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Abstract—Test Vector Leakage Assessment (TVLA) evaluates
the side-channel leakage of sensitive information from the hard-
ware implementation of a design. While TVLA for symmetric
cryptography has been well studied, it is not applicable to asym-
metric cryptography algorithms. Asymmetric key algorithms
involve complex computations in multiple stages that can lead
to varying trace lengths depending on input parameters and
associated constraints. In this paper, we design an effective
TVLA technique for asymmetric key cryptosystems that can
compare lengthy trace data with a good statistical resolution and
generate valid input (test) patterns to satisfy specific constraints.
Specifically, this paper makes the following major contributions.
The proposed test generation algorithm can produce valid test
patterns to maximize the power signature differences. Our pro-
posed partition-based differential power analysis can significantly
improve the TVLA accuracy. Extensive evaluation using elliptic
curve cryptography algorithms demonstrates that the proposed
TVLA framework can handle type 1 and type 2 statistical
errors and evaluate hardware implementations of asymmetric
cryptography algorithms with a statistical confidence of 99.999%.

Index Terms—Hardware Security, Side-Channel, Test Vector
Leakage Assessment, Asymmetric Key Cryptography

I. INTRODUCTION

Symmetric cryptography, also known as secret-key cryp-
tography, relies on a single key to perform encryption and
decryption. It is easy to implement but the key distribution
is a major concern. In contrast, asymmetric cryptography,
also known as public-key cryptography, uses a pair of keys
(public, private) for authentication or authenticated encryption.
When encrypting a message with asymmetric cryptography,
the public key is used by the sender for encryption. The private
key is used by the recipient during decryption. This eliminates
the practical limitation of key distribution in symmetric cryp-
tography. There are also hybrid systems that utilize both sym-
metric and asymmetric cryptography, such as Elliptic Curve
Integrated Encryption Scheme (ECIES). There are various
efforts to perform side-channel leakage analysis of symmetric-
key cryptosystems using Test Vector Leakage Assessment
(TVLA) [1], [2]. Unfortunately, the existing TVLA methods
are not applicable for evaluating asymmetric key cryptosys-
tems. It is important to evaluate the side-channel vulnerability
of asymmetric key algorithms to design trustworthy systems.

A. State-of-the-Art and Limitations

The intuition behind TVLA of hardware implementations is
to provide a certain guarantee that the implementation does not
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Fig. 1: TVLA steps for symmetric-key cryptosystems.

reveal secrets through power side-channel signatures during
execution. Figure 1 illustrates the major steps involved in
TVLA of symmetric key cryptography algorithms [1], [2]. The
first step performs hamming distance based test generation
to produce differences in power signature [1], [2]. Next, the
design is simulated with the generated key pairs and a fixed
plaintext. The power signature is constructed based on the
simulation’s value change dump. Next, the difference between
two power signatures is calculated using statistical methods,
such as t-test and KL-divergence [1]–[3]. Finally, the imple-
mentation is categorized as safe or side-channel vulnerable
based on a pre-determined threshold. While this method works
well on symmetric cryptosystems, it is not applicable on
asymmetric cryptosystems due to the following fundamental
challenges associated with asymmetric-key algorithms:

1) Involves complex computations that lead to significantly
longer trace data compared with symmetric cryptography.

2) Implementations without timing mitigation can lead to
varying trace lengths, while existing TVLA techniques
expect fixed-length traces or manual trace alignments.

3) Timing-specific information such as specific places the
power peak has occurred are not captured by applying the
standard Welch t-tests and KL-divergence based methods.

4) Evaluation of asymmetric cryptography needs to consider
side-channel leakage of multiple stages independently.

5) Input parameters and associated constraints are signifi-
cantly different from symmetric cryptography.

B. Research Contributions

In this paper, we address the first and third challenges
by evaluating the divergence between two traces with higher
resolution by partitioning the traces of each stage and evalu-
ating each partition independently. We resize the traces for
each stage over the time axis to the same length using
control flags to address the second challenge. We also utilize
the control flags to automatically identify each stage of the
implementation and perform leakage assessment separately for
each stage focusing on security guarantees of the particular
stage to address the fourth challenge. Finally, we propose
an automated test generation framework to address the fifth
challenge. To the best of our knowledge, our approach is
the first attempt in developing a TVLA framework focused on
asymmetric key cryptography algorithms. This work enables
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a designer to evaluate systems consisting of both symmetric
and assymetric components.

The remainder of this paper is organized as follows.
Section II provides background and surveys related efforts.
Section III describes our proposed TVLA* methodology. In
Section IV, we demonstrate that TVLA* can reveal more
accurate leakage results compared to the state-of-art TVLA
approaches. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we first provide background on elliptic curve
cryptography. Next, we outline vulnerabilities in asymmetric
cryptography algorithms and review existing attacks. Finally,
we survey existing TVLA methods and discuss their limita-
tions.

A. Elliptic Curve Cryptography

Elliptic curves are special plane curves over a field, pri-
marily using Galois fields. All operations are done modulo
p, where p is the value of the prime for the defined prime
curve [4]. Due to this, elliptic curves make a strong choice for
usage in asymmetric cryptography. Elliptic curve cryptography
(ECC) is the set of algorithms that use elliptic curves to pro-
vide a security guarantee, such as authentication through signa-
tures or encryption and decryption [5]. While the requirement
for an elliptic curve is to use a prime number, when making
security considerations this should be a large enough number
to create certain security guarantees. Therefore, standardized
curves from NIST, SEC, and other sources have been deemed
secure for standardized usage.

RSA is the oldest and most popular choice for asymmetric
key cryptography algorithms due to its simplicity and es-
tablishment in legacy programs [6]. In order to have better
security over RSA, points on the curve are used as the
numbers to perform operations over for ECC [7]. A point is
on the curve and thus valid if it satisfies the elliptic curve
equation. There are several different coordinate representations
for an elliptic curve point. For brevity, we will only consider
operating on affine coordinate points and Jacobian coordinate
points. The affine representation of a point is (X,Y ) and is
the general representation of an elliptic curve point. Jacobian
representation is (X,Y, Z). An affine point in Jacobian form is
(X,Y, 1). The Z coordinate in Jacobian representation stores
all the divisions that take place throughout any mathematical
operations performed to the point. Algorithm 1 converts Jaco-
bian projective coordinates to the equivalent affine coordinates.

Algorithm 1 Coordinate Conversion
Require: P : (X1, Y1, Z1), P ̸= O
Ensure: R : (X2, Y2)
1: λ← Z−1

1 mod p
2: X2 ← λ2X1

3: Y2 ← λ3Y1

B. Vulnerabilities of Asymmetric Key Cryptography

Asymmetric key cryptography algorithms consist of multi-
ple functions. The vulnerability analysis needs to check for

vulnerabilities in each function. For example, ECC module
consists of various sub-modules, such as scalar multiplication,
coordinate conversion, etc. Let us take the example of scalar
multiplication to illustrate the vulnerabilities. With elliptic
curves, scalar multiplication is the equivalent of repeated
additions of a point on the curve. However, the operation is
dependent on the value of a bit in the scalar. ECC uses the
private key as the scalar to generate the public key. Therefore,
one of the scalar multiplications performed during an ECC
algorithm is dependent on the value of the private key [8], [9].
As seen in Algorithm 2, if the current bit of the private key is a
value of 1, an extra computation step must be performed. The
extra computation step allows an attacker to analyze the power
traces for increased use of power to perform this operation,
recovering the private key. A similar notion of branching
operations with different computational requirements based on
the bit value of the private key is also present in RSA and other
asymmetric cryptographic algorithms [10].

Algorithm 2 Scalar Multiplication - Double and Add

Require: P : (X,Y ), P ̸= O, k positive integer
Ensure: kP
R0 ← O
R1 ← P
for bit in k do

if bit = 1 then
R0 ← R0 +R1

end if
R1 ← 2R1

end for
return R0

C. Related Work: Attacks on Asymmetric Key Cryptography

Cryptographic algorithms typically have some control flow
dependency as part of their operations. While this is inher-
ently secure, it does pose a security risk if the control flow
depends on some secret information, such as the private key.
An attacker can then carry out side-channel attacks on the
implementation to retrieve a complete or partial private key, ef-
fectively exposing secret information [11]–[15]. Minerva is an
example of a recent attack on the scalar multiplication imple-
mentations of open-source software libraries that used lattices
in conjunction with other leakage information to recover the
private key [16]. A projective to affine coordinate conversion
attack on elliptic curve cryptography is proposed in [17], [18].
Modern ECC software implementations were detected with the
vulnerability of projective coordinate leakage [19], showing
the feasibility of recovering the private key completely through
side-channel analysis. This also illustrated the need for a side-
channel leakage assessment of cryptographic implementations.

D. Collisions in Asymmetric Cryptographic Algorithms

In cryptography, collision attacks are primarily used with
breaking hashing algorithms. These collision attacks work by
making different inputs result in the same output, which can
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be used to reveal details of the internal algorithm, effectively
reverse-engineering it. For algorithms like ECDSA, secret
information can be linked to certain steps of the compu-
tation. Since ECC implementations can be attacked using
side-channels, combining side-channel attacks with collision
attacks creates a new attack vector. This attack vector is known
as horizontal collision correlation analysis [20]. The classic
side-channel attacks are thus distinguished as vertical attacks.
Power analysis detects spots where collisions occur during the
internal computations of point addition and point doubling.
These two operations are important due to their usage in
scalar multiplication, where the private key is multiplied by a
fixed elliptic curve point. After gathering observations on the
intermediate registers, Pearson’s coefficient is used to derive
the secret key.

E. Limitations of Existing Side-Channel Leakage Assessment

The existing TVLA methods are suitable for symmetric key
algorithms. However, the existing methods are not applicable
on asymmetric key algorithms for the following reasons.
Validity of Inputs: There are multiple parameters as inputs to
the asymmetric cryptography algorithms and not all possi-
ble inputs are valid inputs to the algorithm. For example,
[2] generates key pairs and random plaintext messages, but
authenticated encryption algorithms like ECIES do not have
inputs for secret keys, instead, it accepts public key, which is
not a secret and a specific point on an ECC curve. Moreover,
generating random inputs is not an option, since this may lead
to invalid states. A set of guidelines for generating test vector
pairs for Elliptic Curve Digital Signature Algorithm (ECDSA)
with possible collision attacks is discussed in [21].
Computing in Multiple Stages: Asymmetric cryptography is a
sequential process, where we need to perform certain steps
to complete the encryption/decryption or sign/verify process.
These steps are supposed to preserve secrecy guarantee on
different input parameters, such as nonce, coordinate points,
Enc/Dec Key, etc. This requirement is also not addressed by
existing TVLA techniques.
Long Execution Traces: Statistical techniques such as Welch
t-tests and KL divergence are directly used to perform the
differential power analysis of power signature traces in [1]–
[3]. This works with symmetric key algorithms since these
algorithms perform block-wise operations. In fact, Hamming
distance-based input key pairs used in [2] can perform well
with block-wise operations. Divergent values for the traces are
calculated for a small number of clock cycles since the clock
cycle depth for block cipher algorithms is significantly lower
(order of 100) than asymmetric cryptography algorithms (order
of 10000). The direct application of Welch t-tests and KL
divergence techniques can hide small but important variations
in the traces of asymmetric cryptography algorithms which
defeats the purpose of TVLA.
Diversity of Algorithms: There are various types of algorithms
proposed for the implementations of asymmetric cryptography
with different objectives (security, speed, area, power, etc.).
These algorithms have different computation times. In fact,

there are algorithms that take different computation times
based on the input values [22], [23]. This will lead to incorrect
assessment by [1]–[3].

III. TVLA FOR ASYMMETRIC CRYPTOGRAPHY (TVLA*)

Figure 2 provides an overview of our proposed TVLA*
framework for side-channel leakage evaluation of asymmetric
key algorithms that consists of five major tasks. The first task
analyzes the design specification to identify the sequence of
steps involved in the algorithm as well as different inputs and
associated constraints. The second task generates input (test)
vectors focusing on the secrecy guarantee of the algorithm
followed by instrumentation of the testbench for simulation.
The third task simulates the design to obtain the power
traces. The fourth task performs the leakage assessment on
generated power profiles using both simple and differential
power analysis. The last task computes the divergence factor to
identify if the implementation has a side-channel vulnerability.
The remainder of this section describes these steps in detail.

A. Design Specification

A major architectural difference between asymmetric and
symmetric cryptography algorithms is the sequence of inde-
pendent stages involved in them. Since the functionality of
each stage is different, each stage is expected to have different
power signatures during execution. Figure 3 shows the seven
stages to encrypt a message with the public key using ECIES:
(i) elliptic curve multiplication, (ii) coordinate conversion step
from projective to affine, (iii) elliptic curve multiplication,
(iv) projective to affine coordinate conversion step, (v) key
derivation (KDF) step with ANSI-X9.63, (vi) encryption stage
with AES, and (vii) generation of message authentication code
with HMAC-SHA1. The ECIES decryption algorithm also
follows several stages in order to successfully decrypt the
message. We can analyze the secrecy guarantee of each stage
based on the feasible vertical and horizontal collisions that
can be manipulated with inputs to the algorithm. Next, we
need to analyze the input constraints such as supported curves
by the algorithm, which we need to consider during the test
generation step.

DONESHAAES

KDF CORD.CONV. EC MULTIPLY

CORD.CONV.START EC MULTIPLY

Fig. 3: Different stages during ECIES encryption.

B. Test Generation

The objective of test generation is to produce multiple
pairs of input vectors such that it maximizes the difference in
the power signature of the same implementation. Depending
on the asymmetric cryptography algorithms, the inputs are
different. For example, Table I illustrates types of inputs
for different ECC algorithms. Since we have diverse input
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Fig. 2: Overview of TVLA* for leakage assessment of asymmetric key cryptography hardware implementations.

TABLE I: Inputs for different ECC algorithms
Algorithm Inputs

Nonce Private Key P(x, y, z) Msg Tag
ECIES encrypt ✓ ✓ ✓
ECIES decrypt ✓ ✓
ECDSA sign ✓ ✓ ✓

ECDSA verify ✓ ✓

parameters for different algorithms, we need to consider each
and every input parameter during the test generation.

The nonce is a major secrecy feature that we need to
evaluate based on the attacks discussed in Section II-C. A
potential place the leakage can happen with nonce is the scalar
multiplication stage. EC MULTIPLY stage is a bit serialized
algorithm over the nonce. Therefore, we focus on generating
patterns with multiple blocks of ‘0’s and ‘1’s in the nonce.
For this purpose, we use Algorithm 3. First, it generates a
nonce with serialized block patterns of ‘0’ and ‘1’s and fills
the rest of the requirements with random nonce values. The
same algorithm can be used to generate private key pairs.

Algorithm 3 Generation of Nonce Pairs
Require: NonceSize d, NumPairs N
Ensure: NoncePairs {{n1

1, n
2
1}..{n1

N , n2
N}}

1: tests = [{zeroBin(d), oneBin(d)}]
2: for x ∈ [2i for i = log2 d; i > 0; i- -] do
3: n2← ∅
4: while len(n2) < d do
5: n2← n2 + zeroBin(x) + oneBin(x)
6: end while
7: tests.append({oneBin(d), n2[0 : d]})
8: end for
9: for y ∈ (N − len(tests)) do

10: tests.append({oneBin(d), randBin(d)})
11: end for
12: Return tests

When providing inputs for the public key, point coordinates
P (x, y, z) should be provided. In this case, the points should
be valid points on the curve otherwise the algorithm ends
up in an undefined state. For this, we generate public keys
by solving the polynomial related to the curves identified in
Section III-A. Next, we generate multiple random plaintext
messages. Finally, we combine each of these parameters into
the test vector following the steps outlined in Algorithm 4.
First, we iterate through all the generated keys by solving
the polynomial. For each key, we generate a random plaintext
message. Next, we generate a test vector pair such that the first
and second nonce values (generated by Algorithm 3) append
to the first and second tests of the test pair. If we have X

public keys, Algorithm 3 will produce a total of X ×N pairs
of test vectors. In order to obtain more accurate results, we
need to synthesize the design. Finally, we create a testbench to
simulate the implementation with generated input test vectors.

Algorithm 4 Generation of Test Vector Pairs

Require: PubKeys {p1, .., px}, NoncePairs {{n1
1, n

2
1}..{n1

y, n
2
y}}

Ensure: TestVectorPairs {{t11, t21}, .., {t1N , t2N}}
1: vectors = [ ]
2: for x ∈ {p1, .., px} do
3: pK ← x
4: msg ← randBin(len(msg))
5: for {y1, y2} ∈ {{n1

1, n
2
1}, .., {n1

y, n
2
y}} do

6: t1← {pK,msg, y1}
7: t2← {pK,msg, y2}
8: vectors.append({t1, t2})
9: end for

10: end for
11: Return vectors

C. Simulation for Generation of Power Signatures

We simulate the testbench obtained in the previous step to
generate the Value Change Dump (VCD). In this section, we
discuss the process of generating the power signature from
the obtained VCD data that corresponds to one test vector.
Generally, side-channel footprints related to the power of
hardware designs are correlated with the following factors:

• Switching Activity of the internal signals of the device.
Here transition of a signal from 0 → 1 and 1 → 0 are
considered to consume more power and emanate more
electromagnetic radiation compared to 0→ 0 and 1→ 1.

• Hamming Weight power model correlates the number of
signals that are either in value 0 or 1 in an instance to the
overall power consumption of the device at that point.

In order to identify the independent stages outlined in
Section III-A, we monitor the control flag signals of the imple-
mentation. In this way, we can perform the leakage assessment
in each stage of the implementation separately. Figure 4 shows
the power signature obtained during ECIES encryption divided
into seven different stages with different colors. It is clear that
ECC-related calculations, such as MULTIPLY (with Double-
and-Add) and coordinate conversion (CORD.CONV), occupy
the vast majority of the computation. The next two sections
perform the leakage assessment on the generated power sig-
natures for each stage of the implementation separately. Our
utilization of control flags leads to automatic power signature
alignment for the leakage assessment.
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Fig. 4: Switching Activity time-series diagram for ECIES algorithm separated by different colors for each internal stage.

D. Leakage Assessment using Simple Power Analysis (SPA)
Simple Power Analysis (SPA) analyzes execution traces

without any pre-processing. SPA can reveal information about
the device’s internal states, algorithm structure, and input-
dependent power variations. Since algorithms are known,
attackers can infer the idea about internal operations and
secret data by analyzing a single trace or pair of traces.
Implementations that appear to be safe against SPA should
be further evaluated with differential power analysis.
Example: Let us consider the scalar multiplication, Double-
and-Add, illustrated in Algorithm 2. If we analyze the steps in-
volved in the algorithm, it can be observed that the operations
performed over the bit value of the scalar (k) is different for bit
= 0 and bit = 1. Without having any prior knowledge about the
nonce, by looking at the power traces we should be able to see
multiple different power levels consumed by the device during
the operations. Figure 5 illustrates the two power signatures
constructed for an implementation using Algorithm 2. For two
key values of k = 0xF0F0F and k = 0xFFFF, it shows a
significant difference in the power peaks, which makes the
implementation fail the SPA test.

0.00
0.02
0.04
0.06
0.08

(a) k = 0xFFFF

0.00
0.02
0.04
0.06
0.08

(b) k = 0xF0F0F
Fig. 5: SPA for Double-and-add Verilog implementation.

E. Leakage Assessment using Differential Power Analysis
Differential Power Analysis (DPA) utilizes statistical-based

techniques to identify data-dependent correlations. As the
name suggests, DPA requires more than one trace to perform
the comparison, and hence we generated test vector pairs in
Section III-B. As discussed in Section II-E, for the same stage
of the algorithm, two power signature traces can be of different
lengths due to the variation of execution time with the inputs.
In order to address the problem of variable finish time of
algorithms, we resize the traces into the same length with
interpolated transformation. To preserve timing information
for statistical analysis, we partition both traces into C equal
sizes and perform differential analysis on each part separately.
This preserves the timing information in the traces across the
partitions and generalizes the evaluation technique to all the
algorithms. Next, we apply the statistical Welch t-test method
on each partition to evaluate two partitions of the power traces
to assess their differences.

Let us consider a pair of traces T (vi1, Sk) and T (vi2, Sk),
collected over stage Sk for the input test vector pair V i =

{vi1, vi2}. Let nvi
j
, µvi

j
, and s2

vi
j

be the size, mean, and variance

of the xth partition of trace T (vij , Sk), then Welch t-test t for
T (vi1, Sk)

x and T (vi2, Sk)
x trace partitions can be computed

by Equation 1 (with a corresponding p value in Equation 2).

t =
µvi

1
− µvi

2√
s2
V x
1

n
vi
1

+
s2
V x
2

n
vi
2

(1) p = 2

∫ ∞

|t|
f(t, d)dt (2)

where d = degree of freedom

For the t-test, we make the null hypothesis as T (vi1, Sk)
and T (vi2, Sk) traces are drawn from the same population, and
hence, they are not distinguishable with a significance level of
α′. If the condition p < α′ satisfies the two trace partitions, we
can reject the null hypothesis. After C independent tests for the
significance level of α′ in each partition, the final probability
to reject the null hypothesis becomes the product of individual
probabilities (1− α′)

C . Note that we need to maintain a confi-
dence level of α = 0.05 for entire trace width of T (vi1, Sk) and
T (vi2, Sk) [24]. Therefore, confidence α′ for each partition can
be calculated with Bonferroni correction [25] as in Equation 3.

(1 − α
′
)
C

= (1 − α)

α
′
= 1 − (1 − α)

1
C

α
′
=

α

C

(3)

This results in a partition-wise significance level of α′ =
0.05
C . We can execute family-wise rejection if any partition of

traces has p < 0.05
C and classify the considered stage of the

implementation as “Failed”.
The use of statistical methods comes with the risk of the

miss-classification of results. Two miss-classifications and how
the proposed TVLA* technique handles them are as follows:

Type 1 error (False positives): To reduce Type 1 error, we
need to have a lower significance level (α) and improved
statistical resolution. We perform “Partitioned DPA” analysis
to increase the statistical resolution to include timing-related
data, and then perform Bonferroni correction to reduce the
significance level.

Type 2 error (False negatives): To reduce Type 2 error, we
need to capture more sample data and conduct multiple
experiments. Compared to TVLA for symmetric cryptography,
the chances of type 2 errors are much less in asymmetric
cryptography due to two reasons. 1) Large trace sample size:
As illustrated in Figure 4, stages related to asymmetric key
operations are in the order of 10000 (Montgomery multiplica-
tion takes 34563 cycles for 192-bit key) while symmetric key
operations are in the order of 100 (tinyAES takes 21 cycles
for 256-bit key). 2) Large number of experiments: Multiple
input combinations in Algorithm 4 increase the number of
experiments. We combine the nonce pair with different public
keys and random messages to increase the number of different
scenarios in the experiments. This reduces the Type 2 error.
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F. Optimal Partitioning of Traces

The objective of partitioning is to have a good statistical
resolution over the long trace data collected from different
stages. If we have too few partitions, it will lead to more
Type 1 errors while too many partitions will cause more Type
2 errors. Since these longer trace data is over bit serialized
algorithms, we dynamically adjust the partition size based on
the inputs to the algorithm. This preserves the statistical power
of the experiment and provides a more accurate DPA analysis.

Algorithm 5 Trace Partitioning

Require: TestPair {t1i , t2i }
Ensure: Partitions {c1, c2, ..., cn}

1: tXOR = t1i ⊕ t2i
2: C = { } , prev = 1 , U = TraceLength

NonceLength
3: for bit ∈ tXOR do
4: if bit = 1 then
5: if prev = 0 then
6: C.append(ptr)
7: end if
8: prev = 1
9: ptr = ptr + U

10: C.append(ptr)
11: else
12: prev = 0
13: ptr = ptr + U
14: end if
15: end for
16: Return C

Algorithm 5 presents the steps involved in the dynamic par-
titioning process. First, we perform an XOR operation on the
input values. We partition XOR result such that all consecutive
zeros become one partition while each ones separately parti-
tioned into different partitions. For this purpose, we calculate
the unit length to process a single bit by taking the ratio
of the trace length to the nonce length. Then each partition
point is generated with Algorithm 5. Figure 7 illustrates an
example scenario for calculating partitions dynamically. After
the dynamic partitioning, the DPA technique is applied to each
partition separately and proceeds with the steps discussed in
Section III-E.

1 1 1 1 1111 11111111

0111 000001100110

1000 111110011001

Input I :

Input II :

XOR :

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

DPA {

Time
c0

Fig. 7: An example scenario for dynamic partitioning of traces
based on the bitwise difference of the input nonce.

Complexity Analysis: Let the size of two input distributions
used for the differential analysis be M (after scaling to the
same length). If we do not partition (traditional TVLA), the
time complexity of applying the Welch t-test is O(M) since

there are O(M) elements in the two distributions. Partitioning
the traces with input XOR operation can be performed in a
constant time (O(1)). Let n (1 ≤ n ≤ key size) be the
number of partitions and mi be the number of elements in
each partition such that n×

∑n
i=1 mi = M . Therefore, the time

complexity of applying Welch t-test on all the partitions is also
bounded by O(M) since the total number of elements in the
two distributions did not change. The last step of the algorithm
(family-wise rejection) can be performed in a constant time
of O(1). Therefore, the partitioned DPA (TVLA*) does not
increase the complexity compared to traditional TVLA.

G. Classification using Divergence Test

The leakage analysis discussed in the previous section
analyzes a pair of traces for only one stage in the algorithm.
In this section, we first discuss how to classify each stage as
side-channel vulnerable or safe. Next, we make a decision on
the entire implementation. In Section III-B, we generated test
vector pairs, which results in X ×N trace pairs. We perform
the Welch t-test followed by Bonferroni correction for each
stage of implementation and classify each stage as “Pass” or
“Fail”. If a particular stage of the implementation “Fail” during
DPA, the implementation is classified as “Fail”. We classify
the implementation as “Pass” if and only if all the stages of
the implementation pass the divergence test.

H. Fixing the TVLA* Failing Implementations

If a design fails the divergence test, the design should
be fixed against the side channel leakage. This step will
involve different techniques in different instances to prevent
information leakage. For different stages, there can be different
implementation improvements. For example, a popular mitiga-
tion is to use the Montgomery ladder for scalar multiplication
over double and add since it severely reduces the information
leakage through timing. Other mitigations involve randomizing
some value being used in the computation to blind it.

The authors of [20] proposed several mitigation techniques
against horizontal collisions. These mitigations specifically
target the modular multiplication of two field values, which
are integers. Since these field values can be represented in
word form, multiplication takes the form of a matrix. A
representation of the matrix is given below, where a and b are
the two field values being multiplied together and the entry
number corresponds to its word location.a1b1 . . . a1bn

...
. . .

...
anb1 . . . anbn


Operands Blinding: Blind each operand with a random value.
After multiplication, the resulting blinded value is equivalent
to the result of the non-blinded value. This mitigation reduces
the efficiency of the horizontal collision correlation analysis
attack, however, it does not remove all sources of the leakage.
Blinding is memory efficient since it will not take additional
memory, however, an additional operation is added for each
value that needs blinding.
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Shuffling Rows and Columns: Shuffling leads to different per-
mutations of row and column configurations. However, shuf-
fling the rows and columns does not have any impact on
the computed values of the matrix entries. It does add to
the computational time that the attacker needs to perform the
attack by the cost of searching for a permutation. This search
is O(n). Additional memory may be required while swapping
values.
Shuffling and Blinding: This mitigation combines ideas from
the two previous mitigations together. It achieves this by
first blinding one value, shuffling the rows with permutations,
blinding the second value, and then shuffling the columns
with permutations. This technique does prevent the attack
but allows for a zero-value attack to be possible that was
previously not.
Global Shuffling: This is a variation of Shuffling and Blinding
where the permutations of the rows and columns are done at
the same time, instead of sequentially. Therefore, the attacker
needs to now search through a permutation of size n2 instead
of two permutations of size n, which is computationally more
expensive. Shuffling both the rows and columns at the same
time will take more memory than if done sequentially. While
the authors note that this does prevent the attack, more research
is needed to demonstrate the efficiency of the implementation
in using this mitigation.

IV. EXPERIMENTS

In this section, we first describe the experimental setup.
Next, we present results for side-channel leakage assessment.

A. Experimental Setup

We have implemented ECDSA and ECIES in Verilog with
the algorithms outlined in [22] and [23] including three dif-
ferent EC MULTIPLY algorithms of Double-and-Add, Bina-
ryNAF, and Montgomery. Where appropriate, these algorithms
used open-sourced Verilog implementations for SHA and
AES. SEC’s SHA1 implementation in Verilog was used for
hashing operations. tinyAES was used in ECIES for AES
encryption and decryption. For the key derivation function in
ECIES, the standard ANSI X9.63 was used. For the creation
and authentication of tags, HMAC-SHA1 was used, with the
SHA1 functionality being provided by SEC’s SHA1 mod-
ule. After testing the implementation with NIST prime field
curves, we instrumented the design with the steps discussed
in Section III-B. We used Synopsys Design Compiler with
SAED90nm CMOS technology for the synthesis of the design.
We used Synopsys VCS for the simulations of the designs
and to obtain the signal dumps. For test generation, power
signature construction, and leakage assessment, we created
appropriate scripts with Python. For partitioned DPA, we
dynamically partitioned the traces based on the input nonce
with the algorithm proposed in Section III-F.

B. Leakage Assessment of Asymmetric Key Algorithms

We evaluate ECIES and ECDSA implementations using
existing and proposed (TVLA*) methods. To generate private

keys or nonce (as appropriate), we used Algorithm 3. All other
steps in TVLA* remain the same for the rest of the evaluation.
Since direct evaluation with [1]–[3] is not possible due to
input test generation difference, we compare the results with
the standard Welch t-test. Table II presents the final evaluation
performed on different modes of ECC implementations with
the standard Welch t-test and the proposed TVLA* method-
ology. Each column shows the percentage of experiments
“failed” the DPA analysis out of 1000 experiments. The green
color cells represent true positive and true negative results
while the brown color cells represent false positive and false
negative results. It can be observed that the Binary NAF
algorithm has been subjected to type 1 error due to not having
timing-related information on the standard Welch t-test. The
tiny AES implementation was also detected as side-channel
vulnerable with TVLA*, which is consistent with [2].

C. Effect of Partitioned t-test

We created this experiment to demonstrate the effectiveness
of partitioned DPA (preserved the timing information of the
traces) over standard divergence measuring techniques. We
have taken a test case that fails the SPA. For this, we
used the EC MULTIPLY algorithm Double-and-Add with two
nonce values of “0xFF00” and “0x00FF”. As illustrated in
Figure 8, power traces are inverted over the time axis and
hence divergence test should fail.

0
20
40
60
80

(a) k = 0xFF00

0
20
40
60
80

(b) k = 0x00FF

Fig. 8: SPA for Double-and-add two nonce (k) values.

As illustrated in Table III, standard Welch t-test and KL
divergence do not take timing information into account and
hence provided false positive results. Our proposed partition-
based differential power analysis distinguishes the two traces
since the analysis is done on multiple different partitions (16
partitions in this specific example).

TABLE III: Divergence test on traces of 0xFF00 and 0x00FF
Method Welch t-test KL divergence TVLA*
Result False Positive False Positive True Negative

D. Dynamic Partitioning of Trace Data

We have created a separate experiment to demonstrate
the effectiveness of dynamic partitioning. For this purpose,
we generated 1000 trace data pairs with the scalar mul-
tiplication implementation with the Montgomery algorithm
(with shuffling and blinding mitigation). Then we introduced
modifications to the Montgomery implementation to have a
subtle imbalance in the switching activity over the nonce
multiplication and generated a separate data set that consists
of 1000 trace data pairs. These two data sets serve as the
known labeled data set for the evaluation of the results of the
experiment.

In the next step, we conducted experiments with both data
sets with different partition sizes ranging from 1 to nonce size
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TABLE II: Evaluation on ECC Verilog implementations with Welch t-test and partitioned Welch t-test in TVLA*
Welch t-test in TVLA Partitioned Welch t-test in TVLA*

EC MULTIPLY EC MULTIPLYImplementation
D. Add B. NAF Mont

CORD.
CONV SHA1 tiny

AES D. Add B. NAF Mont.
CORD.
CONV SHA1 tiny

AES
ECIES encryption 4.6% 0% 0% 0% 0% 0.012% 18.9% 19.2% 0% 0% 0% 0.012%
ECIES decryption 6.2% 0% 0% 0% 0% 0.008% 17.6% 21.1% 0% 0% 0% 0.008%

ECDSA sign 5.9% 0% 0% 0% 0% 20.9% 18.3% 0% 0% 0%
ECDSA verify 4.2% 0% 0% 0% 0% 16.7% 16.9% 0% 0% 0%
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Fig. 9: Dynamic partitioning of trace data for the nonce size
of 192 on Montgomery scalar multiplication algorithm.

(in this case 192). Next, we deployed dynamic partitioning
on both data sets to observe the number of partitions that
resulted in the comparisons. Figure 9 presents the relationship
between Type1 error and Type2 error with the number of
partitions in the trace data. The yellow curve represents the
number of partitions generated by the dynamic partitioning
algorithm proposed in Section III-F which sums up to the total
number of test cases (1000). This illustrated that the proposed
dynamic partitioning technique selects the best partition for
the statistical comparison.

TABLE IV: Minimum p-values observed with Montgomery
multiplication algorithm with different mitigation techniques
with the experiment conducted for four iterations each con-
taining 1000 test pairs. Brown-colored cells indicate rejected
implementations from the divergence test

# Without
Mitigation Blinding Shuffling Shuffling

and Blinding
Global

Shuffling
1 0.0042 0.0258 0.1842 0.4947 0.6854
2 0.0059 0.0009 0.2874 0.7398 0.7458
3 0.0048 0.0085 0.1879 0.5009 0.5748
4 0.0106 0.0147 0.2935 0.8456 0.6875

E. TVLA* on Different EC MULTIPLY Algorithms
As discussed in Section II-C, EC MULTIPLY is the victim

for most of the side-channel attacks. Therefore, we evaluated
the three algorithms that we have implemented in Verilog.
BinaryNAF and Double-and-Add should fail the experiment
since these algorithms contain imbalanced finite-state machine
(FSM) operations that depend on inputs. For the Montgomery
algorithm, we have implemented multiple variations with and
without mitigation techniques discussed in Section III-H and
applied TVLA*. Table IV presents the results of the experi-
ment with minimum observed p-value in each experiment with

different mitigation techniques. Brown-colored cells indicate
rejected implementations from the divergence test while green-
colored cells represent implementations that are classified as
safe against side channel leakage by TVLA* framework.

Figure 10 presents the minimum p-value (y axis in log
scale) observed among each partition against the generated test
vectors with three algorithms of Montgomery (with blinding
and shuffling), Binary NAF, and Double-and-Add. Here α′

represented the minimum p-value to accept the null hypoth-
esis, which is calculated with dynamic partitioning (α′ =
0.05
C , where C is the number of partitions). As expected, it

can be observed that for Binary NAF and Double-and-Add,
TVLA* has rejected the null hypothesis with the confidence
of 99.999% (with p < α).
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Fig. 10: Minimum p-value observed for partitioned Welch t-
test DPA analysis for 1000 pairs of input vectors over different
scalar multiplication algorithms.

TABLE V: Divergence test on different EC Multiply Algo-
rithms for curve P-192, 192 bit key size

EC MULTIPLY TVLA*

Algorithm # Clk
Cycles SPA min(p) Divergence

Test
Double-and-Add 20606 Fail 0.00010 Fail

Binary NAF 3837 Pass 0.00006 Fail
Montgomery 34563 Pass 0.61739 Pass

Table V illustrates the divergence test results for the three
implementations. TVLA* methodology classifies Double-and-
ADD and Binary NAF implementations as side-channel vul-
nerable, while the Montgomery implementation is classified
as side-channel resistant.

F. Physical Leakage Locations in ECDSA and ECIES
TVLA* framework analyzes the power usage of a cryp-

tographic implementation at the pre-silicon stage. It divides
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implementation into stages by analyzing the control flags.
Therefore, the evaluation (detection) results provide us the
information about all the stages. A designer is mostly inter-
ested in the stages (components) that failed TVLA analysis,
which would be a potential leakage location in the fabricated
chip. Figure 11a illustrates the leakage locations in the ECDSA
implementation. In this evaluation, ec multiply module failed
for 98 partitioned-DPA tests. None of the other ECDSA sub-
modules failed during the evaluation consisting of 3000 tests.

solve point
(0)

ec multiply
(98)

curves
(0)

field add
(0)

field mult
(0)

field inverse
(0)

clk
rst

start
Pk/P(x,y,z)

msg
r,s

sign /
verify

SHA

(a) Module-level leakage locations in the ECDSA implementation

solve point
(0)

ec multiply
(124)

curves
(0)

kdf
(0)

clk
rst

start
Pk/P(x,y,z)

msg/ϵ(msg)
r,s

AES

ϵ(msg)
/ msg

TRNG

SHA

(b) Module-level leakage locations in the ECIES implementation

Fig. 11: Leakage locations (highlighted in ■) and the cor-
responding number of failed tests (in brackets) based on
partitioned-DPA analysis on ECDSA and ECIES Verilog im-
plementations during TVLA* evaluation.

Figure 11b illustrates the leakage locations in the ECIES
implementation. As we can see from the figure, ec multiply
module failed for 124 partitioned-DPA tests. None of the
other ECIES modules failed during the evaluation consisting
of 3000 tests. It can be observed from Figure 11 that the scalar
multiplication module (ec multiply) is the most leaky location
in both ECIES and ECDSA implementations.

G. Testing TVLA* on Bare Metal ECC Implementation

In this experiment, we highlight the possibility of using
the proposed TVLA* technique on firmware-level implemen-
tations of public key cryptography modules on embedded
systems. For this process, we have used the OpenRiscV32 [26]
processor implemented in Verilog as the host processor for the
embedded system. Next, we implemented ECC cryptography
modules in C and compiled them with the RISC-V toolchain.
Figure 12 illustrates the module level block diagram of the
hardware setup. Then we evaluated different scalar multipli-
cation algorithms against their side-channel leakage.

OR32
CPU

ROM
(Firmware)

RAM

IO

Nonce

P(x,y,z)

Messege

Fig. 12: Firmware-level evaluation of ECC implementation.

Figure 13 illustrates the minimum p-values observed on
firmware level implementation of scalar multiplication algo-
rithms of Montgomery (with shuffling and blinding), Binary
NAF and Double-and-Add. Here α′ represents the minimum
p-value to accept the null hypothesis, which is calculated
with dynamic partitioning (α′ = 0.05

C , where C is the
number of partitions). As expected, it can be observed that
for firmware implementations of Binary NAF and Double-
and-Add, TVLA* has rejected the null hypothesis with the
confidence of 99.999% (with p < α).
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Fig. 13: Minimum p-value for partitioned Welch t-test DPA
analysis on firmware-level ECC implementation for 1000 pairs
of input vectors over various scalar multiplication algorithms.

H. Applicability and Limitations

In this paper, we focused on the Elliptic Curve Cryptogra-
phy (ECC) family of algorithms due to their improved security,
and performance. Further, the implementation of ECC-based
hardware algorithms can be considered more complex com-
pared to the other asymmetric key cryptography algorithms.
However, the applicability of TVLA* is not limited to asym-
metric cryptosystems based on the ECC family. In order to
demonstrate the applicability of TVLA* on other asymmetric
cryptography algorithms, we first discuss three popular RSA
implementations based on three different algorithms: Chinese
Remainder Theorem (CRT), Montgomery Multiplication, and
Square-and-Multiply method. Then we evaluate three designs
of RSA that implement the above algorithms with TVLA*.
Finally, we discuss the applicability of TVLA* on hybrid
cryptosystems.

RSA with CRT: CRT optimization is applied during the
decryption process to speed up the modular exponentiation. In-
stead of performing a single modular exponentiation operation
using the private exponent, the CRT method breaks it down
into multiple smaller modular exponentiation using the prime
factors of the modulus. This smaller modular exponentiation
can be computed separately and combined using the CRT
formulas. However, the CRT method can introduce vulnera-
bilities to power side-channel attacks. For example, the power
consumption during the modular exponentiation steps might
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vary depending on the value of the corresponding prime factor.
An attacker can exploit these variations to extract information
about the secret key.

RSA with Sqaure-and-Multiply: In the Square-and-Multiply
algorithm, the exponent is typically represented in binary form,
and the algorithm performs repeated squaring and multiplica-
tions based on the bits of the exponent. These operations can
result in different power consumption patterns depending on
the value of each bit.

RSA with Montgomery Multiplication: In the case of Mont-
gomery multiplication, the power consumption patterns can
vary depending on the intermediate values and operations
performed during the algorithm. For example, the number of
shifts and additions involved in Montgomery multiplication
can introduce variations in power consumption. An attacker
can analyze these power consumption patterns to potentially
deduce information about the secret key or other sensitive data.
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Fig. 14: Minimum p-value for partitioned Welch t-test DPA
analysis on RSA implementation for 1000 pairs of input
vectors over various RSA implementation algorithms.

TVLA* on RSA: We have used three different Verilog im-
plementations of RSA with three different algorithms (Chi-
nese Remainder Theorem, Square-and-Multiply, and Mont-
gomery Multiplication with shuffling and blinding mitigation).
Figure 14 illustrates the minimum p-values observed after
performing TVLA* methodology. As expected, power side-
channel vulnerability of mitigated RSA implementation based
on the Montgomery Multiplication algorithm is classified by
TVLA* as safe against side-channel leakage while imple-
mentations based on the Chinese Remainder Theorem and
Square-and-Multiply are classified as susceptible to power
side-channel leakage.

TVLA* on Hybrid Cryptosystems: TVLA* enables the eval-
uation of hybrid cryptosystems which combines both asym-
metric and symmetric components in the implementations.
Since the components are evaluated separately, asymmetric
components of the system can be evaluated with TVLA*,
while symmetric components can be evaluated with existing

symmetric TVLA [1], [2] techniques. The composition of
results is trivial since we consider it a system failure if any of
the components fail.

V. CONCLUSION

In this paper, we proposed a test vector leakage assess-
ment (TVLA) technique for asymmetric key algorithms. We
analyzed the applicability of existing TVLA techniques on
asymmetric algorithms and identified the fundamental limi-
tations. We proposed a systematic test generation technique
to generate valid test cases that can maximize the switching
difference in side-channel vulnerable implementations. We
developed a differential power analysis technique for asym-
metric key cryptography algorithms. Specifically, we presented
a partition-based t-test evaluation technique to evaluate with
higher statistical accuracy while preserving timing information
over the traces. Experimental evaluation on diverse elliptic
curve cryptography algorithms demonstrated that our proposed
technique has better accuracy than statistical techniques used
in TVLA for symmetric key cryptography algorithms.
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