A General Algorithm for Energy-Aware Dynamic Reconfiguration in Multitasking Systems

Weixun Wang Sanjay Ranka Prabhat Mishra
Department of Computer and Information Science and Engineering
University of Florida, Gainesville, FL
{wewang,ranka,prabhat}@cise.ufl.edu

Abstract—System optimization techniques based on dynamic reconfiguration are widely adopted for energy conservation. While dynamic voltage scaling (DVS) techniques have been extensively studied for processor energy conservation, dynamic cache reconfiguration (DCR) for reducing cache energy consumption in multitasking systems is still in its infancy. In this paper, we propose a general and flexible algorithm for energy optimization based on dynamic reconfiguration in multitasking systems. Our algorithm is flexibly parameterized and can be used to provide tradeoffs between running time and solution quality. Furthermore, it can easily incorporate variable reconfiguration overhead. Experimental results show that our technique can generate near-optimal solutions with significantly low running time and memory requirements.

I. INTRODUCTION

Energy conservation is the key design consideration for embedded systems. Various techniques have been proposed over the years to reduce the energy consumption of processor as well as memory subsystem. Dynamic voltage scaling (DVS) can be effectively used to reduce the power requirement quadratically while only slowing the processor performance almost linearly. Recent studies show that memory hierarchy, especially the cache subsystem, has become comparable to the processor in terms of energy consumption [1]. Dynamic cache reconfiguration (DCR) provides the ability to change cache configuration at run time so that it can satisfy each application’s unique requirement in cache size, line size and associativity. DCR is capable of improving cache energy efficiency as well as overall performance [2].

In real-time systems, multiple tasks execute in the system simultaneously by sharing common resources. In uniprocessor systems, only one task can execute at any point of time. Furthermore, each task normally has its arrival time and deadline constraints. Therefore, we have to decide when and how (under which voltage level/cache configuration) to execute each task. While the former decision is made by scheduling algorithms, the latter one is decided by DVS/DCR techniques.

In this paper, we develop a general algorithm that comprehensively solves energy-aware reconfiguration problems in uniprocessor multitasking systems. Our contribution can be summarized as:

1) The algorithm assumes that each task can be executed under one or multiple configurations and finds the optimal configuration assignment to minimize energy consumption while ensuring all the time constraints. Each configuration could correspond to one cache configuration, one voltage level or a combination of them. Therefore the algorithm can either separately or simultaneously accommodate DCR and DVS techniques.
2) It allows differential cost of switching from one configuration to another. Thus, it has advantages over existing techniques that it can effectively take variable runtime overhead into account.
3) The algorithm can be flexibly parameterized to tradeoff between algorithm running time and solution quality. Our experimental results show that the running time can be drastically reduced while only minor quality degradation is observed.

Furthermore, our algorithm is relatively independent of the scheduling policy and task properties. It can support tasks with/without time constraint, preemptive/non-preemptive scheduling or periodic/aperiodic tasks.

The rest of the paper is organized as follows. Related works are surveyed in Section II. We formulate and analyze the problem in Section III. Next, we describe our algorithm and various design considerations in Section IV. Section V presents our experimental results. Finally, Section VI concludes the paper.

II. RELATED WORK

DCR has recently drawn considerable interests in both general-purpose [3] as well as real-time systems [4] [5]. DCR needs the support of reconfigurable cache architectures as proposed in [1] [2]. The major challenge for employing DCR in multitasking systems is to determine when and how to reconfigure the cache so that energy consumption is minimized while each task’s timing constraints are satisfied. Wang et al. applied DCR in soft real-time systems by utilizing static profiling information at runtime for both single level cache [4] and multiple level cache hierarchy [5]. Recent efforts [6] tried to combine DCR and DVS together in hard real-time systems. However, these techniques are either designed for specific systems (e.g., soft real-time systems in which missing task deadlines are tolerable) or specific task characteristics (e.g., periodic tasks). Moreover, they are also based on certain assumptions, e.g., negligible or fixed reconfiguration overhead.

DVS is widely supported in general as well as specific-purpose processors [7]. DVS techniques have been developed...
for periodic task sets [8], aperiodic tasks [9], preemptive and non-preemptive tasks [10], [11]. Inter-task DVS, in which each task is solely assigned one voltage level, is exploited in most existing works [12]. Its counterpart, intra-task DVS, which exploits dynamic slack created by early finished jobs, is studied in [13]. PreDVS [14] can lead to more energy savings than optimal inter-task DVS without introducing any extra overhead. Temperature constraint is also considered in recent DVS approaches [15]. Chen et al. [16] presents a survey on DVS techniques in real-time systems. Swaminathan et al. [17] modeled the uniprocessor voltage scaling for real-time system as a generalized network flow problem and solved it using network flow algorithms. However, their method does not support cache reconfiguration and only considered voltage switching at task boundaries. Moreover, their method cannot incorporate variable runtime overhead nor make tradeoff between running time and design quality. We address these limitations in the methods proposed in this paper.

III. PROBLEM FORMULATION

A. Energy Model

Cache Energy Model: Our cache energy model is adopted from [2]. Let E_{dynamic} and E_{static} denote the dynamic energy and static energy of the cache subsystem, respectively. The total cache energy consumption hence is $E_{\text{cache}} = E_{\text{dynamic}} + E_{\text{static}}$. Specifically, we have:

$$E_{\text{dynamic}} = \text{num_accesses} \cdot E_{\text{access}} + \text{num_misses} \cdot E_{\text{miss}}$$

$$E_{\text{miss}} = E_{\text{offchip_access}} + E_{\text{pref_stall}} + E_{\text{block_fill}}$$

$$E_{\text{static}} = P_{\text{static}} \cdot CC \cdot t_{\text{cycle}}$$

where E_{access}, E_{miss} and P_{static} are the energy required per cache access, per cache miss and static power consumption, respectively, which are all collected from CACTI [18] for all cache configurations. Here, CC denotes the number of clock cycles that is required to execute the task, and t_{cycle} is the length of each clock cycle. Following [2], we represent energy consumption for fetching data from off-chip memory, processor stall due to cache miss and cache block refilling after a miss by $E_{\text{offchip_access}}$, $E_{\text{pref_stall}}$ and $E_{\text{block_fill}}$, respectively.

Processor Energy Model: The dynamic power dissipation of the processor can be characterized as:

$$P_{\text{dynamic}} = K \cdot C_{\text{eff}} \cdot V_{dd}^2 \cdot f$$

where K is an application-specific constant which represents the average number of switches in one cycle, C_{eff} is the total switching capacitance of the processor, V_{dd} is the supply voltage and f denotes the operation frequency. Note that different applications may have various processor energy profile decided by how much effective switches they actually use during execution ($K \cdot C_{\text{eff}}$). Leakage power is given by [19]:

$$P_{\text{static}} = V_{dd} \cdot I_{\text{subth}} + |V_{bs}| \cdot I_j$$

where I_{subth} and I_j are the subthreshold current and reverse bias junction current, respectively. V_{bs} denotes the body bias voltage. Note that I_{subth} is in direct proportion to V_{dd} and V_{bs}.

Processor energy consumption is calculated as: $E_{\text{processor}} = (P_{\text{dynamic}} + P_{\text{static}}) \cdot \frac{CC}{T}$. This energy model is also used in [6].

B. Task Model

We are given:

- A highly configurable cache architecture which supports h different configurations $C\{c_1, c_2, ..., c_h\}$ and/or,
- A voltage scalable processor which supports l different voltage levels $V\{v_1, v_2, ..., v_l\}$

Task set can be characterized as the following:

- A set of m independent tasks $T\{\tau_1, \tau_2, ..., \tau_m\}$.
- Each task $\tau_i \in T$ has known attributes including arrival time, deadline or period (if it is periodic).
- Each task τ_i has known worst-case workload.

We use worst-case workload of each task since we focus on static slack allocation. In practice, the bound can be found by any existing worst-case execution time analysis techniques. Our goal is to find a voltage/cache configuration assignment for each task that minimizes the total energy consumption while ensuring that all the time constraints are met.

IV. ENERGY-AWARE RECONFIGURATION ALGORITHM

Our proposed approach accepts a trace of execution blocks as the input. Given a task set and a scheduling policy, we first execute all the tasks under the base case (under the base cache configuration) in DCR or the highest voltage level for DVS) assuming each of them requires its worst-case workload. The scheduler generates the execution blocks in temporal order. Note that for non-preemptive scheduling, execution blocks are essentially a sequence of task instances (jobs) with each of them having an absolute deadline and earliest start time (arrival time). In preemptive systems, however, execution blocks can be segments of tasks produced by preemptions. Figure 1 illustrates the relation between execution blocks and the tasks which they belong to. Suppose there are three periodic tasks τ_1, τ_2 and τ_3 with the characteristics of $(1, 3, 3)^2$, $(2, 5, 5)$ and $(4, 12, 12)$. Under EDF schedule, there are 10 execution blocks (b_1, b_2, ..., b_{10}) before time unit 12. Our algorithm makes reconfiguration decisions on the granularity of each execution block. Thus, it is optimal in non-preemptive systems with inter-task manner DVS/DCR. It can also generate more energy savings in preemptive systems without introducing additional runtime overhead since a context switching has to be carried out during task preemption.

For DVS, if tasks’ energy profiles are identical, the energy consumption and execution time of each execution block can be calculated according to the processor energy model. For DCR or DVS with variable task energy profile, these values need to be collected using static profiling [4]. Only Pareto-optimal configurations are considered for each block. Specifically, for DVS, since leakage power is considered,
the minimum voltage level is lower bounded (as a further decrease will lead to increasing in overall energy consumption [6]). For DCR, each block’s Pareto-optimal points are those cache configurations which are not dominated by any other configuration in terms of both energy consumption and time requirement. Note that Pareto-optimal configuration set is application-specific. In this section, we define a general term configuration which could be a cache configuration, a voltage level, or any other form of system configuration. Let \(h\) and \(h_i\) denote the total number of available configurations and the number of Pareto-optimal configurations for the \(i^{th}\) execution block, respectively.

We model the runtime reconfiguration overhead as variables depending on the transition from one configuration to another. For example, the overhead for reconfiguring a 4KB cache to a 8KB cache is generally larger than just changing the line size from 16 bytes to 32 bytes since the former requires waking up cache banks but the later is done by line concatenation. The input to our algorithm can be formally represented as:

- A set of \(n\) execution blocks \(B\{b_1, b_2, \ldots, b_n\}\).
- Execution block \(b_i \in B\) has an arrival time \(a_i\) if it is the first block in the task instance and an absolute deadline \(d_i\) if it is the last block.
- Execution block \(b_i\) has execution time \(t_i\) and energy consumption \(e_i\) under configuration \(k(c_i)\).
- Reconfiguration energy overhead \(\rho(i,j)\) and time overhead \(\sigma(i,j)\) for converting from configuration \(c_i\) to configuration \(c_j\).

Note that \(a_i\) and \(d_i\) correspond to the task to which the execution block belongs. \(a_i\) and \(d_i\) are set to -1 when they are not applicable to block \(b_i\). If we denote \(t_i\) as the start time and \(k_i\) as the index of the configuration assigned to block \(b_i\) given in the solution, the general dynamic reconfiguration problem \(\varphi\) can be formulated as\(^3\):

\[
\text{minimize } E = \sum_{i=1}^{n} (e_{i}^{k_i} + \rho(c_{k_{i-1}}, c_{k_i})) \tag{6}
\]

subject to,

\[
t_i \geq a_i, \forall a_i \geq 0 \tag{7}
\]

\[
t_i + \sigma(c_{k_{i-1}}, c_{k_i}) + t_i^{k_i} \leq d_i, \forall d_i \geq 0 \tag{8}
\]

\[
t_{i+1} = t_i + \sigma(c_{k_{i-1}}, c_{k_i}) + t_i^{k_i}, \forall i \in [1,n] \tag{9}
\]

Equation (7) represents the timing constraint that all the execution blocks must start executing after the task instance’s arrival time. Equation (8) ensures deadline is not violated for any task. Note that time overhead is accounted at the beginning of task execution. Since we stick to the original schedule, Equation (9) guarantees the execution order of all the blocks in the final solution. The goal is to find \(k_i\) for all blocks in \(B\) so that Equation (6) can be achieved. The described modelling method makes our approach generally applicable – it does not depend on any task set characteristic or scheduling algorithm.

A. Extended Complete Bipartite Graph

We formulate the dynamic reconfiguration problem \(\varphi\) as a minimum-cost path finding problem in an extended complete bipartite graph (ECBG) as shown in Figure 2. Unlike traditional complete bipartite graph, an ECBG has multiple (specifically, \(n\)) disjoint sets \(\{V_1, V_2, \ldots, V_n\}\) and a single source node as well as a single destination node. Every node in one set is connected to every node in its neighboring sets. Formally, an ECBG can be defined as \(ECBG\{V_1 + V_2 + \ldots + V_n, E\}\) such that for any two nodes \(v_i^k \in V_i\) and \(v_{i+1}^k \in V_{i+1}\), there is an edge \((v_i^k, v_{i+1}^k)\) in \(E\).

Semantically, each disjoint set \(V_i\) represents an execution block \(b_i\) in \(B\). Each node in the disjoint set stands for one configuration for that block. Hence, the number of nodes in set \(V_i\) is \(h_i\). Each edge \((v_i^k, v_{i+1}^k)\) in \(E\) is associated with two values: \(e_i^k\) and \(t_i^k\). It means that, by moving from set \(V_i\) to \(V_{i+1}\) through this edge (choosing \(c_k\)), it requires \(t_i^k\) time units and \(e_i^k\) units of energy to execute block \(b_i\). The runtime overhead is also taken into account on each edge. Specifically, edge \((v_i^k, v_{i+1}^k)\) carries a pair of values: \((e_i^k + \rho(c_k, c_{k_j}), t_i^k + \sigma(c_k, c_{k_j}))\). Therefore, the objective shown in Equation (6) is algorithmically equal to finding a path from the source node to the destination node in the ECBG which has the minimum accumulative energy \(E\). This path contains one and only one node from each disjoint set (choosing one edge between neighboring sets), which corresponds to selecting one configuration for each execution block. Moreover, all the constraints shown in Equation (7), (8) and (9) have to be satisfied in the path. For those nodes with arrival time constraint, say \(b_i\), it is possible that the finish time of its previous node \(b_{i-1}\) is earlier than \(a_i\). To ensure \(t_i \geq a_i\), there is an idle node before every block node to represent the possible idle intervals. Note that edge \((v_i^1, v_i^2)\) does not involve any overhead since no reconfiguration is carried out (i.e. \(k_1 = k_2\)). However, edge \((v_i^2, v_i^3)\) includes reconfiguration overhead \(\rho(c_{1}, c_{2})\) and \(\sigma(c_{1}, c_{2})\).

B. Minimum-Cost Path Algorithm

In this paper, we employ a dynamic programming based algorithm to find the minimum-cost path. Let \(E_i\) and \(T_i\) denote the total energy consumption (cost) and execution time up to node \(b_i\). Starting from the first node, for each node \(b_i\), we find the lowest cost \(E_i\) under each possible value of \(T_i\) and possible configuration choice for \(b_i\) (i.e. \(c_k\)), in a node by node manner until the destination node is reached. If there is no such partial path which has an accumulative execution time no larger than a specific value of \(T_i\) and ends up with a specific configuration for \(b_i\), the corresponding \(E_i\) is set to infinity. The calculation of all \(E_i\) values for each node is based on the lowest cost values...
of its previous node calculated in last step. At each step, say \(b_i \), we know the lowest total energy of last \(i-1 \) nodes under each possible value of \(T_i \) and configuration for \(b_{i-1} \). Based this information and various overhead, we can easily find the minimum \(E_i \) under all possible \(T_i \) and \(c_k \).

Since the execution time is continuous but the design space is actually discrete (consists of finite number of choices), it is neither possible nor necessary to consider all possible values of \(T_i \). Hence, we discretize \(T_i \) into a finite set of values. The interval between two adjacent discretized values is regarded as one time unit, which can be as small as one clock cycle or as large as one millisecond in practice. To reduce running time, we can limit \(T_i \) within the rage of \([T_{min}, T_{max}]\). We set \(T_{min} = \sum_{i=1}^{n} t_i^b \) where \(t_i^b \) is the execution time under the most performance efficient configuration. \(T_{max} \) can be set to the deadline constraint of last task instance or the common deadline for all tasks. In other words, all blocks need to be completed before \(T_{max} \). A three-dimensional array \(D \) is created for dynamic programming in which each element \(D[i][\tau][j] \) stores the lowest total cost for nodes \(b_1, b_2, ..., b_i \) while total execution time \(T_i \) is equal or less than \(\tau (T_i \leq \tau) \) and configuration choice for \(b_i \) is \(c_j \). As a result, there are \(n \) rows in \(D \) with each row consisting of \((T_{max} - T_{min})\) vectors and each vector has \(h \) elements. Therefore, the recursive relation for our dynamic programming scheme can be represented as:

\[
D[i][\tau][j] = \min_{k \in [1, h]} \{D[i-1][\tau - t_i^j - \sigma(c_k, c_j)][k] + e_i^j + p(c_k, c_j)\}
\]

(10)

\(D \) is filled up in a row by row manner and in an order so that all the previous \(i-1 \) rows are filled when the \(i^{th} \) row is being calculated. Note that only those elements corresponding to the Pareto-optimal configuration of \(b_i \) is calculated in each vector of \(D[i][\tau][j] \). Finally, the solution quality is decided by \(\min \{D[n][\tau][j]\} \), for \(\tau \in [T_{min}, T_{max}] \) and \(j \in [1, h] \), which is the lowest value in last row of \(D \).

Complexity Analysis: Our algorithm iterates over all the nodes (1 to \(n \)). In other words, the input size of our algorithm is actually the number of execution blocks. In each iteration, all discretized \(T_i \) values \((T_{max} - T_{min})\) as well as all Pareto-optimal configuration points (1 to \(h_i \)) for current and previous nodes are examined. Hence the time complexity is \(O(n \cdot (\max\{h_i\})^2 \cdot (T_{max} - T_{min})) \). The memory requirement of our algorithm is determined by the size of \(D \), which stores \(n \cdot (T_{max} - T_{min}) \cdot h \cdot sizeo(f(element)) \) bytes. To reduce the memory complexity, in each entry of \(D \), we can simply use minimum number of bits to remember the configuration choice instead of real \(E_i \) values. For calculation purposes, two two-dimensional arrays are used for temporarily storing \(E_i \) values for current and previous nodes.

Deadline Constraint: To ensure that the solution we find does not violate any task’s deadline, during each step of the dynamic programming process, if \(b_i \) has deadline constraint, all the entries with \(T_i \) value larger than \(d_i \) are set to infinity. As a result, in the next step, those entries will be regarded as invalid.

Arrival Time Constraint: In the final solution, we have to guarantee that none of the initial blocks of each task instance starts execution before the task’s arrival time as shown in Equation (7). However, since it is possible that one execution block finishes earlier than its very next block (thus creating an idle interval), the entries (each of which is a vector) with \(T_i \leq a_{i+1} \) in the \(i^{th} \) row of \(D \) are valid. One important observation is that, for block \(b_{i+1} \), it does not really matter when exactly \(b_i \) ends if \(b_i \) finishes before \(b_{i+1} \)’s arrival time. In other words, the \(T_i \) values of these entries have no impact on the decision making in \(b_{i+1} \). Hence, in the final solution, if \(b_i \) actually ends before \(a_{i+1} \), the choice we make for \(b_i \) must be the one that results in the lowest \(E_i \) value.

We partition the \(i^{th} \) row into three ranges by the next block’s arrive time \(a_{i+1} \) and the current block’s deadline \(d_i \). We can prove the solution is correct by contradiction. If \(a_{i+1} \) is larger than \(d_i \), it implies that the next job of the task corresponding to \(b_i \) arrives before \(b_{i+1} \) does. Therefore, there exists a ready-to-execute task between \(b_i \) and \(b_{i+1} \), which contradicts the fact that \(b_{i+1} \) is the very next execution block of \(b_i \). In cases where \(a_{i+1} \) may be after \(d_i \) (e.g. for aperiodic task set), range B vanishes and, as a result, the problem essentially becomes two independent subproblems (one consists of blocks before \(b_i \) while the other consists of blocks after \(b_{i+1} \), inclusively).

Tradeoff by Time Discretization: As discussed above, the time complexity of our algorithm is dominated by the term \((T_{max} - T_{min})\). A tradeoff can be made between solution quality and algorithm performance by further discretizing the execution time \(T_i \). During the dynamic programming, instead of calculating for every time unit, we can compute in interval...
of multiple units. We define this number of time units as a parameter δ. For example, if $\delta = 2$, every row of D will contain $\lceil \frac{T_{\text{max}} - T_{\text{min}}}{\delta} \rceil$ vectors which are $\{T_{\text{min}}, T_{\text{min}} + 2, T_{\text{min}} + 4, \ldots, T_{\text{max}}\}$. The time complexity is reduced to $O(n \cdot (\max\{h_i\})^2 \cdot \frac{T_{\text{max}} - T_{\text{min}}}{\delta})$. By doing this, we actually examine every possible path at a coarser granularity. Our experimental results demonstrate that time discretization only brings minor design quality degradation in terms of energy consumption while the algorithm efficiency can be greatly improved.

V. Experiments

A. Experimental Setup

DCR: To demonstrate the effectiveness of our algorithm on DCR, we use real applications which are selected benchmarks from MediaBench [20], MiBench [21] and EEMBC [22] to form four task sets, each consisting 4 to 7 tasks, as shown in Table I. In order to avoid some task dominating the others in terms of energy consumption, we select the benchmarks such that tasks in the same set have comparable sizes. For each task set, we consider both cases of periodic and aperiodic/sporadic tasks. In the former scenario (periodic tasks), we assign the period and task’s worst-case workload so that the system utilization varies in the range of 0.3 to 0.94 in incremental step of 0.1. In the later scenario (aperiodic/sporadic tasks), for each task, all the jobs are randomly generated with total accumulative system utilization at any moment under the schedulability constraint (e.g., 1). The job inter-arrival time is generated based on an exponential distribution. The reconfigurable cache architecture we utilized [2] is a four-bank cache with tunable cache sizes of 4KB, 8KB and 16KB, line sizes of 16 bytes, 32 bytes and 64 bytes and associativity of 1-way, 2-way and 4-way. Empirically, there are around 3 to 5 Pareto-optimal cache configurations for conventional applications [5]. We use SimpleScalar [23] to collect the static profiling information including the number of cache accesses, cache misses and clock cycles.

DVS: To evaluate our algorithm for DVS, we consider Marvell’s StrongARM [7] as the underlying DVS-enabled processor, which supports four voltage/frequency levels (1.5V/206MHz, 1.4V/192Mhz, 1.2V/162MHz and 1.1V/133MHz). We randomly generate four synthetic task sets, with similar characteristics in DCR.

4This is a practical and reasonable range since below 0.3 the solution can be trivially found by selecting most energy-efficient configurations for all tasks.

B. Results

Energy Reduction: We compare our algorithm with two heuristics which are applicable to both DVS and DCR, namely Uniform Slowdown and Greedy Repairing, since the techniques proposed in [4] and [5] are only for soft real-time systems and thus not applicable to our case. These two heuristics are adapted from DVS techniques [24] [25]. Generally, in uniform slowdown, we choose the configuration for task i, which consumes minimum energy while has equal or less execution time compared to t^base_i/η, where t^base_i is the execution time under base case and η is the system utilization. In greedy repairing, we first assign the most energy efficient configuration to every task. If the task set becomes unschedulable, we run a greedy repairing phase, during which the next more performance efficient configuration for one of the tasks is selected which leads to minimum ratio of energy increase to system utilization decrease. The process repeats until the task set becomes schedulable. This heuristic is also used in [26]. Note that these two heuristics assign only one configuration per task and are not able to consider variable overhead. Figure 4 (a) and (b) shows the comparison results for both DVS and DCR, respectively. The time discretization parameter δ is set to 1, 2, 4 and 8 milliseconds5 and leads to 17% of energy savings for DCR and 9% for DVS on average.

Time Discretization Effect: Figure 5 illustrates the flexibility of our algorithm by varying the time discretization. Results are the average over all task sets. δ is increased exponentially from 1 millisecond to 128 milliseconds. The important observation is that, although our algorithm running time is drastically reduced, the design quality (total energy consumption) is only slightly sacrificed and still very close to the case where $\delta = 1ms$. For example, for task set 4 in DCR which has 679 execution blocks in the hyper-period, our

5In DCR, since tasks in set 3 has smaller sizes in terms of energy consumption and execution time than other sets, the unit of δ is microsecond.
algorithm gives the solution in 1.5 seconds with $\delta = 128\text{ms}$.
The energy consumption of this solution is only 7% worse than the one generated with $\delta = 1\text{ms}$, which requires 19 seconds of execution time.

Variable Overhead Aware Effect: We compare two different versions of our algorithm: one is aware of variable reconfiguration overhead and the other assumes constant overhead (which is the average of all variable overhead values). For DVS, the variable overhead matrix is generated so that each value depends on and is in proportion to how much voltage/frequency is increased or decreased. For DCR, the matrix is similarly generated except that the overhead for tuning the cache capacity from one level to another is 10 times larger than tuning the line size and associativity. Therefore, the actual overhead is the sum of all three cache parameters.

Figure 6 demonstrates that effectively utilize the variable overhead can lead to substantial energy saving improvements for all task sets in DCR. Same observation can be made for DVS scenario. However, variable overhead awareness in DCR can lead to averagely 10% more energy savings than in DVS, which is because the size and variability of DCR’s design space is much larger than DVS. Note that our approach is because the size and variability of DCR’s

declaration – where the runtime overhead is substantial. Note that our approach in DVS, which is because the size and variability of DCR’s

can lead to averagely 10% more energy savings than for DVS scenario. However, variable overhead awareness in DCR can lead to averagely 10% more energy savings than in DVS, which is because the size and variability of DCR’s design space is much larger than DVS. Note that our approach is beneficial for any kind of optimization problem based on reconfiguration – where the runtime overhead is substantial.

VI. CONCLUSION

Dynamic reconfiguration is widely used for improving energy efficiency in microprocessor systems. We proposed a general and flexible algorithm for both cache reconfiguration and voltage scaling in multitasking systems with timing constraints. Our approach has the following advantages. First, it can lead to more energy savings than inter-task manner DVS/DCR techniques. Secondly, it can effectively take variable reconfiguration overhead into consideration. Finally, our algorithm can be flexibly parameterized so that only slight solution quality degradation can be traded for drastically reduced running time requirement. It is also independent of task characteristics and scheduling policy. Extensive experiments demonstrate the effectiveness of our approach.

REFERENCES