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Abstract—A key problem in post-silicon validation is to identify
a small set of traceable signals that are effective for debug
during silicon execution. Structural analysis used by traditional
signal selection techniques leads to poor restoration quality. In
contrast, simulation-based selection techniques provide superior
restorability but incur significant computation overhead. In this
paper, we propose an efficient signal selection technique using
machine learning to take advantage of simulation-based signal se-
lection while significantly reducing the simulation overhead. The
basic idea is to train a machine learning framework with a few
simulation runs and utilize its effective prediction capability (in-
stead of expensive simulation) to identify beneficial trace signals.
Specifically, our approach uses (1) bounded mock simulations
to generate training vectors for the machine learning technique,
and (2) a compound search-space exploration approach to identify
the most profitable signals. Experimental results indicate that our
approach can improve restorability by up to 143.1% (29.2% on
average) while maintaining or improving runtime compared to
state-of-the art signal selection techniques.

Keywords—Post-silicon debug, simulation, feature selection, su-
pervised learning

I. INTRODUCTION

THe goal of post-silicon validation is to ensure that the
fabricated, pre-production silicon functions correctly while

running actual applications under on-field operating conditions.
Post-silicon validation is a complex activity performed under
aggressive schedule, accounting for more than 50% of the
overall validation cost of a modern integrated circuit [1],
[2]. A fundamental constraint in post-silicon validation is
limited observability: limitations in the number of output
pins, coupled with restrictions imposed by area and power
constraints on internal trace buffer sizes, imply that only a
few hundreds among the millions of internal signals can be
traced during a silicon execution. Furthermore, in order for
a signal to be observed, the design must be instrumented a
priori with appropriate hardware that routes the signal to an
observation point. It is therefore crucial to develop techniques to
identify trace signals that maximize design visibility and debug
information under the constraints imposed by the post-silicon
observability restrictions.

Post-silicon trace signal selection in current industrial prac-
tice is primarily manual and guided by the designer’s experience
and insight, often with no objective techniques for qualifying
the observability quality of a selected set of signals. Critical
observability holes manifest themselves only during silicon
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debug, typically in the form of inadequacy of the set of traced
signals for diagnosis or localization of a bug. However, this is
too late for redesign of the debug infrastructure or selection
of new trace signals (with associated routing hardware), which
would require a significant hardware change. Thus one has
to contend with costly escapes, complex workarounds, and in
many cases, more silicon respins.

There has been significant recent research to address the
above issue by developing algorithms for signal selection
through automatic analysis of pre-silicon (RTL or gate-level)
designs. The focus is to identify a set of signals S that
maximizes state restorability, i.e., the set of states that can be
reconstructed based on the observation of the signals in S. A
common class of signal selection techniques involves defining
a metric based on the design structure, which is then used in
a (typically greedy) selection process to evaluate a candidate
signal set [3], [4], [5], [6]. These approaches are fast but provide
a low value of state restoration. Recent work on simulation-
based signal selection [7] provides superior restoration quality
but incurs prohibitive computation overhead. A hybrid signal
selection approach [8] has been proposed which incorporated
a combination of metric-based and simulation-based signal
selection approaches. However, using less simulation to save
selection time sacrifices the restoration performance.

The key contribution of this paper is a novel signal selection
technique that retains (and improves upon) the restoration
quality of simulation-based signal selection while achieving
faster or comparable selection time complexity. Our approach
is characterized by two key components: (1) for the first time
to our knowledge, a machine learning technique is applied
to model the restoration strength of the signals; and (2) the
raw machine learning algorithm has been augmented with
a compound back-end selection technique to find the most
profitable set of signals using the circuit model. The basic idea
is to run only a small number of simulations to train the machine
learning framework. Subsequently, our approach will utilize
the predication capability of the machine learning replacing
the need for costly simulation runs. Our proposed approach
address three important challenges in using machine learning for
signal selection. First, we have to identify a machine learning
algorithm that is suitable for signal selection. We also need to
determine the minimum number (as well as specific types) of
training vectors (simulation runs) that will provide an effective
trade off between the cost (time) and prediction accuracy.
Finally, we need to develop a signal selection algorithm that
utilizes the best use of our model to select the best set of
signals. Our experiments demonstrate that our approach can
improve restoration quality by 143.1% (29.2% on average).

The remainder of the paper is organized as follows. Section II
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Fig. 1. Simplified overview of post-silicon validation flow and role of trace
signal selection. Signals selected through pre-silicon analysis are routed to
trace buffer from which signal states are restored offline to assist in debug.

presents the relevant background. We present the technical
details of our approach in Section III followed by experimental
results in Section IV. Section V discusses related work. We
conclude in Section VI.

II. BACKGROUND AND MOTIVATION

A. Post-silicon Validation Overview
Fig. 1 provides a very simplified overview of the post-silicon

validation and debug process, focusing on the role of signal
selection. A modern IC design includes debug mechanisms
such as embedded logic analyzers (ELA) to record values
of internal design signals during silicon execution. An ELA
consists of trigger and sampling units; trigger units are used to
specify events that trigger recording initiation, and sampling
units then record a small set of signals in the trace buffer for
a specified number of cycles. The sampled signals can then
be transferred from the trace buffer for off-chip analysis. In
particular, the off-chip analysis can apply restoration algorithms
using the sampled signals to infer the values of other design
signals and reconstruct internal states. The traced and restored
signal values can be used together to detect design errors. To
make this possible, the set of signals to be sampled is selected
a priori by pre-silicon analysis of the design. Note that the
number of sampled signals is restricted by the width of the
trace buffer and typically represents a very small fraction of the
internal signals in the design. Thus ideally one would like to
choose the set of signals that permit maximum reconstruction
of design states. Unfortunately, exhaustive exploration of all
signal subsets to determine this optimum is computationally
intractable; most signal selection approaches [3], [4], [5], [7]
involve developing heuristics that are efficient in practice while
still yielding signals with good restorability properties.

B. Signal Restoration
Restoration entails inferring values of untraced signal states

from a sequence of traced signals sampled over a period of
time. Figure 2 illustrates forward and backward restoration for
common logical gates. Forward restoration entails reconstruct-
ing the output from the input. For example, if one of the inputs
of the AND gate is ‘0’, the output value would be ‘0’. If all
the inputs are known, the unknown output can be definitely

a) Forward Restoration b) Backward Restoration
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Fig. 2. Basic restoration rules for common logic gates. (a) Forward restoration:
knowledge of inputs can reconstruct the output. (b) Backward restoration:
knowing the output can restore the unknown inputs.

TABLE I. ILLUSTRATION OF RESTORED SIGNALS FOR THE SIMPLE
CIRCUIT SHOWN IN FIGURE 3. THE TRACED SIGNALS A AND C ARE

SHADED. AN X INDICATES THAT THE SIGNAL VALUE CANNOT BE
RESTORED AT THAT CYCLE USING THE KNOWN SIGNAL STATES.

Signal/Cycle 1 2 3 4 5 6 7 8
A 0 1 0 0 0 1 1 1
B 0 X 1 1 1 X X X
C 0 0 1 1 1 1 1 1
D X 0 0 0 0 0 1 1
E X 0 0 1 1 1 X X
F X X 0 0 1 1 1 1
G X 0 X 0 0 0 1 1
H X 0 X 0 0 1 X X

determined. On the other hand, backward restoration entails
reconstructing the inputs from the output. For example, if the
output of the AND gate is ‘1’, both of the inputs would be
‘1’. Backward restoration might fail in certain scenarios. For
example, if the output of a 2-input AND gate is ‘0’ and one of
the input has known value of ‘0’, the other input still cannot
be inferred. During signal value reconstruction, forward and
backward restoration are repeated for all the gates in the circuit
back and forth until no more states can be restored. Restoration
Ratio (RR), defined below, is a popular metric for measuring
the quality of a set of selected trace signals.

Restoration Ratio =
# of traced signals + # of restored signals

# of traced signals

Consider the simple circuit shown in Figure 3. Suppose that
the width of the trace buffer is 2 (i.e., two signals can be
traced at each clock cycle), and the trace buffer depth is 8 (i.e.,
selected signals are traced for 8 cycles). Suppose that A and
C are selected as trace signals. Table I then shows the signal
states that can be restored: 48 signal values can be restored
while 16 are traced, yielding a restoration ratio of 3.0.

C. Simulation-based Signal Selection
Chatterjee et al. [7] developed simulation-based signal

selection, i.e., the use of mock simulations to identify trace
signals. They demonstrated that simulation-based signal selec-
tion provided better restoration ratio than older approaches of
optimizing metrics based on circuit structure. This approach is
tractable for small designs for two key reasons. First, there is
negligible overall variation in restoration quality over different
random input vectors. Second, restoration ratio is insensitive to
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Fig. 3. A simple circuit to illustrate restorability.

the trace buffer depth beyond a certain size. The first observation
permits the use of a single simulation with one random input
vector for evaluation of restoration quality; the latter reduces the
evaluation time by using a smaller trace buffer depth in mock
simulations. Chatterjee et al.’s approach involves an iterative
removal process. They start with a set of candidate signals
which is initialized with all the flip-flops. In each iteration,
their algorithm attempts to remove one of the signals whose
removal will have the least impact on restoration ratio. The
process continues until the number of remaining candidates
equals to the trace buffer width.

Note that if the initial candidates set includes N flip-flops,
then O(N2) simulations are required to reach the final selection
set. The cost of simulations makes the approach computationally
prohibitive for large circuits. To address this issue, they propose
a pruning phase prior to running the algorithm. In each iteration
of their pruning phase, dstep flip-flops are removed from the
candidates set, instead of just one flip-flop. The pruning phase
continues until the average restorability of the candidates set
drops below PT × Rmax, where PT is the cutoff threshold
(typically PT = 0.95) and Rmax is the maximum restorability
when all the flip-flops are present in the candidates set.

There are two key problems with such a pruning approach.
First, the coarse-grained elimination parameter dstep can be
detrimental to the quality of selection process, as some
important signals may be removed during preprocess. This
happens when each of the signals removed in a pruning iteration
does not contribute significantly in the restoration ratio but their
combination might do. Furthermore, even with pruning, the
complexity of the approach is Ω(N2/dstep); since for most
large circuits N >> dstep, the algorithm is still computationally
prohibitive for industial-scale circuits.

To mitigate this limitation, Li et al. [8] proposed a hybrid
approach which incorporated a combination of metric-based
and simulation-based signal selection approaches. In each step
of their algorithm, the most beneficial flip-flop is added to
the trace signals candidate set, instead of removing the least
beneficial one. However, using less simulation to find the top
candidates sacrifices the restoration performance.

Another drawback of these approaches is that they both start
at a fixed starting point in the search space (all flip-flops for
Chatterjee et al., no flip-flops in Li et al.) and iterate until they
reach a local maximum; the local maximum may not be the
globally optimum selection. Exploring more combinations in
the search space will be computationally expensive as it needs
more mock simulations/restoration processes.

Elimination Based 
Selection

Augmentation Based
Selection

Pick the best result

Model the circuit using
machine learning techniques

Selected Signals

Random Initial Set 
Selection

Fig. 4. Overview of our approach and its relation to existing simulation based
approaches [7], [8]. We use machine learning techniques to replace mock
simulations with fast predictions. This allows us to run both elmination-based
and augmentation-based algorithms as well as our newly proposed random
initial set selection technique. Running all these techniques together expands
our search space and increase the chance of finding a better global solution.

The learning-based signal selection approach we propose in
this paper addresses these issues. We first model the circuit
using machine learning techniques and bounded simulations
as training vectors. After that, our approach replaces mock
simulations with faster prediction. This enables efficient explo-
ration of a larger search space and thereby produces comparable
or better results with a faster or comparable time complexity.
Although there is no gaurantee that our approach is able to find
the global maximum, however, due to fast estimations instead
of simulations, it can find several local maximums by starting
from different random initial sets. This allows us to explore
bigger search space and find a better solution.

III. LEARNING-BASED SIGNAL SELECTION

Fig. 4 shows the overview of our approach and its relation to
existing simulation based approaches [7], [8]. Both elimination-
based [7] and hybrid augmentation-based [8] approaches use
mock simulations to evaluate the quality of candidate signals.
However, using mock simulations is expensive and it can limit
the search space exploration. Our approach makes use of
machine learning techniques to meliorate the cost of mock
simulations. In particular, we first model the circuit using ma-
chine learning techniques and bounded mock simulations. After
that, the model can be used to explore a bigger search space
as we are replacing mock simulations with fast predictions.
This allows us to run both elmination-based and augmentation-
based algorithms as well as our newly proposed random initial
set selection technique. Running all these techniques together
expands our search space and increase the chance of finding a
better global solution.

In order to reduce the number of mock simulations and also
increasing the accuracy in modeling, we propose a two-step
signal selection approach using supervised learning: in the first
(pre-processing) step, a small number of mock simulations is
used as a training set to build a linear model of the circuit and
eliminate non beneficial signals; in the second (selection) step,
we use a non-linear and more accurate prediction model to find
the final selected signals using different selection techniques.
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A. Problem Formulation
The goal of a selection algorithm is to construct a set S of w

flip-flops (out of N flip-flips in the circuit) so that restoration
ratio during post-silicon debug is maximized. Here w is the
width of the trace buffer and is a parameter to the algorithm. To
motivate our approach, we first provide a rigorous formulation
of signal selection as a constrained optimization problem. Note
that the selected signal set S can be mapped to a feature vector
v = 〈f1, f2, ..., fN 〉, with fi ∈ {0, 1}. Informally, fi = 1 if and
only if the i-th flip-flop is selected in S, otherwise 0. Note that
v completely identifies the set S and vice versa; we will refer
to S as the candidate signal set of v and v as the candidate
feature set of S. We then define rm(v) to be the number of
signal states that can be restored over a window of m cycles
by tracing the candidate signal set of v. We then formulate
the problem of signal selection as the following constrained
optimization problem.

maximize rm(v)

under constraint
N∑

k=1

fk = w (1)

The problem as posed above includes both the trace buffer
width (w) and simulation window (m) as parameters. Clearly,
a larger value of m yields more accurate restoration estima-
tion, and consequently, higher restoration ratio during debug.
However, previous work [7] showed that even choosing a small
value of m (e.g., for m = 64), there is a strong correlation
between the restoration quality in m cycles and that in a real
post-silicon debug scenario. Thus, for the rest of this paper,
we treat m as a small constant.

B. Overview and Motivation
Solving the above optimization problem requires an estima-

tion of rm(v) given a feature vector v. Indeed, both metric-
based and simulation-based selection approaches can be seen
as approaches to estimate this function, through structural
analysis of the circuit, and applying mock simulation with
restoration, respectively. The lower restoration quality of metric-
based approaches are attributed to the fact that extracting this
function from circuit structure alone is often infeasible due
to complicated overlaps between restorable states of different
flip-flops. On the other hand, simulation-based techniques are
expensive for industrial circuits, even for a small simulation
window, since the circuit size (and therefore the size of the
feature vector v) is large.

Our approach uses regression supervised machine learning
techniques to estimate rm(v). Supervised learning algorithm
is inferring a function from training data. Training data is a
set of input vector and the desired output which is number of
restored states in our case. Once the model is trained using
training examples, it can be used to predict the output value of
any new input vector. In our case, the training vectors come
from restoration estimates obtained from mock simulations for
given feature vectors. If the training set is selected carefully

Fig. 5. Real values of rm(v) versus predicted values for different random
vectors in s38417 benchmark using cubist model from caret package in R [9].
Each random vector represents a set of randomly selected trace signals and is
showed as a circle in the graph.

to be effective and small (i.e., only a small set of mock
simulations is necessary), and the predicted model is accurate,
then the technique can provide high restoration quality at low
computation cost. Regression analysis techniques are effective
in predicting the parameter estimates in cases where (1) the
number of parameters is large, and (2) estimation through
exhaustive (or even significant) simulation of all the parameters
is infeasible. Thus these techniques are appropriate for solving
the signal selection problem as posed in our formulation.

Nevertheless, applying these techniques directly on the
problem is challenging. In particular, regression analysis
techniques require generation of training vectors such that
(1) generation time is reasonable, and (2) a reasonable number
of vectors is generated to avoid deviation of the estimated model
of the function from the (unknown) actual model. Note that
having too few vectors can lead to underfitting, and too many
vectors can lead to overfitting. Underfitting happens when the
model is too simplistic (generlized), resulting in a low accuracy
in both training and new data. On the other hand, overfitting
happens when the model is too specific to the training data,
resulting in a high accuracy in trianing data and low accuracy
in new data. Thus both overfitting and underfitting lead to high
prediction error for unknown input vectors. Furthermore, the
class of regression model being used is another important factor.
There are many regression models that each of them are a good
fit for a prticular application or domain. For example, linear
fitting may not be a good choice for modeling the complicated
nonlinear relationships between the flip-flops of the circuit.

Fig. 5 shows the relationship between the real value of
rm(v) (calculated using simulation) and the predicted value for
different random vectors where m = 64 in s38417 benchmark.
Each random vector represents a set of randomly selected trace
signals and is represented by a circle in the graph. The cubist
model (a rule based regression model) from caret package in
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Fig. 6. Proposed signal selection process. A quick linear model is used to
eliminate most of the non-beneficial flip-flops. A more accurate non-linear
model is used to select w flip-flops out of the remaining flip-flops where w is
the trace buffer width.

R [9] is used for modeling the circuit in this experiment. It
should be noted that the vectors used for training the model
were all different from the one used for this experiment. It can
be observed that if the right model and training vectors are used,
there is a high accuracy in prediction and strong correlation
between predicted and real values. This permits the use of
predicted values instead of the real ones without significant
loss in quality. The same high accuracy was observed for other
benchmarks as well which is discussed in Section IV in details.

C. Signal Selection Algorithm

In order to increase the accuracy of the prediction while
simultaneously reducing the runtime of modeling/prediction in
large circuits, we propose a two-step modeling scheme. Fig. 6
illustrates the framework. In the first step, a linear model is
applied to eliminate less important flip-flops and reduce the
size of feature vector. Although the accuracy of linear modeling
is low, it is fast and can be used to quickly prune out the non-
beneficial signals and determine top candidates using simple
calculations. In the second step, a non-linear regression is
applied on the reduced set to produce a finer model of the
remaining flip-flops. The reduced number enables us to use a
more accurate non-linear model with fewer training vectors for
selecting the final set of signals.

Since we are replacing the expensive mock simula-
tion/restoration with prediction, we can explore a larger search
space compared to existing approaches [7], [8]. Fig. 7 illustrates
the search space exploration using different techniques. The
horizantal axis is the number of signals being traced and the
vertical axis is the number of restored states. The circle is an
initial state of the selection approach and the square is the end
state. Note that the elimination-based technique [7] (shown in
green) starts with all the flip-flops and stops when number of
remaining flip-flops is equal to the trace buffer width w; the
hybrid augmentation approach [8] (shown in red) starts with
no flip-flops and stops when w signals are selected. It can be
observed that these are just two ways of exploring the search
space and they will end up in a local maximum. We propose a
new way of exploration - random initial set - which can help to
explore significantly larger search-space. In our approach, we
start with a random set of w signals and in each iteration we
remove the least beneficial flip-flop and add the most beneficial
flip-flop to the candidates set. This process terminates once
it is not beneficial to do this removal-addition anymore. This
process is shown by blue in the Fig. 7. It can be observed that
running all these techniques at the same time explores more of
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Fig. 7. Different signal selection techniques for exploring the search space.
The circle is an initial state of the selection approach and the square is the
end state. The elimination-based [7] is shown in green, the hybrid [8] in red,
and our proposed machine learning based approach is presented in blue.

search space and increases the chance of finding a better local
maximum which yields to a better set of selected signals.

Algorithm 1 outlines the major steps involved in our proposed
learning-based signal selection technique. First, we start by
pruning the set of candidate signals. In this step, most of the non-
beneficial flip-flops (in term of restorability effectiveness) are
identified and removed using a linear model. Next, an accurate
model of the rm(v) is created using the remaining signals.
Once the final model is created, we run both elimination-based
and augmentation-based techniques to generate two sets of
final candidate signals and choose the one with better result.
Finally, we run our proposed random initial set technique
r times (r = 10 in our experiments 1) and return the best
result of these runs, elimination-based, and augmentation-based
techniques as the selected signals. It should be noted that each
run of random initial set algorithm starts from a completely
random initial set. Combining all the techniques along with
multiple run of our proposed random initial select approach
can increase the explored search space which will boost the
final result. Next, we will explain each step of our approach
in more details.

1) Linear Pruning: In order to improve the prediction
accuracy and also decrease the runtime of simulation/modeling,
we apply a pruning phase which is equivalent to feature
selection in machine learning. In this step, a linear modeling is
used to quickly eliminate most of the non-beneficial flip-flops
(in term of restorability effectiveness). For our explaination
here, we use support vector regression with linear kernel which
is the simplest form of this well-known model. However, any
other linear regression technique can be used as well. Given the
training set 〈vi, rm(vi)〉, the support vector regression solution
is a set of j support vectors which is used for predicting new
vectors. Denoting the predicted rm(v) as r̂m(v), we have the
following equation:

1In our experiments, we did not see any new end state that further
expands the search space for r bigger than 10. In addition, this is a tunable
parameter of our approach and depending on the time/performance
constraints can be tuned during the signal selection.
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Algorithm 1 Learning-based Signal Selection
1: procedure LEARNINGSELECTION(circuit,m, tpruning,
p, r, tselection, w, candidateModels)

2: Prune the least useful signals by calling LinearPruning
3: Create the final model of the circuit by calling Select-

FinalModel
4: Set v as the selected signals by calling Elimination-

Based
5: maxRestorability = r̂m(v)
6: Set vnew as the selected signals by calling Augmenta-

tionBased
7: if r̂m(vnew) > r̂m(v) then
8: v = vnew)
9: maxRestorability = r̂m(v)

10: end if
11: for i = 1; i <= r; i+ + do
12: Set vnew as the selected signals by calling Rando-

mInitialSet
13: if r̂m(vnew) > r̂m(v) then
14: v = vnew)
15: maxRestorability = r̂m(v)
16: end if
17: end for
18: return v
19: end procedure

r̂m(v) = ŵ0 +

j∑
k=1

αkk(vk, v) (2)

In Equation 2, v is the vector whose restorability we wish to
predict, vk is the kth support vector, and αk is the corresponding
coefficient. In addition, k(vk, v) is the output of the kernel
function used in support vector regression. In linear mode, the
kernel function is of the form k(vk, v) = vTk .v, where vTk is the
transpose of vk. Then we can rewrite Equation 2 as follows.

r̂m(v) = ŵ0 +

j∑
k=1

αkv
T
k .v (3)

⇒ r̂m(v) = ŵ0 + ŵT .v (where ŵ =

j∑
k=1

αkvk) (4)

Equation 4 illustrates the simplified version of the prediction
formula when a linear kernel is used. In fact, the model is
a simple hyperplane which has the minimum error amongst
all the hyperplanes over the training set. Although this linear
model may not be the best fit for the non-linear function rm(v),
it can be used to quickly detect and eliminate non-beneficial
flip-flops as those will get a smaller coefficient in the ŵ vector.
Algorithm 2 outlines the linear pruning process. First, a set
of training vectors is generated followed by a linear modeling
using support vector regression. Next, the weight vector ŵ of
predicted function is calculated as illustrated in Equation 4.
The flip-flops with most effect on restorability have largest
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Fig. 8. Number of profitable signals remaining after linear pruning (out
of 32 signals selected when linear pruning is not applied or p = 1) for
different values of p in S38417 benchmark.

values in corresponding index of weight vector. Therefore, the
index of p × N largest values in weight vectors are kept as
most useful flip-flops in terms of restorability and the rest is
removed. Here, N is the number of flip-flops in the circuit
and p is the pruning factor. Smaller p means less features in
next step which leads to a more accurate and faster non-linear
model. However, due to lower accuracy of linear model, lower
value of p will also increase the chance of eliminating a useful
flip-flop by mistake. The output of the process is the preserved
flip-flops set S.

The linear model has a higher prediction error; however, we
compensate for this by selecting a bigger set (compared to the
buffer width) of the top signals in the pruning phase. The more
accurate non-linear model in the second step enables us to pick
the most profitable signals from this set with a more accurate
and fine-grained selection. To illustrate the fact that top signals
are not removed in the linear pruning, Figure 8 shows how
many of the 32 top signals are kept when we keep reducing
the p value for benchmark S38417. As we can see that even
for p = 0.05, we have most of the profitable signals left. In
our experiments, we set p = 0.15.

Algorithm 2 Linear Pruning Algorithm
1: procedure LINEARPRUNING(circuit,m, t, p)
2: Create selected features set S
3: trainVectors =GenerateVectors(circuit,m, t)
4: Model r̂m(v) using support vector regression with

trainVectors and linear kernel

5: Calculate the weight vector ŵ =
j∑

k=1

αkvk

6: S = the index of top p×N values in vector ŵ
7: return S
8: end procedure

2) Generating Training Vectors: Algorithm 3 outlines the
pseudo-code for training vector generation used in both
pruning and final model. Our implementation entails an X-
simulator in C++ which can conduct the simulation as well
as forward/backward restoration in the circuit. To consider the
effect of each flip-flop on total restorability, two vectors are
generated. First a vector in which only a particular flip-flop
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is selected, and second a vector in which all the flip-flops are
selected except that particular flip-flop. In addition, to include
the vectors with different number of flip-flops, N − 1 vectors
with 2, 3, . . . , N randomly chosen flip-flops are generated. This
process continues until a total number of t vectors are generated.
This unbiased random vector can model the correlation between
the effect of different flip-flops. After generating training
vectors, in order to calculate the corresponding rm(v), we
first run a mock simulation over m cycles assuming that the
signals in training vector are being traced. We then apply
forward/backward restoration techniques decribed in Section
II-B to get the total number of restored states. Finally, we have
t pairs 〈vi, rm(vi)〉 that are used as training vectors for the
regression technique. The set of generated vectors trainingSet
and corresponding restorability R are returned as the output of
algorithm.

Algorithm 3 Training Vector Generation
1: procedure GENERATEVECTORS(circuit,m, t)
2: Create training vectors set trainingSet
3: Create restoration power set R
4: totalGenerated = 0
5: for each flip-flop f in circuit do
6: Add a vector to trainingSet in which only f is

selected
7: Add a vector to trainingSet in which only f is

omitted
8: totalGenerated=totalGenerated+2
9: end for

10: for i = 2; i <= N ; i+ + do
11: Add a vector to trainingSet in which exactly i

random flip-flops are chosen
12: totalGenerated+ +
13: end for
14: while totalGenerated < t do
15: length= a random number between 1 and N
16: randomV ector=a vector in which exactly length

random flip-flops are chosen
17: if randomV ector 6∈ trainingSet then
18: Add randomV ector to trainingSet
19: totalGenerated+ +
20: end if
21: end while
22: for each vector trainingV ector in trainingSet do
23: R(v) = Restoration power of trainingV ector

using a mock simulation followed by a restoration process
over m cycles

24: end for
25: return trainingSet, R
26: end procedure

3) Final Model Selection: The reduced number of flip-flops
in feature vector enables us to create a more accurate non-linear
model of the circuit with significantly less number of training
vectors. The effective number of required training vectors in
this step is reduced by 1 − p, where p is the pruning factor.
There are several nonlinear models available to use, each of

which can be a good fit in a specific domain. Mean Prediction
Error (MPE) can be used to measure the quality of a model
on a test vector set of size n, is defined as below.

MeanPredictionError = 1/n ∗
n∑

k=1

|r̂m(vk)− rm(vk)| (5)

Algorithm 4 outlines the final model selection process
after the pruning. First, a set of tselection training vectors
is generated for final model training. In order to find the best
non-linear model in the candidateModels set, we do a quick
training followed by an MPE calculation on a small set of
vectors randomly selected from the bigger training vectors set.
It should be noted that we do not use the same set of vectors
for quick training and testing (MPE calculation); this makes
our model selection unbiased and yields a better result for new
input vectors. After choosing the best model with minimum
MPE, we retrain it with all the training vectors and return it
as the result.

Algorithm 4 Final Model Selection Algorithm
1: procedure SELECTFINALMODEL(circuit,m,
tselection, w, candidateModels)

2: trainVectors = GenerateVectors(circuit,m, tselection)
3: quickTrainVectors =10% of trainVectors randomly

selected
4: quickTestVectors =10% of trainVectors randomly se-

lected, exclusive with quickTrainVectors
5: for each model model in candidateModels do
6: Model r̂m(v) with pruned features using model and

quickTrainVectors
7: Calculate MPE for r̂m(v) on quickTestVectors
8: end for
9: bestModel = model with minimum MPE

10: result = Model r̂m(v) with pruned features using
bestModel and trainVectors

11: return result
12: end procedure

4) Elimination-based Signal Selection: Now that we have
the final model of the circuit, we can use it to select the
final set of signals. Algorithm 5 outlines the steps involved in
selecting the signals using the circuit model and elimination-
based technique described by Chatterjee et al. [7]. After the
pruning and modeling phases, all the remaining flip-flops are
set to be selected in signals vector v (i.e., are set to 1). In each
iteration of the algorithm, a signal which has the minimum
impact on restoration performance of the v is eliminated from
the vector (i.e., is set to 0). Here, instead of evaluating rm(v)
using mock simulations, the predicted value r̂m(v) is used. This
enables the algorithm to proceed very fast, while utilizing the
high prediction accuracy of a non-linear model. This process
continues until the number of remaining flip-flops is equal to
trace buffer width w. The set of selected signals S is returned
as the algorithm output. It should be noted that our approach
is not identical to Chatterjee et al.’s. Because of computational
limitation, they use a coarse-grained prunning pre-processing to
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remove most of the signals from the candidates set which can
degrade the performance of the final set of signals. Our approach
does not have this limitation as we use quick predictions instead
of expensive simulation/restorations.

Algorithm 5 Elimination-based Signal Selection
1: procedure ELIMINATIONBASED(circuit, r̂m(v), w)
2: Create selected signals set S
3: Create initial vector of v =< 1, 1, ..., 1 >, |v| = N × p
4: remainedSignals = N × p
5: while remainedSignals > w do
6: maxRestorability = −∞
7: maxIndex = −1
8: for i = 1; i <= N × p; i+ + do
9: if v[i] = 1 then

10: v[i] = 0
11: if r̂m(v) > maxRestorability then
12: maxRestorability = r̂m(v)
13: maxIndex = i
14: end if
15: v[i] = 1
16: end if
17: end for
18: v[maxIndex] = 0
19: remainedSignals = remainedSignals− 1
20: end while
21: for i = 1; i <= N × p; i+ + do
22: if v[i] = 1 then
23: Add i to S
24: end if
25: end for
26: return S
27: end procedure

5) Augmentation-based Signal Selection: Algorithm 6 out-
lines the steps involved in selecting the signals using the
circuit model and augmentation-based technique similar to the
approach described by Li et al. [8]. In this technique, instead
of removing the least profitable flip-flop in each iteration, we
add the most beneficial one and continue the process until total
number of w flip-flops are selected. The set of selected signals
S is returned as the algorithm output. Our approach is slightly
different than Li et al., as they use simulation only for top 5%
of the candidates, which can degrade the selection performance
of their approach.

6) Random Initial Set Signal Selection: Algorithm 7 outlines
the steps involved in our proposed random initial set selection
technique. First we start with a random set of w selected
signals. In each iteration, we remove the least beneficial signal
and add the most profitiable one. We continue this process
until removing a signal and adding back another one does not
improve the predicted restoration in r̂m(v). The random initial
set can expand our search space and helps us finding a better
global maximum point.

Algorithm 6 Augmentation-based Signal Selection
1: procedure AUGMENTATIONBASED(circuit, r̂m(v), w)
2: Create selected signals set S
3: Create initial vector of v =< 0, 0, ..., 0 >, |v| = N × p
4: for selected = 1; selected <= w; selected+ + do
5: maxRestorability = −∞
6: maxIndex = −1
7: for i = 1; i <= N × p; i+ + do
8: if v[i] = 0 then
9: v[i] = 1

10: if r̂m(v) > maxRestorability then
11: maxRestorability = r̂m(v)
12: maxIndex = i
13: end if
14: v[i] = 0
15: end if
16: end for
17: v[maxIndex] = 1
18: end for
19: for i = 1; i <= N × p; i+ + do
20: if v[i] = 1 then
21: Add i to S
22: end if
23: end for
24: return S
25: end procedure

Algorithm 7 Random Initial Set Signal Selection
1: procedure RANDOMINITIALSET(circuit, r̂m(v), w)
2: Create selected signals set S
3: Create initial vector of v =< 0, 0, ..., 0 >, |v| = N × p
4: Randomly set w elements of v to 1
5: Set vnew as v
6: do
7: Set v as vnew
8: Find the signal in vnew which its removal has the

minimum effect on r̂m(vnew) and set it to 0
9: Find the signal in vnew which its addition has the

maximum effect on r̂m(vnew) and set it to 1
10: while r̂m(vnew) > r̂m(v)
11: for i = 1; i <= N × p; i+ + do
12: if v[i] = 1 then
13: Add i to S
14: end if
15: end for
16: return S
17: end procedure

IV. EXPERIMENTS

A. Experimental Setup
In order to investigate the effectiveness of our proposed

approach, we have developed a cycle-accurate simulator for
ISCAS’89 benchmarks using C++. Our simulator also conducts
restoration in both forward and backward directions. The
simulator iterates on the unknown signals queue and attempts to
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restore them leveraging both forward and backward restoration
techniques. This process terminates when it is not possible to
restore any more states. In addition, we checked the correctness
of our simulator by comparing its output with the output of
Verilog simulation of the identical circuits using Icarus Verilog
[10]. We used the set of largest circuits in ISCAS’89 as has
been studied by previous works. We used caret package in
R [9] as the modeling/prediction tool. In addition, we used
10-fold cross validation and normalization and scaling while
training our models.

In our experiments, we did not use the reported numbers
of Li et al. [8] and Chatterjee et al. [7], since they used
modified versions of ISCAS89 benchmarks (with some specific
optimizations). To perform a fair comparison, we tried to
obtain the executables of [8] and [7]. Li et al. [8] provided
us with their signal selection framework and we used it for
the selection process. Unfortunately we were not able to get
the implementation of Chatterjee et al. [7] and we used our
own implementation of their approach in this revision, but used
the same parameters c = 64 and PT = 95% as they reported.
We also used m = 32, p = 0.15, r = 6, tpruning = 3 × N ,
and tselection = 0.75×N as our approach parameters where
N is the number of flip-flops in the circuit. For reporting the
restoration ratios, we fed the simulator with 100 sets of random
input vectors and noted the average restoration ratios for the
selected set of signals. However, we forced the circuits to
operate in their normal mode by fixing the relevant control
(reset) signals, while assigning random values to all the other
inputs. The control signals include active low reset signals
RESET in s35932 and g35 in s38584 which was set to 1 in
our experiments.

B. Model Selection

In order to choose the best non-linear after pruning model
for the benchmarks, we explored several models available in
caret package [9]. Fig. 10 illustrates Mean Prediction Errors of
different models on the set of our benchmarks caluculated using
Equation 5. It can be observed that cubist is the best model
in our experiments with minimum prediction error. This can
be also clearly seen in Fig. 9 which illustrates the real versus
predicted restoration states for different models in S38584
benchmark. It should be noted that the MPE is bigger for
larger benchmarks in cubist; however, it still maintains the
relative relationship between the restoration values. In other
words, the percentage of error (|Predicted−Actual|/Actual)
will not grow linearly as the actual restoration absolute value
grows in larger benchmarks. For this experiment, we used 80%
of our training vector for actual training and the other 20% for
the testing. This can prevent us from biasing while training
the models. We selected cubist model as our non-linear model
for the rest of our experiments. In fact, the predicted values in
cubist match the real values in most of the cases. This enables
us to have high quality signal selection without any further real
simulation.

C. Restoration Quality
Table II presents the restoration ratios of our approach

compared with previous techniques [7], [8] using different
ISCAS’89 benchmarks. The trace buffer sizes used in our
experiment are 8 × 4k, 16 × 4k, and 32 × 4k. We used
the forward and backward restoration technique described in
Section II where we conduct forward and backward restoration
repeadetly until there is no more restoration possible. The
corresponding restoration ratio for each technique is reported.
The letters in parentheses for learning-based numbers show
the algorithm that yielded the best result for our run. E stands
for elimination based, A for augmentation-based, and R for
random-initial set. The last column indicates the percentage
of improvement using our approach compared with the best
(shown in bold) result provided by existing approaches. The
results indicate that our approach performs significantly better
compared to existing approaches. Compared to Chatterjee et
al. [7], our fine-grained pruning reduces the chance of removing
effective flip-flops prior to selection itself. Similarly, Li et al. [8]
incorporated simulations for only top 5% of the candidate flip-
flops, which sacrifices the precision of the selection process.
In addition, replacing mock simulations with fast predictions
allows us to run all the selection techniques (elimination based,
augmentation-based, and random-initial set) at the same time
and pick the best one as the final result. It can be observed
that the best approach depends on the benchmark structure and
also the buffer width. For example, elimination-based yields
the best result for s9234 benchmark with buffer width of 8.
However, random-initial set yields the best result for the same
benchmark and buffer widths of 16 and 32. Running all these
techniques together increases the chance of having a better
local maxima and consequently having a better restoration
ratio. It can also be observed that our newly introduced random
initial set selection technique yielded the best result in several
benchmarks. The improvement in restoration peformance is up
to 143.1% in s38584 and 29.2% on average. In summary, our
approach not only produces better restoration quality, but also
it is significantly faster than [7] and has a comparable runtime
to [8].

Table III presents the runtime of our approach compared with
previous techniques [7], [8] using different ISCAS’89 bench-
marks. The reported runtime format is ‘hour:minute:second’.
From the table, as expected, it is clear that our approach
is significantly faster than pure simulation-based approach
presented in [7]. Moreover, we note that our approach runtime
is comparable to hybrid approach [8], specially for the larger
trace buffer widths. The reason is that once the circuit is
modeled in our approach, the selection process can be done
in negligible time using simple calculations. This makes our
approach runtime independent of the trace buffer width which
is not the case in [8]. This makes our approach more scalable
in industry-scale circuits where larger trace buffer widths are
used.

D. Selection Time, Complexity, and Scalability
Simulation of large industrial designs incurs high cost in

running time. Indeed, simulation time is the primary bottleneck
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Fig. 9. Real versus predicted restoration states for different models in S38584 benchmark. Each random vector represents a set of randomly selected trace
signals and is showed as a circle in the graph.
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cubist earth gaussprLinear glm svmLinear svmPoly treebag

s38584 1275 5202 4960 4889 4674 1382 3297

s38417 556 1693 1279 1259 1246 580 1968

s35932 1956 6640 6453 6645 6432 3599 3928

s15850 436 922 832 862 818 637 985

s13207 332 1298 1184 1303 1253 463 1250

s9234 81.5 291 280 428 318.53 190.6 292

s5378 115.8 545.36 515 540.19 463.72 177 290.6
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Fig. 10. Mean prediction errors (MPE) of different models on the set of our benchmarks.

TABLE II. RESTORATION RATIOS USING OUR APPROACH COMPARED
WITH EXISTING SELECTION APPROACHES. THE LETTERS IN PARENTHESES
FOR LEARNING-BASED NUMBERS SHOW THE ALGORITHM THAT YIELDED

THE BEST RESULT. E STANDS FOR ELIMINATION BASED, A FOR
AUGMENTATION-BASED, AND R FOR RANDOM-INITIAL SET

Circuit #Flip-
flops

Buffer
Width

Simulation-based
[7]

Hybrid
[8]

Learning-
based

Imp. over
the best

s5378 179
8 13.41 14.35 14.20 (E) -1.0%

16 7.35 8.36 8.40 (E) 0.5%
32 4.47 4.99 4.93 (R) -1.2%

s9234 228
8 13.98 9.25 15.33 (E) 9.7%

16 8.30 6.13 8.76 (R) 5.5%
32 4.46 4.38 4.84 (R) 8.5%

s15850 597
8 26.33 21.90 44.03 (E) 67.2%

16 19.89 14.78 23.13 (E) 16.3%
32 13.19 10.88 13.92 (A) 5.5%

s13207 669
8 35.52 33.60 47.18 (E) 32.8%

16 20.13 23.22 29.00 (A) 24.9%
32 11.25 13.64 15.42 (R) 13.0%

s38584 1452
8 19.73 27.00 54.25 (A) 100.1%

16 28.39 13.97 69.03 (R) 143.1%
32 32.45 7.50 43.66 (R) 34.5%

s38417 1636
8 29.23 37.71 52.33 (E) 38.8%

16 17.02 23.80 27.12 (R) 13.94%
32 15.14 11.83 16.73 (R) 10.5%

s35932 1728
8 132.00 144.00 186.8 (E) 29.7%

16 67.45 72.00 93.60 (E) 30.0%
32 34.63 36.00 46.98 (A) 30.5%

in the usability of simulation-based signal selection on large-
scale designs. Therefore, a good metric of the complexity
of such algorithms is the number of mock simulations and
restoration processes required in the computation. Assume that
there are N flip-flops in the circuit. In our approach, mock
simulations are required in generating the training vectors,
including pruning and the selection steps. Therefore, a total
number of tpruning + tselection simulations are conducted.
Based on the selected variables in our experiements, the total
number of mock simulations in our approach is 3.75×N , which
is much less than Ω(N2/dstep) reported in previous work [7],
where dstep = 50 in their experiments. On the other hand, the
hybrid approach [8], uses simulation/restoration computation
only for top k% of the candidate signals, where k = 5% in
their experiments. The complexity of their approach is O(kwN)
where w is the trace buffer width. Once the parameters are
fixed, the asymptotic complexity of our approach is θ(N) and
θ(wN) for [8], with potentially different constant coefficients.

To compare the runtimes in practice, we used a Octa-Core
AMD Opteron 6378 (1400 MHz) machine with 188GB of
memory for all the experiments. The runtime is calculated as the
summation of required time for generating training vectors (sim-
ulations), modeling, and signal selection process itself. Table III
presents the runtime of our approach compared with previous
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TABLE III. RUNTIME COMPARISON OF OUR APPROACH COMPARED
WITH EXISTING SELECTION APPROACHES

Circuit #Flip-
flops

Buffer
Width

Simulation-based
[7] Hybrid [8] Learning-

based

s5378 179
8 00:01:53 00:00:08 00:01:46

16 00:01:52 00:00:10 00:01:52
32 00:01:48 00:00:16 00:02:09

s9234 228
8 00:08:52 00:00:32 00:00:10

16 00:08:43 00:00:40 00:00:10
32 00:08:10 00:00:50 00:00:10

s15850 597
8 03:44:12 00:05:20 00:04:20

16 03:44:04 00:06:00 00:04:35
32 03:43:39 00:06:36 00:05:04

s13207 669
8 01:21:41 00:01:36 00:03:45

16 01:21:35 00:02:00 00:04:01
32 01:21:13 00:02:40 00:04:12

s38584 1452
8 28:43:02 00:05:28 00:16:52

16 28:42:16 00:06:06 00:17:09
32 28:38:59 00:09:02 00:17:35

s38417 1636
8 196:51:50 00:22:42 00:20:23

16 196:50:44 00:33:04 00:21:07
32 196:48:27 00:34:28 00:23:55

s35932 1728
8 11:39:36 00:04:28 00:16:49

16 11:39:09 00:05:56 00:17:33
32 11:38:01 00:08:38 00:18:21

techniques [7], [8] using different ISCAS’89 benchmarks2. The
reported runtime format is ‘hour:minute:second’. As expected,
our approach is significantly faster than pure simulation-based
approach presented in [7]. Moreover, our approach runtime is
comparable to hybrid approach [8], specially for the larger trace
buffer widths. The reason is that once the circuit is modeled, the
selection process can be done in negligible time using simple
calculations. This makes our approach runtime independent of
the trace buffer width. In contrast, for [8] the runtime grows
linearly with the buffer width.

Finally, iterations in pure simulation-based and hybrid
approaches are interdependent and cannot be executed con-
currently. In contrast, all the simulations needed for generating
the training vectors in our approach are independent and can
be conducted at the same time using industry techniques like
MapReduce. In addition, industry level scalable machine learn-
ing modelings are available, e.g., Amazon Machine Learning
framework. Therefore, we expect that our approach would be
faster if a parallel implementation is incorporated (for example,
using Amazon Machine Learning and Amazon EC2).

V. RELATED WORK

Limited observability of internal signals is the primary
issue in post-silicon validation. There has been significant
work on on-chip instrumentation to ameliorate post-silicon
observability [13], [14]. Trace buffers provide one of the

2The numbers reported here for our approach are different than the conference
version [11] as we ran new experiments with the new proposed approach and
regression models presented in this paper. In addition, instead of LIBSVM
[12] in [11], we used R for running our experiments which provides an
easy way to run modeling and predictions in parallel. The numbers for the
Hybrid approach [8] are also different. in the conference version we used our
implementation of their approach; for this we used the multi-threaded executable
we received from authors. The numbers for simulation-based approach [7] are
the same since we were not able to get their implementation and used our
implementation of their approach in both papers.

commonest form of on-chip instrumentations. The primary
challenge with trace buffers is to compute a priori a small set
of signals that can be traced in order to maximize reconstruction
of internal states. Ko et al. [5] and Liu et al. [3] have proposed
efficient signal selection algorithms based on partial restorability.
Basu et al. [4] improved their methods by proposing an efficient
algorithm that selects signals based on their total restorability.
Shojaei et al. [6] proposed a metric-based signal selection
technique to enhance the timing and logic visibility in the
circuit. Prabhakar et al. [15] proposed a logic implication
based trace signal selection technique that uses the primary
inputs in restoration process. The use of scan chains in post-
silicon debug has been extensively studied in [16], [17]. Various
approaches [18], [19], [20] divided trace buffer bandwidth into
two parts, one for the trace signals and the other one for the
scan signals. This enabled decoupling scan-based and trace-
based observabilities, and signal selection could be studied
based on constraints provided by the respective architectures.

Chatterjee et al. [7] demonstrated that simulation-based signal
selection is a promising approach. However, their approach
requires O(N2) simulations where N is the number of flip-
flops in the circuit. This makes their approach computationally
expensive for large circuits. To address this issue, they propose
a pre-processing phase namely pruning process, prior to running
the algorithm. Basically, the pruning phase is the algorithm
itself with less accuracy. The pruning phase reduces the initial
candidate flip-flops set but still requires long signal selection
time. In addition, it may sacrifice the signal selection quality.
Li et al. [8] proposed a hybrid (metric-based and simulation-
based) signal selection technique. However, to save selection
time, [8] uses simulation for a small fraction of the signals
and thereby sacrifices restoration performance. Our work is the
first paper that utilizes machine learning techniques for signal
selection.

Preliminary versions of this work appeared in conference
proceedings [11], [21]. This paper extends those approaches,
in particular by establishing machine learning as a generic
front-end for interfacing with several back-end signal selection
procedures and by significantly improving the algorithms
involved.

VI. CONCLUSIONS

Post-silicon validation is an expensive phase in designing
integrated circuits. Success in post-silicon validation and debug
crucially depends on effective signal selection that makes
effective use of the limited available observability. Thus it
is critical to develop effective signal selection techniques that
provide high state reconstruction and can scale to large indus-
trial designs. Existing metric-based signal selection techniques
are computationally efficient, but often yield signals with poor
restorability. Simulation-based techniques, while superior in
restoration quality, suffer from major computational drawbacks.
We presented a learning-based signal selection approach which
mitigates the computation overhead of existing simulation-
based approach. Our experiments demonstrated that our fast
signal selection provides up to 143.1% (29.2% on average)
improvement in restoration ratio compared to existing signal
selection approaches.
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