
Dynamic Cache Tuning for Efficient Memory Based Computing in
Multicore Architectures

Hadi Hajimiri, Prabhat Mishra
CISE, University of Florida, Gainesville, USA

{hadi, prabhat}@cise.ufl.edu

Swarup Bhunia
EECS, Case Western Reserve University, Cleveland, USA

skb21@case.edu

Abstract—Memory-based computing (MBC) is a promising ap-
proach to improve overall system reliability when few functional
units are defective or unreliable under process-induced or thermal
variations. A major challenge in using MBC for reliability improve-
ment is that it can introduce significant energy and performance
overhead. In this paper, we present an efficient dynamic cache
reconfiguration and partitioning technique to improve performance
and energy efficiency in MBC-enabled reliable multicore systems. We
use genetic algorithm to search effectively in a large and complex
design space. Experimental results demonstrate that the proposed
cache reconfiguration and partitioning approach can significantly
improve both performance and energy efficiency for on-demand
memory based computing without sacrificing reliability.

I. INTRODUCTION

Ensuring long-term reliability is an essential goal for al-
l microprocessor manufacturers. With device miniaturization,
design and process error margins are shrinking. Increasing
process-induced variations and high defect rate in nanometer
regime lead to reduced yield [1]. Process variation affects
the propagation delay in CMOS circuits, which may lead to
delay failures. In Static Random Access Memory (SRAM) these
variations may cause data retention or read/write failures [8].
Existing approaches address reliability concerns during design
time or by post-silicon correction and compensation solutions.
Increasing reliability using redundant functional units at design
time places a significant permanent area/energy overhead on all
manufactured chips in their entire lifetime.

Memory-based computing (MBC) has been shown to be
a promising alternative to improve system reliability in the
presence of both manufacturing defects and parametric (process
or thermal-induced) failures. It assumes that one or more logic
units can be nonfunctional while on-chip memory is functional.
Although memory is also prone to errors, it is easy to han-
dle failures using error correcting code (ECC) based protec-
tion (soft memory errors), suitable redundancy, and remapping
techniques [1] (parametric failures). Unfortunately, such low-
overhead methods are not suitable for handling defects in
processor logic circuits. MBC is promising to address reliability
concerns in functional units with significantly less area overhead
[15] (only 9.5% compared to duplication based redundancy
methods). Existing studies have demonstrated the utility of MBC
in both single-core [15] and multicore [3] architectures. The
existing approaches have two major limitations. First, the cache
area limitation was not considered as a constraint in system
design and the study assumed the presence of large caches.
Storing lookup tables for MBC may need huge storage capacity.
For example, authors in [15] used large dedicated caches in

This work was partially supported by NSF grants CNS-0915376, CCF-
0964514 and ECCS-1002237.

their setup in order to lower performance overhead. Second,
allocating cache space to MBC lookup tables can result in
significant performance/energy overhead. For example, Fig. 1
shows that improving reliability by using MBC slows down
performance significantly when we poorly choose the MBC L2
cache usage for applu benchmark leading to a similar increase
in cache subsystem energy consumption1. In this example we
used an 8-way associative L2 cache and restricted the L2 cache
ways accessible by the application from 1 to 8.

Fig. 1. The impact of reduced available cache for instruction/data on
performance for benchmark applu. The remaining is used by MBC.

Dynamic cache reconfiguration (DCR) is widely known as
one of the most effective techniques for cache energy optimiza-
tion [2]. By tuning the cache configuration at runtime, we can
satisfy data and instruction memory access behavior as well as
MBC requirements of different applications so that significant
amount of energy savings can be achieved without violating
deadline constraints. Cache partitioning (CP) is another promis-
ing approach to improve performance and energy consumption.
DCR and CP are promising techniques that can be used to
alleviate the performance/energy overhead. However, there are
several challenges. It is difficult to determine a profitable portion
of cache that could be set aside for MBC. Increasing MBC cache
space improves MBC performance while reduces the available
space for instruction and data and may decrease the overall
performance. We need to determine a profitable partitioning
between instruction/data cache and MBC cache. When MBC
supports many operations it is a major challenge to find the size
of profitable dedicated space for each supported operation as the
number of possible solutions increases exponentially.

In this paper, we present an energy and performance-aware
dynamic cache reconfiguration and partitioning technique for
improving reliability in multicore embedded systems. We devel-
oped an efficient genetic algorithm to utilize DCR and CP tech-

1Performance overhead (in percentage) is calculated by ((execution time of
the application using MBC)/(execution time of the application without MBC)-
1)x100

niques to find beneficial IL1/DL1 cache configurations as well
as L1/L2 cache partition factors for each MBC operation and
L2 instruction/data partition factors. Our experimental results
demonstrate that our approach can significantly improve both
performance and energy efficiency for on-demand computing in
memory in the presence of deadline constraints.

The rest of the paper is organized as follows. Section II
describes related research activities. Section III provides an
overview of our memory based computation framework along
with DCR and CP. Section IV describes the proposed genetic
algorithm for reliability and energy improvement using DCR
and CP. Section V presents the experimental results. Finally,
Section VI concludes the paper.

II. RELATED WORK

Reliable computation using unreliable components has been
actively studied for a long time. A wide variety of solutions
have been proposed over the years with the goal of dynamic
detection and correction of defects and variation-induced failures
[1][2], [6]. These techniques typically incur large performance
overhead or do not address manufacturing defects [6]. Paul et
al. [15] studied the utility of MBC for reliability improvement
in single-core architectures. MBC is recently introduced in
multicore architectures [3] where private MBC L1 caches were
used to store MBC look up tables in each core. The existing
approach has two major limitations. First, it assumed MBC
cache can be easily added to the design and did not consider
the associated area overhead (the use of large cache sizes) as
storing lookup tables for MBC may need huge storage capacity.
Second, allocating cache space to MBC lookup tables can result
in significant performance overhead due to reduced available
space for normal instruction and data. In this work, we have
efficiently used DCR and CP to address the above challenges.
While DCR and CP have been explored for performance and
energy improvement in various contexts [2][9], these approaches
cannot be applied to MBC due to the complexity of the design
space, as we discuss in Section IV. To the best of our knowledge
this is the first work that utilized DCR and cache partitioning
to enable efficient memory based computing.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. Architecture Model

Fig. 2 shows an overview of MBC in a multicore framework.
Under normal circumstances, issue logic sends the instructions
to the respective functional units. However, if the functional unit
is not available (due to temperature stress), for certain types of
instructions (addition, multiplication, etc.), issue logic bypasses
the original functional unit for memory based computation. The
operands are used to form the effective physical address for
accessing the LUTs corresponding to the mapped function. The
LUTs are stored in main memory and most recent accesses are
cached for performance improvement [15].

In this paper, we investigate the role of cache partitioning in
improving performance without sacrificing reliability. We have
applied MBC to realize the functionality of the integer execution
unit (adder and multiplier) in each core. This architecture has
m cores each having it’s own private L1 data and instruction

Task 1

Issue

Core m
Task m

L2 Cache

M
B

C
 m

ul

M
B

C
 a

dd

Unified inst/data

Main Memory

M
B

C
 a

dd

M
B

C
 m

ul

DL1

IL1
MBC mul

MBC add

DL1

IL1
MBC mul

MBC add

...MBC

Issue

Core 1

Ex1 ExnEx2 ...MBC Ex1 ExnEx2

Fig. 2. Memory-based computing architecture in multicore systems

caches. All the cores share an L2 combined (instruction+data)
cache which is connected to main memory. Instruction and
data L1 caches are highly reconfigurable in terms of effective
capacity, line size and associativity. We adopt the underlying
reconfigurable cache architecture used in [2].

In our framework, both private L1 cache associated with
each core and the unified shared L2 cache can be partitioned.
Unlike traditional LRU replacement policy which implicitly
partitions each cache set on a demand basis, we use a way-
based partitioning in the shared cache and private MBC caches
[11]. For example, in Fig. 3, 5 ways are reserved for normal
instruction/data caches, whereas multiply and addition LUTs
(for MBC) received 1 and 2 ways, respectively. We refer the
number of ways assigned to each functionality as its partition
factor. For example, the L2 partition factor for instruction/data
cache in Fig. 3 is 5.

Unified inst/data MBC addMBC mul

8 ways in one cache set
Fig. 3. Way-based cache partitioning example: 5 ways for inst/data, 1-way of
MBC mul, and 2 ways for MBC add.

To support MBC, each core also has an L1-level MBC cache
that stores most frequently accessed entries of the LUTs. The
existing private L1 cache can be partitioned into two parts:
one part dedicated for MBC cache to store most frequently
used LUTs, and the other part will be used for conventional
data/instruction accesses. For example, in Fig. 2 core1 uses half
of private MBC cache for each of MBC operations whereas
core m needs less than half for mul operation (assigning more
to add operation). Similarly, shared L2 cache can be partitioned
to make space for MBC LUTs.

B. Problem Formulation

In this work, we use static cache partitioning as applications
are known a priori. In other words, partition factors are pre-
determined during design time and remain the same throughout
the system execution. Dynamic profiling and cache partitioning
[9] requires online monitoring, runtime analysis and sophisti-
cated OS support, therefore, may not be feasible for a wide
variety of systems. Furthermore, embedded systems normally
have highly deterministic characteristics (e.g., task release time,
deadline, input set), which make off-line analysis most suitable.
By static profiling, we can potentially search much larger design
space and thus achieve better optimization results. We statically
profile each set of tasks and store the analysis results in a
profile table which is fully utilized to dynamically reconfigure
the cache hierarchy at runtime. In our framework we tune a
number of different cache parameters. Parameters for IL1 and
DL1 caches in each core are comprised of cache size, line
size, and associativity. The available cache ways in the unified
shared L2 cache are divided into partitions for normal inst/data
and different MBC operations. Similarly, we set aside part of
DL1 caches (in each core) for MBC operations. The system we
consider can be modeled as:

• A multicore processor with m cores P{c1, c2, ..., cm}.
• A list of operations supported by MBC F{o1, o2, ..., ol}
• A β-way associative shared L2 cache with way-based

partitioning enabled.
• A set of n independent tasks T {τ1, τ2, ..., τn} with a

common deadline D2.

Suppose we are given:

• A task mapping M : T → P in which tasks are mapped to
each core. Let ρk denote the number of tasks on core ck.

• An L1 cache configuration assignment R : CI , CD → T
in which one IL1 and one DL1 configuration are assigned
to each task. This mapping determines the associativity of
DL1 cache, namely αk for core ck, for each core and
delimits the maximum size of MBC cache that can be
stored in L1 MBC caches. The DL1 cache supports way-
based partitioning.

• Private L1 MBC cache partitioning scheme for each oper-
ation oi ∈ F :

Pp
Ck{f

p
O1,k, f

p
O2,k, ..., f

p
Ol,k, f

p
d,k},∀k ∈ [1,m]

in which core ck ∈ P allocates fpOi,k ways of the private
DL1 cache to MBC operation oi and fpd,k ways to normal
data.

• Shared L2 cache partitioning scheme
Ps{fs1 , fs2 , ..., fsl , fsID} in which operation oi ∈ F is
allocated fsi ways of the shared L2 cache and fsID is
assigned for instruction and data.

• Task τk,i ∈ T (ith task on core ck) has execution
time of tk,i(M,R,Pp,Ps). Let EL1(M,R,Pp,Ps) and
EL2(M,R,Pp,Ps) denote the total energy consumption of
all the L1 caches and the shared L2 cache, respectively.

2Our approach can be easily extended for individual deadlines.

Our goal is to find M,R,Pp, and Ps such that the overall energy
consumption of cache subsystem for the task set:

E = EL1(M,R,Pp,Ps) + EL2(M,R,Pp,Ps)

is minimized subject to:

Max(

ρk∑
i=1

tk,i(M,R,Pp,Ps)) ≤ D,∀k ∈ [1,m], ∀i ∈ [1, ρk] (1)

l∑
i=1

fpOi,k = αk − fpd,k; fpOi,k ≥ 0,∀k ∈ [1,m] (2)

l∑
i=1

fsi = β − fsID; fsi ≥ 0,∀k ∈ [1,m] (3)

Equation (1) guarantees that all the tasks in T are finished by the
deadline D. Equation (2) ensures that the L1 partitioning Pp is
valid (l is the number of supported MBC operations). Equation
(3) guarantees that at most β ways of the shared L2 cache is
assigned for MBC.

IV. DYNAMIC CACHE RECONFIGURATION AND
PARTITIONING ALGORITHM

Our goal is to profile the entire task set T under all possible
combinations of Pp and Ps. Unfortunately, this exhaustive
exploration is not feasible due to its excessive simulation time
requirement (number of simulations can easily go over billions).
We have developed a genetic algorithm (GA) to overcome this
problem. Genetic algorithms transpose the notions of natural
evolution, such as inheritance, mutation, selection, and crossover
to the world of computers, and imitate natural evolution. They
constitute a class of search methods especially suited for solving
complex optimization and design problems [12]. Fig. 4 shows
the major steps of our genetic algorithm. In step 1, the initial
population is filled with individuals that are generally created
at random. In step 2, each individual in the current population
is evaluated using the fitness measure. Step 3 tests whether the
termination criteria is met. If so the best solution in the current
population is returned as our solution. If the termination criteria
is not satisfied a new population is formed by applying the
genetic operators in step 4. Each iteration is called generation
and is repeated until the termination criteria is satisfied. We
describe each of these steps in the following subsections with
illustrative examples.

Step 4: Create new population by reproduction,
crossover, and mutation

Step 1: Create initial random population

Step 2: Evaluate each member of the population

Final solution
Step 3:

Criteria satisfied?

No

Yes

Fig. 4. Overview of our genetic exploration algorithm

A. Creation of Initial Random Population

In the first step, the initial population is filled with indi-
viduals that are randomly created. We initially choose ran-
dom acceptable values for IL1/DL1 cache configurations (size,
associativity, and line size) and partitioning factors (for M-
BC operation o1, ..., ol and inst/data) as well as L2 parti-
tioning factors. We create small number of initial solutions
(composing the initial population). For the ease of illustration
let’s assume the size of IL1 and DL1 are the only tunable
parameters in a singlecore system with only one task and
deadline of 10 milliseconds. Solutions are presented in tu-
ples as (IL1 size,DL1 size) in bytes. Each tuple is associated
with another tuple representing its execution time and energy
consumption, e.g. (IL1 size,DL1 size):(time,energy). Consider
(2048,4096), (4096,1024), and (2048,1024) are randomly gen-
erated in this step as the initial population.

B. Evaluation of Each Member in the Population

Our problem is a single-objective optimization problem in
which the selection is done proportional to the fitness function.
Each individual in the current population is evaluated using the
fitness measure. We define our fitness value based on:

Ψ = E : and Equations (1), (2), and (3) must hold

The lower fitness measure implies better solution (lower
energy consumption). In this step, we profile (using an architec-
tural simulator) each solution in the population and sort them
based on energy consumption. The exploration goal is to find
the solution with minimum energy consumption. We remove
solutions that do not satisfy the deadline from the current pop-
ulation. In our example (2048,4096):(9,20), (4096,1024):(8,24),
and (2048,1024):(10.5,18) are the outcome of this step. Solution
(2048,4096):(9,20) represents that with the assignment of 2048
and 4096 for IL1 and DL1 respectively the task takes the
execution time of 9 milliseconds and consumes 20 nano Joule.
As the execution time of solution (2048,1024):(10.5,18) is larger
than the deadline, this task will be removed from the current
population.

C. Termination Criteria Check

If the termination criteria is met, the best solution is returned.
We set the criteria to be a fixed number of generations (in this
work 20). Note that the solution can converge prior to this time
when the current population is the same as previous generation.
In this case, the best solution in the current generation is returned
as our final solution.

D. Generation of New Population

In this step, we create new candidates that are slightly
different from the individuals in the current population with
the aim of finding more energy efficient solutions. From the
current population individuals are selected based on the pre-
viously computed fitness values (lowest energy solutions). A
new population is formed by applying the genetic operators
(reproduction, crossover, and mutation) to these individuals.
The selected individuals are called parents and the resulting
individuals are referred as offspring. The genetic operators are
as follows:

Reproduction: A part of the new population can be created
by simply copying (without change) selected individuals from
the present population. This gives the possibility of survival for
already developed fit solutions, e.g. most energy efficient ones.

Crossover: New individuals are created as offspring of two
parents. One or more so-called crossover points are selected
(usually at random) within the chromosome of each parent,
at the same place in each. In this paper, we use uniform
crossover with the mixing ratio of 0.5 in which the offspring
has approximately half of the genes (IL1/DL1 configurations
and partitioning, L2 partitioning) from first parent and the other
half from second parent. The parts delimited by the crossover
points are then interchanged between the parents, as shown in
Fig. 5. The individuals resulting in this way are the offspring.

Crossover point

Parents:

Children:

(2048,4096)
(4096,1024)

(2048,1024)
(4096,4096)

Fig. 5. An example of one point crossover

Mutation: A new individual is created by making modifica-
tions to one selected individual. We increase/decrease IL1/DL1
cache size (e.g., multiply/divide by 2), associativity, and line
size. We also increase the number of the cache ways allocated to
a particular MBCoperation (or instruction/data) for both L1 and
L2. These cache ways are deducted from the ways assigned to
other operations so that Equation (2) and (3) hold and we have
a valid partitioning factor assignment. Fig. 6 shows mutation
of individuals in current population using our simple example.
Eight new individuals are generated in this step. In this figure,
green color represents a reduction in cache size and blue shows
cache enlargement. Note that the new solution will be ignored
if it is not valid. For example, since the smallest possible DL1
cache is 1024, the solution (2048,512) (underlined in the figure)
is skipped from the new population.

Parents:

Children:

(2048,4096) (4096,1024)

(2048,8192)(4096,4096)(1024,4096)(2048,2048)

(2048,2048)(8192,4096)(2048,4096)(2048,512)

Fig. 6. Genetic mutation

Applying every genetic operator to all individuals in the
current population leads to a huge number of new individuals
as the number of tunable parameters increases. This makes the
evaluation step very slow because a large number of simulations
would be needed. Therefore by using different probabilities for
applying these operators, we control the number of newly gener-
ated solutions in each iteration hence the speed of convergence.

V. EXPERIMENTS

A. Experimental Setup

To evaluate the effectiveness of the proposed approach, we
implemented the computation transfer mechanism in a widely

TABLE I
MULTI-TASK BENCHMARK SETS.

2-Core 4-Core
Set 1 mgrid,lucas toast,lucas,vpr,parser
Set 2 vpr,qsort qsort,bitcount,swim,lucas
Set 3 toast,dijkstra lucas,mgrid,dijkstra,CRC32
Set 4 parser,toast dijkstra, applu, parser, mgrid
Set 5 bitcount,swim -
Set 6 toast,mgrid -

used multicore simulator, M5 [14]. We enhanced M5 to make the
required modifications in processor cores as well as in memory
hierarchy. We modified memory hierarchy to support cache
partitioning, to introduce L1 private MBC caches and shared L2
MBC cache. We configured the simulated system with a two-
core and four-core processor each of which runs at 500MHz.
The DerivO3CPU model [14] in M5 is used which represents
a detailed model of an out-of-order SMT-capable CPU which
stalls during cache accesses and memory response handling. A
128KB 16-way associative cache with line size of 32B is used
for L2 cache. For both IL1 and DL1 caches, we utilized the sizes
of 1 KB, 2 KB, 4 KB, and 8 KB, line sizes ranging from 16
bytes to 64 bytes, and associativity of 1-way, 2-way, 4-way, and
8-way. Since the reconfiguration of associativity is achieved by
way concatenation [2], 1KB L1 cache can only be direct-mapped
as three of the banks are shut down. 2KB cache can only be
configured to direct-mapped or 2-way associativity. Therefore,
there are 18 (=3+6+9) configuration candidates for L1 caches.
For comparison purposes, we used the base cache configuration
set to be a 4 KB, 2-way set associative cache with a 32-byte line
size, a common configuration that meets the average needs of
the studied benchmarks [2]. The memory size is set to 256MB.
The L1 cache, L2 cache and memory access latency are set to
2ns, 20ns and 200ns, respectively. The temperature threshold for
the integer execution unit was set at 100◦C.

We used benchmarks selected from MiBench [10] (bitcount,
CRC32, dijkstra, qsort, and toast) and SPEC CPU 2000 [4]
(applu, lucas, mgrid, parser, swim, and vpr). In order to make
the size of SPEC benchmarks comparable with MiBench, we
use reduced (but well verified) input sets from MinneSPEC [5].
Table I lists the task sets used in our experiments which are
combinations of the selected benchmarks. We choose 6 task sets
for 2-core and 4 task sets for 4-core scenarios, each core running
one benchmark. The task mapping is based on the rule that
the total execution time of each core is comparable. “Hotspot
2.0” tool [16] was used for estimating the temperature profile
of the integer ALU units. In order to estimate the die thermal
profile from Hotspot, power dissipation values of the individual
functional units were obtained from Wattch 1.0 [7] at regular
time intervals.

B. Results

Fig. 7 shows the yield improvement due to the proposed
activity migration scheme in case of manufacturing defects.
Performance overhead of more than 10% due to failing func-
tional unit is defined as chip failure. We considered a specific
implementation of integer and floating point units obtained from
[13] which consisted of 600K transistors. The cache memory
organized into 32x32 blocks with built-in redundancy of two

columns per block. A random distribution of a range of defect
rates were inserted into the transistors of both logic and memory
units. Some defects were tolerated using redundant columns
in memory. Performance degradation is obtained from cycle
accurate simulations using our benchmark sets. Region A in
Fig. 7 represents low defect rates. It can be observed that even
for low defect rates the percentage of chips that do not meet the
target performance using the baseline configuration (no MBC)
is as high as 60%. For these low defect rates, however, the
performance overhead for the MBC scheme was lower than the
10% tolerance (improvement of up to 60% in yield). As the
defect rate increases (Region B), more functional units fail and
less memory blocks are usable due to device failures. Hence,
yield for the proposed scheme also starts to degrade. However,
the chip failure rate is considerably better than the baseline
configuration. In case of high failure rates (Region C), the
MBC scheme also faces increased chip failure but still lower
than the baseline. Results in Fig. 7 confirms that the proposed
activity transfer method provides considerable benefit in yield
and reliability at the expense of small loss in performance.

0

20

40

60

80

100

0 5 10 15 20

Device Failure Probability (ppm)

C
h

ip
 F

a
il

u
re

 P
ro

b
a
b

il
it

y
 (

%
)

BaselineProposed Scheme

Failure rate

improved

Similar failure

rate but better

yield

Increased

range for

<1% failure

AA BB
CC

Fig. 7. Variation in chip failure probability for different device failure
probabilities with and without the proposed approach.

Fig. 8 shows the energy improvements of our approach using
MBC in the presence of thermal stress in 2-core framework.
For comparison purposes we define a fixed sized MBC cache
option Fixed Half, a straightforward solution, where half of
available cache is used (128KB of L2 and 2KB of L1 caches)
for MBC for all task sets. As the search space in our problem
is extremely large we compare our approach to a known search
heuristic in which each cache parameter is optimized separately.
For example, we start with Fixed Half solution and replace
IL1 configuration for core 0 in this solution with all possible
configurations for IL1 and find the least energy one. Next, we
find the least energy IL1 for core 1. Similarly we discover best
IL1/DL1 configurations and partition factors for every core as
well as L2 partition factors separately. We refer this method
as local optimum in our comparison. Using local optimum
provides up to 20% (15% on average) energy savings compared
to Fixed Half. Performing local optimum for a 2-core scenario
requires 307 (=2x(18+18+45)+145) simulations. To make our
comparison fair we limit the number of generations in our
approach to 10 so that the total number of simulations would
be less than 300 (each generation creates 30 new solutions at
most). Our genetic algorithm achieves 26% energy savings on

average (up to 41% for task set 6).

Fig. 8. Energy consumption for 2-core benchmark sets.

To investigate the speed of convergence in our approach
we extended the number of generations to 20. Energy con-
sumption of the most energy efficient solution found at each
generation normalized to Fixed Half is reported in Fig. 9. It
can be observed that for the majority of task sets the energy
consumption of the best solution at the 10th generation is very
close to the solution at generation 20. Extension to generation
20 will achieve 2.4% more energy savings (up to 4.7% for Set
5). Fig. 10 illustrates energy consumptions in 4-core scenario.
Applying local optimum in 4-core framework obtains 10%
energy reduction compared to Fixed Half. Utilizing genetic
algorithm produces 18% energy savings on average (up to 24%
using Set 4). We notice that the number of parameters (and thus
the search space) increases exponentially with the number of
cores making it more difficult to reduce energy consumption in
a 4-core framework.

Fig. 9. Energy consumption of the least energy solution at each generation for
2-core benchmark sets normalized to Fixed Half.

Fig. 10. Energy consumption for 4-core benchmark sets.

A closer look at performance overhead for different cache
partitioning factors confirms that choosing a predetermined fixed
partitioning factor for all benchmarks is not beneficial. Fig. 11
shows performance overhead for varying L2 instruction/data
partitioning factor where partitioning factor for L2 MBC, L1
instruction/data and MBC are fixed to half of the available space.
For instance it is beneficial to choose partitioning factor 7 for
vpr benchmark whereas partition factor 13 generated the lowest
overhead for patricia.

Fig. 11. Performance overhead of various partitioning factors for vpr , patricia,
and crc32 benchmark.

VI. CONCLUSION

We presented a novel energy/performance-aware cache parti-
tioning technique for improving reliability with memory based
computing. The basic idea is to use both private and shared
caches as reconfigurable computing resources. We developed
an efficient static profiling technique and cache partitioning
algorithm to find beneficial L1/L2 cache partition factors for
each MBC operation and L2 instruction/data partition factors.
Our approach can be effectively used to tolerate permanent man-
ufacturing defects in a processor core to improve functional yield
of multicore architectures. It can also be applied to temporarily
bypass the activity in functional units under time-dependent
local variations, thus providing dynamic thermal management
by activity migration. Our experimental results demonstrated
significant reduction in energy consumption (down to 74%
on average) when using MBC for reliability improvement in
multicore architectures.

REFERENCES

[1] A. Agarwal et al, “A Process-Tolerant Cache Architecture for Improved
Yield in Nanoscale Technologies”, IEEE Trans. on VLSI, 13,27-38, 2005.

[2] W. Wang et al., “Dynamic Cache Reconfiguration and Partitioning for
Energy Optimization in Real-Time Multicore Systems”, DAC, 2010.

[3] H. Hajimiri et al, “ Reliability Improvement in Multicore Architectures
Through Computing in Embedded Memory”, MWSCAS, 2011.

[4] Spec 2000 benchmarks [Online], http://www.spec.org/cpu/.
[5] A. KleinOsowski and D. Lilja, “Minnespec: A new spec benchmark work-

load for simulation-based computer architecture research”, CAL g(1), 2002.
[6] D. Ernst et al, “Razor: A Low-power Pipeline Based on Circuit-Level

Timing Speculation”, IEEE Micro, 2003.
[7] D. Brooks et al, “Wattch: A framework for architectural-level power

analysis and optimizations”, ISCA, 2000.
[8] S. Mukhopadhyay et al., “Modeling of Failure Probability and Statistical

Design of SRAM Array for Yield Enhancement in Nanoscaled CMOS”, T-
CAD, 2005.

[9] M. K. Qureshi and Y. N. Patt, “Utility-based cache partitioning: A
low-overhead, high-performance, runtime mechanism to partition shared
caches”, Micro, 2006.

[10] M. Guthaus et al., “Mibench: A free, commercially representative embed-
ded benchmark suite”, WWC, 2001.

[11] A. Settle et al., “A dynamically reconfigurable cache for multithreaded
processors”, JEC, Vol. 2, pp. 221-223, 2006.

[12] P. Bentley, “Evolutionary Design by Computers”, Morgan Kaufman-
n, 1999.

[13] “Digital open source hardware,”, [Online], http://opencores.org/.
[14] N. Binkert et al., The M5 simulator: Modeling networked systems”, IEEE

Micro, vol. 26, no. 4, pp. 52 -60, 2006.
[15] S. Paul and S. Bhunia, “Dynamic Transfer of Computation to Processor

Cache for Yield and Reliability Improvement”, IEEE TVLSI, 2011.
[16] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and

D. Tarjan, “Temperature-aware microarchitecture”, IEEE ISCA, 2003.

