Coverage-driven Functional Test Generation for
Processor Validation using Formal Methods

Heon-Mo Koo Prabhat Mishra
hkoo@cise.ufl.edu prabhat@cise.ufl.edu

Department of Computer and Information Science and Engineering
University of Florida, Gainesville, FL 32611, USA.

Abstract— Functional validation is one of the major bottlenecks 25000

in processor design: up to 70% of the design development time

and resources are spent on functional verification. Simulation

is the most widely used form of microprocessor validation. A

major challenge in simulation-based validation is how to reduce

the overall validation time and resources. Traditionally, billions

of random tests are used during simulation and the lack of

a comprehensive functional coverage metric makes it difficult 7855
to measure the verification progress. Directed test generation

is a promising approach in terms of the volume of test set

but poses several challenges. One of the major challenges is 2240

how to generate directed tests for complex processor designs 800

for efficient functional validation. This paper presents functional
coverage-driven test generation techniques using formal methods. Pentium Pentium Pro Pentium 4 Next ?

We present fault models based on the functionality of pipelined
processors. These fault models are used to define the functional
coverage metric to measure the verification progress. We have Fig. 1. Pre-silicon logic bugs per generation
developed automatic test generation techniques using model L . . o
checking and SAT solving methods. The experiments using A. EXisting Techniques for Functional Verification

MIPS processor demonstrate the feasibility and usefulness of gyisting verification techniques can be broadly categorized
the proposed functional validation methodology. into formal methods [8], [18] and simulation-based techniques
[7]. Formal methods provide the completeness of verification
task by proving mathematically the correctness of designs.
Functional verification is one of the major bottlenecks in mﬂowever, due to the state explosion problem, formal methods
croprocessor design due to the combined effects of increasiig generally used to verify components of design. Simulation-
design complexity and decreasing time-to-market. An exppased validation handles complex designs but cannot guarantee
nential increase in design complexity results from advancesdgmplete verification. As a result, simulation-based validation
the VLSI technology and availability of increasingly complexs the most widely used form of processor verification.
applications in the domains of communication, multimedia, Test programs consisting of instruction sequences are used
networking and entertainment. To accommodate such fasfgf functional validation of processor designs. There are three
computation requirements, today’s processors employ magpes of test generation techniques: random, directed, and
sophisticated micro-architectures including deeply pipelinefirected-random. The directed tests can reduce overall vali-
superscalar architectures. dation effort since shorter tests can obtain the same coverage
Figure 1 summarizes a study [6] of the pre-silicon logigoal compared to the random tests. However, directed test
bugs found in the Intel 1A32 family of microarchitecturesgeneration is mostly performed by human intervention. Hand-
This trend again shows an exponential increase in the numbgiiten tests entail laborious and time consuming effort of
of logic bugs: a growth rate of 300-400% from one generatiqjerification engineers who have deep knowledge of the design
to the next. The increase in logic bugs is proportional to théhder verification. Due to the manual development, it is infea-
increase in design complexity. The increase in design errgjisle to generate all directed tests to achieve comprehensive
makes verification tasks more difficult. In addition to theoverage goal. Automatic test generation is the alternative to
growing difficulty of pipelined processor verification, time-tohandle this problem.
market has become shorter in the embedded processor designs.] .] .
A recent study [13] has shown that functional verificatiof- Challenges in Directed Test Generation using Formal
accounts for significant portion (up to 70%) of the overalMethods
design development time and resources. As a result, desigest generation using model checking [11] is one of the
verification of modern processors is widely acknowledged asost promising approaches due to its capability of automatic
a major bottleneck in design methodology. test generation. In this test generation scenario, processor

(Source: Tom Schubert, Intel)

I. INTRODUCTION

model is described in a temporal specification language and
a desired behavior is expressed in the form of temporal logic
property. A model checker exhaustively searches all reachable
states of the model to check if the property holdsrification)

or not (alsificatior), which is called unbounded model check-
ing (UMC). If the model checker finds any reachable state that
does not satisfy the property, it produces a counterexample.
This falsification can be quite effectively exploited for test
generation. Instead of a desired property, its negated version

Processor Functional

Model Fault model
Generate
fault list

Select an undetected fault
for test generation

!

[Generate a test program]

is applied to the model checker to produce a counterexample. for the fault using formal methods

The counterexample contains a sequence of instructions from v

an initial state to a state where the negated version of the Generate a list of other faults
P H ; B detected by the test program

property fails. However, this approach is unsuitable for large (Faut simulation)

designs due to the state explosion problem in UMC. We
present an efficient test generation technique that uses design

level as well as property level decompositions to reduce test [
generation time and memory requirement.

As a complementary technique, SAT-based bounded model
checking (BMC) has given promising results [5]. The basic
idea is to restrict search space that is reachable from initial
states within a fixed numbek)(of transitions, callecbound Test set
After unwinding the model of desigk times, the BMC
problem is converted into a propositional satisfiability (SAT)
problem. SAT solver is used to find a satisfiable assignment
of variables that is converted into a counterexample. If tr&gcordingly in order to avoid the state explosion problem
bound is known in advance, SAT-based BMC is typicallyin formal methods. Applying the decomposed properties and
more effective for falsification than UMC because search f@artitioned components to a model checker, counterexamples
counterexample is faster and SAT capacity reaches beydad individual components are generated and merged together
BDD capacity [4]. However, findindoundis a challenging at every clock cycle to form a counterexample for the entire
problem since the depth of counterexamples is unknown friocessor. The counterexample contains a sequence of instruc-
general. We propose a method to determine the bound fiens to exercise the desired pipeline behavior. Finally, SAT-
each test generation scenario, thereby making SAT-based Bi@sed bounded model checking makes it efficient to generate
feasible in practice. functional tests for large partitioning by restricting search
space of counterexamples. We have successfully applied the
formal-method-based test generation to MIPS processors.

Figure 2 shows the overall flow of the functional coverage-
driven test generation process. The process begins by gen-
erating a list of functional faults in the processor design A variety of techniques for generating test programs have
under validation. One of these faults is selected for telseen developed for architectural micro-architectural validation
generation. In our approach, a functional test generator, eaf.pipelined processors. In [19], the processor model is de-
model checking or SAT solver produces a test program fecribed as a finite state machine (FSM) and the reachable
this fault. Once the test program is generated, fault simulatistates and state transitions are used to generate test programs
is performed to determine all of the faults that are detectédsed on FSM coverage. To handle the large size of FSMs for
by that test program. These detected faults are removed framdern processors, Shen and Abraham [25] have proposed an
the functional fault list. Another undetected fault is selected®TL abstraction technique that creates an abstract FSM model
from this list and the process begins again. This loop is exitedile preserving clock accurate behaviors. Ur and Yadin [26]
when all of the faults are detected. have also used abstraction of processor model to generate test

This paper consists of three parts. First, we define functionaiograms for micro architectural validation of a superscalar
pipeline interaction behaviors using a graph-based model RédwerPC processor. Adir et al. [1] has separated model of
the processor. The negated versions of desired behavidissign from a test generation engine to avoid state explosion
called functional faults, are converted into temporal logim formal methods and to facilitate test generation for modern
properties. Functional faults are used to define a functioraiocessors.
coverage and generate test programs. Second, we formall\odel checking [9], [11] has been successfully used in
specify the processor architecture in model checking languageftware and hardware verification as a test generation engine
The properties are decomposed into local properties afid], [22]. Model of design described in model checking
the formal processor model is partitioned into componentEnguage is applied to a model checker along with negated

Put the detected faults off
of the fault list

Detect all faults?

Yes

Fig. 2. Functional test generation flow

C. Coverage-driven Functional Test Generation

Il. RELATE WORK

temporal logic properties to exploit falsification capability of Instruction .
model checking. However, traditional model checking does not
scale well due to the state explosion problem. Biere et al. [5]
introduced bounded model checking (BMC) combined with
satisfiability solving. The recent developments in SAT-based
BMC techniques have been presented in [4], [10], [24]. BMC
is an incomplete method that cannot guarantee a true or false
determination when a counterexample does not exist within a
given bound. However, once the bound of a counterexample
is known, large designs can be falsified very fast since SAT
solvers [15], [20], [23], [27] do not require exponential space,
and searching counterexample in an arbitrary order consumes
much less memory than breadth first search in model checking.
The performance of bounded and unbounded algorithms was

analyzed on a set of industrial benchmarks in [2], [3]. The & ~| Daa

. . . Cache
capacity increase of BMC techniques has become attractive O unit
for industrial use. An Intel study [12] showed that BMC [] Storage
has better capacity and productivity over unbounded model — Ingtruction transfer
checking for real designs taken from the Pentium-4 processor. 77 > Datatransfer
Recently, Gurumurthy et al. [16] have used BMC as test Fig. 3. Graph Model of the MIPS processor

program generator for mapping pre-computed module-level

test sequences to processor instructions. _) o)
and storages. For illustration, we use a simplified version of

I11. GENERATION OF FUNCTIONAL FAULTS the MIPS processor [17] as shown in Figure 3. In the figure,

A functional coverage metric is necessary to evaluate tﬂ(\éalf dengte unlts(,j :jectﬁnglesd are storzges, boI(: ed%es ari
progress of functional validation. Several coverage metrics gypeline edges, and dashed edges are data-transfer edges.

commonly used during functional validation such as code co‘@élth from a root node (Fetch) to a leaf node (WriteBack)

erage, toggle coverage, etc. However, these coverage metffUisisting of units and pipeline edges is callquiizeline path

do not have a direct relationship with the design functionalit or ex_amlple,{Fetr(]:h - Decr(])ie - IALU B MEM —_WriteBac}<
For example, none of the existing coverage metrics determi B plp?.llne pat_ ',A pe}t rom a ung (th main n}emo;y or.
if all possible interactions of stalls are tested in a pipelinéft.ffgISter lle consisting of storages and data transfer edges Is

processor. Therefore, we need a coverage metric based oncfl”uaeq adata-transfer pathFor example{MEM - DataCache
functionality of pipelined processors. We define a pipeline iﬁ_MamMemory} is a data-transfer path.

teraction fault model using graph-based modeling of pipelinedUsing the graph model shown in Figure 3, interactions can
processors. The fault model is used to define a functior@ described as a combination of nodes and their activities.
coverage as well as generate functional faults describedVW¢ consider four functional activities in a nodeperation
temporal logic properties. We use the functional coverage @€cution, stall, exception, and NOP (no-operatiofy)unit
measure the validation progress by reporting the faults that &teoperation executiorcarries out its functional operations

not covered by a given set of test programs. such as fetching an instruction, decoding opcode/operand,
_ _ arithmetic/logic computation etc. Stall in a unit can be caused
A. Functional Fault Model and Functional Coverage by various reasons such as data hazard, structural hazard, child

Today’s test generation techniques and verification metho@@de stall etc. Exception in a node is an exceptional state such
are very efficient to find bugs in a single module. Hard-tcs divide-by-zero or overflow. We consider two types of faults:
find bugs arise often from the interactions among multipleode fault, and interaction fault. A node is faulty if it produces
components of a complex design. We primarily focus on tHgcorrect output during an activity. An interaction is faulty
interactions among functional units in a pipelined processdr.execution of multiple activities of the interaction produces
First, we briefly describe a graph-based modeling of pipelindgcorrect result. In the presence of a fault, unexpected values
processors. Next, we define a pipeline interaction fault mod&fle written to the primary outputs such as memory or register
using the graph model. file, or the test program finishes at incorrect clock cycle during

The structure of a pipelined architecture is modeled assknulation.
graph G = (V, E). V denotes two types of components in We need one test program to activate each fault. The
the processorunits (e.g., Fetch, Decode, etc) arsorages functional coverage (FC) is defined as follows:
(e.g., register file or memory)X consists of two types of
edgespipeline edgesinddata transfer edgesA pipeline edge faults detected by test programs
transfers an instruction (operation) from a parent unit to a
child unit. A data-transfer edge transfers data between units

@

~ total detectable faults in the fault model

B. Conversion of Functional Faults into Properties We determine bound for each property for applying to formal
The main overhead in using model checking is to correctfj)&thods such as SAT-based BMC or model checking, thereby,

describe temporal logic properties from desired behavior B#dUCing test generation time and memory requirement com-

designs. This is mainly due to the semantic gap betweB@r€d to using the maximum bound for all properties. Prpces-

them. Since interaction faults are semantically explicit andS9"_model, negated property, and the bound are applied to

processor model is described in structure-oriented modulesifil-Pased BMC or model checker to generate a test program.

general, interaction faults can be converted into temporal logj@sed on the coverage report, more properties can be added,
properties. A node fault is converted into a propeRfp;) If necessary. We use design and property decc_)mposmons to
whereF is a temporal operatoeyentually andp; is described further improve the performance of test generation.

as (module;.activity). F(p;) is true if p; becomes true at any A, Design and Property Decomposition

time step. The atomic propositign is a functional activity at In this section, we describe how to decompose a processor

a nodei su_ch as operation execution, stall, exception or NORodel and the properties (already negated) for efficient model
The negation of the properfy(p;) is G(~p;) that is true ifp; checking. Decomposition of a design plays a central role in the
is never true over all time stepés IS a tempqral opergtor, generation of efficient test programs. Ideally, the design should
alwe:ys For exgmple, to exercise a node fatecode M pe decomposed into components such that there is very little
stall”, the fault is convefted mtE(Decodg .Stall?,lts negation nteraction among the partitioned components. For a pipelined
G(ﬁDgco_de.s_taII)megns Deche never m_stall. processor, the natural partition is along the pipeline bound-
A pipeline interaction fault 1S conver_te_ql into a propeffy, aries, e.g., functional units. In other words, the partitioned
APz A pn) that combines activities ovem modules pipelined processor can be viewed as a graph described in
using logicalAND operator. The prpperty is true b1 A P2 section IlI-A wherenodesconsist of units (e.g., fetch, decode
A ...\ pp) becomes true at any time step. The negation g{c_) or storages (e.g., memory or register file) aes
the property,G(-p1 V =p2 V ...V —py), becomes true if o,qist of connectivity among them. Typically, instruction is
any of py, p, ..., Or p, IS not true over all time steps. FOryansterred between units, and data is transferred between units

example_, to exercise an mte_ractlon rl:a(mecode_ln sr;callfanld and storages. This graph model is similar to the pipeline level
FADDL in operation execution at the same timehe fault - diagram available in a typical architecture manual.

is converted intoF(Decode.stallA FADD1.exe) Its negation Each property consists of temporal operators (G, F, X, U)

G(—Decode.stally -=FADD1.exe)yneans'Decode in stall and and Boolean connectives(V, —, and—). There are various

FADDL in operation execution never occur at the same timeg, ninations of temporal operators and Boolean connectives

where decompositions are not possible &ipAq) # F(p)A
F(q) andG(pV q) # G(p) V G(q). In certain situations, such
aspUq, F(p — F(q), or F(p — G(q), decompositions are

IV. TESTGENERATION USINGFORMAL METHODS

Proce(sssc;:i'f?:;ir;:)ecwre not beneficial compared to traditional model checking. The
P Fault following combinations allow simple property decompositions.
Model
G(pNag)=Gp) AG(q) F(pvq)=F(p)V F(q)
X(pVva)=X([p) VX X(pAg)=X(p)AX(g)

If we introduce the notion of clock (time step) in the prop-
erty then more decompositions are allowed as shown Below
Note that the left and right hand side of the decomposition
are not logically equivalent but they produce functionally
equivalent counterexamples.

Decompose
G((clk #t5) vV (pV q)) = G((clk # t5) vV p) V G((clk # t5) V q)
For the proof of the above equation, let’s put= G((clk #
£V (pVq)) andBVC = G((clk # t.)Vp)VG((clk # t3)Va).
Qr Model Checker A failure triggered by the latteB v C' always causes a failure
that can be obtained using the forn@r If U is the universal
Test programs set, thenA is a subset ofB v C, which is a subset ol/.
Therefore, if we find a counterexample insitie— (B Vv C)

Fi 4 sh tost i thodol P then it is always a counterexample df
Igures shows our test generation methodology. roces'Sofﬁ\lthough we only use a few decomposition scenarios, it

modgl_ and propertles_arg ggnerateq L arCh'teC,tligeimportant to note that these scenarios are sufficient for
specification. We use pipeline interaction fault model to defi nerating the properties where pipeline interactions are con-

functional coverage. Temporal logic properties are creatffio ey Moreover, the property decomposition is dependent
from pipeline interaction faults. We use design and property

decompositions to improve the performance of test generation-The cik variable is used to count time steps, ands a specific time step.

Decompose

Fig. 4. Test Program Generation Methodology

on the design decomposition. For example, consider a desta sub-properties to the TaskList based on the module to

which has two partitionsd; andd,. We cannot decompose awhich this property is applicable. The algorithm iterates over

property into two sub-properties andp, if it is not possible all the tasks (sub-properties) in the TaskList. It removes an

to applyp; andp, to the partitionsi; andds. In other words, entry (say k'th location) from the TaskList. In general, this

if p; contains variables from both partitions, it is not possiblentry can be a list of sub-tasks (due to simultaneous output

to apply it to one partition of the design. However, we carequirements from multiple children nodes) that need to be

change the partition based on the properties. For exampleamplied to module\/,.. These subtasks are composed to create

property may not be decomposable based on a module letre intermediate property?”. The propertyP? is applied to

partitioning but it may be decomposable based on a pipelittee moduleM;, using a model checker. The model checker

path level partitioning. For example, in the graph model shovgenerates a counterexample. The generated counterexample is

in Figure 3, the integer-ALU pipeline patAP; 4, = {Fetch, analyzed to find the input requiremeritsp;, for the module

Decode, IALU, Mem, WriteBack is treated as one of path M. If these are primary inputs then they are stored in Prima-

level partitions. rylnputs list; otherwise for each parent nodlg., whereinpy,

is applicable, extract the output requirements fidr. This

output requirement is added to the r'th entry of the FutureList.
The longest computation path in the pipeline corresponéally, if the tasks for the current timestamp is completed

to the bound to generate tests for all interaction scenarig¥askList empty), FutureList is copied to the TaskList and this

For example, in the graph model of the MIPS processor process continues until both the lists are empty. This implies

Figure 3, the maximum bound is determined by the lengthe have obtained the primary input assignments for all the

of {FE— DE— IALU— MEM— Cache-» MM — Cache~ sub-properties. These assignments are converted into a test

MEM— WB} if cache miss takes more time than any othgsrogram consisting of instruction sequences.

pipeline paths. However, this bound is over-conservative in

m_ost test scenarios because a Ipt of interactions do _not incl_ E@orithm 1- Test Generation

this longest path. Therefore, using bound for each interactifpyts: i) Processor model M as a composition of modules

is more efficient for test generation. ii) Set of global properties P where each property is
Bound for each node fault is decided by the temporal decomposed into multiple module level properties

distance between the root node (e.g., Fetch) and the node u gg‘gﬁ’#ts; Test programs to verify the pipeline interactions.

ver|f|ca_\t|on. For _exam_ple, bqund for_ the prope‘rE_ADI_Dl in TaskList = ¢; FutureList =¢; TestPrograms =

operation executionWill be 3 if there is only one pipeline reg-| for each property?; in set P

ister between pipeline stages. Bound for each interaction fault for each sub property?

is determined by the longest temporal distance from the root TaskList[j] = P/ /* P/ is applicable toM; */

node to the nodes under consideration. For example, bolnd endfor

for the property“lALU, FADD2, and FADD3 in operation PrimaryInputs =¢

execution at the same timekill be 5 because FADD3 has while TaskList is not empty

. items = RemoveEntry(TaskList)
the longest temporal distance from Fetch stage. PF = ComposeRequirementséms);

. . Apply P/ on moduleM;, using model checker
C. Test Generation by Merging Local Counterexamples inpe = iNput requirements o/, from counterexample

Algorithm 1 presents our test generation procedure us- if inps, are not primaryinputs

ing design and property decompositions. The basic idea |of for each applicable parent nodd, of M
out, = Extract output requirements faf,.

B. Deciding Bound

the algorithm is to apply the components of the properti s FutureList]] = FutureListfU out,
(sub-properties) to appropriate modules and compose their endfor

responses to construct the final test program. This algorithm elsePrimarylnputs = Primarylnputs’ inpy
accepts design M and properties P as inputs and produces endif

the test programs. It uses two lists to maintain the current if TaskList is empty

(TaskList) and future (FutureList) tasks. Both lists have exactly enLEiIfSkL'St = Futurelist; Futurelist &

the same structure. Each entry in the list contains a collection onqwhile

of sub-tasks that is applicable to a particular module. Thefe- test; = GenerateTest(Primarylnputs).

fore, each list can have up toentries where is the number of TestPrograms = TestProgramstest;

modules (or partitions) in the design. The tasks in the TaskLjst €ndfor

need to be performed in the current time step (clock cycl Enrdetum TestPrograms

The tasks in the FutureList will be performed in the next clock

cycle. Initially both lists are empty. For illustration, consider a simple propery; to verify
For each propertyP;, the algorithm generates one tesa multiple stall scenario consisting of IALU (3rd module)

program. Each property consists of one or more sub-properta®s DIV (15th module) nodes in Figure 3 at clock cycle 5.

based on their applicability to different modules or partitionghis property can be decomposed into two sub-propefties

in the design as discussed in Sect®h The algorithm adds (IALU not stalled in cycle 5) and®}® (DIV not stalled in cycle

5). This implies that TaskList will have two entries beforéALU, FADD1, FADD2, FADD3} to generate a test program.
entering the while loop: TaskList[3] #; and TaskList[15] Based on the procedure of deciding bound for each property,
= P}°. At the first iteration of the while loopP} will be bound will be 5. SAT-based BMC accepts the decomposed
applied toM3 (IALU) using model checker; generated counteprocessor model, the negated property, and the bound. The
example will be analyzed to find the output requirement f@enerated test program is shown in Table | where Decode unit
the Decode unit (2nd module in Figure 3) in clock cycle 4s in stall due to the read-after-write(RAW) hazard by FADD
the requirement will be added to FutureList[2]. During secoridstruction.
iteration of the while loopP'® (TaskList[15]) will be applied

to M5 (DIV); generated counter example will be analyzed to

find the output requirement for the decode unit in clock cycle

4; the requirement will be added to FutureList[2]. At this point,

the TaskList is empty and the FutureList has only one entry

with two requirements which is copied to the TaskList. At the

third iteration of the while loop, these two requirements are
composed into an intermediate property and applied/tp

(Decode) that generates requirements for Fetch node. Finally,

the fourth iteration applies the corresponding property to the Results
Fetch unit that generates the primary input assignments. Thes
assignments are converted to a test program.

TABLE |
AN EXAMPLE OF TEST PROGRAM

Fetch Cycle| Instructions
FADD R1R2 R2
NOP

ADD R3 R2 R2
ADD R3R1R2
NOP

b wWwN -

Fable Ii compares our test generation technique with UMC-

based test generation for different module interactions. The
V. A CASE STUDY first column specifies a set of properties based on the number
?If interactions. For example, the third row presents average

We performed various test generation experiments to v est generation time (in seconds) for all properties consisting

date the pipeline interactions by varying interactions of fun%-f two (“2") module interactions. The second column presents

tional units and decompositions of design and propertl%tsl.e level of decomposition used during test generation. The

\r?ée aet)é(;:Udride”rlt(iagslcrlzledricglton:nl;?;tee dacr)]n égi;?eite;g?; tIheee'ﬁ]rt‘ry wholeimplies that no decomposition is used. The entry
-9 prop 9 . y P roupimplies that either horizontal or vertical or both decom-
this section, we present our experimental setup followed

. . . . sitions are used. Similarly, the entngoduleimplies that
test generation example using horizontal and vertical deco y i P

S . . e test generation uses module-level decomposition. The next
positions. Next, we compare our test generation technique w&‘

.) ee columns show the performance of three test generation
UMC-based test generation method as well as BMC using t echniques: UMC, BMC using maximum bound, and BMC

using bound for each property. The maximum bound 45 was
A. Experimental Setup used assuming that the longest length is taken by memory
We applied our methodology on a simplified MIPS architeco-peratlons e, the sum of the IALU pipeline path length (5)

ture [17], as shown in Figure 3. We chose the MIPS processaonrd data-transfer path length (40). In the tableindicates

maximum bound.

since it has been well studied in academia and there are TABLE Il
HDL implementations available for the processor that can be coyparison oFTEST GENERATION TECHNIQUES BASED ON THE
used for validation purposes. Additionally, the MIPS processor NUMBER OF | NTERACTIONS
has many interesting features, such as fragmented pipelines [Tnteraction | Decomposed]| UMC | SAT-based BMC
and multi-cycle functional units that are representatives of Modules Design Max. k | Eachk
many commercial pipelined processors such as Tl C6x and Whole X 5.63 0.48
PoWerPC. ' e ta
For our experiments, we used Cadence SMV [21] as a model Whole < =5 565
checker and zChaff [23] as a SAT solver. We used 16 16-bit 2 Group X 731 043
registers in the register file for the following experiments. All Module 057 | 641 1.38
the experiments were run on a 1 GHz Sun UltraSparc with 8G Whole X 774 | 070
RAM. 3 Group X 5.72 0.52
Module 0.86 | 6.41 1.45
B. Test Generation: An Example 4 VGV::)?JS ; 2:;2 8:(752
Consider a test generation scenario for verifying the in- Module 112 | 763 | 197
teraction“Decode in stall, and IALU, FADD3 in operation s gﬂ)‘a’g x 3 A8
execution at the same timeThe propertyF(Decode.stall Module 150 903 | 218
A |ALU.exe A FADD3.exe)is generated from the interac- Whole X 9.58 1.05
tion. Its negation will beG(—Decode.stallv —IALU.exe Vv 6 Group X 9.04 0.68
—~FADD3.exe) According to the horizontal and vertical parti- Module 18 | 10.70 | 250

tioning, we can use a partial set of moduldsetch, Decode, X: Not Applicable.

that a counterexample was not found due @ut of Memory

(3]

problem.

As expected, Table Il shows that the test generation time
grows with the increase of the number of module interactiong4] A. Biere, A. Cimatti, and E. M. Clarke. Bounded model checking.
UMC can be used only with module level decompositionﬁs]
while SAT-based BMC can be used without decomposition.
Bound for each property reduces approximately 90% of the Construction of Systems (TACASplume 1579 ofLNCS pages 193-
test generation time compared to using BMC with maximun?G]
bound. An interesting observation is that UMC with module
level decomposition provides better performance than SAT-
based BMC. This is because the time to unfold the model arld R- E- Bryant. A methodology for hardware verification based on logic
convert it to SAT problem is more than the time to search g;
counterexample.

VI. CONCLUSION El

Functional verification is a major bottleneck in process

fo
design. Simulation using test programs is the most Wid;y]

used form of processor verification. Use of directed tests in

simulation can reduce overall validation effort since short&f

N. Amla, R. Kurshan, K. McMillan, and R. Medel. Experiment analysis
of different techniques for bounded model checkings. Tbols and
Algorithms for the Analysis and Construction of Systems (TACAS)
volume 2619 ofLNCS pages 34-48. Springer, 2003.

Advances in Computers8, 2003.
A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model
checking without BDDs. IfTools and Algorithms for the Analysis and

207. Springer, 1999.

Bob Bentley. High level validation of next-generation microprocessors.
In Proceedings of High Level Design Validation and Test (HLOVT)
pages 31-35, 2002.

simulation. Journal of the ACM (JACM)38(2):299-328, 1991.

P. Camurati and P. Prinetto. Formal verification of hardware correctness:
Introduction and survey of current resear¢tBEE Computer 21(7):8—

19, 1988.

E. M. Clark and E. A. Emerson. Synthesis of synchronization skeletons
for branching time temporal logic. IWorkshop on Logics of Programs
volume 131 ofLNCS pages 52-71. Springer, 1981.

E. M. Clarke, A. Biere, R. Ramimi, and Y. Zhu. Bounded model
checking using satisfiability solvingzormal Methods in System Design
(FMSD), 19(1):7-34, 2001.

] E. M. Clarke, O. Grumberg, and D. A. PeleModel Checking MIT

Press, Cambridge, MA, 1999.

tests can obtain the same coverage goal compared to [F. Copty, L. Fix, R. Fraer, E. Giunchiglia, G. Kamhi, A. Tacchella,
random tests. There is a need for automatic directed test gener- and M. Y. Vardi. Benefits of bounded model checking at an industrial

ation techniques based on coverage goal. Test generation using

setting. InProc. of Intl. Conference on Computer Aided Verification
(CAV) LNCS, pages 436-453. Springer, 2001.

model checking is one of the most promising approach@ss] s. Fine and A. Ziv. Coverage directed test generation for functional
However, this approach is unsuitable for |arge designs due Vverification using bayesian networks. Rroc. of Design Automation

to the state explosion problem.

[14]

Conference (DAG)pages 286-291, 2003.
A. Gargantini and C. Heitmeyer. Using model checking to generate

This paper presented efficient directed test generation tech- tests from requirements specifications. ACM SIGSOFT Software
niques for validation of pipelined processors using formal

methods as well as search restriction techniques. Our methB8l

Engineering Notgsvolume 24, pages 146-162, 1999.
E. Goldberg and Y. Novikov. BerkMin: a fast and robust SAT-solver. In
Proc. of Design Automation and Test in Europe (DATEges 142-149,

ology made three important contributions. First, it presented 2002,
pipeline interaction faults and they are converted into tempot&$] S. Gurumurthy, S. Vasudevan, and J. A. Abraham. Automated mapping
logic properties in order to be applied to formal methods.

Second, it developed a procedure for determirtaogind for

(17]

each property. Finally, it developed a method for decomposin
design and properties in the context of SAT-based BM 1
and UMC. Our experimental results using MIPS processor
demonstrated that the proposed test generation techniquél9s K. Kohno and N. Matsumoto. A new verification methodology for
a promising approach. It is important to note that due to state
space explosion problem naive UMC-based test generatigf J. P. Marques-Silva and K. A. Sakallh. GRASP: A search algorithm for
failed in many scenarios.

In this paper, we used pipeline interaction fault mod%1
for test generation. Our future work includes applying our
technique for test generation using other fault models such

as stuck-at and FSM transition faults. Since the number %?

interactions (directed tests) can be still extremely large, we
plan to develop a test compaction technique to reduce tRél
number of test programs for functional validation of pipelined

processors.

(1]

(2]

(24]

REFERENCES [25]
A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov,
and A. Ziv. Genesys-pro: Innovations in test program generation for
functional processor verificationlEEE Design & Test of Computers (26]
21(2):84-93, 2004.
N. Amla, X. Du, A. Kuehlmann, R. Kurshan, and K. McMillan. An
analysis of SAT-based model checking technigques in an industrial enld’]
ronment. InConference on Correct Hardware Design and Verification
Methods (CHARME)pages 254-268. Springer, 2005.

of pre-computed module-level test sequences to processor instructions.
In Proc. of Intl. Test Conference (ITC2005.

J. Hennessy and D. Patterso@omputer Architecture: A Quantitative
Approach Morgan Kaufmann, Sanfrancisco, CA, 2003.

C. Kern and M. Greenstreet. Formal verification in hardware design: A
survey. ACM Transactions on Design Automation of Electronic Systems
(TODAES) 4(2):123-193, 1999.

complex pipeline behavior. IRroc. of Design Automation Conference
(DAC), pages 816-821, 2001.

propositional satisfiabilit\EEE Transactions on Compute#8(5):506—
521, 1999.

K. L. McMillan. SMV Model Checker, Cadence Berkeley Labora-
tory. http://embedded.eecs.berkeley.edu/Alumni/kenmcmil/smv, Octo-
ber, 2002.

] P. Mishra and N. Dutt. Graph-based functional test program generation

for pipelined processors. IRroc. of Design Automation and Test in
Europe (DATE) pages 182-187, 2004.

M. H. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik.
Chaff: Engineering an efficient SAT solver. Rroc. of Design Automa-
tion Conference (DAG)pages 530-535, 2001.

M. R. Prasad, A. Biere, and A. Gupta. A survey of recent advances
in SAT-based formal verificationIntl. Journal on Software Tools for
Technology Transfer (STT,T§(2):156-173, 2005.

J. Shen and J. A. Abraham. An RTL abstraction technique for processor
microarchitecture validation and test generatidournal of Electronic
Testing: Theory and Application46(1-2):67—-81, 2000.

S. Ur and Y. Yadin. Micro architecture coverage directed generation of
test programs. IfProc. of Design Automation Conference (DAGages
175-180, 1999.

H. Zhang. SATO: An efficient propositional prover. IRroc. of
International Conference on Automated Deduction (CAD&)lume
1249 of LNCS pages 272-275. Springer, 1997.

