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Abstract—Vehicular communication has emerged as a powerful
tool for providing a safe and comfortable driving experience for
users. Long Term Evolution (LTE) supports and enhances the
quality of vehicular communication due to its properties such
as high data rate, spatial reuse, and low delay. However, high
mobility of vehicles introduces a wide variety of security threats,
including Denial-of-Service (DoS) attacks. In this paper, we
propose effective solutions for real-time detection and localization
of DoS attacks in an LTE-based vehicular network with mobile
network components (e.g., vehicles, femto access points, etc.).
We consider malicious data transmission by vehicles in two
ways- using real identification (unintentional) and using fake
identification (intentional). This paper makes three important
contributions. First, we propose an efficient attack detection
technique based on data packet counter and average Packet
Delivery Ratio (PDR). Next, we present an improved attack
detection framework using machine learning algorithms. We
use some ML-based supervised classification algorithms to make
detection more robust and consistent. Finally, we propose
Data Packet Counter (DPC)-based, triangulation-based and
measurement report based localization for both intentional
and unintentional DoS attacks. We analyze the average packet
delay incurred by vehicles by modelling the system as an
M/M/m queue. Our experimental evaluation demonstrates that
our proposed technique significantly outperforms state-of-the-art
techniques.

Index Terms—LTE-based vehicular network, denial-of-service,
intrusion detection, intrusion localization, machine learning

I. INTRODUCTION

Vehicular communication has been widely investigated by
researchers for providing users a smart, safe, and comfortable
driving experience. To this direction, Long-Term Evolution
(LTE) has recently emerged as a technology that can support
vehicular applications due to its attractive features such as,
high capacity, lower delay, and spatial reuse [2], [3]. However,
features such as high mobility of vehicles and constantly
changing network topology pose various Quality of Service
(QoS) and security-related challenges [4].

Vehicular communication systems enable many exciting
applications that will make driving safer, more efficient,
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and more comfortable. But there are some security issues
still open for researchers such as authenticity, confidentiality,
availability, non-repudiation, privacy etc. Based on these
challenges several security attacks can possible such as Denial-
of-Service (DoS), Distributed Denial-of-Service (DDoS), Sybil
attack, Location Tracking, Malware, Man in the Middle attack,
Brute force attack etc [5], In this work, we focus on DoS
attack [6] and propose corresponding attack detection and
localization techniques.

LTE over the years has evolved to become a highly-complex
heterogeneous system in order to support large traffic demands
of users. Entities such as, Macro Base Stations (MBSs) and
Femtocells/Femto Access Points (FAPs) are used to provide
the increasing coverage and capacity demands [4]. FAPs are
low-cost, low-power cellular base stations usually deployed in
homes/offices to provide improved coverage to nearby users.
Recently, mobile FAPs have gained momentum for providing
better capacity and coverage in highly mobile scenarios [3],
[7]. A FAP is a small base station that is primarily used to
improve the coverage of a given cellular network. It serves as
a base station that uses a radio/air interface to connect nodes
to the service provider’s core network. A FAP connects to
the operator’s core network via the subscriber’s wired/wireless
backhaul connection. FAP performs the same functions as a
macro base station. Any subscriber can use a FAP. The usage
of FAP can be restricted to a small group of users, or by
a hybrid of both, with priority given to favoured users in
certain scenarios [8]. FAPs being low-power base stations are
vulnerable to a wide variety of attacks including DoS attacks
[9]. Additionally, mobility of FAPs further adds challenges in
the detection and localization of attacks. In this work, we have
considered an LTE-based Vehicular network (LTE-Vnet) with
mobile FAPs. Given the high mobility of vehicles as well as
FAPs, it becomes a major challenge to detect and localize DoS
attacks.

Machine Learning (ML) has gained significant interest in
recent years for detection of security attacks. ML models
are able to detect security attacks by learning the behavior
of attack scenario as well as normal scenario. ML-based
classification algorithms can guarantee the detection of
attacker with consistent accuracy [10]. Specifically, we utilize
supervised classification algorithms to detect the attack in
the LTE-Vnet environment. We also use the feature selection
method to reduce the computational cost for detection.

A. Attack Model
Our threat model is based on attack in the data plane of

the network via malicious vehicles. It assumes that malicious
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Fig. 1: Example of DoS Attack in LTE-based Vehicular Network

vehicles (attackers) can be used to launch DoS attacks.
We assume that malicious vehicles will transmit packets in
the uplink channel to their associated FAPs, with a higher
transmission rate than legitimate vehicles’ transmission rate.

LTE uses Resource Blocks (RBs) for data transmission.
RB is a resource unit, defined in the time and frequency
domain. RBs are allocated by a FAP to its associated vehicles
which want to transmit data. The amount of RBs available for
communication is fixed [11]. Therefore, a malicious vehicle
can lead to higher contention for the fixed amount of available
RBs by transmitting data at higher rates. This leads to higher
average packet delay, low network throughput, and large
packet drops. Such DoS attacks can be carried out in two
possible ways:

1) Unintentional Attack (Case I): high amount of fake data
transmission (unintentionally) by attacker using its own
Vehicle Id [6].

2) Intentional Attack (Case II): high amount of fake data
transmission (intentionally) by attacker using fake Vehicle
Id [9].

Figure 1 shows the impact of DoS attack in LTE-Vnet.

B. Motivation

In this work, we focus on DoS attack. As few of the works
in the literature have focussed on detection and localization
of DoS attack in LTE-Vnet scenario, the following points
motivated our work on detection and localization of attacker.

• The accuracy of PDR and DPC-based detection
techniques vary with the number of attackers. As the
number of attackers increases accuracy of these detection

techniques also increases. In order to achieve a consistent
accuracy, irrespective of the number of attackers, we use
ML-based classification techniques to detect the attack.

• Triangulation method and DPC-based attack localization
techniques are modelled according to the way of the
attack. To localize the intentional attack we introduce
the Triangulation method and for the unintentional attack,
we use DPC-based detection. For the real-time scenario
where intentional and unintentional both attacks can
be possible simultaneously, we introduce an MR-based
localization technique that can localize the attacker in
case of both type of attacks.

• Since in our previous work [1], we have proposed
detection and localization techniques for DoS attack, we
also check the effectiveness of proposed techniques for
DDoS.

C. Research Challenges

There are various research challenges for detection and
localization of attackers due to the presence of highly mobile
users as well as FAPs. We highlight three important challenges
below:

• Mobile nodes: Due to high mobility of vehicles, it
becomes imperative that detection and localization of
any attacker is done before it moves out from the
transmission range. DPC and PDR handle the detection
and localization locally (at FAP) which leads to faster
detection and localization.

• Large amount of data: In vehicular networks, each
vehicle generates plenty of data (such as event
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driven data, infotainment data, weather information,
location information, etc.). Performing detection and
localization with handling these data simultaneously is
very challenging for FAP.

• Real-time constraints: In vehicular networks, majority
of vehicular applications have strict delay constraints.
Like any safety-critical system, violation of real-
time constraints can lead to catastrophic (e.g., life
threatening) consequences. Therefore, we have designed
our algorithms very simple and lightweight to enable fast
computation.

D. Major Contributions

Some works in the literature study DoS attacks in LTE-Vnet
scenarios and provide possible solutions to detect the attacks
[11]–[13]. However, these works have limited applicability
(two layer architecture) with only MBSs. In this work,
we consider a diverse scenario using MBSs as well as
mobile FAPs in a vehicular network environment. We study
the effects of DoS attacks by malicious vehicles in these
diverse scenarios and propose efficient attack detection and
localization techniques. Our primary objective is to detect
attacks at the FAPs and then localize the attackers using only
the information available at the FAPs.

• We propose a real-time DoS attack detection technique
in LTE-Vnet with mobile FAPs based on Packet Delivery
Ratio (PDR) and Data Packet Counter (DPC).

• We explore the effectiveness of machine learning
algorithms in efficient detection of DoS attacks.

• We propose an efficient localization technique based
on triangulation method, DPC and Measurement Report
(MR)-based approach.

• We perform extensive performance analysis of average
packet delay in the given scenario by modeling the
system using M/M/m queuing model. Simulation results
demonstrate the effectiveness of the proposed framework.

E. Paper Organization

The rest of this paper is organized as follows. Section II
surveys related efforts in DoS attack detection and localization.
Section III describes our system architecture and provides an
overview of our proposed framework. Section IV and Section
V describe our proposed techniques for attack detection and
localization, respectively. Section VI analyzes the performance
of our proposed framework followed by experimental results
in Section VII. Finally, Section VIII concludes the paper.

II. RELATED WORK

In this Section, we first discuss DoS attacks in LTE-Vnet.
Next, we survey existing attack detection techniques and
discuss their limitations. Finally, we describe prior efforts in
machine learning based detection of DoS attacks.

A. DoS Attacks in LTE-Vnet

Automated vehicles and electric vehicles have gained ample
interest of researchers in recent years [14]–[16]. LTE in recent
years has emerged as a technology which can support a large
number of vehicular applications. Its properties such as low
delay, high data rate, and spatial reuse help to support such
communications [2], [3]. However, features such as, high
mobility of vehicles and constantly changing network topology
make it vulnerable to several security attacks, including
DoS attacks [4], [9]. DoS attacks in LTE can take place
in many ways such as, attack in network components and
in data and control channels [4], [9], [17]. Several works
in the literature propose solutions for overcoming security
challenges in LTE [12], [13], [17], [18]. In [9], the authors
have developed a theoretical framework to explore the attack
space in LTE. They have shown that the attack space can be
in three dimensions– communication security services, planes
of attack, and network components under attack. In [18],
the authors have proposed a lightweight traffic based attack
detection scheme in Voice-over-LTE (VoLTE) network. They
have used Bayesian game to model their system but their work
deals with static entities and the detection of attack is done
at the MBS. Ambrosin et al. [13] propose a novel method
to implement a distributed DoS attack on a target mobile
operator’s control network. They have exploited the lack of
coordination between local and remote components of the LTE
network during the roaming authentication process to realize a
pulse DoS attack using temporal lensing. However, they have
not proposed any attack detection or localization technique
for their scenario. Authors in [17] talk about user-targeted
DoS attack in LTE network. Their attack model is based on
deploying a rogue base station which targets users to perform
DoS attack. However they have not addressed mobility and
have not proposed any detection and localization technique.
Zhu et al. [12] study security flaws in platoon of vehicles
in LTE-V2X networks but they have not proposed any attack
detection or localization technique.

B. Detection and Localization of DoS Attacks

A vast majority of the existing security research efforts
in LTE networks have one of the following fundamental
limitations– (i) they do not deal with highly mobile scenarios
like vehicles, (ii) they cannot deal with heterogeneous network
entities like FAPs, or (iii) they do not propose any attack
detection or localization technique for their threat models.
Several literature proposed the DoS attack detection in [19]–
[22]. In [19], the authors have used the idea of market
trading and set up trading rules to restrict the malicious
vehicle’s spread of false messages, and to encourage vehicles
to contribute to the traffic event monitoring and verification.
In this work, they have considered static RSU whereas,in
our work we have considered mobile FAP and detection
and localization of attack has been done in FAP. In [20],
the authors have proposed multivariate stream analysis to
detect and mitigate the DDoS attack. Multivariate stream
analysis algorithm maintains multiple stages like classification,
pre-processing and analysis of data packets that come from
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vehicles. They have considered VANET network with static
RSU, whereas, in our scenario we have considered a
heterogeneous vehicular network with mobile FAPs, and have
done detection and localization in FAP itself. In [21], the
authors have proposed a centralized reputation management
scheme to detect malicious nodes in the vehicular network.
Their main objective is to appropriately handle the reputation
system to maximize the accuracy of message validation.
However, our proposed algorithm is based on detecting
and localising DoS attack. In [22], the authors have used
evolutionary game theory to model the evolution process
of malicious users’ attacking strategies and discussed the
methodology of the evaluation simulations. As they have
considered non-heterogeneous vehicular network with static
RSU to flag malicious users whereas, we have considered LTE-
Vnet with mobile FAP to detect and localize DoS attack.

Some works have been done in the literature to detect
the attacker in various scenarios such as UAV, SDN netorks
etc. [23]–[27]. In [23], the authors have proposed an
intrusion detection system to predict the future misbehaviour
of a malicious vehicle using the game theory technique.
However, they have only focused on attack detection
part. In [24], the authors have used SDN architecture
and blockchain technology for routing calculation and
configuration management of the Unmanned Aerial Vehicle
(UAV) network. As the suggested work is based on UAV
scenario whereas, our work is based on LTE-Vnet scenario.
In [25], the authors have used a machine learning-based
multiple-kernel clustering intrusion detection scheme for 5G
and IoT networks. This work is based on static nodes and
non-heterogeneous scenarios whereas, our work is based
on mobile nodes and heterogeneous scenario. In [26], the
authors have done a survey on analysis of DoS attack
detection and mitigation in the vehicular networks. In [27],
the authors have proposed a Weight-Based Ensemble Machine
Learning Algorithm (WBELA) to identify abnormal messages
of vehicular Controller Area Network (CAN) bus network.
They have also derived a model based on many-objective
optimization for intrusion detection of CAN bus network.
However, this work is based on CAN bus network which is
different from heterogeneous vehicular networks.

Li et al. [11] have addressed DoS attack in cellular-V2X
network where attacker maliciously reserves communication
resources such that legitimate vehicles get little or no
resources. They have proposed an attack detection technique
which is carried out at the Mobile Edge Computing (MEC)
server based on the information received from the MBS.
They did not consider heterogeneity in the network. Also,
performing detection at MEC server and MBS may lead to
high delay which makes it unsuitable for real-time attack
detection. The authors have not addressed the issue of
localization of attacker. While there are promising approaches
for DoS attack detection and localization in network-on-chip
architectures [28], [29], they are not suitable for vehicular
networks.

C. DoS Attack Detection using Machine Learning

Detection and localization of attackers in LTE networks
has been explored extensively in the literature [30]–[33]. In
[33], the authors have used ML-based techniques to detect
DoS attack in static nodes. In [31] the authors have proposed
some ML-based techniques to detect the misbehaviour of
attacker in vehicular network but they have not considered the
heterogeneous scenario. In [30], the authors have proposed tree
based ML algorithms to detect attacks. However, they have not
considered a heterogeneous scenario.

We have used some supervised classification algorithms in
LTE-Vnet scenario to detect DoS attack in mobile FAPs. ML-
based techniques are considered to give better accuracy but
they are very complex and take high computational cost. We
use the feature extraction technique to reduce computational
complexity. The presence of mobile FAPs helps in spatial reuse
[3] but introduces challenges in detecting the attack as well
as in localizing the attacker(s). To the best of our knowledge,
our work is the first attempt in detection and localization of
DoS attacks in heterogeneous vehicular networks.

Internet
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Fig. 2: System model of an LTE-based vehicular network

III. SYSTEM MODEL AND PROBLEM FORMULATION

Here, we first describe the system model. Next, we provide
an overview of our proposed framework.

A. System Model

Our system model consists of a city scenario with multiple
roads and intersections. The system architecture considered
is given in Figure 2. Vehicles are equipped with devices
which help them to communicate via cellular network. FAPs
are placed on larger vehicles, such as, buses and trucks.
A vehicle associates/joins with a FAP if it receives strong
signal strength from the FAP. In the absence of a FAP in
the neighborhood, a vehicle associates with MBS. Vehicles
generate fixed size packets and the inter-arrival duration of
packet generation follows an exponential distribution. Packets
generated by vehicles remain in their buffer until they get a
chance to transmit to a FAP or MBS. Vehicles can be either
active or inactive. Active vehicles, when associated with FAPs,
send packets periodically, while inactive vehicles do not send
packets even after associating with a FAP.

B. Overview

Figure 3 shows a broad overview of our proposed
framework. We consider both types of attacks outlined in
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Fig. 3: Overview of our proposed framework

Section I-A. We perform DoS attack detection using the
following three approaches:

• DPC based Detection: DPC is a counter which is
initialized to the maximum number of packets that can
be transmitted by a vehicle. This approach is described
in Section IV-A

• PDR based Detection: PDR is defined as the ratio
between the number of packets received to the number
of generated packets. This approach is described in
Section IV-B.

• Detection using ML algorithms: We use some ML-based
classification algorithms to detect attack. We consider
K Nearest Neighbour (KNN), Support Vector Machine
(SVM), Decision Tree (DT), Random Forest (RF),
Extra Tree (ET), eXtreme Gradient Boosting (XGBoost),
Stacking, Feature Selection XGBoost (FS XGBoost),
Feature Selection (FS Stacking). This is described in
Section IV-C.

To enable efficient localization of malicious vehicles, we
explore the following two approaches:

• Triangulation-based localization: Triangulation method
uses the distance of a known vehicle (legitimate vehicle)
from FAP, an unknown vehicle (attacker vehicle), and the
measured angle between the vehicles [34] to calculate the
location of the attacker as described in Section V-B.

• Measurement Report based localization: Section V-C
describes our proposed MR-based localization of DoS
attacks.

IV. DETECTION OF DOS ATTACKS

This section describes our proposed attack detection using
DPC, PDR as well as ML algorithms.

A. DPC-based Detection

In this case, we consider detecting unintentional attacks
at the FAPs by using DPC counters. All uplink packets
from vehicles are transmitted via their associated FAPs. DPC
counters for each vehicle, associated to a FAP, are initialized
to the maximum number of packets that can be delivered by
the corresponding vehicles in a given time interval. Finding the
initial value of DPC counter is crucial. We show its calculation
below.

Let us assume that there are m RBs and x vehicles are
associated to a FAP. These x vehicles include both legitimate

and malicious vehicles. Total time is T which is divided into
time slots of duration τ . Let α be the packet generation rate.
The probability of accessing any one of the m RBs by a
vehicle is given by

δ = e−α([ x−1
m +1])τ (1)

Now, let us assume that j out of x vehicles generate packets
in a given time interval. These j vehicles can be selected in
the following way: (

x

j

)
=
x(x− 1)

j
(2)

Let gt be the probability of generating packets by a vehicle in
a given time slot, t. The probability of generating packets by
j vehicles is

Γj = gjt (1− gt)x−j (3)

The probability that exactly j of x vehicles transmit packets
in a given time slot is given by

βj = j × Γj = j × gjt (1− gt)x−j (4)

By using Equations 1 and 4, we can calculate the average
number of packets transmitted per vehicle:

E [X] = δ × βj (5)

The maximum number of packets that can arrive at a FAP
from a vehicle depends on the distance between the FAP
and the vehicle, the Signal-to-Interference-plus-Noise Ratio
(SINR) value and Reference Signal Received Power (RSRP)
value. SINR is calculated as:

SINR =
S

N + I
(6)

where S denotes the signal strength, N denotes the noise and
I denotes the interference in the channel. Based on SINR,
the maximum channel capacity can be calculated by using
Shannon’s Channel Capacity theorem [3]:

W = B × log2 (1 + SINR) (7)

where B denotes the bandwidth of the channel. Now, by using
Equation 5 and 7, the average number of packets received by
a FAP, per vehicle, is calculated as:

E [r] =
W

E [X]× x
(8)
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Therefore, with packet size l, the DPC value can be calculated
as:

DPC = max

(
W

l
,E [r]

)
(9)

Algorithm 1 outlines the sequence of steps to detect the
attacker(s). In this algorithm, at each time step (10 ms),
FAPs find their associated vehicles (line 7). At every d ms,
FAP checks for association with new vehicles. If present, it
calculates its DPC value and initializes its packet counter
PCount, among other values (lines 9-16). Otherwise, the
uplink buffer is checked and PCount is updated (lines 17-
19). Based on the condition in line 20, the attack is detected
and the corresponding V Id added into the A V ID list (20-
22).

Algorithm 1: DPC-based Detection of DoS Attacks

Input: fap: set of FAPs
Output: A V ID: List of attackers VId

1 n: total number of vehicle;
2 Ubuf : Temporary uplink buffer with packet

transmitted by each vehicle at FAP;
3 PCount:Packet count;
4 temp = 0;
5 for ((i = 1; i <= T ; i+ +) do
6 for (f = 1; f <= fap; f + +) do
7 V̄ = vehicles associated to fap(f);
8 for (k = 1; k <= n; k + +) do
9 if (i%d == 0) then

10 for (v = 1; v <= V̄ ; v + +) do
11 if (k.V Id == v.V Id) then
12 if (v.fi−1 6= v.fi) then
13 v.PCount = 0;;
14 v.Attacker=False;
15 v.Ubuf= null ;
16 v.DPC =

Calculate DPC(v);

17 temp = v.Ubuf.size()/l;
18 for (j = 1; j <= temp; j + +)

do
19 v.PCount+ +;

20 if (v.PCount > v.DPC) then
21 v.Attacker = True;
22 A V ID ← v.V Id;

B. PDR-based Detection

In this section, we consider PDR to detect intentional
attacks. We assume that the attacker uses the ID of inactive
vehicles, associated to a FAP, to launch attack and hides its
own identification [9].

• Each vehicle (both legitimate and attacker) periodically
calculates its own PDR with the help of acknowledgments
received in each time slot.

• Vehicles then send their PDR values to FAP through
control plane (the attack is happening over data plane).

• FAP keeps track of PDR values of each vehicle associated
to it and uses these values to calculate the Average PDR
(APDR) of each vehicle. The objective behind calculating
APDR is to avoid flagging legitimate vehicles as potential
attackers.

• If APDR< ϑ, a threshold [35], the vehicle is considered
to be a legitimate vehicle, otherwise it is flagged as a
possible attacker. The APDR value of inactive vehicles
will be zero as they do not send packets. Thus, the FAP
will now have two different APDR values for the same
vehicle ID – one belonging to the legitimate but inactive
vehicle and the other belonging to the attacker.

• If FAP gets two APDR values for the same vehicle ID,
it compares both the values with the threshold and starts
localizing the vehicle with the higher APDR using the
method given in Section V-B.

Algorithm 2: PDR-based Detection of DoS Attacks
Input: Ubuf: uplink buffer of each vehicle
Output: AList: List of Attackers

1 temp=0;
2 for (i = 1; i <= T ; i+ +) do
3 for (f = 1; f <= fap; f + +) do
4 V̄ = vehicles associated to fap(f);
5 v.Ubuf ←− v.PDR Calculation();
6 for (v = 1; v <= V̄ ; v + +) do
7 for (s = 1; s <= q; s+ +) do
8 PList← v.Ubuf.get(pdr);

9 v.AvgPdr ← PList/q;
10 if (v.AvgPdr > ϑ) then
11 AttackerTable.put(V Id, v.AvgPdr);
12 EntryTable.put(V Id, temp+ +);

13 if (EntryTable.getvalue() > 1) then
14 if (AttackerTable.getvalue() > 0)

then
15 AList.add(EntryTable.getkey())

16 Function PDR_Calculation():
17 for (v = 1; v <= V̄ ; v + +) do
18 if (v.Dbuf 6= null) then
19 v.RList← v.Dbuf ;

20 v.pdr ← v.RList.size()/v.G;
21 v.Ubuf ← v.pdr;

Algorithm 2 outlines the sequence of steps for detecting
the attack and produces a list of possible attackers. The
PDR values are added to a temporary list (Plist) and average
PDR is calculated (lines 6-9). If the average PDR is greater
than a threshold value ϑ then the vehicle ID is added to a
possible attackers list AttackerTable (line 11) and IDs of all
associated vehicles (active and inactive) is added in another
list, EntryTable (line 12). If there is any vehicle which appears
more than once in the EntryTable, this means that it may
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have taken ID of an inactive vehicle. Then, its presence in
the AttackerTable is checked. Thus, if a vehicle has taken
inactive vehicle’s ID and has transmitted packets more than
the threshold ϑ, then it is flagged as an attacker (lines 13-
15). Function PDR Calculation outlines the sequence of steps
to calculate the PDR of each vehicle. Here, each vehicle
associated to a FAP f , checks its downlink buffer (Dbuf )
for acknowledgments received and adds the contents in a
temporary list RList (lines 18− 19). PDR is calculated using
the method given in line 20 and the corresponding value is
added in the vehicle’s uplink buffer Ubuf (line 21).

C. DoS Attack Detection using Machine Learning

The approaches mentioned in Sections IV-A and IV-B
give better accuracy when number of attackers is more. We
explore ML-based detection to cover scenarios where there
are very few attackers. ML-based detection algorithms do
not depend on number of attackers, they can perform better
with any number of attackers. Figure 4 depicts the ML-based
attack detection procedure. Here, we have enumerated both the
scenarios- normal as well as attack scenario and analysed the
network traffic to gather the data and extract the features. We
train the ML model with extracted features and then classify
it to detect the attack.

Data Collection Feature
Extraction 

Train ML ModelClassification 
(Attack Detection)  

Enumeration of
Normal and

Attack Scenario

Fig. 4: ML-based attack detection

1) Data Collection: The first step in ML-based attack
detection model is data collection. In this step, a huge
amount of data is collected under the normal scenario
as well as the attack scenario. The data can be collected
from FAP. FAP contains the information (packet size, data
rate, throughput, delay, inter-arrival time,and PDR) about
its associated vehicles. We have used real-time Simulation
of Urban MObility (SUMO) [36] data to feed in the ML
classification algorithm. The data generation is outlined
in Section VII-A. As in [32], we too have considered
300077 data instances for the experiments.

2) Feature Extraction: We have used some common network
features and named them as data rate (f0), throughput
(f1), delay (f2), inter-arrival time (f3), and PDR (f4). The
computational complexity may increase due to the large
dimension of the data set, therefore, we try to extract
the features. We use ensemble feature selection technique
XGBoost tree-based algorithm to improve the confidence
of selected features as it calculates the importance of each
feature of each tree and aggregates the value of each tree
to make the result more reliable [37]. Figure 5 shows the
importance of each feature with respect to the F score.

In this figure, we can clearly observe that PDR (f4) has
the highest F score and data rate (f0) has the lowest. We
ignore the packet size because its F score is less than 0.

Fig. 5: Feature Importance

3) Train ML Model: ML-based classification algorithms are
widely used to detect the attack. As our desired output
is in the form of binary (like attacker or legitimate), a
supervised ML algorithm has been considered to perform
attack detection. We have used KNN, SVM, DT, RF, ET,
XGBoost, FS XGBoost, and FS Stacking. The reason
behind considering these algorithms are as follows:
a) These algorithms have the capability to handle the huge
dimension of data and they can take care of non-linear
data.
b) It has been observed that DT, RF, ET and XGBoost
have lower computational time than other algorithms [38].
The ML models KNN and SVM are the common
classification based algorithms. These algorithms are
popular because of their significant performance and
simple implementation [39] [40]. DT is a tree-based
classification algorithm that has decision nodes and
leaf nodes, and they represent the features and results,
respectively. DT requires low computational cost and it
can deal with redundant attributes in less time [41]. ET,
RF, and XGBoost are ensemble learning classification
algorithms that improve the performance of classification
algorithm [37] [42]. To train the above algorithms, the
ratio of training and testing set is considered as 0.7 and
0.3 and based on that result is evaluated [33].

4) Classification (Attack detection): We use all the
algorithms (mentioned above) to detect the attack. After
verifying the classification result, it can be observed in
Table II that DT outperforms than other algorithms using
our data set.

V. LOCALIZATION OF DOS ATTACKS

This section describes our proposed attack localization
techniques using DPC, triangulation method, and MR.

A. DPC-based Localization

In this section, we propose a technique to localize attacker(s)
detected in DPC-based detection technique where the attack
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is unintentional. In the DPC-based attack detection technique
(Algorithm 1) we got the list of attackers’ vehicle ID
(A V ID). Algorithm 3 outlines the sequence of steps to
localize the attacker(s). In this algorithm, at each time step (10
ms), FAPs find their associated vehicles (line 4). FAP checks
if any V Id matches with the attacker’s V Id. Then it adds
corresponding location to A Loc.

Algorithm 3: DPC-based Localization of DoS
Attacks

Input: A V ID: List of attackers
Output: A Loc: List of Location

1 n: total number of vehicle;
2 for ((i = 1; i <= T ; i+ +) do
3 for (f = 1; f <= fap; f + +) do
4 V̄ = vehicles associated to fap(f);
5 for (v = 1; v <= V̄ ; v + +) do
6 if (v.V Id == V Id.A V ID) then
7 A Loc← v.Location;

B. Triangulation-based Localization

In this section, we propose our technique for localization
of intentional attackers detected using PDR-based detection
technique. It should be noted that localization in LTE-Vnet
framework faces the following major challenges:

• There is no direct communication between vehicles.
• Single-hop communication takes place between vehicles

and base station (FAP or MBS).
• High mobility of vehicles.

The following information is available about each vehicle– the
Signal to Interference & Noise Ratio (SINR), Received Signal
Strength (RSS), PDR, and limited number of transmitted
packets. Considering the challenges and the information
available about each vehicle, we propose using triangulation
method for localizing the attackers. Triangulation method uses
the distance of a known vehicle (legitimate vehicle) from FAP,
an unknown vehicle (attacker vehicle), and the measured angle
between the vehicles [34] to calculate the location of the
attacker, as shown in Figure 6. As mentioned in Section III-A,
we have considered a city scenario. Therefore, it is safe to
assume that the number of vehicles is high, resulting in same
relative speed between them. Although we have considered
a city scenario but our work is also applicable in highway
scenarios because even with high speed of vehicles, the relative
speed between vehicles will remain the same. Due to low
relative speed between associated vehicles and FAPs, we can
use triangulation method for localization.

Let us assume that A is a possible attacker obtained from
Algorithm 2 at a FAP F , as shown in Figure 6. F calculates
the distance between itself to A and legitimate vehicle V using
RSS. This distance can be calculated in the same way as given
in [43]. Let γ be the reference distance between transmitter A
and receiver F . The received signal power ψ can be calculated
as:

Fig. 6: Triangulation method for localization

ψ (in dBm) = u−R(γ) (10)

where, R(γ) denotes reference power for γ and u as
transmit power of A. Now, using Equation (10) the RSS value
is calculated as:

RSS(in dBm) = ψ − 10h log a (11)

where, h represents path loss exponent and depends on specific
propagation environment. It measures the rate at which the
RSS decreases with distance. a is the distance from A to F .
Maximum RSS value RSSmax can be obtained by computing
the maximum of RSS values. Using RSSmax value, distance
a is calculated as:

a(in meters) = 10(ψ−RSSmax
10 )×h (12)

The distance between V and F denoted as b is also
calculated in a similar way. After calculation of distance, the
angle θ between a and b is calculated by FAP using following
formula:

θ = tan−1

(
± ∆1 −∆2

1 + ∆1∆2

)
(13)

where ∆1 and ∆2 are the slope of lines F -A and F -V . To
localize the attacker, FAP needs to find the distance between
A and V . As the value of a, b and θ are known, the distance
between A and V , which is denoted as c, can be calculated
as follows:

c =
2
√
a2 + b2 − 2abCosθ (14)

After calculating the distance, FAP calculates the common
meet point using the distance c and a. Then, it calculates the
coordinates for a common point, and based on the coordinates
it localizes the attacker.

C. MR-based Localization

In our previous technique, attack detection and localization
were done at the FAP. As in [30], the authors have suggested
that attack detection can be done in the network gateway so
we can also perform the detection and localization in FAP.
The beauty of this localization technique is the localization of
both intentional and unintentional attackers.

We have used ML-based classification algorithms to detect
the attack and to localize the attacker. We propose a four-
step localization approach as shown in Figure 4. We know
that we have only the following attributes to perform any
of the tasks in our scenario – PDR, delay, throughput,
time intervals, measurement report (Vehicle ID, Cell ID,
RSRP, RSRQ, connection timestamp). Figure 7 depicts the
localization procedure which takes place on FAP. The very
1st step is the PDR check. In this step, FAP calculates the
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Fig. 7: MR-based localization procedure

PDR value of each vehicle in each run and compares it
with the predefined threshold value. If it is greater than the
threshold, FAP performs the 2nd step which is inter-arrival
time verification, otherwise, the particular vehicle is flagged
as legitimate.

Algorithm 4: MR-based Localization of Attacker
Input: PDR val, IA time :

InterArrivalT ime, V List MR values
Output: ALoc : Attacker location

1 Unint Attacker = False;
2 Int Attacker = False;
3 Un Suspicious = False;
4 for (i = 1; i <= T ; i+ +) do
5 for (f = 1; f <= fap; f + +) do
6 V̄ = vehicles associated to fap(f);
7 for (v = 1; v <= V̄ ; v + +) do
8 if (PDR val > ϑ) then
9 if (IA time > normal time) then

10 for (i = 0; i < c; i+ + do
11 v.XOR val =

v.XOR operation);

12 if (v.XOR val == 0) then
13 Calculate v.MR value;
14 Verify v.MR value with

V List MR values;
15 if (v.MR values ==

V List MR values) then
16 if (PDR val > ϑ) then
17 v.Int Attacker =

True;
18 v.ALoc = v.location;

19 v.Unint Attacker = True;
20 v.ALoc = v.location;

21 v.Un Suspicious = True;

In the inter-arrival time verification, the inter-arrival time
verification takes place. Since in our attack model attacker
sends huge amount of packets, the inter-arrival time of packets
is much less than legitimate vehicles. For example, the
legitimate vehicle sends the packet in the time interval of 5ms,
but the attacker sends the packet in the interval of 1ms. FAP

checks the frequency of the time interval for each run, if it
is more than the legitimate one then it performs the 3rd step
which is the XOR operation. In the XOR operation step, if the
above two conditions hold, FAP performs the XOR operation
continuously for each run for a particular vehicle ID. If the
output of the XOR operation comes as 0 then control shifts
to the next step (MR verification).

In the MR verification step, 1st, we calculate the two
values (RSRP, RSRQ). After all three steps as depicted in
Figure 7, the FAP calculates the particular vehicle position by
using the MR value. MR value contains Vehicle ID, Cell ID,
RSRP, RSRQ, and connection time stamp. We can calculate
RSRP using RSS:

RSRP (dBm) = RSS(dBm)− 10log(12×N)

where N is the number of resource blocks [11]. Using RSS
and RSRP, RSRQ can be calculated [44]:

RSRQ =
RSRP

RSS/N

After calculation of MR value, we check the suspicious
vehicles’ MR values with all other vehicles’ MR values that
are associated with the FAP. If MR values match, we check the
PDR value of suspicious vehicles. If PDR is greater than the
threshold value, we flag it as an intentional attack, otherwise
it is flagged as a non-suspicious vehicle. If the MR value is
distinct from others, we flag it as unintentional attacker. For
finding the candidate position, we use RSRP value and localize
the unintentional as well as intentional attacker [33] [43].

Algorithm 4 outlines the sequence of steps to localize the
attacker(s). In this algorithm, at each time step (10 ms), FAPs
find their associated vehicles (line 7). Then FAP compares
the PDR val (line 8) and the IA time (line 9). After that
XOR operation of corresponding V ID is performed (lines
10-11). Based on XOR value MR value is calculated and
MR value is verified with V List MR values (lines 12-
14). If the condition (line 15) holds good then PDR val is
checked and the vehicle is flagged as Int Attack otherwise
Unint Attack and localize them by using RSRP values (lines
16-20).

VI. PERFORMANCE ANALYSIS

In this section, we analyze the average delay of a packet
being transmitted from a vehicle to its associated base station
(FAP or MBS). As mentioned in Section I, at a given time,
a fixed number of RBs are available for communication and
FAPs are responsible for allocating them to vehicles. Now,
if we consider our attack scenarios (both Case I and Case
II), we can conclude that given a fixed amount of available
resources, when number of data packets increase, contention
for availing the limited amount of resources will also increases,
leading to high delay. For our analysis, we trace each packet
from its generation until its delivery to the associated FAP.
As mentioned earlier, in the uplink, vehicles generate packets
which are stored in their buffers until RB is allocated for
transmission. The maximum number of vehicles that a FAP
can serve is equal to the number of available RBs. On
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assignment of a RB, a vehicle can transfer its packets to
the associated FAP. Let us assume that there are x vehicles
associated to a FAP, where x includes both legitimate and
malicious vehicles. Also, there are only m RBs available such
that m < G.x, i.e., number of available RBs is less than
the number of packets generated by the associated vehicles.
Hence, for transmission from vehicles to FAP, vehicles have
to contend for RBs. Let E[Wv] be the expected waiting time
incurred by packets generated at vehicles to reach FAPs. The
buffers in vehicles associated to a FAP can now be modeled
as an M/M/m queue where m RBs act as servers. Let the
packet arrival rate be λ and the service time be exponentially
distributed with mean 1/µ. Thus, the expected waiting time
for packets in vehicles is given by,

E[Wv] = E[P ]/λ (15)

where, E[P ] is the expected number of packets in the queue
including the ones in service. E[P ] is given by,

E[P ] =
ρη

1− ρ
(16)

Here, ρ is the server utilization factor and η is defined as
the probability of queuing i.e., the probability that there
more packets waiting in the queue to be served. The server
utilization factor for M/M/m queue is given by

ρ =
λ

mµ
(17)

η is given by
η =

(mρ)m

m!(1− ρ)
J (18)

J represents the probability that all servers are idle and there
are no packets in the system to serve.

J =

[
1 +

(mρ)m

m!(1− ρ)
+

m−1∑
i=1

(mρ)i

i!

]−1

(19)

We analyse our detection and localization algorithm in the
context of time, and found that the time complexity is O(fV )
where V is denoted as number of vehicles and f is denoted
as number of FAPs.

VII. EXPERIMENTS

In this section, we first describe our experimental setup.
Next, we present the experimental results.

A. Experimental Setup
The simulation scenario consists of a city scenario with

road of length 10 km with multiple lanes and intersections.
The traffic is bidirectional. We are comparing our approach
with [11], where the authors have considered only MBS
and detection takes place at MEC server. To simulate our
scenario, we have used a discrete event simulator based on
Java. We have used Simulation of Urban MObility (SUMO)
to generate vehicular movements. The simulation results have
been averaged over 100 runs. Parameters considered for
simulation are given in Table I. The choice of parameters
is consistent with prior studies [3], [9]. For ML-based
classification algorithms we have considered 300077 data
instances generated by our java based simulator.

TABLE I: Parameters used in simulation [3], [9]

Parameter Value
Number of Vehicles 300
Number of FAPs 50
Packet Size 160 bytes
Packet generation rate
(legitimate vehicle) 1 Packet/5ms

Packet generation rate
(attacker) 1 Packet/1ms

MBS Transmission Range 10 km
FAP Transmission Range 50 m
MBS Transmission Power 43 dBm
FAP Transmission Power 23 dBm
Vehicle Speed 30-80 Km/hr

Path Loss Coefficient FAP:3.5
MBS:2.5

B. Delay and PDR Results

Figure 8a represents the variation in average delay with
increase in number of vehicles in the scenario. Vehicles include
both legitimate and malicious vehicles. As expected, with
increase in number of vehicles, the average delay increases.
This is because, more number of vehicles will contend for
the fixed amount of available resources. With the inclusion of
malicious vehicles, more packets will be generated, which will
eat up more resources resulting in higher contention, leading
to higher delay. As we can see, higher delay can be observed
when the number of malicious vehicles is more. Similarly,
in Figure 8b, it can be observed that when the number of
attackers increases, the average PDR percentage decreases.
This is because, with more attackers, contention for available
RBs increases, leading to lower PDR.

C. Detection and Localization Time

Time and accuracy play a crucial role in vehicular networks
because inaccurate information and delay may be critical
to life. Hence, we have considered ML model for attack
detection. Based on our data set, Decision Tree performs better
in less time and with higher accuracy compared to existing
ML-based detection techniques [30], as shown in Table II, IV
and Table III.Subsequently, we have compared our proposed
algorithms with some existing approaches with respect to time.

Figure 9 depicts the comparison of our detection technique
with the MEC-based technique with respect to detection and
localization time. In [11], the attack detection is done at MBS
and localization of attacker is done at MEC server [11]. This
takes more time and makes detection more complex. Figure 9a
represents the attack detection time of DPC-based detection,
PDR-based detection and MEC-based detection technique. As
expected, with the increase in number of attackers, the attack
detection time decreases. We can see that the detection time
taken in DPC-based detection is much less than that of PDR-
based and MEC-based detection technique. This is because,
in DPC-based technique, the detection is done at FAPs by
calculating DPC values, whereas, in PDR-based detection
technique, PDR calculated at each vehicle is transmitted to
FAP which uses it for detection of attack. In the MEC-based
detection technique, in [11] authors have used MBS to perform
detection. As the MBS is far from the vehicles and traffic load
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Fig. 8: Impact of DoS attacks with multiple attackers
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Fig. 9: Comparison of proposed technique with MEC-based approach [11]
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Fig. 10: Impact of speed in localization and detection time
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Fig. 11: Time required for detection and localization with respect to number of vehicles
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at MBS is higher than FAP, it takes more time to detect than
DPC and PDR-based detection techniques.

Figure 9b represents the time for localizing the attacker. It
can be seen that DPC-based localization technique takes less
time for localizing than both PDR-based localization technique
and MEC-based localizing technique. This is because, in
DPC-based localization, FAP localizes the attacker using its
vehicle Id, whereas, in PDR-based localization, FAP uses
triangulation method to localize the attacker, and in the MEC-
based localization technique neural network based method is
used for localization.

Figure 10a and 10b represent time required for attack
detection and localization with respect to speed. It can be
observed that DPC and PDR perform better than MEC-
based detection. This is because, MEC performs complex
computations to detect and localize the attacker which makes
the detection and localization procedure time consuming and
the attacker may move away by then. Figure 11a and 11b
represent the time required for detection and localization with
respect to number of vehicles. It can be clearly seen that, as the
number of vehicles increases, detection and localization time
also increases. Because of the simple mathematical procedure
in DPC and PDR-based detection and localization procedures,
they outperform MEC and MR-based techniques.

D. Detection and Localization Accuracy

Figure 12 shows the performance comparison for detection
and localization algorithms with MEC algorithm [11]. Figure
12a represents the variation in the percentage of attackers
detected with increases in the number of attackers. As the
vehicle Id is known in the solution of PDR-based detection,
the attacker is easily detected. Hence, it performs better than
DPC-based detection and the MEC-based detection technique.
In Figure 12b, it can be observed, the MR-based localization
technique performs better than others. The reason behind this
is the multi step filtering technique of MR-based localization.
Also, we can observe that ML-based detection (Decision Tree)
outperforms all the approaches with better accuracy. We pre-
labelled our data set and divided the target value (result) as
categorical data (attack and legitimate) hence DT performs
better with our data set.

TABLE II: Comparison with [30]
ML
algorithm Detection Accuracy F1 score Detection Time

[30] Our Work [30] Our Work [30] Our Work
KNN 96.6% 99.88% 0.966 0.998 14(s) 12.08(s)
SVM 98.01% 99.12% 0.978 0.991 489.49(s) 380.26(s)
DT 99.72% 100% 0.998 1 13.7(s) 10.2(s)
RF 98.37% 98.61% 0.983 0.986 48.6(s) 48.08(s)
ET 93.43% 97.9% 0.934 0.979 62.6(s) 58.78(s)
XGBoost 99.78% 97.2% 0.997 0.972 96.2(s) 96.50(s)
Stacking 99.86% 99.9% 0.998 0.999 190.5(s) 109.71(s)
FS XGBoost 99.7% 99% 0.996 0.99 45(s) 38.07(s)
FS Stacking 99.82% 99% 0.997 0.99 74.8(s) 47.36(s)

In Table II, we have compared our technique with the work
in [30] and got better accuracy and F1 score with less time.
Also in Table III, we varied the number of attackers (5 to
120) and got decent accuracy and F1 score in less time.
Hence, ML-based detection algorithms give better accuracy
with any number of attackers. It can be observed that the

DT algorithm performs better in our scenario with less time.
We have compared our work with [31] and observed that our
approach performs better as shown in Table IV. As our data-
set is pre-labelled and categorised into two categories (attack
and legitimate) and also we use specific features, therefore,
DT took less time with better accuracy.

TABLE III: Performance with varying attackers
ML
algorithm Detection Accuracy F1 score Detection Time

KNN 96.8 0.968 12.08(s)
SVM 98.76 0.987 380.26(s)
DT 99.71 0.997 10.2(s)
RF 98.52 0.985 48.08(s)
ET 92.66 0.926 58.78(s)
XGBoost 99.15 0.991 96.50(s)
Stacking 99.97 0.999 109.71(s)
FS XGBoost 99.95 0.999 38.07(s)
FS Stacking 99.98 0.999 47.36(s)

Figure 14a depicts the comparison of MR-based localization
technique and context-based localization technique [32] with
respect to accuracy and error. In the figure, it can be seen
that our localization technique outperforms the context-based
technique because in our localization technique we have
filtered the vehicle information in four ways which makes
our model less erroneous. We also compare our localization
techniques (MR-based and Triangulation-based) with the
MEC-based technique [11] with respect to their localization
percentage.

In Figure 15a and 15b we can observe that DPC, PDR
and triangulation algorithms perform better than others with
variations in vehicle speed because these algorithms take less
time than others to detect and localize the attacker. Also, we
can observe that variation of speed does not impact much
in ML-based algorithm hence ML-based detection approach
outperforms others.

We have also checked the effectiveness of our proposed
algorithms in the context of a distributed denial-of-service
attack (DDos) which is shown in Figure 16. In Figure 16a
we can observe that ML-based detection outperforms all the
approaches with better accuracy because we have filtered the
pre-labelled data-set before classification. As DPC and PDR-
based detection algorithms execute locally and take less time,
they outperform the MEC-based detection approach. In Figure
16b, we can observe that MR-based localization performs
better than others because of four-step (PDR check, inter-
arrival time verification, XOR operation, MR verification)
filtering approach. Also, we can observe that PDR and DPC-
based localization approach performs decently because they
localize the attacker locally (at FAP itself).

We have also considered the effectiveness of our proposed
algorithm with the variation of vehicles as shown in Figure 13.
It can be clearly observed that the detection and localization
accuracy decreases while number of vehicles increases. In
Figure 13a we can observe that ML-based detection techniques
perform better than all other detection techniques because the
variation in number of vehicles does not put much impact
on ML-based detection techniques. In Figure 13b it can be
seen that the MR-based localization technique outperforms
others because of four-step filtering techniques, making it more
accurate.
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Fig. 12: Percentage Comparison of MEC-based detection and localization technique [11] with proposed detection and
localization techniques
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Fig. 13: Accuracy of detection and localization with respect to number of vehicles
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Fig. 14: Accuracy and Error comparison of our localization techniques with context aware based localization [32] and MEC-
based localization [11]
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Fig. 15: Impact of speed in localization and detection algorithms
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Fig. 16: Accuracy of detection and localization in DDoS scenario

TABLE IV: Comparison with [31]

Model Precision F1 score
[31] Our Work [31] Our Work

KNN 0.861 0.98 0.841 0.969
Logistic
regression 0.788 0.84 0.687 0.81

Decision tree
classifier 0.978 0.992 0.941 0.993

Bagging 0.99 0.999 0.98 0.992
Random
Forest 0.99 0.999 0.98 0.992

VIII. CONCLUSIONS & FUTURE WORK

In this work, we have developed an efficient framework
for real-time detection and localization of Denial-of-Service
(DoS) attacks in LTE-based vehicular networks. We have
explored DoS attack detection using average packet delivery
ratio as well as data packet counter values. We have utilized
machine learning based algorithms to detect the attacks
with high accuracy. We have used triangulation method to
localize the attacker which uses fake vehicle identification
to perform the attack. Also, we have introduced DPC-
based localization to localize the attacker which introduces
an attack unintentionally. We have developed an MR-based
localization technique that can localize both intentional as well
as unintentional attacks irrespective of the number of attackers
in the scenario. We have also performed a detailed analysis
of average packet delay using the M/M/m queuing model.
Our experimental results demonstrate that our approach can
significantly outperform state-of-the-art methods. In future, we
plan to explore various mitigation techniques for both type of
attacks.
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