
Efficient Placement of Compressed Code for Parallel Decompression

Xiaoke Qin and Prabhat Mishra

Department of Computer and Information Science and Engineering
University of Florida, Gainesville FL 32611-6120, USA

{xqin, prabhat}@cise.ufl.edu

Abstract
Code compression is important in embedded systems design

since it reduces the code size (memory requirement) and thereby
improves overall area, power and performance. Existing re-
searches in this field have explored two directions: efficient com-
pression with slow decompression, or fast decompression at the
cost of compression efficiency. This paper combines the advan-
tages of both approaches by introducing a novel bitstream place-
ment method. The contribution of this paper is a novel code
placement technique to enable parallel decompression without
sacrificing the compression efficiency. The proposed technique
splits a single bitstream (instruction binary) fetched from mem-
ory into multiple bitstreams, which are then fed into different
decoders. As a result, multiple slow-decoders can work simul-
taneously to produce the effect of high decode bandwidth. Our
experimental results demonstrate that our approach can improve
decode bandwidth up to four times with minor impact (less than
1%) on compression efficiency.

1 Introduction

Memory is one of the most constrained resources in an em-
bedded system, because a larger memory implies increased area
(cost) and higher power/energy requirements. Due to dramatic
complexity growth of embedded applications, it is necessary to
use larger memories in today’s embedded systems to store ap-
plication binaries. Code compression techniques address this
problem by reducing the storage requirement of applications by
compressing the application binaries. The compressed binaries
are loaded into the main memory, then decoded by a decompres-
sion hardware before it’s execution in a processor. Compression
ratio is widely used as a metric of the efficiency of code com-
pression. It is defined as the ratio (CR) between the compressed
program size (CS) and the original program size (OS) i.e., CR =
CS / OS. Therefore, a smaller compression ratio implies a better
compression technique. There are two major challenges in code
compression: i) how to compress the code as much as possible;
and ii) how to efficiently decompress the code without affecting
the processor performance.

The research in this area can be divided into two categories
based on whether it primarily addresses the compression or de-
compression challenges. The first category tries to improve code
compression efficiency using the state-of-the-art coding meth-
ods such as Huffman coding [1] and arithmetic coding [2]. The-
oretically, they can decrease the compression ratio to its lower

bound governed by the intrinsic entropy of code, although their
decode bandwidth usually is limited to 6-8 bits per cycle. These
sophisticated methods are suitable when the decompression unit
is placed between the main memory and cache (pre-cache).
However, recent research [3] suggests that it is more profitable
to place the decompression unit between the cache and the pro-
cessor (post-cache). In this way the cache retains data still in a
compressed form, increasing cache hits, therefore achieving po-
tential performance gain. Unfortunately, this post-cache decom-
pression unit actually demands much more decode bandwidth
than what the first category of techniques can offer. This leads
to the second category of research that focuses on higher decom-
pression bandwidth by using relatively simple coding methods
to ensure fast decoding. However, the efficiency of the compres-
sion result is compromised. The variable-to-fixed coding tech-
niques [12] are suitable for parallel decompression but it sacri-
fices the compression efficiency due to fixed encoding.

In this paper, we combine the advantages of both approaches
by developing a novel bitstream placement technique which en-
ables parallel decompression without sacrificing the compres-
sion efficiency. This paper makes two important contributions.
First, it is capable of increasing the decode bandwidth by us-
ing multiple decoders to work simultaneously to decode a sin-
gle/adjacent instruction(s). Second, our methodology allows de-
signers to use any existing compression algorithms including
variable-length encodings with little or no impact on compres-
sion efficiency.

The rest of the paper is organized as follows. Section 2 in-
troduces related work addressing code compression for embed-
ded systems. Section 3 describes our code compression and bit-
stream placement methods. Section 4 presents our experimental
results. Finally, Section 5 concludes the paper.

2 Related Work

A great deal of work has been done in the area of code com-
pression for embedded systems. The basic idea is to take one or
more instruction as a symbol and use common coding methods
to compress the code. Wolfe and Chanin [1] first proposed the
Huffman-coding based code compression approach. A Line Ad-
dress Table (LAT) is used to handle the addressing of branching
within compressed code. Lin et al. [4] uses LZW-based code
compression by applying it to variable-sized blocks of VLIW
codes. Liao [5] explored dictionary-based compression tech-
niques. Lekatsas et al. [2] constructed SAMC using arithmetic
coding based compression. These approaches significantly re-

duces the code size but their decode (decompression) bandwidth
is limited.

To speed up the decode process, Prakash et al. [6] and Ros
et al. [7] improved conventional dictionary based techniques by
considering bit changes of a 16-bit or 32-bit vectors. Seong et al.
[8] further improved these approaches using bitmask based code
compression. These techniques enable fast decompression but
they achieve inferior compression efficiency compared to those
based on well established coding theory.

Instead of treating each instruction as a single symbol, some
researchers observed that the number of different opcodes and
operands are quite smaller than that of entire instructions.
Therefore, a division of a single instruction into different parts
may lead to more effective compression. Nam et al. [9] and
Lekatsas et al. [10] broke instructions into several fields then
employed different dictionary to encode them. CodePack [11]
divided each MIPS instruction at the center, applied two prefix-
dictionary to each of them, then combined the encoding results
together to create the finial result. However, in their compressed
code, all these fields are simply stored one after another (in a se-
rial fashion). The variable-to-fixed coding technique [12] is suit-
able for parallel decompression but it sacrifices the compression
efficiency due to fixed encoding. The variable size encodings
(fixed-to-variable and variable-to-variable) can achieve the best
possible compression. However, it is impossible to use multiple
decoders to decode each part of the same instruction simultane-
ously, when variable length coding is used. The reason is that the
beginning of next field is unknown until the decode of the cur-
rent field ends. As a result, the decode bandwidth cannot benefit
very much from such an instruction division. Our approach al-
lows variable length encoding for efficient compression and pro-
poses a novel placement of compressed code to enable parallel
decompression.

3 Efficient Placement of Compressed Binaries
Our work is motivated by previous variable length coding ap-

proaches based on instruction partitioning [9, 10, 11] to enable
parallel compression of the same instruction. The only obstacle
preventing us from decoding all fields of the same instruction
simultaneously is that the beginning of each compressed field is
unknown unless we decompress all previous fields.

A B A B

} }32bits 32bits

(a) Uncompressed code (b) Compressed code

Figure 1. Intuitive placement for parallel decompression.

One intuitive way to solve this problem, as shown in Figure
1, is to separate the entire code into two parts, compress each
of them separately, then place them separately. Using such a
placement, the different parts of the same instruction can be
decoded simultaneously using two pointers. However, if one

part of the code (part B) is more effectively compressed than
the other one (part A), the remaining unused space for part B
will be wasted. Therefore, the overall compression ratio will be
hampered remarkably. Furthermore, the identification of branch
targets will also be a problem due to the unequal compression.
As mentioned earlier, fixed length encoding methods are suit-
able for parallel decompression but it sacrifices the compression
efficiency due to fixed encoding. The focus of our research is
to enable parallel decompression for binaries compressed with
variable length encoding methods.

The basic idea of our approach to handle this problem is to
develop an efficient bitstream placement method. Our method
enables the compression algorithm to make maximum usage of
the space automatically. At the same time, the decompression
mechanism will be able to determine which part of the newly
fetched 32 bits should be sent to which decoder. In this way, we
exploit the benefits of instruction division in both compression
efficiency and decode bandwidth.

3.1 Overview of Our Approach

In our approach, we use branch blocks1 [4] as the basic unit
of compression. In other words, our placement technique is ap-
plied to each branch blocks in the application. Figure 2 shows
the block diagram of our proposed compression framework. It
consists of four main stages: compression (encode), bitstream
merge, bitstream split and decompression (decode).

During compression (Figure 2a), we first break every input
storage block (containing one or more instructions) into sev-
eral fields, then apply specific encoders to each one of them.
The resultant compressed streams are combined together by a
bitstream merge logic based on a carefully designed bitstream
placement algorithm. Note that the bitstream placement cannot
rely on any information invisible to the decompression unit. In
other words, the bitstream merge logic should merge streams
based on only the binary code itself and the intermediate results
produced during the encoding process.

During decompression (Figure 2b), the scenario is exactly the
opposite of compression. Every word fetched from the cache is
first split into several parts, each of which belongs to a com-
pressed bitstream produced by some encoder. Then the split
logic dispatches them to the buffers of correct decoders, accord-
ing to the bitstream placement algorithm. These decoders de-
code each bitstream and generate the uncompressed instruction
fields. After combining these fields together, we obtain the final
decompression result, which should be identical to the corre-
sponding original input storage block (containing one or more
instructions).

From the viewpoint of overall performance, the compres-
sion algorithm affects the compression ratio and decompression
speed in an obvious way. Nevertheless, the bitstream placement
actually governs whether multiple decoders are capable to work
in parallel. In previous works, researchers tend to use a very
simple placement technique: they appended the compressed
code for each symbol one after the other. When variable length
coding is used, symbols must be decoded in order. In this paper,

1The instructions between two consecutive branch targets.

U
n

co
m

p
re

ss
ed

 B
in

ar
y

 C
o

d
e Input Buffer

C
o

m
p

re
ss

ed
 C

o
d

e...Encoder1 EncoderNEncoder2

Bitstream

Merge Logic

(a) Compression technique

C
o

m
p

re
ss

ed
 C

o
d

e
fr

o
m

 C
ac

h
e

Output Buffer

D
ec

o
d

e

B
u

ff
er

Decoder1 DecoderN

D
ec

o
d

e

B
u

ff
er

D
ec

o
m

p
re

ss
ed

 C
o

d
e

to
 P

ro
ce

ss
o

r

Decoder2

D
ec

o
d

e

B
u

ff
er ...

Bitstream

Split Logic

(b) Decompression mechanism

Figure 2. Proposed code compression framework.

we demonstrate how a novel bitstream placement enables par-
allel decoding and boosts the overall decode performance. The
remainder of this section describes the four important stages in
our framework: compression, bitstream merge, bitstream split
and decompression.

3.2 Compression Algorithm

In our current implementation, we use Huffman coding as
the compression algorithm of each single encoder (Encoder1 -
EncoderN in Figure 2 (a)), because Huffman coding is optimal
for a symbol-by-symbol coding with a known input probability
distribution. To improve its performance on code compression,
we modify the basic Huffman coding method [1] in two ways:
i) instruction division and ii) selective compression. As men-
tioned earlier, any compression technique can be used in our
framework.

Similar to previous works [9, 10, 11], we believe that com-
pressing different parts of a single instruction separately is prof-
itable, because the number of distinct opcodes and operands is
far less than the number of different instructions. We have ob-
served that for most applications it is profitable to divide the
instruction at the center. In the rest of this paper, we will use
this division pattern, if not stated otherwise.

Selective compression is a common choice in many compres-
sion techniques [8]. Since the alphabet for binary code compres-
sion is usually very large, Huffman coding may produce many

dictionary entries with quite long keywords. This is harmful to
the overall compression ratio, because the size of the dictionary
entry must also be taken into account. Instead of using bounded
Huffman coding, we address this problem using selective com-
pression. First, we create the conventional Huffman coding ta-
ble. Then we remove any entry e which does not satisfy Equa-
tion 1.

(Length(Symbole)−Length(Keye))∗Timee > Sizee, (1)

Here, Symbole is the uncompressed symbol (one part of an
instruction), Keye is the key of Symbole created by Huffman
coding, Timee is the total time for which Symbole occurs in the
uncompressed code, and Sizee is the space required to store this
entry. For example, two unprofitable entries from Dictionary II
(Figure 3) are removed.

00001110

00000100

00000000

10000000

00000000

10001110

00000000

00000000

10000000

Original

Program

0 1 1 1110

0 1 1 0100

0 1 0 0

0 0 0 0

0 1 0 0

0 0 1 1110

0 1 0 0

0 1 0 0

0 0 0 0

0 = compressed

1 = uncompressed

 Dictionary I Dictionary II

Key Symbol Key Symbol

 1 0000 0 0000

 0 1000 10 0100

 11 1110

Compressed

Program

Stream1 Stream2

Figure 3. Code compression using modified Huffman coding

Once the unprofitable entries are removed, we use remaining
entries as the dictionary for both compression and decompres-
sion. Figure 3 shows an illustrative example of our compression
algorithm. For the simplicity of illustration, we use 8-bit bi-
naries instead of 32 bits used in real applications. We divide
each instruction in half and use two dictionaries, one for each
part. The final compressed program is reduced from 72 bits to
45 bits. The dictionary requires 15 bits. The compression ra-
tio for this example is 83.3%. The two compressed bitstreams
(Stream1 and Stream2) are also shown in Figure 4.

Stream1 Stream2

Symbol Value Symbol Value

A1 01 B1 11110

A2 01 B2 10100

A3 01 B3 00

A4 00 B4 00

A5 01 B5 00

A6 00 B6 11110

A7 01 B7 00

A8 01 B8 00

A9 00 B9 00

 Figure 4. Two compressed bitstreams from the code com-
pression example in Figure 3

3.3 Bitstream Merge

The bitstream merge logic merges multiple compressed bit-
streams into a single bitstream for storage. We first explain

 (a) (b) (c)

Stream1 Stream2

A1A2… A9 B1B2… B9

A3A4… A9 B
”

1B2… B9

A5A6… A9 B
”

2B3… B9

A5A6… A9 B6B7B8B9

A9 B6B7B8B9

A9 B
”

8B9

Decoder1 Decoder2

Input Buffer Len1 Decoding Input Buffer Len2 Decoding

A1A2 4 Null B
’
1 4 Null

A2A3A4 6 A1 B
’
2 3 B1

A3 A

4 4 A2 B3B4B5 6 B2

A4A5… A8 10 A3 B4B5 4 B3

A5A6A7A8 8 A4 B5B6B

7B
’
8 10 B4

A6A7A8A9 8 A5 B6B7B8B9 11 B5

A7 A8A9 6 A6 B7B8B9 6 B6

A8A9 4 A7 B8B9 4 B7

A9 2 A8 B9 2 B8

 0 A9 0 B9

Slot 1 (4bits) Slot 2 (4bits)

A1 (2bits) A2 (2bits) B
’
1(4bits)

A3 (2bits) A

4(2bits) B
”

1 B
’
2 (3bits)

B
”

2 (2bits) B3 (2bits) B4 (2bits) B5 (2bits)

A5 (2bits) A6 (2bits) A

7(2bits) A

8(2bits)

B6 (5bits) B7 (2bits) B
’
8

A

9(2bits) B

”

8 B9 (2bits)

Cycle 6

Cycle 1

Cycle 2

.

.

.

Step 6

Step 1

Step 2

.

.

.

Figure 5. Bitstream placement using two bitstreams in Figure 4. (a) Unplaced data remaining in the input buffer of merge logic, (b)
Bitstream placement result, (c) Data within Decoder1 and Decoder2 when current storage block is decompressed2.

some basic models and terms which we will use in the follow-
ing discussion. Next, we describe the working principle of our
bitstream merge logic.
Definition 1: Storage block is a block of memory space, which
is used as the basic input and output unit of our merge and split
logic. Informally, a storage block contains one or more consecu-
tive instructions in a branch block. Figure 6 illustrates the struc-
ture of a storage block. We divide it into several slots. Each of
them contains adjacent bits extracted from the same compressed
bitstream. In our current implementation, all slots within a stor-
age block have the same size.

Slot 1 Slot 2 . . . Slot N

Figure 6. Storage block structure

Definition 2: Sufficient decode length (SDL) is the minimum
number of bits required to ensure that at least one compressed
symbol is in the decode buffer. In our implementation, this num-
ber equals one plus the length of an uncompressed instruction
field.

Our bitstream merge logic performs two tasks to produce each
output storage block filled with compressed bits from multiple
bitstreams: i) use the given bitstream placement algorithm
(BPA) to determine the bitstream placement within current stor-
age block; ii) count the numbers of bits left in each buffer as
if they finish decoding current storage block. We pad extra bits
after the code at the end of the stream to align on a storage block
boundary.

Algorithm 1 is developed to support parallel decompression
of two bitstreams. The goal is to guarantee that each decoder
has enough bits to decode in the next cycle after they receive the
current storage block. Figure 5 illustrates our bitstream merge
procedure using previous code compression example in Figure
3. The size of storage blocks and slots are 8 bits and 4 bits
respectively. In other words, each storage block has two slots.
The SDL is 5. When the merge process begins (translates Fig-
ure 5a to Figure 5b), the merge logic gets A1, A2 and B′

1, then
assigns them to the first and second slots2. Similarly, A3, A4,

2We use ′ and ′′ to indicate the first and second parts of the same compressed
instruction in case it does not fit in the same storage block.

B′′
1 and B′

2 are placed in the second iteration (step 2). When
it comes to the third output block, the merge logic finds that
after Decoder2 receives and processes the first two slots, there
are only 3 bits left in its buffer, while Decoder1 still has enough
bits to decode in the next cycle. So it assigns both slots in the
third output block from Stream2. This process repeats until both
input (compressed) bitstreams are placed. The “Full()” checks
are necessary to prevent the overflow of decoders’ input buffers.
Our merge logic automatically adjusts the number of slots as-
signed to each bitstream, depending on whether they are effec-
tively compressed.

Algorithm 1: Placement of Two Bitstreams
Input: Every Storage Block
Output: Placed Bitstreams

if this is the first block then
Assign Stream 1 to Slot 1 and Stream 2 to Slot 2

else
if !Ready(1) and !Ready(2) then

Assign Stream 1 to Slot 1 and Stream 2 to Slot 2
else if !Ready(1) and Ready(2) then

Assign Stream 1 to Slot 1 and 2
else if Ready(1) and !Ready(2) then

Assign Stream 2 to Slot 1 and 2
else if !Full(1) and !Full(2) then

Assign Stream 1 to Slot 1 and Stream 2 to Slot 2
end
Ready(i) checks whether the ith decoder’s buffer contains
at least SDL bits.
Full(i) checks whether corresponding buffer has enough
space to hold more slots.

3.4 Bitstream Split

The bitstream split logic uses the reverse procedure of the bit-
stream merge logic. The bitstream split logic divides the single
compressed bitstream into multiple streams using the following
guidelines:

• Use the given BPA to determine the bitstream placement
within current compressed storage block, then dispatch dif-

ferent slots to the corresponding decoder’s buffer.
• If all the decoders are ready to decode the next instruction,

start the decoding.
• If the end of current branch block is encountered, force all

decoders to start.

We use the example in Figure 5 to illustrate the bitstream split
logic. When the placed data in Figure 5b is fed to the bitstream
split logic (translates Figure 5b to Figure 5c), the length of the
input buffers for both streams are less than SDL. So the split
logic determines the first and the second slot must belong to
Stream1 and Stream2 respectively in the first two cycles. At
the end of the second cycle, the number of bits in the Decoder1

buffer, Len1 (i.e., 6), is greater than SDL (i.e., 5), but Len2 (i.e.,
3) is smaller than SDL. This indicates that both slots must be
assigned to the second bitstream in the next cycle. Therefore, the
split logic dispatches both slots to the input buffer of Decoder2.
This process repeats until all placed data are split.

3.5 Decompression Mechanism

The design of our decoder is based on the Huffman decoder
hardware proposed by Wolfe et al. [1]. The only additional op-
eration is to check the first bit of an incoming code, in order
to determine whether it is compressed using Huffman coding or
not. If it is, decode it using the Huffman decoder; otherwise
send the rest of the code directly to the output buffer. There-
fore, the decode bandwidth of each single decoder (Decoder1 to
DecoderN in Figure 2 (b)) should be similar to the one given in
[1]. Since each decoder can decode 8 bits per cycle, two parallel
decoders can produce 16 bits per cycle. Decoders are allowed to
begin decoding only when i) all decoders’ decoder buffers con-
tains more bits than SDL; or ii) bitstream split logic forces it to
begin decoding. After combining the outputs of these parallel
decoders together, we obtain the final decompression result.

3.6 Bitstream Placement for Four Streams

In order to further boost the output bandwidth, we have also
developed a bitstream placement algorithm which enables four
Huffman decoders to work in parallel. During compression, we
take every two adjacent instructions as a single input storage
block. Four compressed bitstreams are generated by high 16 bits
and low 16 bits of all odd instructions, as well as high 16 bits and
low 16 bits of all even instructions. We also change the slot size
within each output storage block to 8 bits, so that there are 4
slots in each storage block. We omit the complete description of
this algorithm here due to the lack of space. However, the basic
idea remains the same and it is a direct extension of Algorithm
1. The goal is to provide each decoder with sufficient number
of bits so that none of them are idle at any point. Since each
decoder can decode 8 bits per cycle, four parallel decoders can
produce 32 bits per cycle.

Although we can still employ more decoders, the overall in-
crease of output bandwidth will slow down by more start up
stalls. For example, we have to wait 2 cycles to decompress the
first instruction using four decoders in the worst case. As a re-
sult, high sustainable output bandwidth using too many parallel

decoders may not be feasible, if its start up stall time is compa-
rable with the execution time of the code block itself.

4 Experiments
The code compression and parallel decompression experi-

ments of our framework are carried out using different appli-
cation benchmarks compiled using a wide variety of target ar-
chitectures.

4.1 Experimental Setup

We used benchmarks from MediaBench and MiBench bench-
mark suites: adpcm en, adpcm de, cjpeg, djpeg, gsm to,
gsm un, mpeg2enc, mpeg2dec and pegwit. These benchmarks
are compiled for four target architectures: TI TMS320C6x,
PowerPC, SPARC and MIPS. The TI Code Composer Studio
is used to generate the binary for TI TMS320C6x. GCC is used
to generate the binary for the rest of them. Our computation of
compressed program size includes the size of the compressed
code as well as the dictionary and all other data required by our
decompression unit.

We have evaluated the relationship between the division posi-
tion and the compression ratio on different target architectures.
We have observed that for most architectures, the middle of each
instruction is usually the best partition position. We have also
analyzed the impact of dictionary size on compression efficiency
using different benchmarks and architectures. Although larger
dictionaries produce better compression, our approach produces
reasonable compression using only 4096 bytes for all the archi-
tectures. Based on these observations, we divide each 32-bit
instruction from the middle to create two bitstreams. The maxi-
mum dictionary size is set to 4096 bytes. The output bandwidth
of the Huffman decoder is computed as 8 bits per cycle [1] in our
experiments. To the best of our knowledge, there have been no
work on bitstream placement for enabling parallel decompres-
sion of variable length coding. So we compare our work (BPA1
and BPA2) with CodePack [11], which uses a conventional bit-
stream placement method. Here, BPA1 is our bitstream place-
ment algorithm in Algorithm 1, which enables two decoders to
work in parallel, and BPA2 represents our bitstream placement
algorithm in Section 3.6, which supports four parallel decoders.

4.2 Results

Figure 7 shows the efficiency of our different bitstream place-
ment algorithms. Here, “decode bandwidth” means the sustain-
able output bits per cycle after initial stalls. The number shown
in the figure is the average decode bandwidth over all bench-
marks. It is important to note that the decode bandwidth for
each benchmark also shows the same trend. As expected, the
sustainable decode bandwidth increases as the number of de-
coder grows. Our bitstream placement approach improves the
decode bandwidth up to four times. As discussed earlier, it is
not profitable to use more than four decoders since it will intro-
duce more start up stalls.

We have studied the impact of bitstream placement on com-
pression efficiency. Figure 8 compares the compression ratios
between the three techniques on various benchmarks on MIPS

0

8

16

24

32

TI PowerPC SPARC MIPS

CodePack [10] BPA1 BPA2

Figure 7. Decode bandwidth of different techniques

0.55

0.6

0.65

CodePack [10] BPA1 BPA2

Figure 8. Compression ratio for different benchmarks

architecture. The results show that our implementation of bit-
stream placement has less than 1% penalty on compression effi-
ciency. This result is consistent across different benchmarks and
target architectures as demonstrated in Figure 9 which compares
the average compression ratio of all benchmarks on different ar-
chitectures.

0.55

0.6

0.65

TI PowerPC SPARC MIPS

CodePack [10] BPA1 BPA2

Figure 9. Compression ratio on different architectures

We have implemented the decompression unit using Verilog
HDL. The decompression hardware is synthesized using Synop-
sis Design Compiler and TSMC 0.18 cell library. Table 1 shows
the reported results for area, power, and critical path length. It
can be seen that “BPA1” (uses 2 16-bit decoders) and Code-
Pack have similar area/power consumption. On the other hand,
“BPA2” (uses 4 16-bit decoders) requires almost double the
area/power compared to “BPA1” to achieve higher decode band-
width, because it has two more parallel decoders. The decom-
pression overhead in area and power is negligible (100 to 1000
times smaller) compared to typical reduction in overall area and
energy requirements due to code compression.

Table 1. Comparison using different placement algorithms
CodePack [11] BPA1 BPA2

Area/µm2 122263 137529 253586
Power/mW 7.5 9.8 14.6

Critical path length/ns 6.91 5.76 5.94

5 Conclusions
Memory is one of the key driving factors in embedded sys-

tem design since a larger memory indicates an increased chip
area, more power dissipation, and higher cost. As a result, mem-
ory imposes constraints on the size of the application programs.
Code compression techniques address the problem by reducing
the program size. Existing researches have explored two direc-
tions: efficient compression with slow decompression, or fast
decompression at the cost of the compression efficiency. This
paper combines the advantages of both approaches by intro-
ducing a novel bitstream placement technique for parallel de-
compression. We addressed four challenges to enable parallel
decompression using efficient bitstream placement: instruction
compression, bitstream merge, bitstream split and decompres-
sion. Efficient placement of bitstreams allows the use of multi-
ple decoders to decode different parts of the same/adjacent in-
struction(s) to enable the increase of decode bandwidth. Our
experimental results using different benchmarks and architec-
tures demonstrated that our approach improved the decompres-
sion bandwidth up to four times with less than 1% penalty in
compression efficiency.

References

[1] A. Wolfe and A. Chanin, “Executing compressed programs on an
embedded RISC architecture,” MICRO 81-91, 1992.

[2] H. Lekatsas and Wayne Wolf, “SAMC : A code compression
algorithm for embedded processors,” IEEE TCAD, 18(12), 1999.

[3] H. Lekatsas, J. Henkel and W. Wolf, “Code compression for low-
power embedded system design,” DAC, 294–299, 2000.

[4] C. Lin, Y. Xie, and W. Wolf, “LZW-based code compression for
VLIW embedded systems,” DATE, 76–81, 2004.

[5] S. Liao, S. Devadas, and K. Keutzer, “Code density optimiza-
tion for embedded DSP processors using data compression tech-
niques,” IEEE TCAD, 17(7), 601–608, 1998.

[6] J. Prakash et al., “A simple and fast scheme for code compression
for VLIW processors,” DCC, pp 444, 2003.

[7] M. Ros and P. Sutton, “A hamming distance based VLIW/EPIC
code compression technique,” CASES, 132–139, 2004.

[8] S. Seong and P. Mishra, “Bitmask-based code compression for
embedded systems,” IEEE TCAD, 27(4), 673–685, April 2008.

[9] S. Nam et al., “Improving dictionary-based code compression in
VLIW architectures,” FECCS, E82-A(11), 2318–2324, 1999.

[10] H. Lekatsas and W. Wolf, “Code compression for embedded sys-
tems,” DAC, 516–521, 1998.

[11] C. Lefurgy, Efficient Execution of Compressed Programs, Ph.D.
Thesis, University of Michigan, 2000.

[12] Y. Xie et al., “Code compression for embedded VLIW processors
using variable-to-fixed coding,” IEEE TVLSI, 14(5), 2006.

