermal transmission
among on-chip cores into consideration. Task mapping and sequencing may also
play an important role in this scenario. Since the TCEC scheduling in uniprocessor

216

systems is NP-hard and the extended problem on multicore processors is even more
difficult, an approximation algorithm is the best approach.

217

APPENDIX A
LIST OF PUBLICATIONS

Book

1. Weixun Wang, Xiaoke Qin and Prabhat Mishra. Dynamic Reconfiguration in Real-Time Systems:

Energy, Performance, Reliability and Thermal Perspectives (Tentative title). Springer, 2012

(Expected).

Book Chapter

1. Weixun Wang, Xiaoke Qin and Prabhat Mishra. Energy-Aware Scheduling and Dynamic

Reconfiguration in Real-Time Systems. Handbook of Energy-Aware and Green Computing, I.

Ahmad and S. Ranka, Editors, Chapman & Hall/CRC Press, 2011.

Journal Articles

1. Weixun Wang, Prabhat Mishra and Ann Gordon-Ross. Dynamic Cache Reconfiguration for Soft

Real-Time Systems. ACM Transactions in Embedded Computing Systems (TECS), accepted to

appear.

2. Weixun Wang and Prabhat Mishra. System-Wide Leakage-Aware Energy Minimization using

Dynamic Voltage Scaling and Cache Reconfiguration in Multitasking Systems. IEEE Transactions

on Very Large Scale Integration Systems (TVLSI), accepted to appear.

3. Weixun Wang and Prabhat Mishra. Dynamic Reconfiguration of Two-Level Cache Hierarchy in

Real-Time Embedded Systems. ASP Journal of Low Power Electronics (JOLPE), Vol. 7, No. 1,

February 2011.

4. Weixun Wang, Sanjay Ranka and Prabhat Mishra. Energy-Aware Dynamic Reconfiguration

Algorithms for Real-Time Multitasking Systems. Elsevier Sustainable Computing: Informatics and

Systems (SUSCOM), Issue. 1, pages 35-45, 2011 (Invited Paper).

Conference Papers

1. Weixun Wang, Prabhat Mishra and Sanjay Ranka. Dynamic Cache Reconfiguration and

Partitioning for Energy Optimization in Real-Time Multi-Core Systems. IEEE/ACM Design

Automation Conference (DAC), pages -, Jun. 2011.

2. Weixun Wang, Sanjay Ranka and Prabhat Mishra. A General Algorithm for Energy-Aware

Dynamic Reconfiguration in Multitasking Systems. IEEE International Conference on VLSI Design

(VLSI Design), pages 334-339, Jan. 2011.

218

3. Weixun Wang, Xiaoke Qin and Prabhat Mishra. Temperature- and Energy-Constrained Schedul-

ing in Multitasking Systems: A Model Checking Approach. IEEE/ACM International Symposium on

Low Power Electronics and Design (ISLPED), pages 85-90, Aug. 2010.

4. Weixun Wang and Prabhat Mishra. PreDVS: Preemptive Dynamic Voltage Scaling for Real-time

Systems using Approximation Scheme. IEEE/ACM Design Automation Conference (DAC), pages

705-710, Jun. 2010.

5. Weixun Wang and Prabhat Mishra. Leakage-Aware Energy Minimization using Dynamic Voltage

Scaling and Cache Reconfiguration in Real-Time Systems. IEEE International Conference on VLSI

Design (VLSI Design), pages 357-362, Jan. 2010.

6. Weixun Wang and Prabhat Mishra. Dynamic Reconfiguration of Two-Level Caches in Soft

Real-Time Embedded Systems. IEEE Computer Society Annual Symposium on VLSI (ISVLSI),

pages 145-150, May. 2009.

7. Weixun Wang, Prabhat Mishra and Ann Gordon-Ross. SACR: Scheduling-Aware Cache

Reconfiguration for Real-Time Embedded Systems. IEEE International Conference on VLSI Design

(VLSI Design), pages 547-552, Jan. 2009.

Technical Reports

1. Weixun Wang and Prabhat Mishra. A Partitioned Bitmask-based Technique for Lossless Seismic

Data Compression. CISE Technical Report # 08-452, University of Florida, May 07, 2008.

Under Review

1. Weixun Wang, Prabhat Mishra and Sanjay Ranka. Energy Optimization of Cache Hierarchy in

Real-Time Multicore Systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems (TCAD), Under review.

2. Xiaoke Qin, Weixun Wang and Prabhat Mishra. TCEC: Temperature- and Energy-Constrained

Scheduling in Real-Time Multitasking Systems. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems (TCAD), Under review.

3. Weixun Wang and Prabhat Mishra. PreDVS: Preemptive Dynamic Voltage Scaling for Real-time

Multitasking Systems. ACM Transactions on Design Automation of Electronic Systems (TODAES),

Under review.

219

4. Weixun Wang, Sanjay Ranka and Prabhat Mishra. Energy-Aware Dynamic Slack Allocation

for Real-Time Multitasking Systems. Elsevier Sustainable Computing: Informatics and Systems

(SUSCOM), Under review.

220

REFERENCES

[1] AeA (formerly American Electronics Association) Report Cybernation.

[2] R. Alur and D. L. Dill. A theory of timed automata. Theor. Comput. Sci.,
126(2):183–235, 1994.

[3] ARM. ARM11MPCore processor.

[4] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Determining optimal
processor speeds for periodic real-time tasks with different power characteristics. In
Proc. Real-Time Systems, 13th Euromicro Conference on, pages 225–232, 13–15 June
2001.

[5] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Dynamic and aggressive
scheduling techniques for power-aware real-time systems. In Proceedings of Real-
Time Systems Symposium, pages 95–105, 2001.

[6] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Power-aware scheduling for
periodic real-time tasks. IEEE Transactions on Computers, 53(5):584–600, May
2004.

[7] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and W. Yi. Uppaal—a tool
suite for automatic verification of real-time systems. In Proceedings of the DI-
MACS/SYCON workshop on Hybrid systems III : verification and control, pages
232–243, Secaucus, NJ, USA, 1996. Springer-Verlag New York, Inc.

[8] L. Benini, R. Bogliolo, and G. D. Micheli. A survey of design techniques for
system-level dynamic power management. IEEE Transactions on VLSI Systems,
8:299–316, 2000.

[9] D. Bertozzi, L. Benini, and G. de Micheli. Low power error resilient encoding
for on-chip data buses. In DATE ’02: Proceedings of the conference on Design,
automation and test in Europe, page 102, Washington, DC, USA, 2002. IEEE
Computer Society.

[10] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S. Reinhardt. The m5
simulator: Modeling networked systems. Micro, IEEE, 26(4):52 –60, 2006.

[11] S. Borkar. Design challenges of technology scaling. 19(4):23–29, July 1999.

[12] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De. Parameter
variations and impact on circuits and microarchitecture. In Proc. Design Automation
Conference, pages 338–342, June 2–6, 2003.

[13] B. Bui, M. Caccamo, L. Sha, and J. Martinez. Impact of cache partitioning on
multi-tasking real time embedded systems. In Embedded and Real-Time Computing
Systems and Applications, 2008. RTCSA ’08. 14th IEEE International Conference
on, pages 101 –110, aug. 2008.

221

222

[14] D. Burger, T. M. Austin, and S. Bennett. Evaluating future microprocessors: The
simplescalar tool set. Technical report, University of Wisconsin-Madison, 1996.

[15] J. A. Butts and G. S. Sohi. A static power model for architects. In Proc. 33rd
Annual IEEE/ACM International Symposium on MICRO-33 Microarchitecture,
pages 191–201, 10–13 Dec. 2000.

[16] J. Chen, T. Kuo, and C. Shih. 1 + ε approximation clock rate assignment for
periodic real-time tasks on a voltage-scaling processor. In Proceedings of Interna-
tional Conference on Embedded Software, pages 247–250, 2005.

[17] J.-J. Chen, C.-M. Hung, and T.-W. Kuo. On the minimization fo the instantaneous
temperature for periodic real-time tasks. In Real Time and Embedded Technology
and Applications Symposium, 2007. RTAS ’07. 13th IEEE, pages 236–248, April
2007.

[18] J.-J. Chen and C.-F. Kuo. Energy-efficient scheduling for real-time systems on
dynamic voltage scaling (dvs) platforms. In Proc. 13th IEEE International Con-
ference on Embedded and Real-Time Computing Systems and Applications RTCSA
2007, pages 28–38, 21–24 Aug. 2007.

[19] J.-J. Chen and T.-W. Kuo. Procrastination for leakage-aware rate-monotonic
scheduling on a dynamic voltage scaling processor. In LCTES ’06: Proceedings of the
2006 ACM SIGPLAN/SIGBED conference on Language, compilers, and tool support
for embedded systems, pages 153–162, New York, NY, USA, 2006. ACM.

[20] J.-J. Chen and T.-W. Kuo. Procrastination determination for periodic real-time
tasks in leakage-aware dynamic voltage scaling systems. In Proc. IEEE/ACM
International Conference on Computer-Aided Design ICCAD 2007, pages 289–294,
4–8 Nov. 2007.

[21] J.-H. Chern, J. Huang, L. Arledge, P.-C. Li, and P. Yang. Multilevel metal
capacitance models for cad design synthesis systems. Electron Device Letters,
IEEE, 13(1):32 –34, jan 1992.

[22] J.-W. Chi, C.-L. Yang, Y.-J. Chen, and J.-J. Chen. Cache leakage control
mechanism for hard real-time systems. In Proceedings of the 2007 international
conference on Compilers, architecture, and synthesis for embedded systems, pages
248–256, New York, NY, USA, 2007. ACM.

[23] E. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 1999.

[24] B. Doyle, R. Arghavani, D. Barlage, S. Datta, M. Doczy, J. Kavalieros, A. Murthy,
and R. Chau. Transistor elements for 30nm physical gate lengths and beyond. Intel
Technology Journal, 6:42–54, 2002.

[25] EEMBC. EEMBC, The Embedded Microprocessor Benchmark Consortium, 2000.

223

[26] M. J. Ellsworth. Chip power density and module cooling technology projections
for the current decade. In Proc. Ninth Intersociety Conference on Thermal and
Thermomechanical Phenomena in Electronic Systems ITHERM ’04, volume 2, pages
707–708, June 1–4, 2004.

[27] E. Fersman, P. Pettersson, and W. Yi. Timed automata with asynchronous
processes: Schedulability and decidability. In TACAS ’02: Proceedings of the
8th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 67–82, London, UK, 2002. Springer-Verlag.

[28] W. Fornaciari, D. Sciuto, and C. Silvano. Power estimation for architectural
exploration of hw/sw communication on system-level buses. In Proc. Seventh
International Workshop on Hardware/Software Codesign (CODES ’99), pages
152–156, May 3–5, 1999.

[29] T. D. Givargis, F. Vahid, and J. Henkel. Fast cache and bus power estimation for
parameterized system-on-a-chip design. In DATE ’00: Proceedings of the conference
on Design, automation and test in Europe, pages 333–339, New York, NY, USA,
2000. ACM.

[30] A. Gordon-Ross and F. Vahid. Automatic tuning of two-level caches to embedded
applications. In Proceedings of Design, Automation and Test Conference in Europe,
pages 208–213, 2004.

[31] A. Gordon-Ross and F. Vahid. A self-tuning configurable cache. In Proceedings of
Design Automation Conference, pages 234–237, 2007.

[32] A. Gordon-Ross, F. Vahid, and N. Dutt. Fast configurable-cache tuning with
a unified second-level cache. In Proc. International Symposium on Low Power
Electronics and Design ISLPED ’05, pages 323–326, 8–10 Aug. 2005.

[33] A. Gordon-Ross, P. Viana, F. Vahid, W. Najjar, and E. Barros. A one-shot
configurable-cache tuner for improved energy and performance. In Proceedings of
Design, Automation and Test Conference in Europe, pages 755–760, 2007.

[34] S. Gunther, F. Binns, D. Carmean, and J. Hall. Managing the impact of increasing
microprocessor power consumption. Intel Technology Journal, 5(1):1–9, 2001.

[35] M. Guthaus, J. Ringenberg, D.Ernest, T. Austin, T. Mudge, and R. Brown.
Mibench: A free, commercially representative embedded benchmark suite. In
Proceedings of IEEE International Workshop on Workload Characterization, pages
3–14, 2001.

[36] E. Hallnor and S. Reinhardt. A unified compressed memory hierarchy. pages 201 –
212, 2005.

[37] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, 2003.

224

[38] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B. Srivastava. Power
optimization of variable-voltage core-based systems. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 18:1702–1714, 1999.

[39] I. Hong, G. Qu, M. Potkonjak, and M. B. Srivastavas. Synthesis techniques for
low-power hard real-time systems on variable voltage processors. In Proc. 19th IEEE
Real-Time Systems Symposium, pages 178–187, 2–4 Dec. 1998.

[40] S. Hong, S. Yoo, H. Jin, K. Choi, J. Kong, and S. Eo. Runtime distribution-aware
dynamic voltage scaling. In Proceedings of International Conference on Computer-
Aided Design, pages 587–594, 2006.

[41] HP. CACTI, HP Laboratories Palo Alto, CACTI 5.3. http://www.hpl.hp.com/,
2008.

[42] J. Hu and R. Marculescu. Energy-aware communication and task scheduling for
network-on-chip architectures under real-time constraints. In Proceedings of Design,
Automation and Test Conference in Europe, pages 234–239, 2004.

[43] Intel. Intel Core i7 processor.

[44] S. Irani, S. Shukla, and R. Gupta. Algorithms for power savings. ACM Transactions
on Algorithms, 3, 2007.

[45] T. Ishihara and H. Yasuura. Voltage scheduling problem for dynamically variable
voltage processors. In Proceedings of International Symposium on Low Power
Electronics and Design, pages 197–202, 1998.

[46] R. Jayaseelan and T. Mitra. Temperature aware task sequencing and voltage scaling.
In Proc. IEEE/ACM International Conference on Computer-Aided Design ICCAD
2008, pages 618–623, 10–13 Nov. 2008.

[47] R. Jejurikar and R. Gupta. Dynamic voltage scaling for systemwide energy
minimization in real-time embedded systems. In Proc. International Symposium
on Low Power Electronics and Design ISLPED ’04, pages 78–81, 9–11 Aug. 2004.

[48] R. Jejurikar and R. Gupta. Dynamic slack reclamation with procrastination
scheduling in real-time embedded systems. In Proceedings of Design Automation
Conference, pages 111–116, 2005.

[49] R. Jejurikar and R. Gupta. Energy aware non-preemptive scheduling for hard
real-time systems. In Proc. 17th Euromicro Conference on Real-Time Systems
(ECRTS 2005), pages 21–30, 6–8 July 2005.

[50] R. Jejurikar and R. Gupta. Energy-aware task scheduling with task synchronization
for embedded real-time systems. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 25:1024–1037, 2006.

225

[51] R. Jejurikar, C. Pereira, and R. K. Gupta. Leakage aware dynamic voltage scaling
for real-time embedded systems. In Proceedings of Design Automation Conference,
pages 275–280, 2004.

[52] N. Jha. Low power system scheduling and synthesis. In Proceedings of International
Conference on Computer-Aided Design, pages 259–263, 2001.

[53] Y. Joo, Y. Choi, H. Shim, H. G. Lee, K. Kim, and N. Chang. Energy exploration
and reduction of sdram memory systems. In DAC ’02: Proceedings of the 39th
annual Design Automation Conference, pages 892–897, New York, NY, USA, 2002.
ACM.

[54] J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, and D. Shippy. Introduction
to the cell multiprocessor. IBM Journal of Research and Development, 49:589–604,
2005.

[55] J. Kao, S. Narendra, and A. Chandrakasan. Subthreshold leakage modeling
and reduction techniques. In ICCAD ’02: Proceedings of the 2002 IEEE/ACM
international conference on Computer-aided design, pages 141–148, New York, NY,
USA, 2002. ACM.

[56] D. Kaseridis, J. Stuecheli, and L. John. Bank-aware dynamic cache partitioning
for multicore architectures. In Parallel Processing, 2009. ICPP ’09. International
Conference on, pages 18 –25, sep. 2009.

[57] S. Kaxiras, Z. Hu, and M. Martonosi. Cache decay: exploiting generational behavior
to reduce cache leakage power. In Proceedings of the 28th annual international
symposium on Computer architecture, ISCA ’01, pages 240–251, New York, NY,
USA, 2001. ACM.

[58] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer-Verlag, 2004.

[59] N. S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J. S. Hu, M. J. Irwin,
M. Kandemir, and V. Narayanan. Leakage current: Moore’s law meets static power.
Computer, 36(12):68–75, 2003.

[60] N. S. Kim, K. Flautner, D. Blaauw, and T. Mudge. Drowsy instruction caches.
leakage power reduction using dynamic voltage scaling and cache sub-bank
prediction. In Microarchitecture, 2002. (MICRO-35). Proceedings. 35th Annual
IEEE/ACM International Symposium on, pages 219–230, 2002.

[61] S. Kim, D. Chandra, and Y. Solihin. Fair cache sharing and partitioning in a chip
multiprocessor architecture. In Parallel Architecture and Compilation Techniques,
2004. PACT 2004. Proceedings. 13th International Conference on, pages 111 – 122,
29 2004.

226

[62] W. Kim, J. Kim, and S. Min. A dynamic voltage scaling algorithm for
dynamic-priority hard real-time systems using slack time analysis. In Proceed-
ings of Design, Automation and Test Conference in Europe, page 788, 2002.

[63] A. KleinOsowski and D. Lilja. Minnespec: A new spec benchmark workload for
simulation-based computer architecture research. Computer Architecture Letters,
1(1):7 – 7, january-december 2002.

[64] W.-C. Kwon and T. Kim. Optimal voltage allocation techniques for dynamically
variable voltage processors. ACM Trans. Embed. Comput. Syst., 4(1):211–230, 2005.

[65] K. Lahiri and A. Raghunathan. Power analysis of system-level on-chip
communication architectures. In CODES+ISSS ’04: Proceedings of the 2nd
IEEE/ACM/IFIP international conference on Hardware/software codesign and
system synthesis, pages 236–241, New York, NY, USA, 2004. ACM.

[66] C. Lee, M. Potkonjak, and W. H. Mangione-smith. Mediabench: A tool for
evaluating and synthesizing multimedia and communications systems. In Proceedings
of International Symposium on Microarchitecture, pages 330–335, 1997.

[67] Y.-H. Lee, K. Reddy, and C. Krishna. Scheduling techniques for reducing leakage
power in hard real-time systems. In Real-Time Systems, 2003. Proceedings. 15th
Euromicro Conference on, pages 105–112, July 2003.

[68] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining insights
into multicore cache partitioning: Bridging the gap between simulation and real
systems. In High Performance Computer Architecture, 2008. HPCA 2008. IEEE
14th International Symposium on, pages 367 –378, 16-20 2008.

[69] J. Liu. Real-Time Systems. Prentice Hall, 2000.

[70] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang. Thermal vs energy
optimization for dvfs-enabled processors in embedded systems. In Proc. 8th In-
ternational Symposium on Quality Electronic Design ISQED ’07, pages 204–209,
Mar. 26–28, 2007.

[71] A. Lungu, P. Bose, D. J. Sorin, S. German, and G. Janssen. Multicore power
management: Ensuring robustness via early-stage formal verification. In Proc. 7th
IEEE/ACM International Conference on Formal Methods and Models for Co-Design
MEMOCODE ’09, pages 78–87, 13–15 July 2009.

[72] A. Malik, B. Moyer, and D. Cermak. A low power unified cache architecture
providing power and performance flexibility. In Proceedings of International
Symposium on Low Power Electronics and Design, pages 241–243, 2000.

[73] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dynamic voltage
scaling and adaptive body biasing for lower power microprocessors under dynamic

227

workloads. In Proc. IEEE/ACM International Conference on Computer Aided
Design ICCAD 2002, pages 721–725, 10–14 Nov. 2002.

[74] Marvell. Marvell StrongARM 1100 processor, 1997.

[75] Marvell. Marvell XScale microarchitecture, 2000.

[76] P. Mejia-Alvarez, E. Levner, and D. Mosse. Adaptive scheduling server for
power-aware real-time tasks. ACM Transactions on Embedded Computing Sys-
tems, 3, 2004.

[77] MIPS. MIPS32 1004K.

[78] B. Mochocki, X. Hu, and G. Quan. A unified approach to variable voltage scheduling
for nonideal dvs processors. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 23, 2004.

[79] B. Mochocki, X. Hu, and G. Quan. Practical on-line dvs scheduling for fixed-priority
real-time systems. In Proceedings of Real Time and Embedded Technology and
Applications Symposium, pages 224–233, 2005.

[80] A. C. Nacul and T. Givargis. Dynamic voltage and cache reconfiguration for low
power. In Proceedings of Design, Automation and Test Conference in Europe, page
21376, 2004.

[81] H. Noori, M. Goudarzi, K. Inoue, and K. Murakami. The effect of temperature on
cache size tuning for low energy embedded systems. In Proceedings of Great Lakes
Annual Symposium on VLSI Design (GLSVLSI), 2007.

[82] C. Norström, A. Wall, and W. Yi. Timed automata as task models for event-driven
systems. In RTCSA ’99: Proceedings of the Sixth International Conference on Real-
Time Computing Systems and Applications, page 182, Washington, DC, USA, 1999.
IEEE Computer Society.

[83] S. Oh, J. Kim, S. Kim, and C. Kyung. Task partitioning algorithm for intra-task
dynamic voltage scaling. In Proceedings of International Symposium on Circuits and
Systems, pages 1228–1231, 2008.

[84] P. Pillai and K. Shin. Real-time dynamic voltage scaling for low-power embedded
operating systems. ACM SIGOPS Operating Systems Review, pages 89–102, 2001.

[85] M. Powell, S.-H. Yang, B. Falsafi, K. Roy, and T. N. Vijaykumar. Gated-vdd: a
circuit technique to reduce leakage in deep-submicron cache memories. In ISLPED
’00: Proceedings of the 2000 international symposium on Low power electronics and
design, pages 90–95, New York, NY, USA, 2000. ACM.

[86] I. Puant. Cache analysis vs static cache locking for schedulability analysis in
multitasking real-time systems. In Proceedings of International Workshop on
worst-case execution time analysis, 2002.

228

[87] I. Puant and D. Decotigny. Low-complexity algorithms for static cache locking in
multitasking hard real-time systems. In Proceedings of IEEE Real-Time Systems
Symposium, pages 114–125, 2002.

[88] I. Puant and C. Pais. Scratchpad memories vs locked caches in hard real-time
systems: a quantitative comparison. In Proceedings of the conference on Design,
automation and test in Europe, pages 1484–1489, 2007.

[89] G. Quan and X. S. Hu. Energy efficient dvs schedule for fixed-priority real-time
systems. ACM Transactions on Design Automation of Electronic Systems, 6:1–30,
2007.

[90] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-overhead,
high-performance, runtime mechanism to partition shared caches. In Microarchitec-
ture, 2006. MICRO-39. 39th Annual IEEE/ACM International Symposium on, pages
423 –432, dec. 2006.

[91] R. Rao, H. Deogun, D. Blaauw, and D. Sylvester. Bus encoding for total power
reduction using a leakage-aware buffer configuration. Very Large Scale Integration
(VLSI) Systems, IEEE Transactions on, 13(12):1376 – 1383, dec. 2005.

[92] R. Reddy and P. Petrov. Eliminating inter-process cache interference through cache
reconfigurability for real-time and low-power embedded multi-tasking systems. In
International Conference on Compilers, Architecture and Synthesis for Embedded
Systems, 2007.

[93] R. Reddy and P. Petrov. Cache partitioning for energy-efficient and interference-free
embedded multitasking. ACM Trans. Embed. Comput. Syst., 9(3):1–35, 2010.

[94] P. Rong and M. Pedram. Energy-aware task scheduling and dynamic voltage scaling
in a real-time system. Journal of Low Power Electronics, 4:1–10, 2008.

[95] C. Rusu, R. Melhem, and D. Mosse. Maximizing the system value while satisfying
time and energy constraints. In Proc. 23rd IEEE Real-Time Systems Symposium
RTSS 2002, pages 246–255, 3–5 Dec. 2002.

[96] S. Segars. Low power design techniques for microprocessors. In Proceedings of
International Solid State Circuit Conference, 2001.

[97] J. Seo, T. Kim, and K. Chung. Profile-based optimal intra-task voltage scheduling
for hard real-time applications. In Proceedings of Design Automation Conference,
pages 87–92, 2004.

[98] A. Settle, D. Connors, and E. Gibert. A dynamically reconfigurable cache for
multithreaded processors. Journal of Embedded Computing, 2:221–233, 2006.

[99] T. Sherwood, E. Perelman, G. Hamerly, S. Sair, and B. Calder. Discovering
and exploiting program phases. In Proceedings of International Symposium on
Microarchitecture, pages 84–93, 2003.

229

[100] D. Shin and J. Kim. Optimizing intratask voltage scheduling using profile and
data-flow information. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 26:369–385, 2007.

[101] D. Shin, J. Kim, and S. Lee. Low-energy intra-task voltage scheduling using static
timing analysis. In Proceedings of Design Automation Conference, pages 438–443,
2001.

[102] Y. Shin, K. Choi, and T. Sakurai. Power optimization of real-time embedded
systems on variable speed processors. In Proceedings of International Conference on
Computer-Aided Design, pages 365–368, 2000.

[103] S. Shukla and R. Gupta. A model checking approach to evaluating system level
dynamic power management policies for embedded systems. In High-Level Design
Validation and Test Workshop, 2001. Proceedings. Sixth IEEE International, pages
53–57, 2001.

[104] A. Sinha and A. P. Chandrakasan. Jouletrack: a web based tool for software
energy profiling. In DAC ’01: Proceedings of the 38th annual Design Automation
Conference, pages 220–225, New York, NY, USA, 2001. ACM.

[105] K. Skadron, M. R. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan. Temperature-aware computer systems: Opportunities and challenges.
IEEE Micro, 23(6):52–61, Nov.–Dec. 2003.

[106] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and
D. Tarjan. Temperature-aware microarchitecture: Modeling and implementation.
ACM Trans. Archit. Code Optim., 1(1):94–125, 2004.

[107] SPEC. SPEC CPU2000.

[108] J. Staschulat, S. Schliecker, and R. Ernst. Scheduling analysis of real-time systems
with precise modeling of cache related preemption delay. In Proceedings of Euromi-
cro Conference on Real-Time Systems, pages 41–48, 2005.

[109] G. Suh, S. Devadas, and L. Rudolph. A new memory monitoring scheme for
memory-aware scheduling and partitioning. pages 117 – 128, feb. 2002.

[110] V. Swaminathan and K. Chakrabarty. Network flow techniques for dynamic voltage
scaling in hard real-time systems. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 23(10):1385–1398, Oct. 2004.

[111] C. Talarico, J. W. Rozenblit, V. Malhotra, and A. Stritter. A new framework for
power estimation of embedded systems. Computer, 38(2):71–78, 2005.

[112] Y. Tan and V. J. Mooney. Timing analysis for preemptive multitasking real-time
systems with caches. ACM Transactions on Embedded Computing Systems, 6(7),
2007.

230

[113] Transmeta. Transmeta Crusoe Processor.

[114] A. Varma, E. Debes, I. Kozintsev, and B. Jacob. Instruction-level power dissipation
in the intel xscale embedded microprocessor. In In SPIEs 17th Annual Symposium
on Electronic Imaging Science & Technology, 2005.

[115] H. J. M. Veendrick. Short-circuit dissipation of static cmos circuitry and its impact
on the design of buffer circuits. IEEE Journal of Solid-State Circuits, 19(4):468–473,
Aug 1984.

[116] L. Villa, M. Zhang, and K. Asanovic. Dynamic zero compression for cache energy
reduction. pages 214 –220, 2000.

[117] R. Viswanath, V. Wakharkar, A. Watwe, and V. Lebonheur. Thermal performance
challenges from silicon to systems. Intel Technology Journal, 4(3):1–16, 2000.

[118] S. Wang and R. Bettati. Reactive speed control in temperature-constrained
real-time systems. In Proc. 18th Euromicro Conference on Real-Time Systems, pages
10pp.–170, 2006.

[119] W. Wang and P. Mishra. Dynamic reconfiguration of two-level caches in soft
real-time embedded systems. In Proceedings of IEEE Computer Society Annual
Symposium on VLSI, pages 145–150, 2009.

[120] W. Wang and P. Mishra. Leakage-aware energy minimization using dynamic voltage
scaling and cache reconfiguration in real-time systems. In Proceedings of IEEE
International Conference on VLSI Design, pages 357–362, 2010.

[121] W. Wang and P. Mishra. PreDVS: Preemptive dynamic voltage scaling for real-time
systems using approximation scheme. In Proceedings of Design Automation Confer-
ence, pages 705–710, 2010.

[122] W. Wang, P. Mishra, and A. Gordon-Ross. SACR: Scheduling-aware cache
reconfiguration for real-time embedded systems. In Proceedings of IEEE Inter-
national Conference on VLSI Design, pages 547–552, 2009.

[123] Y.-H. Wei, C.-Y. Yang, T.-W. Kuo, S.-H. Hung, and Y.-H. Chu. Energy-efficient
real-time scheduling of multimedia tasks on multi-core processors. In Proceedings
of the 2010 ACM Symposium on Applied Computing, SAC ’10, pages 258–262, New
York, NY, USA, 2010. ACM.

[124] N. Weste and D. Harris. CMOS VLSI Design: A Circuits and Systems Perspective.
Addison Wesley, 2004.

[125] A. Wolfe. Software-based cache partitioning for real-time applications. In Proceedings
of International Workshop on Responsive Computer Systems, 1993.

[126] F. Xie, M. Martonosi, and S. Malik. Bounds on power savings using runtime
dynamic voltage scaling: an exact algorithm and a linear-time heuristic

231

approximation. In Proceedings of International Symposium on Low Power Elec-
tronics and Design, pages 287–292, 2005.

[127] R. Xu, C. Xi, R. Melhem, and D. Mosse. Practical pace for embedded systems. In
Proceedings of International Conference on Embedded Software, pages 54–63, 2004.

[128] L. Yan, J. Luo, and N. K. Jha. Combined dynamic voltage scaling and adaptive
body biasing for heterogeneous distributed real-time embedded systems. In Proc.
ICCAD-2003 Computer Aided Design International Conference on, pages 30–37,
9–13 Nov. 2003.

[129] C.-Y. Yang, J.-J. Chen, T.-W. Kuo, and L. Thiele. An approximation scheme
for energy-efficient scheduling of real-time tasks in heterogeneous multiprocessor
systems. In ACM/IEEE Conference of Design, Automation, and Test in Europe
(DATE), Nice, France, 2009.

[130] F. Yao, A. Demers, and S. Shenker. A scheduling model for reduced cpu energy.
In Proceedings of Annual Symposium on Foundations of Computer Science, pages
374–382, 1995.

[131] L.-T. Yeh and R. C. Chu. Thermal Management of Microelectronic Equipment: Heat
Transfer Theory, Analysis Methods, and Design Practices. ASME Press, 2002.

[132] C. Yu and P. Petrov. Off-chip memory bandwidth minimization through cache
partitioning for multi-core platforms. In DAC ’10: Proceedings of the 47th Design
Automation Conference, pages 132–137, New York, NY, USA, 2010. ACM.

[133] L. Yuan, S. Leventhal, and G. Qu. Temperature-aware leakage minimization
technique for real-time systems. In ICCAD ’06: Proceedings of the 2006 IEEE/ACM
international conference on Computer-aided design, pages 761–764, New York, NY,
USA, 2006. ACM.

[134] L. Yuan and G. Qu. Alt-dvs: Dynamic voltage scaling with awareness of leakage and
temperature for real-time systems. In Adaptive Hardware and Systems, 2007. AHS
2007. Second NASA/ESA Conference on, pages 660–670, Aug. 2007.

[135] C. Zhang, F. Vahid, and R. Lysecky. A self-tuning cache architecture for embedded
systems. In Proceedings of Design, Automation and Test Conference in Europe, page
10142, 2004.

[136] C. Zhang, F. Vahid, and W. Najjar. A highly configurable cache for low energy
embedded systems. ACM Transactions on Embedded Computing Systems, 6:362–387,
2005.

[137] S. Zhang, K. Chatha, and G. Konjevod. Approximation algorithms for power
minimization of earliest deadline first and rate monotonic schedules. In Proceedings
of International Symposium on Low Power Electronics and Design, pages 225–230,
2007.

232

[138] S. Zhang and K. S. Chatha. Approximation algorithm for the temperature aware
scheduling problem. In Proceedings of International Conference on Computer-Aided
Design, pages 281–288, 2007.

[139] X. Zhong and C. Xu. Energy-aware modeling and scheduling of real-time tasks
for dynamic voltage scaling. In Proceedings of International Real-Time Systems
Symposium, pages 366–375, 2005.

[140] X. Zhong and C. Xu. System-wide energy minimization for real-time tasks: Lower
bound and approximation. In Proceedings of International Conference on Computer-
Aided Design, pages 516–521, 2006.

[141] Y. Zhu and F. Mueller. Feedback edf scheduling exploiting dynamic voltage scaling.
In Proceedings of Real Time and Embedded Technology and Applications Symposium,
pages 84–93, 2004.

[142] J. Zhuo and C. Chakrabarti. System-level energy-efficient dynamic task scheduling.
In Proceedings of Design Automation Conference, pages 628–631, 2005.

BIOGRAPHICAL SKETCH

Weixun Wang received his B.E. degree from the Software Institute of Nanjing

University, China in 2007. His research interests include the area of design automation of

embedded systems with focuses on dynamic cache reconfiguration, energy optimization,

temperature management, real-time scheduling and lossless data compression.

Since 2007, he started pursuing his Ph.D. degree in CISE department of University of

Florida. He joined the Embedded Systems Group in 2008 under the supervision of Prof.

Prabhat Mihsra. He participated the research project titled “Dynamic Reconfiguration in

Real-Time Embedded Systems” which was funded by U.S. National Science Foundation

and Semiconductor Research Corporation.

Mr. Wang currently serves as a reviewer of several ACM and IEEE conferences

including DAC, DATE, CODES+ISSS, ASP-DAC, GLSVLSI, VLSI Design, and ISVLSI.

He also serves as a reviewer for journals including IEEE TCAD and ASP JOLPE. He is a

student member of IEEE.

233

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 Optimizations in Real-Time Embedded Systems
	1.2 Opportunities and Challenges
	1.2.1 Dynamic Reconfiguration Techniques
	1.2.2 Potential Optimization Opportunities
	1.2.3 Challenges

	1.3 Research Contributions

	2 Modeling of Real-Time and Reconfigurable Systems
	2.1 System Model
	2.2 Energy Models
	2.2.1 Cache Energy Model
	2.2.2 Processor Energy Model
	2.2.3 Bus Energy Model
	2.2.4 Main Memory Energy Model

	2.3 Thermal Model
	2.4 Summary

	3 Dynamic Cache Reconfiguration for Soft Real-Time Systems
	3.1 Related Work
	3.1.1 Caches in Real-Time Systems
	3.1.2 Reconfigurable Cache Architectures
	3.1.3 Caches Tuning Techniques

	3.2 SACR: Scheduling-Aware Cache Reconfiguration
	3.2.1 Overview
	3.2.2 Phase-based Optimal Cache Selection
	3.2.3 Statically Scheduled Systems
	3.2.4 Dynamically Scheduled Systems
	3.2.4.1 Conservative Approach
	3.2.4.2 Aggressive Approach

	3.2.5 Impact of Storing Multiple Cache Configurations

	3.3 Design Space Exploration for Two-Level Cache Reconfiguration
	3.3.1 Exhaustive Exploration
	3.3.2 Same Level One Cache Tuning -- SLOT
	3.3.3 Two-Step Tuning -- TST
	3.3.4 Independent Level One Cache Tuning -- ILOT
	3.3.5 Interlaced Tuning -- ILT

	3.4 Experiments
	3.4.1 Experiments Setup
	3.4.2 Results: Single-level SACR
	3.4.2.1 Energy Saving
	3.4.2.2 Suitability of Statically Determined Configurations
	3.4.2.3 Impact of Storing Multiple Cache Configurations
	3.4.2.4 Analysis of Input Variations
	3.4.2.5 Hardware Overhead

	3.4.3 Results: Multi-level SACR
	3.4.3.1 Optimal Cache Configuration Selection
	3.4.3.2 Energy Saving
	3.4.3.3 Insights behind Results
	3.4.3.4 Exploration Efficiency

	3.5 Summary

	4 Energy-aware Scheduling with Dynamic Voltage Scaling
	4.1 Related Work
	4.2 PreDVS: Preemptive Dynamic Voltage Scaling
	4.2.1 Overview
	4.2.2 Problem Formulation
	4.2.3 Approximation Scheme
	4.2.3.1 Problem Transformation
	4.2.3.2 Approximation Algorithm

	4.2.4 Efficient PreDVS Heuristics
	4.2.4.1 Heuristic Without Problem Transformation
	4.2.4.2 Heuristic With Problem Transformation

	4.3 DSR: Dynamic Slack Reclamation
	4.3.1 Overview
	4.3.2 Dynamic Slack Reclamation Algorithm
	4.3.2.1 Tasks without Arrival Time Constraints
	4.3.2.2 Tasks with Arrival Time Constraints

	4.3.3 Algorithm

	4.4 Experiments
	4.4.1 PreDVS
	4.4.1.1 Experimental Setup
	4.4.1.2 Results

	4.4.2 DSR
	4.4.2.1 Experimental Setup
	4.4.2.2 Results

	4.5 Summary

	5 System-wide Energy Optimization with DVS and DCR
	5.1 Related Work
	5.2 System-wide Leakage-aware DVS and DCR
	5.2.1 Power Estimation Framework
	5.2.2 Two-Level Cache Tuning Heuristic
	5.2.3 Critical Speed
	5.2.3.1 Processor + L1 Cache
	5.2.3.2 Processor + L1/L2 Cache
	5.2.3.3 Processor + L1/L2 Cache + Memory
	5.2.3.4 Processor + L1/L2 Cache + Memory + Bus

	5.2.4 Real-Time Voltage Scaling and Cache Reconfiguration
	5.2.4.1 Profile Table
	5.2.4.2 Reconfiguration Selection Heuristics

	5.2.5 Procrastination

	5.3 A General Dynamic Reconfiguration Algorithm
	5.3.1 Overview
	5.3.2 Algorithm
	5.3.2.1 Extended Complete Bipartite Graph
	5.3.2.2 Minimum-Cost Path Algorithm

	5.4 Experiments
	5.4.1 System-wide Energy Optimization
	5.4.1.1 Experiments Setup
	5.4.1.2 Results

	5.4.2 General Algorithm for Dynamic Reconfiguration
	5.4.2.1 Experiments Setup
	5.4.2.2 Results

	5.5 Summary

	6 Temperature- and Energy-Constrained Scheduling
	6.1 Related Work
	6.2 Background
	6.3 TCEC Scheduling Approach
	6.3.1 Overview
	6.3.2 Modeling with Extended Timed Automata
	6.3.3 Problem Variants

	6.4 Experiments
	6.4.1 Experiments Setup
	6.4.2 Results
	6.4.2.1 Solving TCEC Problems
	6.4.2.2 Running Time Variations

	6.5 Summary

	7 Energy Optimization of Cache Hierarchy in Multicore Systems
	7.1 Related Work
	7.2 Background and Motivation
	7.2.1 Architecture Model
	7.2.2 Motivation

	7.3 Dynamic Cache Reconfiguration and Partitioning
	7.3.1 Problem Formulation
	7.3.2 Static Profiling
	7.3.3 DCR + CP Algorithm
	7.3.4 Task Mapping
	7.3.5 Varying Cache Partitioning Scheme
	7.3.6 Gated-Vdd Shared Cache Lines

	7.4 Experiments
	7.4.1 Experimental Setup
	7.4.2 Results
	7.4.2.1 Energy Savings
	7.4.2.2 Deadline Effect
	7.4.2.3 Task Mapping Effect
	7.4.2.4 Effect of Varying Cache Partitioning
	7.4.2.5 Gated-Vdd Cache Lines Effect

	7.5 Summary

	8 CONCLUSIONS AND FUTURE WORK
	8.1 Conclusions
	8.2 Future Research Directions

	A List of Publications
	REFERENCES
	BIOGRAPHICAL SKETCH

