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Abstract— Post-silicon validation is a critical part of integrated
circuit design methodology. The primary objective is to detect
and eliminate the bugs that have escaped pre-silicon validation
phase. One of the key challenges in post-silicon validation is the
limited observability of internal signals in manufactured chips.
A promising direction to improve observability is to combine
trace and scan signals—a small set of trace signals are stored
in every cycle, whereas a large set of scan signals are dumped
across multiple cycles. Existing techniques are not very effective,
since they explore a coarse-grained combination of trace and
scan signals. In this paper, we propose a fine-grained architecture
that addresses this issue using various scan chains with different
dumping periods. We also propose efficient algorithms to select
beneficial signals based on this architecture. Our experimental
results demonstrate that our approach can improve restoration
ratio up to 127% (36% on average) compared with existing
trace-only techniques. Our approach also shows up to 125%
improvement (61.7% on average) compared with techniques that
allow a combination of trace and scan signals with minor (<1%)
area and power overhead.

Index Terms— Debug, post-silicon, scan, trace.

I. INTRODUCTION

THE goal of post-silicon validation of an integrated circuit
is to ensure that the fabricated, preproduction silicon

operates correctly under actual operating conditions with real
application. It is a complex activity performed under aggres-
sive schedules, representing >50% of the overall validation
cost [1]. A fundamental challenge in post-silicon validation is
limited observability and controllability. Due to the limitations
in the number of output pins and area and power overheads
of internal trace buffer, only a small percentage of internal
signals in the design can be observed during silicon execution.
Furthermore, in order for a signal to be observed, the design
must be instrumented a priori with appropriate control hard-
ware that routes a signal to an observation point. It is,
therefore, crucial to identify trace signals that maximize
design visibility and debug information under the observability
constraints.

Fig. 1 provides an overview of post-silicon validation and
debug process. Signal selection and trace buffer design are
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Fig. 1. Simplified overview of post-silicon validation flow and role of trace
signal selection. Signals selected through pre-silicon analysis are funneled to
trace buffer from which silicon states are restored offline to assist in debug.

done in pre-silicon phase. If an error occurs during post-
silicon validation phase, the traced values of internal signals
are dumped. During the debug process, both dumped signals
and restored signals are used to locate the error. The number
of signals that can be traced per cycle is limited to trace buffer
width. In addition, the maximum number of values recorded
per signal is limited to the trace buffer depth. Therefore,
the primary objective is to select a small set of profitable
signals that can maximize restoration performance. A major
challenge in efficient signal selection is that the exploration
space (number of potential alternatives) can be prohibitively
large even for small circuits. For example, s35932 circuit of
ISCAS’89 benchmarks suite has 1728 flip-flops. If the trace
buffer width is 32, we need to choose 32 signals out of the total
1728 flip-flops. It is easy to observe that there are >1069 such
combinations. This makes exhaustive exploration infeasible.1

Several trace signal selection techniques were proposed over
the years [2]–[8]. These algorithms attempt to select a set
of promising trace signals to maximize the number of states
that can be restored. To improve the observability further,
various approaches [9], [10] explored a profitable combination
of trace and scan signals. The idea is to divide the trace buffer
(width) into two parts. The first part stores the trace signals
and the second part stores the scan signals. There is a very
small set of important control signals that would be traced in
every cycle. The remaining slots of the trace buffer will be
filled with a portion of a large set of scan signals that would
be dumped across several cycles. Existing approaches divide
signals into two extreme categories: 1) very important and
2) less important. They lose opportunity from scenarios where
some other partitioning is useful, such as very important,
important, less important, and so on.

It would be beneficial if we divide the signals in a large
number of categories in terms of dumping period. This enables

1If each simulation for evaluating one combination takes only 1 s,
>1060 years is needed in order to find the best 32 trace signals in
s35932 circuit.
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us to select a promising signal with a profitable dumping
period. In this paper, we propose an efficient fine-grained
architecture that shares the trace buffer bandwidth between
several scan chains with different dumping periods. We also
propose two different signal selection algorithms that can be
used based on the hardware constraints. Our signal selection
algorithms assign the signals to different scan chains in order
to maximize the number of states that can be restored.

The rest of this paper is organized as follows. Section II
describes related works in post-silicon debug and signal
selection. Section III presents the background and motivates
the need for fine-grained signal selection. Section IV
describes our debug architecture and proposes signal selection
algorithms. Section V presents our experimental results.
Finally, the conclusion is drawn in Section VI.

II. RELATED WORK

Trace buffers have been widely studied in post-silicon
debug [14]–[18]. Trace buffers are used to store the state
of some selected internal signals. The rest of the signals
are obtained using restoration algorithms for traced signals.
The primary problem is which of the signals need to be
traced to maximize the number of states that can be restored.
Liu and Xu [2] and Ko and Nicolici [4] proposed efficient
signal selection algorithms based on restorability metric.
Basu and Mishra [3] improved their methods by propos-
ing an efficient algorithm that considers already selected
signals (using region growth) while selecting new signals.
Chatterjee et al. [5] proposed a simulation-based signal
selection algorithm to further improve the restoration perfor-
mance. They showed that simulation-based signal selection
is more promising compared with metric-based signal selec-
tion approaches. Prabhakar and Hsiao [19] proposed a logic
implication-based trace signals selection method. Recently,
Li and Davoodi [7] presented a hybrid signal selection
approach combining the advantages of both simulation- and
metric-based signal selection techniques.

The use of scan chains in post-silicon debug has been
extensively studied in [20] and [21]. Ko and Nicolici [9]
proposed an architecture that divides trace buffer bandwidth
into two parts: 1) for the trace signals and 2) for the scan
signals. In order to find the most beneficial partitioning,
they proposed an exhaustive exploration. However, exhaustive
exploration is not practical in real designs with a large number
of flip-flops. Basu et al. [10] proposed an efficient algorithm
that chooses trace and scan signals based on the connectivity
graph of flip-flops. They reduce the scan chain length by
pruning the graph in each iteration. However, both of these
techniques divide the signals into two extreme categories. One
set of signals are traced in every cycle. The other signals are
dumped in a relatively large period. They do not consider other
profitable fine-grained scenarios. In this paper, we propose a
promising fine-grained architecture that shares the trace buffer
bandwidth between several scan chains with different lengths
to significantly improve the restoration performance.

Fig. 2. Basic restoration rules for common logic gates in (a) forward
restoration—knowledge of inputs can reconstruct the output—and
(b) backward restoration—knowing the output can restore the unknown
inputs.

Fig. 3. Simple circuit to illustrate restorability used in [10]. Shades: shadow
flip-flops. In addition, shadow flip-flops of same scan chain are shown in same
pattern. Dotted scan chain: AS and FS. The first entry of the trace buffer is
fed from CS, and can be viewed as a scan chain of length 1. The second
entry of the trace buffer is fed from a scan chain of length 2 consisting of
AS and FS.

III. BACKGROUND AND MOTIVATION

In post-silicon debug, unknown signals can be restored
from the traced signal states using a forward and backward
restoration. Fig. 2 shows forward and backward restoration
for common logical gates. Forward restoration deals with
reconstructing the output from the input. For example, if
one of the inputs of the AND gate is 0, the output value
would be 0. If all the inputs are known, the unknown output
can be definitely determined. On the other hand, backward
restoration deals with restoring the inputs from the output.
For example, if the output of the AND gate is 1, both of
the inputs would be 1. Backward restoration might fail in
certain scenarios. For example, if the output of a two-input
AND gate is 0 and one of the input has known value of 0, the
other input still cannot be reconstructed. During signal value
reconstruction, forward and backward restorations are repeated
for all the gates in the circuit until no more states can be
restored.

Fig. 3 shows a simple circuit with eight flip-flops [10]
with associated shadow flip-flops. Shadow flip-flops are shown
in shades. For example, DS is the shadow flip-flop for D.
In addition, the proposed debug architecture is shown using
two scan chains. Shadow flip-flops of an identical scan chain
are shown in same pattern. For example, AS and FS create
a scan chain of length 2, which is shown in dotted pattern.
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TABLE I

RESTORED SIGNALS FOR THE CIRCUIT SHOWN IN FIG. 3. SIGNAL C IS

TRACED IN EVERY CYCLE AND SIGNALS A AND F ARE DUMPED IN

EVERY OTHER CYCLE. AN X INDICATES THAT THE SIGNAL VALUE

CANNOT BE RESTORED USING THE KNOWN SIGNAL STATES

We use this example to show the benefit of using different fine-
grained scan chains. Restoration ratio (RR), which is a popular
metric for measuring restorability, is defined as follows:

Restoration Ratio = No. of traced and restored states

No. of traced states
.

Let us assume that the trace buffer width is 2, which
means state of only two signals can be stored in each clock
cycle. Table I shows the signal states that can be restored
using the selected signals by [10]. Traced signals are shown
in shades/bold. Signal C is traced in every cycle, whereas
A and F are dumped in alternate cycles. Although scan signals
are dumped in alternate cycles, the table shows states for both
A and F in cycle 1, cycle 3, and so on. This is because in
cycle 1, the state of signal A is dumped, whereas in cycle 2,
the state of signal F is dumped. However, the scan chain
(i.e., A and F shadow flip-flops) holds the state for the same
cycle, although different parts were dumped in different cycles.
In other words, the signal state of F captured at cycle 1 is
dumped in cycle 2. Forward and backward restorations are
used to reconstruct the values for the signals that were not
traced. For example, the entry corresponding to D in cycle 2
will be 0, because C was 0 in cycle 1 (forward restoration).
The symbol X represents the state that cannot be restored
using known signal states. It can be observed that in this case,
a total number of 36 states can be restored and a total number
of 16 states are traced. Therefore, the RR is 2.25.

We now show how different scan chains can help in
signal restoration using the same circuit. Fig. 4 shows an
illustrative example of our proposed partitioning of trace buffer
of width 2 for the same circuit. It can be observed that the
trace buffer width is shared between two different scan chains
of length 2 and length 3 shown in dotted and grid patterns.
In this case, there are no trace signals and the buffer width
is partitioned between two scan chains. We apply our method
to select efficient signals of the sample circuit for this debug
architecture. Consequently, we assign signals A and C to the
first scan chain, whereas signals B , D, and E to the second
scan chain. Scan chains consist of corresponding shadow flip-
flops of selected signals. Table II shows the values of trace
buffer and shadow flip-flops in each cycle. The subscript
indicates the value in that clock cycle. For example, A3 implies
the value of flip-flop A in cycle 3. It can be observed that

Fig. 4. Proposed debug architecture, for example, circuit in Fig. 3. Trace
buffer of width 2 is shared between two scan chains of length 2 and length 3.
Scan chains consist of corresponding shadow flip-flops of selected signals,
shown in same color/pattern (AS → CS and BS → ES → DS).

TABLE II

TRACE BUFFER SLOTS AND SHADOW FLIP-FLOPS VALUES IN OUR

PROPOSED DEBUG ARCHITECTURE IN FIG. 4. SIGNALS A AND C

ARE STORED IN TRACE BUFFER IN ALTERNATE CYCLES,

WHEREAS B , D , AND E ARE DUMPED

IN EVERY THIRD CYCLE

signals A and C are stored in trace buffer in alternate cycles,
whereas B , D, and E are dumped in every third cycle. In other
words, signals A and C are dumped with period (T ) equals
to 2, whereas dumping period for signals B , D, and E is
equal to 3.

Table III shows the signal states that can be restored using
the signals chosen by our method (described in Section IV).
It can be observed that a total number of 55 states can be
restored and a total number of 17 states are traced. The
RR is 3.24, which is >2.25 [10]. Thus, more states give a
more detailed view of the internal state of the circuit.

The primary problem of using different scan chains is to
determine the length of scan chains and signals to select
for each scan chain. Signals should be chosen such that
more important signals are assigned to smaller scan chains
with small dumping period. Less important signals, on the
other hand, should be distributed among the scan chains with
larger dumping periods. In addition, minimizing the overlaps
between the states that can be restored by different scan
chains should be considered in selection algorithm in order
to maximize the RR in a debug scenario. In this paper, we
have developed two algorithms to select profitable signals for
each scan chain.
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TABLE III

RESTORED SIGNALS USING OUR PROPOSED DEBUG ARCHITECTURE

IN FIG. 4. SIGNALS C AND A ARE DUMPED IN ALTERNATE CYCLE,

WHEREAS E , D , AND B ARE RECORDED

IN EVERY THIRD CYCLE

Fig. 5. Spectrum of existing and proposed debug architectures. Trace-
only approach is one extreme with simple architecture but less restoration
efficiency. On the other hand, flexible hardware architecture is another extreme
with additional hardware controller and superior restoration performance.

IV. FINE-GRAINED COMBINATIONS

In this section, we first propose our fine-grained debug
architecture. Next, we present signal selection algorithms for
constrained and flexible debug architectures. In constrained
debug architecture, the length of each scan chain is determined
prior to the signal selection process. This approach is used
when the designer fixes the scan chains lengths or there are
hardware constraints in the system. The goal of constrained
hardware signal selection algorithm is to assign the best
possible signals to each scan chain. On the other hand, in
flexible hardware architecture, there are no constraints on the
and types (length) of scan chains. Therefore, the primary
objective of flexible selection algorithm is to maximize the
restorability, regardless of scan chains lengths. Fig. 5 shows
the spectrum of existing and proposed architectures. It can be
observed that trace-only and flexible hardware architectures
are two extremes of this spectrum. Trace-only architecture is
the simplest with less complexity, whereas flexible hardware
architecture is more efficient in terms of observability but may
introduce minor hardware overhead.

A. Debug Architecture
Our fine-grained architecture is motivated by the coarse-

grained design of [9] and [10]. They proposed an architecture
that divides the trace buffer into two parts: 1) for trace signals
and 2) for scan signals. However, this partitioning is coarse
grained. Very important signals are traced in every cycle,
whereas the less important ones are assigned to a scan chain.
The dumping period for scan signals depends on the trace
buffer width and number of signals in the scan chain. Putting
more signals in scan chain increases the dumping period
for signals. On the other hand, putting fewer signals may
not be desirable as it decreases the coverage of the circuit.

Fig. 6. Proposed debug architecture: width bw of the trace buffer is shared
by ω trace signals and n scan chains of different lengths. Each scan chain
consists of shadow flip-flops of same color. Dumping period for each scan
chain is determined by its length and is controlled by control logic.

As discussed earlier, the limitation of the existing approaches
is to consider only two extremes and losing the opportunity
for not considering in-between scenarios. We consider a fine-
grained approach by allowing multiple partitions of trace
buffer width.

Fig. 6 shows our proposed fine-grained architecture. It can
be observed that width bw of the trace buffer is partitioned for
ω trace signals and n different scan chains, i.e., bw = ω + n.
Each of these scan chains comprises of a different number
of signals denoted by an identical color that determines the
dumping period for those signals. In each cycle, the shadow
flip-flops of a particular scan chain capture the value of their
corresponding flip-flops. It has to be noted that if a particular
scan chain contains only one signal, it is essentially a trace
signal that is traced in every cycle. These different signal
chains provide more fine-grained dumping periods. Thus, each
signal can be assigned to the appropriate scan chain based on
its importance. These fine-grained scan chains enable us to
dump a larger number of signals that improve the observability
in the circuit compared with the coarse-grained scan signals.
Sections IV-B and IV-C describe two variations (constrained
and flexible) of our proposed algorithms, which try to select
the best signal in each iteration considering all the signals that
have been selected before.

B. Constrained Signal Selection

In this section, we propose a greedy heuristics for
constrained selection algorithm that selects profitable signals
for each scan chain of determined length in order to maximize
the observability. We define P0( f ) and P1( f ) for flip-flop f in
the circuit that define the probability of its value being 0 and 1,
respectively. These values can be calculated by feeding the
simulator with circuit graph and random input vectors and run-
ning it numerous times. We also use connectivity information
similar to [10]. The connectivity of a flip-flop is the number of
flip-flops connected with it through other combinational gates
in both backward and forward directions.
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Fig. 7. Example of trace buffer partitioning in a debug architecture with
bw = 8, ω = 2, α = 3, and φ(i) = φ(i − 1) + 1.

In order to partition the trace buffer in different scan
chains, we define buffer width (bw), trace signals (ω), partition
factor (α), and step function (φ). The buffer is divided into
two parts. First part consists of ω trace signals that are
dumped in every cycle. The remaining bw − ω buffer entries
are further divided into α partitions. Each partition consists
of (bw − ω)/α scan chains with identical length. The step
function determines the length of scan chains in each partition.
In other words, assume li and li+1 are the lengths of scan
chains in two successive partitions, then we would have:
li+1 = φ(li ). It has to be noted that l0 is equal to initial
value of 1.

Fig. 7 shows an example of trace buffer partitioning in
a debug architecture with bw = 8, ω = 2, α = 3, and
φ(i) = φ(i − 1) + 1. It can be observed that there are two
trace signals that are dumped in every cycle. The rest of the
trace buffer is shared between the fine-grained scan chains.
For example, first partition consists of two scan chains each
of them with identical length of 2. In other words, two signals
that are assigned to scan chain 1 will be dumped in alternate
cycles. We also define dumping period (T ) for each scan chain.
Clearly, dumping period for a particular scan chain is equal to
its length. For example, four signals are assigned to last scan
chain in Fig. 7. Each of these signals will be dumped for every
four cycles. Fine-grained partitioning enables us to assign
signals to different dumping periods based on their importance.
For example, in Fig. 7, important (control) signals are assigned
to trace slots (T = 1). On the other hand, less impor-
tant signals are assigned to scan chains with larger lengths
(T = 2, T = 3, and T = 4), based on their impact on the
restoration performance.

We use restoration power (RP) as a selection metric in
our algorithm. Assume S is the current set of assigned flip-
flops to scan chains. In addition, fT implies that flip-flop f is
dumped in every T cycles. We show the dumped values of f
using v that can be either 0 or 1. We define δ(S ∪ { fT }, v)
as the number of additional states that can be restored using
S ∪ { fT } (compared with restored stated using only S) over
a window of c cycles when we dump f each T cycles with
the assumption that the value of f is fixed to v throughput
the dumping cycles. δ(S ∪ { fT }, v) is calculated for both
v = 0 and v = 1. These values are then weighted averaged
based on the probabilities of being 0 or 1 in flip-flop f and

are used in the selection metric of our algorithm. Clearly,
larger c is more desirable as it yields more precise result.
However, large c in real scenarios is not practical as there
are numerous number of flip-flops that make the restoration
process computationally expensive. Our experimental results
demonstrate that c = LCM(l0, l1, . . . , ln−1) is large enough
where li is the length of scan chain i and LCM is least common
multiple. The reason is that restoration pattern in whole circuit
is repeated over each c = LCM(l0, l1, . . . , ln−1) cycles. For
example, in Fig. 7, c = LCM(1, 2, 3, 4) = 12 is used in our
algorithm. For a particular flip-flop f with a dumping period
of T ( fT ), RP is defined as follows:

RP( fT ) = T ∗ (P0( f ) ∗ δ(S ∪ { fT }, 0)

+ P1( f ) ∗ δ(S ∪ { fT }, 1)).

In other words, RP is the number of probable additional
states that can be restored by adding fT to the S. There is a
multiplication by T in RP, because we would like to consider
the resources that fT uses for these additional restored states.
Larger T means smaller resource usage. The intuition of RP is
that in each iteration, we try to choose a flip-flop that makes
the best tradeoff between the maximum newly restored states
and the minimum resource usage.

Algorithm 1 outlines the major steps in our constrained
signal selection (CSS) algorithm. First, we create a graph of
flip-flops using the same methodology described in [3]. This
graph is used to compute the connectivity2 of each flip-flop.
Next, we calculate P0 and P1 for each flip-flop, and partition
the trace buffer using input parameters. We create an empty
list S to hold the list of selected flip-flops. In each iteration,
RP is calculated for all the remaining flip-flops (flip-flops that
are not in S). If two or more flip-flops have equal RP, we
choose the one with higher connectivity. This increases the
chance of restoring more states during the real debug scenario
as it is connected to more flip-flops. We continue assigning
one flip-flop in each iteration until the entire scan chains
get full.

We now show how our algorithm works for the example
circuit in Fig. 3. Assume that trace buffer width is 2.
We partition the trace buffer using bw = 2, ω = 0, α = 2,
and φ(i) = 1 + φ(i − 1). In other words, we have two
scan chains of length 2 and 3, respectively. Hence, from our
algorithm, we would have c = LCM(2, 3) = 6, which is used
in RP calculation. Table IV summarizes intermediate results of
our algorithm in each iteration. First column is the candidate
flip-flops from the example circuit. Second and third columns
are P0 and P1 of each flip-flop, which are calculated by feeding
our simulator with 100 different random inputs. The rest of the
columns are the RP of flip-flops in each iteration. Each cell in
these columns contains two rows, which are the RP values if
we assign the flip-flop to the scan chain of length 2 (T = 2) or
length 3 (T = 3), respectively. In the first iteration, signal C
has the highest RP for T = 2 and is assigned to the first
scan chain of length 2 (the RP value for the selected signal
in each iteration is shown in bold). In the second iteration,

2The connectivity of a flip-flop is the number of flip-flops connected to it
through other combinational gates in both backward and forward directions.
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Algorithm 1 CSS

TABLE IV

DIFFERENT RP VALUES OF OUR ALGORITHM IN EXAMPLE CIRCUIT

OF FIG. 3. IN EACH ITERATION, A NEW SIGNAL IS ASSIGNED

TO ONE OF THE SCAN CHAINS. THIS PROCESS CONTINUES

UNTIL ALL THE SCAN CHAINS ARE FULL

both signals A and B yield the maximum RP when they are
assigned to scan chain of length 2. In addition, since both of
them have same connectivity (3), our algorithm selects one
of them (signal A) randomly. Until now, signals A and C
are assigned to first scan chain of length 2. Using the same
procedure, signals B , D, and E are assigned to second scan
chain of length 3 in the remaining iterations.

From Table IV, it can be observed that our algorithm
covers a large part of the circuit by assigning more resources
to important signals. This procedure continues by assigning
less resources to signals that can cover other parts of the
circuit. As a result, it gets benefit of both spatial and temporal
observability of fine-grained sets of signals.

Algorithm 2 FSS

C. Flexible Signal Selection

In this section, we describe our flexible signal
selection (FSS) algorithm that is used when there are
no predefined architectural constraints on scan chains.
FSS starts with initially empty scan chains. In each iteration,
a flip-flop is added to one of the scan chains. This process
stops once adding more flip-flops is not profitable anymore.
Algorithm 2 outlines the major steps of proposed flexible
selection algorithm. The inputs of the algorithm are the
circuit, trace buffer width (w), and the number of cycles in
mock simulations (c). To understand the workings of the
algorithm, we need a key concept: restoration impact.

Given a scan chain configuration s, an input vector I ,
and the number of mock simulation cycles c, we define the
restoration impact RI(s, I, c), as the total number of states that
can be restored if we do a mock simulation over c cycles using
input vector I and the scan chain configuration s. For a given
scan chain configuration s and flip-flop f , s ∪ { fk} is a new
configuration, which is same as s except that flip-flop f is
added to kth scan chain of s.

Informally, for a given c-cycle mock simulation on I ,
the restoration impact shows how scan chain configura-
tion s is profitable in terms of observability performance.
In particular, if s2 = s1 ∪ { fk} for some design signal f ,
then RI(s2, I, c) − RI(s1, I, c) measures the observability
improvement achieved by augmenting kth scan chain of s1
with f . Algorithm 2 is a greedy heuristics that uses this metric
to iteratively grow the set S of current scan chain config-
uration. At each iteration, it: 1) performs a new simulation
for c cycles using a random input vector I and computes the
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Fig. 8. Sample circuit to illustrate our flexible selection algorithm.

restoration impact of current configuration S; 2) computes the
restoration impact of S ∪ fk for each design signal f , which
is not selected before when f is added to kth scan chain;
and 3) augments kth scan chain of S with the signal that
maximizes the restoration impact, if it increases the restoration
impact of current configuration. If two or more signals have
identical restoration impact, then the tie is broken in favor
of the signal that has the highest connectivity. The process
is continued until augmenting scan chains is not profitable
anymore.

We now show how our algorithm works for the example
circuit in Fig. 8. Assume that the trace buffer width is 2 and
c = 32 cycles is used in mock simulations of the algorithm.
Table V summarizes the intermediate results of our algorithm
in each iteration. Second row shows the current configuration S
in each iteration and third row demonstrates the corresponding
restoration impact. The remaining rows are the restoration
impact values of the circuit flip-flops in each iteration. Each
cell in these rows contains two numbers, which are the RI val-
ues if we add the flip-flop to the first or second scan chain
of current configuration, respectively. In the first iteration,
signal L has the highest RI and is added to the first scan chain
(the RI value for the selected signal in each iteration is shown
in bold). Using the same procedure, signals A, D, B, and C
are added to the second scan chain in the following iterations.
It can be observed that in the last iteration adding a new
flip-flop to any of the scan chains is not profitable anymore.
In other words, none of the RI values is greater than the RI of
current configuration S. The algorithm stops with L assigned
to the first scan chain and A, D, B, and C assigned to the
second scan chain.

It can be observed that our flexible selection algorithm
is different from constrained selection in terms of selection
goal and time. The flexible selection continues augmenting
scan chains with new flip-flops until adding new flip-flops
degrades restoration performance. In other words, there are
no constraints on scan chain lengths as they can grow when
profitable. On the other hand, the goal of the constrained
selection (discussed in Section IV-B) is to find the best possible
fit for fixed hardware architecture. In other words, lengths of
various scan chains are fixed in constrained selection. The
constrained hardware may degrade the restoration performance
compared with flexible hardware as we put constraint on scan
chain lengths. However, CSS can reduce the selection time
and hardware overhead.

TABLE V

RESTORATION IMPACT VALUES OF OUR FLEXIBLE SELECTION

ALGORITHM IN EXAMPLE CIRCUIT OF FIG. 8. IN EACH

ITERATION, A NEW FLIP-FLOP IS ADDED TO ONE OF

THE SCAN CHAINS. THIS PROCESS CONTINUES

UNTIL ADDING A NEW FLIP-FLOP IS

NOT PROFITABLE ANYMORE

V. EXPERIMENTS

A. Experimental Setup

To investigate the effectiveness of our proposed approach,
we have developed a cycle-accurate simulator for ISCAS’89
benchmarks using C++. Our simulator conducts restoration
in both forward and backward directions following the mech-
anism outlined in [2]. The simulator iterates on the unknown
signals queue and tries to restore them using both forward and
backward directions. This process terminates when it is not
possible to restore any more states. In addition, we checked
the correctness of our simulator by comparing its output with
the output of Verilog simulation of the same circuits using
Icarus Verilog [22].

We fed the simulator with 100 sets of random values and
noted the average RRs. However, we forced the circuits to
operate in their normal mode by fixing the relevant control
(reset) signals, while assigning random values to all the other
inputs. The control signals include active low reset signals
RESET in s35932 and g35 in s38584 that was set to 1 in our
experiments. Table VI shows the set of parameters that we
used for each benchmark and different trace buffer widths for
CSS algorithm.

In addition, we used c = 64 cycles in mock simulations
of FSS algorithm. Our experiments show that using
c = 64, relative restoration performance is consistent between
a different set of trace signals and input vectors. In other
words, c = 64 is enough to remove the random behaviors
from our selection process. Important signals always perform
better compared with other signals (for almost all random
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TABLE VI

DIFFERENT PARAMETERS USED IN CSS

input vectors). Therefore, these signals are always
selected in final result. We use different random signals
to make sure that different states of the circuits are
covered (different areas enabled). These random signals may
affect borderline signals in the final result. However, the
effect on restoration performance in borderline signals is
negligible.

We used the original reported restoration quality numbers
in [3] and [4]. We did not use the reported numbers
of [5] and [7] as they used modified (performed some
optimizations) version of ISCAS’89 benchmarks. To perform
a fair comparison, we tried to obtain the executables
of [5] and [7]. Li and Davoodi [7] provided us with their
signal selection framework and we used it for the selection
process in this revision. Unfortunately, we were not able to
get the implementation of [5] and we used our implementation
of their approach in this revision. It should be noted that we
used our framework for the simulations and restoration quality
calculations.

B. Restoration Quality

Table VII compares the RRs of our approach with
several previous trace-only techniques [3]–[5], [7] using
different ISCAS’89 benchmarks. The trace buffer used in our
experiment are 8×4k, 16×4k, and 32×4k. The corresponding
RR for each technique (if available) is reported. Seventh and
ninth columns indicate the percentage improvement using
CSS and FSS techniques, respectively, compared with the
best (shown in bold) result provided by existing approaches.
The improvement in restoration performance is up to 91% in
s9234 (28% on average) for constrained selection algorithm.
Likewise, this improvement is up to 127% in s9234 (36%
on average) for flexible selection algorithm. It can be
observed that our approach performs significantly better
because existing trace-only approaches only take advantage
of temporal observability of a small set of signals while miss
the opportunity of both spatial and temporal observability
of a large set of signals. The last column shows the

percentage improvement by relaxing the scan chain lengths
(FSS) over-constrained hardware approach (CSS). As
expected, FSS outperforms CSS approach as there is no
constraint on scan chains hardware. This improvement is up
to 19% in s9234 and 5% on average.

We also compared our approach with the existing
trace + scan approach proposed in [10] (Table VIII). It is
important to note that we did not compare with other
trace + scan approaches (such as [9]), since [10] has shown
to perform better than other approaches. It can be observed
that our approach outperforms [10] consistently. The improve-
ment in restoration performance is up to 116% in s38584
(54.7% on average) for CSS, and up to 125% in s38584
(61.7% on average) for FSS. The reason for significant
improvement is that their approach is limited by coarse-grained
partitioning (two fixed partitions) of signals.

C. Selection Time

Table IX presents the runtime of our approach
compared with the previous simulation-based/hybrid
techniques [5], [7] using different ISCAS’89 benchmarks. The
reported runtime format is hour:minute:second. For this com-
parison, we used an Ubuntu 12.04.5 machine with a 64-Core
AMD Opteron 6378 (1400 MHz) processor and 189 GB of
physical memory. We measured the runtime of [7] using their
provided multithread binary file. In addition, to make the
comparison fair, we used a multithread implementation of
both [5] and our approach. It can be observed that compared
with [5], our approach reduces the selection runtime
significantly. Compared with [7], our approach demonstrated
significant improvement in restoration quality, the runtime
(of CSS, more specifically) is still comparable. In addition,
since CSS enforces constraints on scan chain lengths,
as expected, it demonstrates consistent speedup compared
with FSS approach. In short, although FSS outperforms CSS
in terms of restoration performance, it needs more time to
run the signal selection. CSS is beneficial when there are
constraints on hardware architecture or selection time. On the
other hand, FSS is beneficial when the restoration quality
is the primary objective. In addition, in each step of our
approach, all the evaluations (RP in CSS and RI in FSS) can
be done simultaneously. This makes our approach scalable
for large industrial designs using MapReduce or similar
programming models.

D. Hardware Overhead

To investigate the hardware overhead of our approach,
we developed Verilog Register-Transfer Level (RTL)
design for each of the profitable scan-trace configurations
(shown in Table X) and performed logic synthesis. For
each benchmark design, we selected the most profitable
scan-trace combinations for different trace buffer widths.
We fixed the trace buffer depth to 128 for all the
experiments. The RTL design has been developed as
a standalone module that accepts the scan-trace configuration
as a parameter. In each scan chain, shadow flip-flops are
connected through a chain and are stored in the trace buffer.
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TABLE VII

RRs OF DIFFERENT TRACE-ONLY APPROACHES COMPARED WITH OUR PROPOSED ARCHITECTURE

TABLE VIII

RRs USING OUR APPROACH COMPARED WITH [10]

For example, Fig. 9 shows a sample configuration for a trace
buffer of width 4. In this example, each entry of the trace
buffer is connected to a specific scan chain. The first entry
is connected to a scan chain of length 1 consisting of only
one flip-flop (A). Similarly, the second entry is connected to
a scan chain consisting of a flip-flop (B). In other words,
A and B are essentially trace signals that are traced in every
cycle. The third entry is connected to a scan chain of length
2 consisting of flop-flops C and D that are traced in alternate
cycles. The last entry is connected to a scan chain of length
3 consisting of flip-flops E , F , and G that are traced in every
third cycles. This configuration can be termed as 2T-1S2-1S3
to indicate that it consists of two trace signals (2T), one scan
chain of two flip-flops (1S2) and one scan chain of three
flip-flops (1S3).

Table X shows the profitable configurations used in dif-
ferent benchmarks. The first column indicates the benchmark.
The second column provides different trace buffer widths. The
last column lists the configurations. For example, consider
the configuration 21T-4S2-6S3-1S6 for benchmark s5378 with
buffer width 32. This configuration consists of 21 trace sig-
nals (21T), four scan chains each having two flip-flops (4S2),
six scan chains each having three flip-flops (6S3), and one
scan chain of six flip-flops (1S6).

We present both area and power overhead for performing
fine-grained signal selection compared with existing trace-
only approaches in Tables XI and XII, respectively. The area
overhead computation includes the area of the entire required
scan registers (shadow flip-flops that capture the state of the

TABLE IX

RUNTIME COMPARISON OF DIFFERENT APPROACHES

Fig. 9. Sample scan-trace configuration.

signals) as well as the necessary logic to control the timing
of the signal storage for each scan chain. Scan control logic,
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TABLE X

CONFIGURATIONS FOR FINE-GRAINED ARCHITECTURES

TABLE XI

AREA OVERHEAD OF FINE-GRAINED SIGNAL SELECTION

COMPARED WITH TRACE-ONLY APPROACH

in this case, is essentially a counter for dumping the values of
each scan chain by generating suitable control signals to enable
shift operation in each cycle. In order to synthesize the designs,
we used Synopsys Design Compiler version F-2011.09 and
FreePDK45 target library (45-nm technology) [23].

Table XI presents the hardware area overhead of our
approach for different benchmarks and trace buffer widths.
The first and the second column indicate the benchmarks and
trace buffer widths, respectively.

The third column presents the area (in μm2) for the circuit,
including the trace buffer. The fourth column presents the
area (in μm2) of the circuit with trace buffer, including
our fine-grained trace controller. The last column indicates
the percentage of area overhead, which is calculated as
100 × (column 4 − column 5)/column 4. It can be observed
that in most of the cases the area overhead of our approach is

TABLE XII

POWER OVERHEAD OF FINE-GRAINED SIGNAL SELECTION

COMPARED WITH TRACE-ONLY APPROACH

negligible. This overhead is up to 1.49% in s9234 and 0.57%
on average. It can also be observed that the area overhead is
more noticeable in smaller circuits (s5378, s9234, and s15850).
The reason is that the size of the trace buffer is dominant in
these scenarios. However, the area overhead is much smaller
for larger benchmarks where the circuit area is dominant
compared with the trace buffer area. Therefore, area overhead
of our approach would be negligible when fine-grained signal
selection is applied on large industrial designs.

Table XII presents the power overhead of our approach
for different benchmarks and trace buffer widths. Power
numbers include both dynamic and leakage power. Dynamic
power is computed assuming frequency of 500 MHz. The
first and the second columns indicate the benchmarks
and trace buffer widths, respectively. The third column
presents the power (in milliwatt) for the circuit, includ-
ing the trace buffer. The fourth column presents the power
(in milliwatt) of the circuit with trace buffer, including
our fine-grained trace controller. The last column indicates
the percentage of power overhead, which is calculated as
100 × (column 4 − column 5)/column 4. It can be observed
that in most of the cases the power overhead of our approach is
negligible (1% or less). It can also be observed that the power
overhead is more noticeable in smaller circuits (s5378, s9234,
and s15850). The reason is that the size of the trace buffer is
dominant in these scenarios. However, the power overhead is
much smaller for larger benchmarks where the circuit area is
dominant compared with the trace buffer area, which is the
case in real industrial designs. In conclusion, our promising
fine-grained architecture proposes significant improvement in
restoration quality with minor area and power overhead.

VI. CONCLUSION

Signal selection is an important part of post-silicon debug.
Existing techniques mainly focused on trace-only signal selec-
tion. Recent techniques employed coarse-grained combination
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of trace and scan signals and showed limited effectiveness.
In this paper, we presented a debug architecture consisting
of fine-grained combination of trace and scan signals.
We developed efficient algorithms to select the most profitable
signals based on the proposed architecture. Our experimen-
tal results using ISCAS’89 benchmarks demonstrated that
our approach shows up to 127% (36% on average) higher
restoration compared with existing trace-only approaches.
Our approach produces up to 125% improvement (61.7% on
average) compared with the state-of-the-art approaches that
consider a combination of trace and scan signals. We have
also demonstrated that our approach introduces minor (<1%)
area and power overhead compared with existing trace-only
approaches.
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