
Coverage-driven Functional Test Generation for
Processor Validation using Formal Methods

Heon-Mo Koo Prabhat Mishra
hkoo@cise.ufl.edu prabhat@cise.ufl.edu

Department of Computer and Information Science and Engineering
University of Florida, Gainesville, FL 32611, USA.

Abstract— Functional validation is one of the major bottlenecks
in processor design: up to 70% of the design development time
and resources are spent on functional verification. Simulation
is the most widely used form of microprocessor validation. A
major challenge in simulation-based validation is how to reduce
the overall validation time and resources. Traditionally, billions
of random tests are used during simulation and the lack of
a comprehensive functional coverage metric makes it difficult
to measure the verification progress. Directed test generation
is a promising approach in terms of the volume of test set
but poses several challenges. One of the major challenges is
how to generate directed tests for complex processor designs
for efficient functional validation. This paper presents functional
coverage-driven test generation techniques using formal methods.
We present fault models based on the functionality of pipelined
processors. These fault models are used to define the functional
coverage metric to measure the verification progress. We have
developed automatic test generation techniques using model
checking and SAT solving methods. The experiments using
MIPS processor demonstrate the feasibility and usefulness of
the proposed functional validation methodology.

I. I NTRODUCTION

Functional verification is one of the major bottlenecks in mi-
croprocessor design due to the combined effects of increasing
design complexity and decreasing time-to-market. An expo-
nential increase in design complexity results from advances in
the VLSI technology and availability of increasingly complex
applications in the domains of communication, multimedia,
networking and entertainment. To accommodate such faster
computation requirements, today’s processors employ many
sophisticated micro-architectures including deeply pipelined
superscalar architectures.

Figure 1 summarizes a study [6] of the pre-silicon logic
bugs found in the Intel IA32 family of microarchitectures.
This trend again shows an exponential increase in the number
of logic bugs: a growth rate of 300-400% from one generation
to the next. The increase in logic bugs is proportional to the
increase in design complexity. The increase in design errors
makes verification tasks more difficult. In addition to the
growing difficulty of pipelined processor verification, time-to-
market has become shorter in the embedded processor designs.
A recent study [13] has shown that functional verification
accounts for significant portion (up to 70%) of the overall
design development time and resources. As a result, design
verification of modern processors is widely acknowledged as
a major bottleneck in design methodology.

������� ���������	
 ��������� ��
���

���
����

����

�����

��������	
��	����
����	������
������� ���������	
 ��������� ��
���

���
����

����

�����

��������	
��	����
����	������
Fig. 1. Pre-silicon logic bugs per generation

A. Existing Techniques for Functional Verification

Existing verification techniques can be broadly categorized
into formal methods [8], [18] and simulation-based techniques
[7]. Formal methods provide the completeness of verification
task by proving mathematically the correctness of designs.
However, due to the state explosion problem, formal methods
are generally used to verify components of design. Simulation-
based validation handles complex designs but cannot guarantee
complete verification. As a result, simulation-based validation
is the most widely used form of processor verification.

Test programs consisting of instruction sequences are used
for functional validation of processor designs. There are three
types of test generation techniques: random, directed, and
directed-random. The directed tests can reduce overall vali-
dation effort since shorter tests can obtain the same coverage
goal compared to the random tests. However, directed test
generation is mostly performed by human intervention. Hand-
written tests entail laborious and time consuming effort of
verification engineers who have deep knowledge of the design
under verification. Due to the manual development, it is infea-
sible to generate all directed tests to achieve comprehensive
coverage goal. Automatic test generation is the alternative to
handle this problem.

B. Challenges in Directed Test Generation using Formal
Methods

Test generation using model checking [11] is one of the
most promising approaches due to its capability of automatic
test generation. In this test generation scenario, processor



model is described in a temporal specification language and
a desired behavior is expressed in the form of temporal logic
property. A model checker exhaustively searches all reachable
states of the model to check if the property holds (verification)
or not (falsification), which is called unbounded model check-
ing (UMC). If the model checker finds any reachable state that
does not satisfy the property, it produces a counterexample.
This falsification can be quite effectively exploited for test
generation. Instead of a desired property, its negated version
is applied to the model checker to produce a counterexample.
The counterexample contains a sequence of instructions from
an initial state to a state where the negated version of the
property fails. However, this approach is unsuitable for large
designs due to the state explosion problem in UMC. We
present an efficient test generation technique that uses design
level as well as property level decompositions to reduce test
generation time and memory requirement.

As a complementary technique, SAT-based bounded model
checking (BMC) has given promising results [5]. The basic
idea is to restrict search space that is reachable from initial
states within a fixed number (k) of transitions, calledbound.
After unwinding the model of designk times, the BMC
problem is converted into a propositional satisfiability (SAT)
problem. SAT solver is used to find a satisfiable assignment
of variables that is converted into a counterexample. If the
bound is known in advance, SAT-based BMC is typically
more effective for falsification than UMC because search for
counterexample is faster and SAT capacity reaches beyond
BDD capacity [4]. However, findingbound is a challenging
problem since the depth of counterexamples is unknown in
general. We propose a method to determine the bound for
each test generation scenario, thereby making SAT-based BMC
feasible in practice.

C. Coverage-driven Functional Test Generation

Figure 2 shows the overall flow of the functional coverage-
driven test generation process. The process begins by gen-
erating a list of functional faults in the processor design
under validation. One of these faults is selected for test
generation. In our approach, a functional test generator, e.g.,
model checking or SAT solver produces a test program for
this fault. Once the test program is generated, fault simulation
is performed to determine all of the faults that are detected
by that test program. These detected faults are removed from
the functional fault list. Another undetected fault is selected
from this list and the process begins again. This loop is exited
when all of the faults are detected.

This paper consists of three parts. First, we define functional
pipeline interaction behaviors using a graph-based model of
the processor. The negated versions of desired behaviors,
called functional faults, are converted into temporal logic
properties. Functional faults are used to define a functional
coverage and generate test programs. Second, we formally
specify the processor architecture in model checking language.
The properties are decomposed into local properties and
the formal processor model is partitioned into components

Processor
Model

Functional
Fault model

Generate
fault list

Select an undetected fault
for test generation

Generate a test program
for the fault using formal methods

Generate a list of other faults
detected by the test program

(Fault simulation)

Put the detected faults off
of the fault list

Detect all faults?

Test set

Yes

No

Processor
Model

Functional
Fault model

Generate
fault list

Select an undetected fault
for test generation

Generate a test program
for the fault using formal methods

Generate a list of other faults
detected by the test program

(Fault simulation)

Put the detected faults off
of the fault list

Detect all faults?

Test set

Yes

No

Fig. 2. Functional test generation flow

accordingly in order to avoid the state explosion problem
in formal methods. Applying the decomposed properties and
partitioned components to a model checker, counterexamples
for individual components are generated and merged together
at every clock cycle to form a counterexample for the entire
processor. The counterexample contains a sequence of instruc-
tions to exercise the desired pipeline behavior. Finally, SAT-
based bounded model checking makes it efficient to generate
functional tests for large partitioning by restricting search
space of counterexamples. We have successfully applied the
formal-method-based test generation to MIPS processors.

II. RELATE WORK

A variety of techniques for generating test programs have
been developed for architectural micro-architectural validation
of pipelined processors. In [19], the processor model is de-
scribed as a finite state machine (FSM) and the reachable
states and state transitions are used to generate test programs
based on FSM coverage. To handle the large size of FSMs for
modern processors, Shen and Abraham [25] have proposed an
RTL abstraction technique that creates an abstract FSM model
while preserving clock accurate behaviors. Ur and Yadin [26]
have also used abstraction of processor model to generate test
programs for micro architectural validation of a superscalar
PowerPC processor. Adir et al. [1] has separated model of
design from a test generation engine to avoid state explosion
in formal methods and to facilitate test generation for modern
processors.

Model checking [9], [11] has been successfully used in
software and hardware verification as a test generation engine
[14], [22]. Model of design described in model checking
language is applied to a model checker along with negated



temporal logic properties to exploit falsification capability of
model checking. However, traditional model checking does not
scale well due to the state explosion problem. Biere et al. [5]
introduced bounded model checking (BMC) combined with
satisfiability solving. The recent developments in SAT-based
BMC techniques have been presented in [4], [10], [24]. BMC
is an incomplete method that cannot guarantee a true or false
determination when a counterexample does not exist within a
given bound. However, once the bound of a counterexample
is known, large designs can be falsified very fast since SAT
solvers [15], [20], [23], [27] do not require exponential space,
and searching counterexample in an arbitrary order consumes
much less memory than breadth first search in model checking.
The performance of bounded and unbounded algorithms was
analyzed on a set of industrial benchmarks in [2], [3]. The
capacity increase of BMC techniques has become attractive
for industrial use. An Intel study [12] showed that BMC
has better capacity and productivity over unbounded model
checking for real designs taken from the Pentium-4 processor.
Recently, Gurumurthy et al. [16] have used BMC as test
program generator for mapping pre-computed module-level
test sequences to processor instructions.

III. G ENERATION OFFUNCTIONAL FAULTS

A functional coverage metric is necessary to evaluate the
progress of functional validation. Several coverage metrics are
commonly used during functional validation such as code cov-
erage, toggle coverage, etc. However, these coverage metrics
do not have a direct relationship with the design functionality.
For example, none of the existing coverage metrics determines
if all possible interactions of stalls are tested in a pipelined
processor. Therefore, we need a coverage metric based on the
functionality of pipelined processors. We define a pipeline in-
teraction fault model using graph-based modeling of pipelined
processors. The fault model is used to define a functional
coverage as well as generate functional faults described in
temporal logic properties. We use the functional coverage to
measure the validation progress by reporting the faults that are
not covered by a given set of test programs.

A. Functional Fault Model and Functional Coverage

Today’s test generation techniques and verification methods
are very efficient to find bugs in a single module. Hard-to-
find bugs arise often from the interactions among multiple
components of a complex design. We primarily focus on the
interactions among functional units in a pipelined processor.
First, we briefly describe a graph-based modeling of pipelined
processors. Next, we define a pipeline interaction fault model
using the graph model.

The structure of a pipelined architecture is modeled as a
graph G = (V, E). V denotes two types of components in
the processor:units (e.g., Fetch, Decode, etc) andstorages
(e.g., register file or memory).E consists of two types of
edges:pipeline edgesanddata transfer edges. A pipeline edge
transfers an instruction (operation) from a parent unit to a
child unit. A data-transfer edge transfers data between units

Unit
Storage
Instruction transfer
Data transfer

Fetch

Decode

PC

DIVFADD1IALU MUL1

FADD3

FADD2MUL2

FADD4MEM

WriteBack

Reg File

Instruction
Cache

MUL7

Data
Cache

Main
Memory

Unit
Storage
Instruction transfer
Data transfer

Fetch

Decode

PC

DIVFADD1IALU MUL1

FADD3

FADD2MUL2

FADD4MEM

WriteBack

Reg File

Instruction
Cache

MUL7

Data
Cache

Main
Memory

Fig. 3. Graph Model of the MIPS processor

and storages. For illustration, we use a simplified version of
the MIPS processor [17] as shown in Figure 3. In the figure,
ovals denote units, rectangles are storages, bold edges are
pipeline edges, and dashed edges are data-transfer edges. A
path from a root node (Fetch) to a leaf node (WriteBack)
consisting of units and pipeline edges is called apipeline path.
For example,{Fetch - Decode - IALU - MEM - WriteBack}
is a pipeline path. A path from a unit to main memory or
register file consisting of storages and data transfer edges is
called adata-transfer path. For example,{MEM - DataCache
- MainMemory} is a data-transfer path.

Using the graph model shown in Figure 3, interactions can
be described as a combination of nodes and their activities.
We consider four functional activities in a node:operation
execution, stall, exception, and NOP (no-operation). A unit
in operation executioncarries out its functional operations
such as fetching an instruction, decoding opcode/operand,
arithmetic/logic computation etc. Stall in a unit can be caused
by various reasons such as data hazard, structural hazard, child
node stall etc. Exception in a node is an exceptional state such
as divide-by-zero or overflow. We consider two types of faults:
node fault, and interaction fault. A node is faulty if it produces
incorrect output during an activity. An interaction is faulty
if execution of multiple activities of the interaction produces
incorrect result. In the presence of a fault, unexpected values
are written to the primary outputs such as memory or register
file, or the test program finishes at incorrect clock cycle during
simulation.

We need one test program to activate each fault. The
functional coverage (FC) is defined as follows:

FC =
faults detected by test programs

total detectable faults in the fault model
(1)



B. Conversion of Functional Faults into Properties

The main overhead in using model checking is to correctly
describe temporal logic properties from desired behavior of
designs. This is mainly due to the semantic gap between
them. Since interaction faults are semantically explicit and a
processor model is described in structure-oriented modules in
general, interaction faults can be converted into temporal logic
properties. A node fault is converted into a propertyF(pi)
whereF is a temporal operator (eventually) andpi is described
as(modulei.activity). F(pi) is true if pi becomes true at any
time step. The atomic propositionpi is a functional activity at
a nodei such as operation execution, stall, exception or NOP.
The negation of the propertyF(pi) is G(¬pi) that is true ifpi

is never true over all time steps.G is a temporal operator,
always. For example, to exercise a node fault“Decode in
stall” , the fault is converted intoF(Decode.Stall). Its negation
G(¬Decode.stall)means“Decode never in stall”.

A pipeline interaction fault is converted into a propertyF(p1

∧ p2 ∧ . . .∧ pn) that combines activities overn modules
using logicalAND operator. The property is true if(p1 ∧ p2

∧ . . .∧ pn) becomes true at any time step. The negation of
the property,G(¬p1 ∨ ¬p2 ∨ . . .∨ ¬pn), becomes true if
any of p1, p2, . . . , or pn is not true over all time steps. For
example, to exercise an interaction fault“Decode in stall and
FADD1 in operation execution at the same time”, the fault
is converted intoF(Decode.stall∧ FADD1.exe). Its negation
G(¬Decode.stall∨ ¬FADD1.exe)means“Decode in stall and
FADD1 in operation execution never occur at the same time”.

IV. T EST GENERATION USINGFORMAL METHODS

Processor Architecture
(Specification)

Processor
Model

Properties

SAT-based BMC
Or Model Checker

Decide
bound

Negate
property

Test programs

Fault
Model

Decompose
(if necessary)

Decompose
(if necessary)

Processor Architecture
(Specification)

Processor
Model

Properties

SAT-based BMC
Or Model Checker

Decide
bound

Negate
property

Test programs

Fault
Model

Decompose
(if necessary)

Decompose
(if necessary)

Fig. 4. Test Program Generation Methodology

Figure4 shows our test generation methodology. Processor
model and properties are generated from the architecture
specification. We use pipeline interaction fault model to define
functional coverage. Temporal logic properties are created
from pipeline interaction faults. We use design and property
decompositions to improve the performance of test generation.

We determine bound for each property for applying to formal
methods such as SAT-based BMC or model checking, thereby,
reducing test generation time and memory requirement com-
pared to using the maximum bound for all properties. Proces-
sor model, negated property, and the bound are applied to
SAT-based BMC or model checker to generate a test program.
Based on the coverage report, more properties can be added,
if necessary. We use design and property decompositions to
further improve the performance of test generation.

A. Design and Property Decomposition

In this section, we describe how to decompose a processor
model and the properties (already negated) for efficient model
checking. Decomposition of a design plays a central role in the
generation of efficient test programs. Ideally, the design should
be decomposed into components such that there is very little
interaction among the partitioned components. For a pipelined
processor, the natural partition is along the pipeline bound-
aries, e.g., functional units. In other words, the partitioned
pipelined processor can be viewed as a graph described in
Section III-A wherenodesconsist of units (e.g., fetch, decode
etc.) or storages (e.g., memory or register file) andedges
consist of connectivity among them. Typically, instruction is
transferred between units, and data is transferred between units
and storages. This graph model is similar to the pipeline level
block diagram available in a typical architecture manual.

Each property consists of temporal operators (G, F, X, U)
and Boolean connectives (∧, ∨, ¬, and→). There are various
combinations of temporal operators and Boolean connectives
where decompositions are not possible e.g.,F (p∧q) 6= F (p)∧
F (q) andG(p∨ q) 6= G(p)∨G(q). In certain situations, such
as pUq, F (p → F (q), or F (p → G(q), decompositions are
not beneficial compared to traditional model checking. The
following combinations allow simple property decompositions.

G(p ∧ q) = G(p) ∧G(q) F (p ∨ q) = F (p) ∨ F (q)
X(p ∨ q) = X(p) ∨X(q) X(p ∧ q) = X(p) ∧X(q)

If we introduce the notion of clock (time step) in the prop-
erty then more decompositions are allowed as shown below1.
Note that the left and right hand side of the decomposition
are not logically equivalent but they produce functionally
equivalent counterexamples.

G((clk 6= ts) ∨ (p ∨ q)) ≈ G((clk 6= ts) ∨ p) ∨G((clk 6= ts) ∨ q)

For the proof of the above equation, let’s putA = G((clk 6=
ts)∨(p∨q)) andB∨C = G((clk 6= ts)∨p)∨G((clk 6= ts)∨q).
A failure triggered by the latterB∨C always causes a failure
that can be obtained using the formerC. If U is the universal
set, thenA is a subset ofB ∨ C, which is a subset ofU .
Therefore, if we find a counterexample insideU − (B ∨ C)
then it is always a counterexample ofA.

Although we only use a few decomposition scenarios, it
is important to note that these scenarios are sufficient for
generating the properties where pipeline interactions are con-
sidered. Moreover, the property decomposition is dependent

1Theclk variable is used to count time steps, andts is a specific time step.



on the design decomposition. For example, consider a design
which has two partitions:d1 andd2. We cannot decompose a
property into two sub-propertiesp1 andp2, if it is not possible
to applyp1 andp2 to the partitionsd1 andd2. In other words,
if p1 contains variables from both partitions, it is not possible
to apply it to one partition of the design. However, we can
change the partition based on the properties. For example, a
property may not be decomposable based on a module level
partitioning but it may be decomposable based on a pipeline
path level partitioning. For example, in the graph model shown
in Figure 3, the integer-ALU pipeline pathPPIALU = {Fetch,
Decode, IALU, Mem, WriteBack} is treated as one of path
level partitions.

B. Deciding Bound

The longest computation path in the pipeline corresponds
to the bound to generate tests for all interaction scenarios.
For example, in the graph model of the MIPS processor in
Figure 3, the maximum bound is determined by the length
of {FE→ DE→ IALU→ MEM→ Cache→ MM → Cache→
MEM→ WB} if cache miss takes more time than any other
pipeline paths. However, this bound is over-conservative in
most test scenarios because a lot of interactions do not include
this longest path. Therefore, using bound for each interaction
is more efficient for test generation.

Bound for each node fault is decided by the temporal
distance between the root node (e.g., Fetch) and the node under
verification. For example, bound for the property“FADD1 in
operation execution”will be 3 if there is only one pipeline reg-
ister between pipeline stages. Bound for each interaction fault
is determined by the longest temporal distance from the root
node to the nodes under consideration. For example, bound
for the property“IALU, FADD2, and FADD3 in operation
execution at the same time”will be 5 because FADD3 has
the longest temporal distance from Fetch stage.

C. Test Generation by Merging Local Counterexamples

Algorithm 1 presents our test generation procedure us-
ing design and property decompositions. The basic idea of
the algorithm is to apply the components of the properties
(sub-properties) to appropriate modules and compose their
responses to construct the final test program. This algorithm
accepts design M and properties P as inputs and produces
the test programs. It uses two lists to maintain the current
(TaskList) and future (FutureList) tasks. Both lists have exactly
the same structure. Each entry in the list contains a collection
of sub-tasks that is applicable to a particular module. There-
fore, each list can have up ton entries wheren is the number of
modules (or partitions) in the design. The tasks in the TaskList
need to be performed in the current time step (clock cycle).
The tasks in the FutureList will be performed in the next clock
cycle. Initially both lists are empty.

For each propertyPi, the algorithm generates one test
program. Each property consists of one or more sub-properties
based on their applicability to different modules or partitions
in the design as discussed in Section??. The algorithm adds

the sub-properties to the TaskList based on the module to
which this property is applicable. The algorithm iterates over
all the tasks (sub-properties) in the TaskList. It removes an
entry (say k’th location) from the TaskList. In general, this
entry can be a list of sub-tasks (due to simultaneous output
requirements from multiple children nodes) that need to be
applied to moduleMk. These subtasks are composed to create
the intermediate propertyP k

i . The propertyP k
i is applied to

the moduleMk using a model checker. The model checker
generates a counterexample. The generated counterexample is
analyzed to find the input requirementsinpk for the module
Mk. If these are primary inputs then they are stored in Prima-
ryInputs list; otherwise for each parent nodeMr, whereinpk

is applicable, extract the output requirements forMr. This
output requirement is added to the r’th entry of the FutureList.
Finally, if the tasks for the current timestamp is completed
(TaskList empty), FutureList is copied to the TaskList and this
process continues until both the lists are empty. This implies
we have obtained the primary input assignments for all the
sub-properties. These assignments are converted into a test
program consisting of instruction sequences.

Algorithm 1 : Test Generation
Inputs: i) Processor model M as a composition of modules

ii) Set of global properties P where each property is
decomposed into multiple module level properties

Outputs: Test programs to verify the pipeline interactions.
Begin

TaskList =φ; FutureList =φ; TestPrograms =φ
for each propertyPi in set P

for each sub propertyP j
i

TaskList[j] = P j
i /* P j

i is applicable toMj */
endfor
PrimaryInputs =φ
while TaskList is not empty

items = RemoveEntry(TaskList)
P k

i = ComposeRequirements(items);
Apply P k

i on moduleMk using model checker
inpk = input requirements forMk from counterexample
if inpk are not primaryinputs

for each applicable parent nodeMr of Mk

outr = Extract output requirements forMr

FutureList[r] = FutureList[r]∪ outr

endfor
elsePrimaryInputs = PrimaryInputs∪ inpk

endif
if TaskList is empty

TaskList = FutureList; FutureList =φ
endif

endwhile
testi = GenerateTest(PrimaryInputs).
TestPrograms = TestPrograms∪ testi

endfor
return TestPrograms

End

For illustration, consider a simple propertyP1 to verify
a multiple stall scenario consisting of IALU (3rd module)
and DIV (15th module) nodes in Figure 3 at clock cycle 5.
This property can be decomposed into two sub-propertiesP 3

1

(IALU not stalled in cycle 5) andP 15
1 (DIV not stalled in cycle



5). This implies that TaskList will have two entries before
entering the while loop: TaskList[3] =P 3

1 and TaskList[15]
= P 15

1 . At the first iteration of the while loopP 3
1 will be

applied toM3 (IALU) using model checker; generated counter
example will be analyzed to find the output requirement for
the Decode unit (2nd module in Figure 3) in clock cycle 4;
the requirement will be added to FutureList[2]. During second
iteration of the while loopP 15

1 (TaskList[15]) will be applied
to M15 (DIV); generated counter example will be analyzed to
find the output requirement for the decode unit in clock cycle
4; the requirement will be added to FutureList[2]. At this point,
the TaskList is empty and the FutureList has only one entry
with two requirements which is copied to the TaskList. At the
third iteration of the while loop, these two requirements are
composed into an intermediate property and applied toM2

(Decode) that generates requirements for Fetch node. Finally,
the fourth iteration applies the corresponding property to the
Fetch unit that generates the primary input assignments. These
assignments are converted to a test program.

V. A CASE STUDY

We performed various test generation experiments to vali-
date the pipeline interactions by varying interactions of func-
tional units and decompositions of design and properties.
We excluded illegal interactions based on the fact that their
negated properties could not generate any counterexample. In
this section, we present our experimental setup followed by
test generation example using horizontal and vertical decom-
positions. Next, we compare our test generation technique with
UMC-based test generation method as well as BMC using the
maximum bound.

A. Experimental Setup

We applied our methodology on a simplified MIPS architec-
ture [17], as shown in Figure 3. We chose the MIPS processor
since it has been well studied in academia and there are
HDL implementations available for the processor that can be
used for validation purposes. Additionally, the MIPS processor
has many interesting features, such as fragmented pipelines
and multi-cycle functional units that are representatives of
many commercial pipelined processors such as TI C6x and
PowerPC.

For our experiments, we used Cadence SMV [21] as a model
checker and zChaff [23] as a SAT solver. We used 16 16-bit
registers in the register file for the following experiments. All
the experiments were run on a 1 GHz Sun UltraSparc with 8G
RAM.

B. Test Generation: An Example

Consider a test generation scenario for verifying the in-
teraction “Decode in stall, and IALU, FADD3 in operation
execution at the same time”. The propertyF(Decode.stall
∧ IALU.exe ∧ FADD3.exe) is generated from the interac-
tion. Its negation will beG(¬Decode.stall∨ ¬IALU.exe∨
¬FADD3.exe). According to the horizontal and vertical parti-
tioning, we can use a partial set of modules{Fetch, Decode,

IALU, FADD1, FADD2, FADD3} to generate a test program.
Based on the procedure of deciding bound for each property,
bound will be 5. SAT-based BMC accepts the decomposed
processor model, the negated property, and the bound. The
generated test program is shown in Table I where Decode unit
is in stall due to the read-after-write(RAW) hazard by FADD
instruction.

TABLE I

AN EXAMPLE OF TEST PROGRAM

Fetch Cycle Instructions
1 FADD R1 R2 R2
2 NOP
3 ADD R3 R2 R2
4 ADD R3 R1 R2
5 NOP

C. Results

Table II compares our test generation technique with UMC-
based test generation for different module interactions. The
first column specifies a set of properties based on the number
of interactions. For example, the third row presents average
test generation time (in seconds) for all properties consisting
of two (“2”) module interactions. The second column presents
the level of decomposition used during test generation. The
entry whole implies that no decomposition is used. The entry
group implies that either horizontal or vertical or both decom-
positions are used. Similarly, the entrymodule implies that
the test generation uses module-level decomposition. The next
three columns show the performance of three test generation
techniques: UMC, BMC using maximum bound, and BMC
using bound for each property. The maximum bound 45 was
used assuming that the longest length is taken by memory
operations i.e., the sum of the IALU pipeline path length (5)
and data-transfer path length (40). In the table,X indicates

TABLE II

COMPARISON OFTEST GENERATION TECHNIQUES BASED ON THE

NUMBER OF INTERACTIONS

Interaction Decomposed UMC SAT-based BMC
Modules Design Max. k Eachk

Whole X 5.63 0.48
1 Group X 3.87 0.22

Module 0.40 2.24 0.42

Whole X 7.42 0.65
2 Group X 4.31 0.43

Module 0.57 6.41 1.38

Whole X 7.74 0.70
3 Group X 5.72 0.52

Module 0.86 6.41 1.45

Whole X 8.79 0.75
4 Group X 6.98 0.64

Module 1.12 7.63 1.97

Whole X 9.29 0.89
5 Group X 8.31 0.62

Module 1.50 9.03 2.18

Whole X 9.58 1.05
6 Group X 9.04 0.68

Module 1.86 10.70 2.50

X: Not Applicable.



that a counterexample was not found due to “Out of Memory”
problem.

As expected, Table II shows that the test generation time
grows with the increase of the number of module interactions.
UMC can be used only with module level decompositions
while SAT-based BMC can be used without decomposition.
Bound for each property reduces approximately 90% of the
test generation time compared to using BMC with maximum
bound. An interesting observation is that UMC with module
level decomposition provides better performance than SAT-
based BMC. This is because the time to unfold the model and
convert it to SAT problem is more than the time to search a
counterexample.

VI. CONCLUSION

Functional verification is a major bottleneck in processor
design. Simulation using test programs is the most widely
used form of processor verification. Use of directed tests in
simulation can reduce overall validation effort since shorter
tests can obtain the same coverage goal compared to the
random tests. There is a need for automatic directed test gener-
ation techniques based on coverage goal. Test generation using
model checking is one of the most promising approaches.
However, this approach is unsuitable for large designs due
to the state explosion problem.

This paper presented efficient directed test generation tech-
niques for validation of pipelined processors using formal
methods as well as search restriction techniques. Our method-
ology made three important contributions. First, it presented
pipeline interaction faults and they are converted into temporal
logic properties in order to be applied to formal methods.
Second, it developed a procedure for determiningbound for
each property. Finally, it developed a method for decomposing
design and properties in the context of SAT-based BMC
and UMC. Our experimental results using MIPS processor
demonstrated that the proposed test generation technique is
a promising approach. It is important to note that due to state
space explosion problem naive UMC-based test generation
failed in many scenarios.

In this paper, we used pipeline interaction fault model
for test generation. Our future work includes applying our
technique for test generation using other fault models such
as stuck-at and FSM transition faults. Since the number of
interactions (directed tests) can be still extremely large, we
plan to develop a test compaction technique to reduce the
number of test programs for functional validation of pipelined
processors.

REFERENCES

[1] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,
and A. Ziv. Genesys-pro: Innovations in test program generation for
functional processor verification.IEEE Design & Test of Computers,
21(2):84–93, 2004.

[2] N. Amla, X. Du, A. Kuehlmann, R. Kurshan, and K. McMillan. An
analysis of SAT-based model checking techniques in an industrial envi-
ronment. InConference on Correct Hardware Design and Verification
Methods (CHARME), pages 254–268. Springer, 2005.

[3] N. Amla, R. Kurshan, K. McMillan, and R. Medel. Experiment analysis
of different techniques for bounded model checkings. InTools and
Algorithms for the Analysis and Construction of Systems (TACAS),
volume 2619 ofLNCS, pages 34–48. Springer, 2003.

[4] A. Biere, A. Cimatti, and E. M. Clarke. Bounded model checking.
Advances in Computers, 58, 2003.

[5] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model
checking without BDDs. InTools and Algorithms for the Analysis and
Construction of Systems (TACAS), volume 1579 ofLNCS, pages 193–
207. Springer, 1999.

[6] Bob Bentley. High level validation of next-generation microprocessors.
In Proceedings of High Level Design Validation and Test (HLDVT),
pages 31–35, 2002.

[7] R. E. Bryant. A methodology for hardware verification based on logic
simulation. Journal of the ACM (JACM), 38(2):299–328, 1991.

[8] P. Camurati and P. Prinetto. Formal verification of hardware correctness:
Introduction and survey of current research.IEEE Computer, 21(7):8–
19, 1988.

[9] E. M. Clark and E. A. Emerson. Synthesis of synchronization skeletons
for branching time temporal logic. InWorkshop on Logics of Programs,
volume 131 ofLNCS, pages 52–71. Springer, 1981.

[10] E. M. Clarke, A. Biere, R. Ramimi, and Y. Zhu. Bounded model
checking using satisfiability solving.Formal Methods in System Design
(FMSD), 19(1):7–34, 2001.

[11] E. M. Clarke, O. Grumberg, and D. A. Peled.Model Checking. MIT
Press, Cambridge, MA, 1999.

[12] F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella,
and M. Y. Vardi. Benefits of bounded model checking at an industrial
setting. In Proc. of Intl. Conference on Computer Aided Verification
(CAV), LNCS, pages 436–453. Springer, 2001.

[13] S. Fine and A. Ziv. Coverage directed test generation for functional
verification using bayesian networks. InProc. of Design Automation
Conference (DAC), pages 286–291, 2003.

[14] A. Gargantini and C. Heitmeyer. Using model checking to generate
tests from requirements specifications. InACM SIGSOFT Software
Engineering Notes, volume 24, pages 146–162, 1999.

[15] E. Goldberg and Y. Novikov. BerkMin: a fast and robust SAT-solver. In
Proc. of Design Automation and Test in Europe (DATE), pages 142–149,
2002.

[16] S. Gurumurthy, S. Vasudevan, and J. A. Abraham. Automated mapping
of pre-computed module-level test sequences to processor instructions.
In Proc. of Intl. Test Conference (ITC), 2005.

[17] J. Hennessy and D. Patterson.Computer Architecture: A Quantitative
Approach. Morgan Kaufmann, Sanfrancisco, CA, 2003.

[18] C. Kern and M. Greenstreet. Formal verification in hardware design: A
survey.ACM Transactions on Design Automation of Electronic Systems
(TODAES), 4(2):123–193, 1999.

[19] K. Kohno and N. Matsumoto. A new verification methodology for
complex pipeline behavior. InProc. of Design Automation Conference
(DAC), pages 816–821, 2001.

[20] J. P. Marques-Silva and K. A. Sakallh. GRASP: A search algorithm for
propositional satisfiability.IEEE Transactions on Computers, 48(5):506–
521, 1999.

[21] K. L. McMillan. SMV Model Checker, Cadence Berkeley Labora-
tory. http://embedded.eecs.berkeley.edu/Alumni/kenmcmil/smv, Octo-
ber, 2002.

[22] P. Mishra and N. Dutt. Graph-based functional test program generation
for pipelined processors. InProc. of Design Automation and Test in
Europe (DATE), pages 182–187, 2004.

[23] M. H. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. InProc. of Design Automa-
tion Conference (DAC), pages 530–535, 2001.

[24] M. R. Prasad, A. Biere, and A. Gupta. A survey of recent advances
in SAT-based formal verification.Intl. Journal on Software Tools for
Technology Transfer (STTT), 7(2):156–173, 2005.

[25] J. Shen and J. A. Abraham. An RTL abstraction technique for processor
microarchitecture validation and test generation.Journal of Electronic
Testing: Theory and Applications, 16(1-2):67–81, 2000.

[26] S. Ur and Y. Yadin. Micro architecture coverage directed generation of
test programs. InProc. of Design Automation Conference (DAC), pages
175–180, 1999.

[27] H. Zhang. SATO: An efficient propositional prover. InProc. of
International Conference on Automated Deduction (CADE), volume
1249 ofLNCS, pages 272–275. Springer, 1997.


