
A General Algorithm for Energy-Aware Dynamic
Reconfiguration in Multitasking Systems

Weixun Wang Sanjay Ranka Prabhat Mishra
Department of Computer and Information Science and Engineering

University of Florida, Gainesville, FL
{wewang,ranka,prabhat}@cise.ufl.edu

Abstract—System optimization techniques based on dynamic
reconfiguration are widely adopted for energy conservation.
While dynamic voltage scaling (DVS) techniques have been
extensively studied for processor energy conservation, dynamic
cache reconfiguration (DCR) for reducing cache energy con-
sumption in multitasking systems is still in its infancy. In this
paper, we propose a general and flexible algorithm for energy
optimization based on dynamic reconfiguration in multitasking
systems. Our algorithm is flexibly parameterized and can be used
to provide tradeoffs between running time and solution quality.
Furthermore, it can easily incorporate variable reconfiguration
overhead. Experimental results show that our technique can
generate near-optimal solutions with significantly low running
time and memory requirements.

I. INTRODUCTION

Energy conservation is the key design consideration for
embedded systems. Various techniques have been proposed
over the years to reduce the energy consumption of processor
as well as memory subsystem. Dynamic voltage scaling (DVS)
can be effectively used to reduce the power requirement
quadratically while only slowing the processor performance
almost linearly. Recent studies show that memory hierarchy,
especially the cache subsystem, has become comparable to
the processor in terms of energy consumption [1]. Dynamic
cache reconfiguration (DCR) provides the ability to change
cache configuration at run time so that it can satisfy each
application’s unique requirement in cache size, line size and
associativity. DCR is capable of improving cache energy
efficiency as well as overall performance [2].

In real-time systems, multiple tasks execute in the system
simultaneously by sharing common resources. In uniprocessor
systems, only one task can execute at any point of time. Fur-
thermore, each task normally has its arrival time and deadline
constraints. Therefore, we have to decide when and how (under
which voltage level/cache configuration) to execute each task.
While the former decision is made by scheduling algorithms,
the latter one is decided by DVS/DCR techniques.

In this paper, we develop a general algorithm that com-
prehensively solves energy-aware reconfiguration problems in
uniprocessor multitasking systems. Our contribution can be
summarized as:

1) The algorithm assumes that each task can be executed
under one or multiple configurations and finds the

*This work was partially supported by NSF grant CCF-0903430 and SRC
grant 2009-HJ-1979.

optimal configuration assignment to minimize energy
consumption while ensuring all the time constraints.
Each configuration could correspond to one cache con-
figuration, one voltage level or a combination of them.
Therefore the algorithm can either separately or simul-
taneously accommodate DCR and DVS techniques.

2) It allows differential cost of switching from one config-
uration to another. Thus, it has advantages over existing
techniques that it can effectively take variable runtime
overhead into account.

3) The algorithm can be flexibly parameterized to tradeoff
between algorithm running time and solution quality.
Our experimental results show that the running time
can be drastically reduced while only minor quality
degradation is observed.

Furthermore, our algorithm is relatively independent of
the scheduling policy and task properties. It can support
tasks with/without time constraint, preemptive/non-preemptive
scheduling or periodic/aperiodic tasks.

The rest of the paper is organized as follows. Related works
are surveyed in Section II. We formulate and analyze the prob-
lem in Section III. Next, we describe our algorithm and various
design considerations in Section IV. Section V presents our
experimental results. Finally, Section VI concludes the paper.

II. RELATED WORK

DCR has recently drawn considerable interests in both
general-purpose [3] as well as real-time systems [4] [5]. DCR
needs the support of reconfigurable cache architectures as
proposed in [1] [2]. The major challenge for employing DCR
in multitasking systems is to determine when and how to
reconfigure the cache so that energy consumption is minimized
while each task’s timing constraints are satisfied. Wang et
al. applied DCR in soft real-time systems by utilizing static
profiling information at runtime for both single level cache
[4] and multiple level cache hierarchy [5]. Recent efforts [6]
tried to combine DCR and DVS together in hard real-time
systems. However, these techniques are either designed for
specific systems (e.g., soft real-time systems in which missing
task deadlines are tolerable) or specific task characteristics
(e.g., periodic tasks). Moreover, they are also based on certain
assumptions, e.g., negligible or fixed reconfiguration overhead.

DVS is widely supported in general as well as specific-
purpose processors [7]. DVS techniques have been developed

for periodic task sets [8], aperiodic tasks [9], preemptive and
non-preemptive tasks [10], [11]. Inter-task DVS, in which
each task is solely assigned one voltage level, is exploited
in most existing works [12]. Its counter-part, intra-task DVS,
which exploits dynamic slack created by early finished jobs, is
studied in [13]. PreDVS [14] can lead to more energy savings
than optimal inter-task DVS without introducing any extra
overhead. Temperature constraint is also considered in recent
DVS approaches [15]. Chen et al. [16] presents a survey on
DVS techniques in real-time systems. Swaminathan et al. [17]
modeled the uniprocessor voltage scaling for real-time system
as a generalized network flow problem and solved it using net-
work flow algorithms. However, their method does not support
cache reconfiguration and only considered voltage switching
at task boundaries. Moreover, their method cannot incorporate
variable runtime overhead nor make tradeoff between running
time and design quality. We address these limitations in the
methods proposed in this paper.

III. PROBLEM FORMULATION

A. Energy Model

Cache Energy Model: Our cache energy model is adopted
from [2]. Let Edynamic and Estatic denote the dynamic energy
and static energy of the cache subsystem, respectively. The
total cache energy consumption hence is Ecache = Edynamic +
Estatic. Specifically, we have:

Edynamic = num accesses ·Eaccess +num misses ·Emiss (1)

Emiss = Eo f f chip access +EµP stall +Eblock f ill (2)

Estatic = Pstatic ·CC · tcycle (3)

where Eaccess, Emiss and Pstatic are the energy required per
cache access, per cache miss and static power consumption,
respectively, which are all collected from CACTI [18] for
all cache configurations. Here, CC denotes the number of
clock cycles that is required to execute the task, and tcycle
is the length of each clock cycle. Following [2], we represent
energy consumption for fetching data from off-chip memory,
processor stall due to cache miss and cache block refilling after
a miss by Eo f f chip access, EµP stall and Eblock f ill , respectively.

Processor Energy Model: The dynamic power dissipation
of the processor can be characterized as:

Pdynamic = K ·Ce f f ·V 2
dd · f (4)

where K is an application-specific constant which represents
the average number of switches in one cycle, Ce f f is the
total switching capacitance of the processor, Vdd is the supply
voltage and f denotes the operation frequency. Note that dif-
ferent applications may have various processor energy profile
decided by how much effective switches they actually use
during execution (K ·Ce f f). Leakage power is given by [19]:

Pstatic =Vdd · Isubth + |Vbs| · I j (5)

where Isubth and I j are the subthreshold current and reverse
bias junction current, respectively. Vbs denotes the body bias
voltage. Note that Isubth is in direct proportion to Vdd and Vbs.

Processor energy consumption is calculated as: Eprocessor =
(Pdynamic +Pstatic) · CC

f . This energy model is also used in [6].

B. Task Model

We are given:
• A highly configurable cache architecture which supports

h different configurations C{c1,c2, ... ,ch} and/or,
• A voltage scalable processor which supports l different

voltage levels V{v1,v2, ... ,vl}
Task set can be characterized as the following:
• A set of m independent tasks T{τ1, τ2, ... ,τm}.
• Each task τi ∈ T has known attributes including arrival

time, deadline or period (if it is periodic).
• Each task τi has known worst-case workload.
We use worst-case workload of each task since we focus

on static slack allocation. In practice, the bound can be found
by any existing worst-case execution time analysis techniques.
Our goal is to find a voltage/cache configuration assignment
for each task that minimizes the total energy consumption
while ensuring that all the time constraints are met.

IV. ENERGY-AWARE RECONFIGURATION ALGORITHM

Our proposed approach accepts a trace of execution blocks
as the input. Given a task set and a scheduling policy, we first
execute all the tasks under the base case (under the base cache
configuration1 in DCR or the highest voltage level for DVS)
assuming each of them requires its worst-case workload. The
scheduler generates the execution blocks in temporal order.
Note that for non-preemptive scheduling, execution blocks are
essentially a sequence of task instances (jobs) with each of
them having an absolute deadline and earliest start time (arrival
time). In preemptive systems, however, execution blocks can
be segments of tasks produced by preemptions. Figure 1
illustrates the relation between execution blocks and the tasks
which they belong to. Suppose there are three periodic tasks
τ1, τ2 and τ3 with the characteristics of (1,3,3)2, (2,5,5) and
(4,12,12). Under EDF schedule, there are 10 execution blocks
(b1, b2, ... , b10) before time unit 12. Our algorithm makes
reconfiguration decisions on the granularity of each execution
block. Thus, it is optimal in non-preemptive systems with
inter-task manner DVS/DCR. It can also generate more energy
savings in preemptive systems without introducing additional
runtime overhead since a context switching has to be carried
out during task preemption.

For DVS, if tasks’ energy profiles are identical, the energy
consumption and execution time of each execution block
can be calculated according to the processor energy model.
For DCR or DVS with variable task energy profile, these
values need to be collected using static profiling [4]. Only
Pareto-optimal configurations are considered for each block.
Specifically, for DVS, since leakage power is considered,

1The base cache is defined as the configuration used in the system without
DCR capability that meets all task deadlines.

2Here the three numbers stand for execution time, period and relative
deadline, respectively.

0 2 5 7 9 8 Time

τ1

τ2

τ3

1 3 4 6 10 11 12

𝑏1 𝑏3

b1
1

𝑏6

b1
1

𝑏9

b1
1

𝑏2 𝑏5 𝑏7

𝑏4 𝑏8 𝑏10

Fig. 1. Tasks and execution blocks.

the minimum voltage level is lower bounded (as a further
decrease will lead to increasing in overall energy consumption
[6]). For DCR, each block’s Pareto-optimal points are those
cache configurations which are not dominated by any other
configuration in terms of both energy consumption and time
requirement. Note that Pareto-optimal configuration set is
application-specific. In this section, we define a general term
configuration which could be a cache configuration, a voltage
level, or any other form of system configuration. Let h and
hi denote the total number of available configurations and the
number of Pareto-optimal configurations for the ith execution
block, respectively.

We model the runtime reconfiguration overhead as variables
depending on the transition from one configuration to another.
For example, the overhead for reconfiguring a 4KB cache to a
8KB cache is generally larger than just changing the line size
from 16 bytes to 32 bytes since the former requires waking up
cache banks but the later is done by line concatenation. The
input to our algorithm can be formally represented as:
• A set of n execution blocks B{b1, b2, ... , bn}.
• Execution block bi ∈ B has an arrival time ai if it is the

first block in the task instance and an absolute deadline
di if it is the last block.

• Execution block bi has execution time tk
i and energy

consumption ek
i under configuration k (ck).

• Reconfiguration energy overhead ρ(i, j) and time over-
head σ(i, j) for converting from configuration ci to con-
figuration c j.

Note that ai and di correspond to the task to which the
execution block belongs. ai and di are set to -1 when they are
not applicable to block bi. If we denote ti as the start time and
ki as the index of the configuration assigned to block bi given
in the solution, the general dynamic reconfiguration problem
℘ can be formulated as3:

minimize E =
n

∑
i=1

(eki
i +ρ(cki−1 ,cki)) (6)

subject to,
ti > ai,∀ai > 0 (7)

ti +σ(cki−1 ,cki)+ tki
i 6 di,∀di > 0 (8)

ti+1 > ti +σ(cki−1 ,cki)+ tki
i ,∀i ∈ [1,n) (9)

Equation (7) represents the timing constraint that all the
execution blocks must start executing after the task instance’s
arrival time. Equation (8) ensures deadline is not violated for

3ck0 denotes the initial configuration.

any task. Note that time overhead is accounted at the beginning
of task execution. Since we stick to the original schedule,
Equation (9) guarantees the execution order of all the blocks
in the final solution. The goal is to find ki for all blocks in B
so that Equation (6) can be achieved. The described modelling
method makes our approach generally applicable – it does not
depend on any task set characteristic or scheduling algorithm.

A. Extended Complete Bipartite Graph

We formulate the dynamic reconfiguration problem ℘ as
a minimum-cost path finding problem in an extended com-
plete bipartite graph (ECBG) as shown in Figure 2. Unlike
traditional complete bipartite graph, an ECBG has multiple
(specifically, n) disjoint sets {V1,V2, ...,Vn} and a single source
node as well as a single destination node. Every node in one set
is connected to every node in its neighboring sets. Formally,
an ECBG can be defined as ECBG{V1+V2+ ...+Vn, E} such
that for any two nodes vk

i ∈Vi and v j
i+1 ∈Vi+1, there is an edge

(vk
i ,v

j
i+1) in E.

Semantically, each disjoint set Vi represents an execution
block bi in B. Each node in the disjoint set stands for one
configuration for that block. Hence, the number of nodes in set
Vi is hi. Each edge (vk

i ,v
j
i+1) in E is associated with two values:

ek
i and tk

i . It means that, by moving from set Vi to Vi+1 through
this edge (choosing ck), it requires tk

i time units and ek
i units of

energy to execute block bi. The runtime overhead is also taken
into account on each edge. Specifically, edge (vk

i ,v
j
i+1) carries

a pair of values: (ek
i +ρ(ck,c j), tk

i +σ(ck,c j)). Therefore, the
objective shown in Equation (6) is algorithmically equal to
finding a path from the source node to the destination node
in the ECBG which has the minimum accumulative energy
E. This path contains one and only one node from each
disjoint set (choosing one edge between neighboring sets),
which corresponds to selecting one configuration for each
block. Moreover, all the constraints shown in Equation (7), (8)
and (9) have to be satisfied in the path. For those nodes with
arrival time constraint, say bi, it is possible that the finish time
of its previous node bi−1 is earlier than ai. To ensure ti > ai,
there is an idle node before every block node to represent
the possible idle intervals. Note that edge (v1

1,v
1
2) does not

involve any overhead since no reconfiguration is carried out
(i.e. k1 = k2). However, edge (v1

2,v
2
3) includes reconfiguration

overhead ρ(c1,c2) and σ(c1,c2).

B. Minimum-Cost Path Algorithm

In this paper, we employ a dynamic programming based
algorithm to find the minimum-cost path. Let Ei and Ti denote
the total energy consumption (cost) and execution time up to
node bi. Starting from the first node, for each node bi, we find
the lowest cost Ei under each possible value of Ti and possible
configuration choice for bi (i.e. cki), in a node by node manner
until the destination node is reached. If there is no such partial
path which has an accumulative execution time no larger than
a specific value of Ti and ends up with a specific configuration
for bi, the corresponding Ei is set to infinity. The calculation of
all Ei values for each node is based on the lowest cost values

......

......

......

......

……

(

idle node

block node

 ,

(

(

Fig. 2. ECBG model of ℘.

of its previous node calculated in last step. At each step, say
bi, we know the lowest total energy of last i−1 nodes under
each possible value of Ti−1 and configuration for bi−1. Based
this information and various overhead, we can easily find the
minimum Ei under all possible Ti and cki .

Since the execution time is continuous but the design space
is actually discrete (consists of finite number of choices),
it is neither possible nor necessary to consider all possible
values of Ti. Hence, we discretize Ti into a finite set of
values. The interval between two adjacent discretized values
is regarded as one time unit, which could be as small as
one clock cycle or as large as one millisecond in practice.
To reduce running time, we can limit Ti within the rage of
[Tmin,Tmax]. We set Tmin = ∑

n
i=1 th

i where th
i is the execution

time under the most performance efficient configuration. Tmax
can be set to the deadline constraint of last task instance or
the common deadline for all tasks. In other words, all blocks
need to be completed before Tmax. A three-dimensional array
D is created for dynamic programming in which each element
D[i][τ][j] stores the lowest total cost for nodes b1,b2, ...,bi
while total execution time Ti is equal or less than τ (Ti 6 τ) and
configuration choice for bi is c j. As a result, there are n rows
in D with each row consisting of (Tmax− Tmin) vectors and
each vector has h elements. Therefore, the recursive relation
for our dynamic programming scheme can be represented as:

D[i][τ][j] = min
k∈[1,hi−1]

{D[i−1][τ−t j
i −σ(ck,c j)][k]+e j

i +ρ(ck,c j)}
(10)

D is filed up in a row by row manner and in an order so
that all the previous i−1 rows are filled when the ith row is
being calculated. Note that only those elements corresponding
to the Pareto-optimal configuration of bi is calculated in each
vector of D[i][τ][]. Finally, the solution quality is decided by
min{D[n][τ][j]}, for τ ∈ [Tmin,Tmax] and j ∈ [1,hn], which is
the lowest value in last row of D.

Complexity Analysis: Our algorithm iterates over all the
nodes (1 to n). In other words, the input size of our algo-
rithm is actually the number of execution blocks. In each
iteration, all discretized Ti values (Tmax − Tmin) as well as
all Pareto-optimal configuration points (1 to hi) for current
and previous nodes are examined. Hence the time complexity
is O(n · (max{hi})2 · (Tmax−Tmin)). The memory requirement

of our algorithm is determined by the size of D, which
stores n ·(Tmax−Tmin) ·h ·sizeo f (element) bytes. To reduce the
memory complexity, in each entry of D, we can simply use
minimum number of bits to remember the configuration choice
instead of real Ei values. For calculation purposes, two two-
dimensional arrays are used for temporarily storing Ei values
for current and previous nodes.

Deadline Constraint: To ensure that the solution we find
does not violate any task’s deadline, during each step of the
dynamic programming process, if bi has deadline constraint,
all the entries with Ti value larger than di are set to infinity.
As a result, in the next step, those entries will be regarded as
invalid.

Arrival Time Constraint: In the final solution, we have to
guarantee that none of the initial blocks of each task instance
starts execution before the task’s arrival time as shown in
Equation (7). However, since it is possible that one execution
block finishes earlier than its very next block (thus creating
an idle interval), the entries (each of which is a vector)
with Ti 6 ai+1 in the ith row of D are valid. One important
observation is that, for block bi+1, it does not really matter
when exactly bi ends if bi finishes before bi+1’s arrival time.
In other words, the Ti values of these entries have no impact
on the decision making in bi+1. Hence, in the final solution, if
bi actually ends before ai+1, the choice we make for bi must
be the one that results in the lowest Ei value.

We partition the ith row into three ranges by the next block’s
arrive time ai+1 and the current block’s deadline di as shown
in Figure 3. The first range, named range A, in which entries
with finish time earlier than ai+1, are all valid but not all are
needed during decision making. The ones with minimum Ei,
for each configuration choice of bi, are selected and stored in
the vector D[i][ai+1][]. All entries in range A are then set to
infinity. By doing this, without losing any precision, we force
bi+1 to start no earlier than its arrival time. The second range
(range B) in which entries with Ti values between ai+1 and
di are all valid for the calculation of next iteration since they
make bi+1 start after ai+1. The last range are all discarded due
to deadline constraint of bi.

For periodic task set, if each task’s deadline is equal to
its period, ai+1 is always earlier than di. It can be proved
by contradiction. If ai+1 is larger than di, it implies that the
next job of the task corresponding to bi arrives before bi+1
does. Therefore, there exists a ready-to-execute task between
bi and bi+1, which contradicts the fact that bi+1 is the very
next execution block of bi. In cases where ai+1 may be after di
(e.g. for aperiodic task set), range B vanishes and, as a result,
the problem essentially becomes two independent subproblems
(one consists of blocks before bi while the other consists of
blocks after bi+1, inclusively).

Tradeoff by Time Discretization: As discussed above,
the time complexity of our algorithm is dominated by the
term (Tmax−Tmin). A tradeoff can be made between solution
quality and algorithm performance by further discretizing the
execution time Ti. During the dynamic programming, instead
of calculating for every time unit, we can compute in interval

bi+1.arriveTime (ai+1)

bi.deadline (di)

i
th

 row of D

Range A Range B

Effective Area

Invalid

Fig. 3. Ensuring the time constraints.

of multiple units. We define this number of time units as a
parameter δ. For example, if δ= 2, every row of D will contain
dTmax−Tmin

δ
e vectors which are {Tmin,Tmin+2,Tmin+4, ...,Tmax}.

The time complexity is reduced to O(n ·(max{hi})2 · Tmax−Tmin
δ

).
By doing this, we actually examine every possible path at a
coarser granularity. Our experimental results demonstrate that
time discretization only brings minor design quality degra-
dation in terms of energy consumption while the algorithm
efficiency can be greatly improved.

V. EXPERIMENTS

A. Experimental Setup

DCR: To demonstrate the effectiveness of our algorithm on
DCR, we use real applications which are selected benchmarks
from MediaBench [20], MiBench [21] and EEMBC [22] to
form four task sets, each consisting 4 to 7 tasks, as shown in
Table I. In order to avoid some task dominating the others in
terms of energy consumption, we select the benchmarks such
that tasks in the same set have comparable sizes. For each task
set, we consider both cases of periodic and aperiodic/sporadic
tasks. In the former scenario (periodic tasks), we assign the
period and task’s worst-case workload so that the system
utilization varies in the range of 0.3 to 0.94 in incremental
step of 0.1. In the later scenario (aperiodic/sporadic tasks),
for each task, all the jobs are randomly generated with
total accumulative system utilization at any moment under
the schedulability constraint (e.g., 1). The job inter-arrival
time is generated based on an exponential distribution. The
reconfigurable cache architecture we utilized [2] is a four-bank
cache with tunable cache sizes of 4KB, 8KB and 16KB, line
sizes of 16 bytes, 32 bytes and 64 bytes and associativity
of 1-way, 2-way and 4-way. Empirically, there are around
3 to 5 Pareto-optimal cache configurations for conventional
applications [5]. We use SimpleScalar [23] to collect the static
profiling information including the number of cache accesses,
cache misses and clock cycles.

DVS: To evaluate our algorithm for DVS, we con-
sider Marvell’s StrongARM [7] as the underlying DVS-
enabled processor, which supports four voltage/frequency
levels (1.5V/206MHz, 1.4V/192Mhz, 1.2V/162MHz and
1.1V/133MHz). We randomly generate four synthetic task sets,
with similar characteristics in DCR.

4This is a practical and reasonable range since below 0.3 the solution can be
trivially found by selecting most energy-efficient configurations for all tasks.

TABLE I
TASK SETS CONSISTING OF REAL BENCHMARKS.

Sets Tasks
Set 1 ospf, susan, pegwit, pktflow
Set 2 cjpeg, epic, dijkstra, FFT, qsort

Set 3 CANRDR01, PUWMOD01, AIFIRF01, BITMNP01,
CACHEB01, AIFFTR01

Set 4 stringsearch, ospf, CRC32, pegwit, untoast, qsort, toast

B. Results

Energy Reduction: We compare our algorithm with two
heuristics which are applicable to both DVS and DCR,
namely Uniform Slowdown and Greedy Repairing, since the
techniques proposed in [4] and [5] are only for soft real-
time systems and thus not applicable to our case. These
two heuristics are adapted from DVS techniques [24] [25].
Generally, in uniform slowdown, we choose the configuration
for task τi which consumes minimum energy while has equal
or less execution time compared to tbase

i /η, where tbase
i is

the execution time under base case and η is the system
utilization. In greedy repairing, we first assign the most energy
efficient configuration to every task. If the task set becomes
unschedulable, we run a greedy repairing phase, during which
the next more performance efficient configuration for one of
the tasks is selected which leads to minimum ratio of energy
increase to system utilization decrease. The process repeats
until the task set becomes schedulable. This heuristic is also
used in [26]. Note that these two heuristics assign only one
configuration per task and are not able to consider variable
overhead. Figure 4 (a) and (b) shows the comparison results
for both DVS and DCR, respectively. The time discretization
parameter δ is set to 1, 2, 4 and 8 milliseconds5 and leads to
17% of energy savings for DCR and 9% for DVS on average.

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Task Sets

Uniform Slowdown Greedy Repair
g = 1 ms g = 2 ms
g = 4 ms g = 8 ms

(a) DCR

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4

N
o

rm
al

iz
e

d
 E

n
e

rg
y

C
o

n
su

m
p

ti
o

n

Task Sets

Uniform Slowdown Greedy Repair
g = 1 ms g = 2 ms
g = 4 ms g = 8 ms

(b) DVS

Fig. 4. Energy consumption compared with two heuristics.

Time Discretization Effect: Figure 5 illustrates the flex-
ibility of our algorithm by varying the time discretization.
Results are the average over all task sets. δ is increased
exponentially from 1 millisecond to 128 milliseconds. The
important observation is that, although our algorithm running
time is drastically reduced, the design quality (total energy
consumption) is only slightly sacrificed and still very close
to the case where δ = 1ms. For example, for task set 4 in
DCR which has 679 execution blocks in the hyper-period, our

5In DCR, since tasks in set 3 has smaller sizes in terms of energy
consumption and execution time than other sets, the unit of δ is microsecond.

algorithm gives the solution in 1.5 seconds with δ = 128ms.
The energy consumption of this solution is only 7% worse than
the one generated with δ = 1ms, which requires 19 seconds of
execution time.

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

1 ms 2 ms 4 ms 8 ms 16 ms 32 ms 64 ms 128
msTime Discretization Gap

(a) DCR

Energy
Runtime

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3

1 ms 2 ms 4 ms 8 ms 16 ms 32 ms 64 ms 128
msTime Discretization Gap

(b) DVS

Energy
Runtime

Fig. 5. Time discretization effect (Normalized to δ = 1ms).

Variable Overhead Aware Effect: We compare two dif-
ferent versions of our algorithm: one is aware of variable
reconfiguration overhead and the other assumes constant over-
head (which is the average of all variable overhead values).
For DVS, the variable overhead matrix is generated so that
each value depends on and is in proportion to how much
voltage/frequency is increased or decreased. For DCR, the
matrix is similarly generated except that the overhead for
tuning the cache capacity from one level to another is 10 times
larger than tuning the line size and associativity. Therefore, the
actual overhead is the sum of all three cache parameters.

Figure 6 demonstrates that effectively utilize the variable
overhead can lead to substantial energy saving improvements
for all task sets in DCR. Same observation can be made
for DVS scenario. However, variable overhead awareness in
DCR can lead to averagely 10% more energy savings than
in DVS, which is because the size and variability of DCR’s
design space is much larger than DVS. Note that our approach
is beneficial for any kind of optimization problem based on
reconfiguration – where the runtime overhead is substantial.

89000
90000
91000
92000
93000
94000
95000
96000
97000
98000
99000

100000

1 ms 2 ms 4 ms 8 ms

En
e

rg
y

C
o

n
su

m
p

ti
o

n

Time Discretization Gap
(a) Task Set 1

Variable Overhead Constant Overhead

230000
232000
234000
236000
238000
240000
242000
244000
246000
248000
250000
252000

1 ms 2 ms 4 ms 8 ms

En
e

rg
y

C
o

n
su

m
p

ti
o

n

Time Discretization Gap
(b) Task Set 2

Variable Overhead Constant Overhead

150000
155000
160000
165000
170000
175000
180000
185000
190000
195000
200000

1 µs 2 µs 4 µs 8 µs

En
e

rg
y

C
o

n
su

m
p

ti
o

n

Time Discretization Gap
(c) Task Set 3

Variable Overhead Constant Overhead

100000
110000
120000
130000
140000
150000
160000
170000
180000
190000
200000

1 ms 2 ms 4 ms 8 ms

En
e

rg
y

C
o

n
su

m
p

ti
o

n

Time Discretization Gap
(d) Task Set 4

Variable Overhead Constant Overhead

Fig. 6. Variable overhead aware effect in DCR.

VI. CONCLUSION

Dynamic reconfiguration is widely used for improving en-
ergy efficiency in microprocessor systems. We proposed a
general and flexible algorithm for both cache reconfiguration
and voltage scaling in multitasking systems with timing con-
straints. Our approach has the following advantages. First,
it can lead to more energy savings than inter-task manner
DVS/DCR techniques. Secondly, it can effectively take vari-
able reconfiguration overhead into consideration. Finally, our
algorithm can be flexibly parameterized so that only slight
solution quality degradation can be traded for drastically re-
duced running time requirement. It is also independent of task
characteristics and scheduling policy. Extensive experiments
demonstrates the effectiveness of our approach.

REFERENCES

[1] A. Malik et al., “A low power unified cache architecture providing power
and performance flexibility,” ISLPED, 2000.

[2] C. Zhang et al., “A highly configurable cache for low energy embedded
systems,” ACM TECS, vol. 6, pp. 362–387, 2005.

[3] A. Gordon-Ross et al., “A self-tuning configurable cache,” DAC, 2007.
[4] W. Wang et al., “SACR: Scheduling-aware cache reconfiguration for

real-time embedded systems,” VLSI Design, 2009.
[5] W. Wang et al., “Dynamic reconfiguration of two-level caches in soft

real-time embedded systems,” ISVLSI, 2009.
[6] W. Wang et al., “Leakage-aware energy minimization using dynamic

voltage scaling and cache reconfiguration in real-time systems,” VLSI
Design, 2010.

[7] Marvell, Marvell StrongARM 1100 processor, www.marvell.com.
[8] H. Aydin et al., “Power-aware scheduling for periodic real-time tasks,”

IEEE TC, vol. 53, no. 5, pp. 584–600, May 2004.
[9] D. Shin et al., “Dynamic voltage scaling of periodic and aperiodic tasks

in priority-driven systems,” ASP-DAC, 2004.
[10] X. Zhong et al., “System-wide energy minimization for real-time tasks:

Lower bound and approximation,” ICCAD, 2006.
[11] R. Jejurikar et al., “Energy aware non-preemptive scheduling for hard

real-time systems,” ECRTS, 2005.
[12] J. Chen et al., “1 + ε approximation clock rate assignment for periodic

real-time tasks on a voltage-scaling processor,” EMSOFT, 2005.
[13] D. Shin et al., “Optimizing intratask voltage scheduling using profile

and data-flow information,” IEEE TCAD, vol. 26, pp. 369–385, 2007.
[14] W. Wang et al., “PreDVS: Preemptive dynamic voltage scaling for real-

time systems using approximation scheme,” DAC, 2010.
[15] W. Wang et al., “Temperature- and energy-constrained scheduling in

multitasking systems: A model checking approach,” ISLPED, 2010.
[16] J.-J. Chen et al., “Energy-efficient scheduling for real-time systems on

dynamic voltage scaling (dvs) platforms,” RTCSA, 2007.
[17] V. Swaminathan et al., “Network flow techniques for dynamic voltage

scaling in hard real-time systems,” IEEE TCAD, vol. 23, no. 10, pp.
1385–1398, Oct. 2004.

[18] HP, CACTI, HP Labs, CACTI 5.3, http://www.hpl.hp.com/.
[19] S. M. Martin et al., “Combined dynamic voltage scaling and adaptive

body biasing for lower power microprocessors under dynamic work-
loads,” ICCAD, 2002.

[20] C. Lee et al., “Mediabench: A tool for evaluating and synthesizing
multimedia and communications systems,” Micro, 1997.

[21] M. Guthaus et al., “Mibench: A free, commercially representative
embedded benchmark suite,” WWC, 2001.

[22] EEMBC, EEMBC, The Embedded Microprocessor Benchmark Consor-
tium, http://www.eembc.org/.

[23] D. Burger et al., “Evaluating future microprocessors: The simplescalar
tool set,” University of Wisconsin-Madison, Tech. Rep., 1996.

[24] H. Aydin et al., “Dynamic and aggressive scheduling techniques for
power-aware real-time systems,” RTSS, 2001.

[25] C. Rusu et al., “Maximizing the system value while satisfying time and
energy constraints,” RTSS, 2002.

[26] R. Jejurikar et al., “Dynamic voltage scaling for systemwide energy
minimization in real-time embedded systems,” ISLPED, 2004.

