IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2010

1277

Test Data Compression Using Efficient Bitmask and
Dictionary Selection Methods

Kanad Basu, Student Member, IEEE, and Prabhat Mishra, Senior Member, IEEE

Abstract—Higher circuit densities in system-on-chip (SOC) de-
signs have led to drastic increase in test data volume. Larger test
data size demands not only higher memory requirements, but also
an increase in testing time. Test data compression addresses this
problem by reducing the test data volume without affecting the
overall system performance. This paper proposes a novel test data
compression technique using bitmasks which provides a substan-
tial improvement in the compression efficiency without introducing
any additional decompression penalty. The major contributions of
this paper are as follows: 1) it develops an efficient bitmask selec-
tion technique for test data in order to create maximum matching
patterns; 2) it develops an efficient dictionary selection method
which takes into account the bitmask based compression; and 3) it
proposes a test compression technique using efficient dictionary
and bitmask selection to significantly reduce the testing time and
memory requirements. We have applied our method on various test
data sets and compared our results with other existing test com-
pression techniques. Our algorithm outperforms existing dictio-
nary-based approaches by up to 30%, giving a best possible test
compression of 92%.

Index Terms—Bitmasks, decompression, test compression.

I. INTRODUCTION

N SYSTEM-ON-CHIP (SOC) designs, higher circuit den-
I sities have led to larger volume of test data, which demands
larger memory requirement in addition to an increased testing
time. Test data compression plays a crucial role, reducing the
testing time and memory requirements. It also overcomes the
automatic test equipment (ATE) bandwidth limitation. Alterna-
tives to external testing include built-in self-test (BIST). How-
ever, BIST is not appropriate for logic testing because of its
random-resistant fault and bus contention during test applica-
tion [1], which leads to inadequate test coverage. Other alterna-
tives like bit-flipping [2] and bit fixing [3] provide greater fault
coverage, with the disadvantage that structural information has
to be provided. Reduction of test data using structural methods
like Illinois Scan Architecture (ILS) [4] demands modification
of the design. Test data compression algorithms can reduce the
test data to a larger degree without facing any of the aforemen-
tioned disadvantages.
The overview of a traditional test compression framework is
shown in Fig. 1. The original test data is compressed and stored
in the memory. Thus, the memory size is significantly reduced.

Manuscript received November 23, 2008; revised February 09, 2009; ac-
cepted May 02, 2009. First published August 25, 2009; current version pub-
lished August 25, 2010. This work was supported in part by NSF CAREER
Award 0746261.

The authors are with the Department of Computer and Information Science
and Engineering, University of Florida, Gainesville, FL 32611-6120 USA
(e-mail: kbasu;prabhat@cise.ufl.edu).

Digital Object Identifier 10.1109/TVLSI.2009.2024116

Uncompressed _ | Compression
Test Data "| Algorithm

|
| |
! |
| ¢&—| Decompression Compressed| |
| | Design Under Hardware Test Data ‘
! |
| Test(DUT) wemory ||
|
! |

Fig. 1. Test data compression methodology.

An on-chip decoder decodes the compressed test data from the
memory and delivers the original uncompressed set of test vec-
tors to the design-under-test (DUT).

Dictionary-based test data compression is a promising ap-
proach which has been used by Li et al. [1]. Dictionary-based
compression techniques are also popular in embedded systems
domain since they provide a dual advantage of good com-
pression efficiency as well as fast decompression mechanism.
Many recently proposed techniques [5] have tried to improve
the dictionary-based compression techniques by considering
mismatches. However, the efficiency of these techniques de-
pends on the number of bits allowed to mismatch. It is obvious
that if more number of bit changes is allowed, more matching
patterns will be generated. However, remembering more bit
positions may lead to unprofitable compression. Bitmask based
compression [6] addresses this issue by creating more matching
patterns with the aid of bitmasks, while taking care of the
size of the compressed code. This paper tries to combine the
advantages of dictionary based test compression [1] as well as
bitmask-based code compression [6].

Bitmask based compression of test data may seem attractive,
but it presents various challenges. The primary concern is the
presence of don’t cares (“X”) in the test data set. Since bitmask
based compression technique [6] was not designed for data with
don’t care values, direct application of this technique on test
data does not result in a good compression efficiency. We have
to determine not only the effective bitmasks, but also a prof-
itable dictionary that produces optimal results. We demonstrate
in Section IV that selection of bitmasks and dictionary using
existing techniques [1], [6] are not appropriate in case of test
data compression using bitmasks. Our approach solves these
problems by selecting profitable bitmasks as well as proposing
efficient dictionary selection algorithms, to improve the com-
pression efficiency without introducing any additional decom-
pression penalty. Our experimental results demonstrate that our
approach produces up to 30% better compression compared to
existing dictionary-based approaches [1].

1063-8210/$26.00 © 2009 IEEE

1278

The rest of this paper is organized as follows. Section II
describes related work in the area of test data compression.
Section III briefly describes bitmask based compression and
associated challenges in applying it for test data compression.
Section IV presents our compression technique. Section V
describes our decompression mechanism. Section VI presents
the experimental results. Finally, Section VII concludes this

paper.

II. RELATED WORK

Test data compression has manifested itself as a serious
problem for a long time. Different compression techniques
have been proposed over the years to reduce the test data
volume. Some of them are statistical coding [7], run length
coding [8], Golomb coding [9], selective Huffman coding [10],
run length Huffman coding [11], Tunstall coding [12], LZW
coding [13], 9-coded technique [14], heterogeneous compres-
sion technique [15], FDR coding [16], multilevel Huffman
coding [17], [18] and variable to variable Huffman coding [19].
Reda [20] and Volkerink [21] have shown test data reduction
using an on-chip pattern decompression scheme. We have
compared our technique with these approaches in Section VI
using ISCAS’89 benchmarks obtained from MINTEST ATPG
programs.

Dictionary-based compression techniques have been recently
used to reduce the test data volume in SOCs. Li et al. [1] and
Reddy et al. [22] used fixed length dictionary entries to reduce
test data volume. Dynamic dictionaries along with LZ77 tech-
nique has been used by Wolff ez al. [23]. Wurtenberger et al. [24]
have proposed a test data compression method by remembering
the mismatches with the dictionary entries. A detailed compar-
ison between their approach and ours is provided at the end of
this section. We have proposed a bitmask-based compression
technique, which renders significantly better results than Li et
al. [1], as demonstrated in Section VI. Bitmask-based compres-
sion was developed by Seong et al. [6] for code compression in
embedded systems. We have employed a modified version of the
bitmask-based compression technique in our test data compres-
sion. Our results have demonstrated significant improvement
in compression efficiency compared to existing bitmask based
compression as shown in Section VI.

Wurtenberger et al. [24] have proposed a test data compres-
sion technique which is somewhat similar to our approach to re-
member the mismatches from the dictionary entries. However,
there are significant differences between the two approaches.
While they [24] try to remember the positions of the bit changes,
our method uses bitmasks to account for the mismatch. Due
to considering only one bit-fix, [24] looses the opportunity of
taking care of multiple mismatches. This is quite evident from
our experimental results in Section VI. Our approach performs
10%-30% better compression while uses simpler decompres-
sion engine compared to them.

III. BACKGROUND AND MOTIVATION

This section briefly describes bitmask-based code compres-
sion [6], and highlight the challenges in employing bitmask-
based technique for test data compression.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2010

0 — compressed 0 — use bitmask
1 — uncompressed 1 — no action

00XX11X0 ----»0 1 0
11X010XX ----»1 11101011

X10X110X ----»0 1 1

XOXXX100 ----»1 10111100 Index \Content
00XX1110 ----»0 1 0 000111110
00XX11X0 ----»0 1 0 1| 11011101
0XXX0X10 ----»1 01110110

X101110X ----»0 1 1

XXX100XX ----»1 11110011 Dictionary
XI101XX1X ~---»0 0 1110 1

bitmask position bitmask value

Original Data Compressed Data

Fig. 2. Bitmask-based test data compression.

A. Bitmask-Based Test Data Compression

Bitmask-based compression is an enhancement on the dic-
tionary-based compression scheme, that helps us to get more
matching patterns. In dictionary-based compression, each
vector is compressed only if it completely matches with a
dictionary entry.

As seen in Fig. 2, we can compress up to six data entries using
bitmask based compression. The compressed data is represented
as follows. Those vectors that match directly are compressed
with 3 bits. The first bit represents whether it is compressed
(using 0) or not (using 1). The second bit indicates whether it
is compressed using bitmask (using 0) or not (using 1). The
last bit indicates the dictionary index. Data that are compressed
using bitmask requires 7 bits. The first two bits, as before, rep-
resent if the data is compressed, and whether the data is com-
pressed using bitmasks. The next two bits indicate the bitmask
position and followed by two bits that indicate the bitmask pat-
tern. For example, the last data vector in Fig. 2 is compressed
using a bitmask. The bitmask position is 11, which indicates
the fourth even bit position from left. For this case, we have as-
sumed fixed bitmasks, which are always employed on even-bit
positions and hence only 2 bits are sufficient to represent the
four positions in a 8-bit data. The last bit gives the dictionary
index. The bitmask XORed with the dictionary entry produces
the original data. More details on the types and positions of bit-
masks will be described in Section IV-B in the context of test
data compression. In this example, the compression efficiency is
27.5%, based on the following formula expressed as percentage:

Original Size—Compressed Size
Original Size '

Compression Efficiency =

Since existing approach does not handle don’t cares (“X”), in
this example we have replaced all don’t cares by 1. Note that we
could have replaced all don’t cares with 0’s as well. In that case,
it will result in worse compression efficiency of 2.5%. A better
compression efficiency can be achieved by selectively replacing
the don’t cares with “0” or “1” instead of replacing all by 0’s (or
1’s). It is a major challenge to identify the selective replacement
to generate the best possible compression efficiency.

B. Challenges in Bitmask Based Compression

This section outlines various challenges in using bitmask-
based approach in test data compression. There are three major

BASU AND MISHRA: TEST DATA COMPRESSION USING EFFICIENT BITMASK AND DICTIONARY SELECTION METHODS

Original
Test Data

Scan Chain
based Partition
Dictionary Bitmask
Selection Selection
Test
Compression

Compressed
Test Data

Fig. 3. Bitmask-based test data compression.

challenges in bitmask-based test data compression. The problem
is further aggravated since each of these challenges are interde-
pendent and cannot be solved independently.

1) Dictionary Selection: A profitable dictionary is to be se-
lected which takes into account the bit savings due to fre-
quency matching as well as bitmasks.

2) Bitmask Selection: Appropriate number and type of bit-
masks are to be selected for compression.

3) Don’t Care Resolution: It is necessary to selectively re-
place each don’t care with “0” or “1”.

Each of these factors play a crucial role in determining the
final compression performance of the algorithm. We begin our
discussion with dictionary selection. Frequency of occurrence
provided a good base for selection in case of dictionary-based
compression, since mismatches would simply be ignored as un-
compressed data. However, the scenario is different for bitmask-
based compression, where mismatched data could also be com-
pressed using bitmasks. Therefore, care should be taken to se-
lect appropriate dictionary entries that account for the bitmasks
as well.

Choosing the number and type of bitmasks for compressing
a particular data vector is extremely important. There are dif-
ferent types of bitmasks as well. We have to select bitmasks that
are most appropriate for compressing a particular group of data.
Sections IV-B and IV-C present our bitmask selection and dic-
tionary selection algorithms, respectively.

Another challenge for test data compression is that selec-
tive don’t care resolution is difficult and it further complicates
the dictionary and bitmask selection. Consider the two vectors:
“00XX1X10” and “X0X110X0”. Although these two vectors
have lot of dissimilarities, it is obvious that they will match. This
is because a don’t care can be matched with a “0” or a “1” ac-
cording to the matching pattern. Thus a lot more matching can
be obtained in case of vectors with don’t cares. Therefore, the
dictionary selection and bitmask selection algorithms have to be
modified in order to incorporate this factor.

IV. TEST DATA COMPRESSION USING BITMASKS

We have developed an efficient test data compression algo-
rithm using bitmasks. Fig. 3 presents our bitmask-based test

1279

0000

Scan Chains

WOOX

Scan Chains

2

m

00|/ 1
I
1| 1] X||X

n x 1 =4 Slices

0000 OlOJERE

Fig. 4. Dividing test data into scan chains.

compression methodology. It has four major steps: 1) divide the
input test data based on number of scan chains; 2) dictionary
selection; 3) bitmask selection; and 4) test compression using
don’t care resolution, dictionary and bitmask selection.
Algorithm 1 outlines these steps. The first step divides the
uncompressed data set to equal length slices for compression as
described in Section IV-A. Next, it tries to determine the prof-
itable bitmasks and dictionary using the procedures described
in Sections IV-B and IV-C, respectively. The dictionary selec-
tion algorithm generates the dictionary entries while the bitmask
selection algorithm provides the number and type of profitable
bitmasks. Finally, the test compression is performed using the
generated dictionary and bitmasks as illustrated in Section IV-D.

Algorithm 1 Compression Algorithm

Inputs: Test Data
Output: Compressed Test Data and Dictionary
Begin
1: Divide test data based on scan chains
2: Select bitmasks
3: Perform dictionary selection
4: Compress using selected dictionary and bitmasks
Return compressed test data and dictionary
End

A. Division of Test Data Into Scan Chains

Once we get the input test data, our next task would be to
divide them into scan chains of predetermined length. Let us
assume that the test data T'p consists of n test patterns. We di-
vide the scan elements into m scan chains in the best balanced
manner possible. This results in each vector being divided into
m sub-vectors, each of length, say [. Dissimilarity in the lengths
of the sub-vectors are resolved by padding don’t cares at the end
of the shorter sub-vectors. Thus, all the sub-vectors are of equal
length. The m-bit data which is present at the same position of
each sub-vector constitute an m-bit slice. If there are n vectors
at the beginning, we obtain a total of n x [m-bit slices, which
is our uncompressed data set that needs to be compressed.

Consider a simple example consisting of two (n = 2) test
patterns 0011 and 1XXX for a design with two scan chains
(m = 2). Therefore, length of each sub-vector | = 2. In this
case, padding of don’t cares is not required. Fig. 4 shows how
four slices (XX, 1X, 01, and 01) can be formed with two vectors
(001X and 11XX) obtained by scan chain based partitioning of
the two original test patterns. These are the four slices that need
to be compressed.

1280

Format for Uncompressed Data

Decision

. Uncompressed Data
(1-bit)

Format for Compressed Data

of mask
patterns

Mask
type

Mask
pattern

Decision
(1-bit)

Location

Dictionary Index

{«— Extra bits for considering mismatches —]

Fig. 5. Generic encoding format.

B. Bitmask Selection

Fig. 5 shows the generic encoding formats of bitmask-based
compression technique for various number of bitmasks. A com-
pressed data stores information regarding the bitmask type, bit-
mask location, and the mask pattern itself. The bitmask can be
applied on different places on a vector and the number of bits
required for indicating the position varies depending on the bit-
mask type. For instance, if we consider a 32-bit vector, an 8-bit
mask applied on only byte boundaries requires 2-bits, since it
can be applied on four locations. If we do not restrict the place-
ment of the bitmask, it will require 5 bits to indicate any starting
position on a 32-bit vector.

Bitmasks may be sliding or fixed. Fixed bitmasks are referred
with the letter f while sliding bitmasks are referred with the
letter s. For example, 2s refers to a sliding bitmask of length
2 while 2f refers to a fixed bitmask of length 2. A fixed bit-
mask is one which can be applied to fixed locations, such as byte
boundaries. However, sliding bitmasks can be applied anywhere
in the test vector. Since the fixed bitmasks can be applied only
to fixed locations, the number of positions where they can be ap-
plied is significantly less compared to sliding bitmasks. Hence,
the number of bits needed to represent them are less than sliding
bitmasks.

Seong et al. [6] has shown that the profitable bitmasks to be
selected for code compression are 2s, 2f, 4s, and 4f. However, in
case of test data compression, the last two bitmasks are not prof-
itable. This is because the probability that four corresponding
contiguous bits will differ in a pair of test data is only 0.2% [25],
which can easily be neglected. Therefore, it is not profitable to
use bitmasks of length 4 or higher. Thus, we perform our com-
pression by using 1-bit, 2s or 2f bitmasks. The number of bit-
masks selected, which depends on both the test vector length and
the dictionary entries, can be determined using the following
lemma.

Lemma: The number of bitmasks is dependent on vector
length and dictionary entries.

Proof: Let L be the number of dictionary entries and N be
the vector length. If y is the number of bitmasks allowed, then
in the worst case (when all the bitmasks are 2s), the number of
bits required is shown below which should be less than N.

no_bits = 2 +logy, L + logs y + y X (2 + (logy, N))

The first two bits are required to check whether the data is com-
pressed or not, and if compressed, whether bitmask is used or
not. The maximum number of bitmasks allowed can be found

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2010

by equating the above expression with NV, so that the worst case
condition holds. Therefore, y can be expressed as follows.

N —2—1log, L

_logyy

y:

We can see that it is not easy to compute y since both sides
of the equation contain y related terms. Since y < N, it is
a safe measure to replace the right-most term (the term after
the subtraction sign) with 1. Therefore, the following equation
for y (floored to the nearest integer) will provide the maximum
number of bitmasks that are profitable.

N —2—1log, L

1

y:

C. Dictionary Selection

The dictionary selection algorithm is a critical part in bit-
mask-based test data compression. Similar to Li et al. [1],
we used the classical clique partitioning algorithm of graph
theory [26]. The clique-partitioning problem basically refers to
the breaking up of a graph into several cliques, such that the
nodes within one clique are all interconnected. This problem
is NP-hard [27], so heuristic approaches are used to solve it in
real time.

A graph G is drawn with n. X [nodes, where each node sig-
nifies a m-bit test vector. An edge is drawn between two nodes
when they are compatible. Two nodes are said to be compatible
if they meet any one of the following two requirements: 1) for all
positions, the corresponding characters in the two vectors are ei-
ther equal or one of them is a don’t care; or 2) two vectors can be
matched by predetermined profitable bitmasks. Each edge also
contains weight information. The weight is determined based on
the number of bits that can be saved by using that edge (direct
or bitmask-based matching).

Based on this graph model, we developed three dictionary se-
lection techniques: 1) two-step method (TSM); 2) method using
compatible edges (MCE) without edge weights; 3) MCE with
edge weights (MEW). Each of these techniques uses a variant
of well-known clique partitioning algorithm. The remainder of
this section describes these three techniques in detail.

1) Two-Step Method: In TSM, we consider only edges that
are formed by direct matching. In other words, the graph will
not have any edges corresponding to bitmask-based matching.
Then a clique partitioning algorithm [1] is performed on the
graph. This is a heuristics-based procedure that selects the node
with the largest connectivity and is entered as the first entry to a
clique. Now, the nodes connected with it are analyzed, and the
node having the largest connectivity among these (and not in the
entire graph) is selected. This process is repeated until no node
remains to be selected. The entries of the clique are deleted from
the graph. The algorithm is repeated until the graph becomes
empty. The clique partitioning algorithm is used in MCE and
MEW as well.

Since we have a predefined number of dictionary entries, two
possibilities may arise. The number of cliques selected may be
greater than the predefined number of entries or vice versa. In
the latter case, we just need to fill in the dictionary entries with
those obtained from clique partitioning. However, if the number

BASU AND MISHRA: TEST DATA COMPRESSION USING EFFICIENT BITMASK AND DICTIONARY SELECTION METHODS

of cliques is larger, we have to select the best dictionary entries
as illustrated in Algorithm 2 by considering maximum overall
savings using both frequency and bitmasks.

Algorithm 2 Selection of Profitable Dictionary Entries

Inputs: 1. Dictionary entries, .S, from clique partitioning
2. Original Test Data Vectors, V/
3. No. of entries allowed, N
Output: Set of N profitable dictionary entries
Begin
Profitable Entries = {};
1: for each dictionary entry
Compute savings by frequency and bitmasks.
2: for count from 1 to N
2.1 Select the entry D with maximum savings.
2.2 ProfitableEntries+ = D,
235 =8-D.
2.4V =V — entries compressed by D.
2.5 Recompute the savings of S using V/
Return ProfitableEntries
End

2) Method Using Compatible Edges (MCE) Without Edge
Weights: In MCE, weight of all the edges (direct or bit-
mask-based match) are considered equal. A clique selection
algorithm is then performed in the same way as discussed in
Section IV-C1.

3) MCE With Edge Weights (MEW): MEW is same as MCE
except that we consider edge weights. As indicated earlier, the
edge weight is determined based on the number of bits saved if
that edge is used for direct or bitmask-based matching. During
clique partitioning, instead of connectivity, the total savings by
each node is taken into account. The total savings by each node
is obtained as the sum of weights of edges originating from that
node.

We illustrate how these three methods work using the ex-
ample test data set in Table I. The resultant graph is shown in
Fig. 6. The straight lines in the graph indicate a direct match
while the dotted lines signify a match by applying one bitmask.
Obviously, the dotted lines will be absent in case of TSM. The
dotted lines will have the same weight as the straight lines for
MCE. However, they will have different weights in case of
MEW. In case of MEW, the weight is determined based on
the number of bits saved by using that edge (direct or bitmask
match).

When we try to compress these data using TSM, the cliques
selected are {1,2, 3} and {8, 9, 10}. The compression efficiency
is obtained as 46.25%. However, when we compress using either
MCE or MEW, the cliques selected are {4, 5,6, 7} and {1, 2, 3},
resulting in improved compression efficiency of 48.75%.

D. Test Compression: An Example

We return to the same example as in Section III-A. Now we
try to compress the data using our proposed algorithm in Fig. 7.
It can be seen that the don’t cares selectively attain values 0 and
1 according to the dictionary entries. The example shows that

1281

foR
o

Fig. 6. Graph model for the test data in Table I.

TABLE I
TEST DATA SETS
Data Set Entry

1 11X001XX01100110

2 1X00X10101100110

3 X1000X0101100110

4 0XXX00X101100110

5 001X011101100110

6 001X101101100110

7 001X011101100110

8 000X0XX101100110

9 XX01X11X01100110

10 XXX101X101100110
0- compr(esse&Z|_l l_E) — use bitmask
1 — uncompressed 1 — no action
00XX11X0 ----»0 1 0
11XO10XX ----»1 11X010XX
X10X110X ----»0 1 1
XOXXX100 ----»>0 0 1110 0 Index\Content
00XX1110 ----»0 1 0 0100111110
00XX11X0 ----»0 1 0 1| 11011101
00XX0X10 ----»>0 0 00 100
X101110X ----»0 1 1
XXX100XX ----»0 0 10 111 Dictionary
X101XX1X ----»0 0 11 101

bitmask position J bitmask value

Original Data Compressed Data

Fig. 7. Compression using bitmasks.

we are able to compress 9 out of 10 test vectors. The final test
data size is 52, which is equivalent to a compression efficiency
of 35%, 7.5% more than what we obtained in Section III-A.

V. DECOMPRESSION MECHANISM

We have proposed the design of a decompression engine
(DCE), shown in Fig. 8, that can easily handle bitmasks and
provide fast decompression. The design of our engine is based
on the one cycle decompression engine proposed by Seong
et al. [6]. The most important feature is the introduction of XOR
gate in addition to the decompression scheme for dictionary
based compression. The decompression engine generates a test
data length bitmask, which is then XORed with the dictionary
entry. The test data length bitmask is created by applying the
bitmask on the specified position in the encoding. The genera-
tion of bitmask is done in parallel with dictionary access, thus

1282

Compressed Test Uncompressed Test
From Memory To DUT

Compressed

Decompression
w/o Bitmasks

Dictionary
Logic

Compressed
with Bitmasks

00 or 01 Index f \

Parallel with Dictionary Access
f——
o [Mask |

1 Uncompressed Data

XOR Output Buffer D-

Fig. 8. Decompression engine for bitmask-based encoding.

reducing additional penalty. The DCE can decode more than
one compressed data in one cycle.

Algorithm 3 provides an overview of our decompression pro-
cedure. The decompression engine takes the compressed vector
as input. It checks the first bit to see whether the data is com-
pressed. If the first bit is “1” (implies uncompressed), it directly
sends the uncompressed data to the output buffer. On the other
hand, if the first bit is a “0”, it implies this is a compressed data.
Now, there are two possibilities in this scenario. The data may
be compressed directly using dictionary entry or may have used
bitmasks. The decompression engine will operate differently in
these two cases.

Algorithm 3 Decompression of compressed test data

Inputs: Compressed test vectors, length of uncompressed test
vector [, dictionary entries
Output: Uncompressed (original) test vectors
Begin
1: Let p be the first bit of the compressed string
2:if p ==
The remaining bits are the uncompressed string
Go to step 9
: Let ¢ be the second bit of the compressed string
4:if ¢ ==
The remaining bits correspond to dictionary index
It is a direct match, read the dictionary entry
Go to step 9
: Read respective bits for mask values and positions
: Compose final bitmask using the data from step 5
: Read the dictionary entry based on dictionary index
: Perform XOR of dictionary entry with final bitmask to
generate the uncompressed string.
9: Send the uncompressed string to the DUT
End

(O8]

0 3 O\ L

The DCE distinguishes between the two by looking at the
second bit. If the second bit is “0”, it signifies that it has been
matched using only dictionary entry. The index of the dictionary
entry is used to read from the dictionary, and the content is trans-
ferred to the output buffer. On the other hand, if the second bit is
“1”, the engine knows that the data has been compressed using

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2010

TABLE II
COMPRESSION EFFICIENCY OF OUR THREE COMPRESSION SCHEMES

\ | Best Compression Efficiency(%) |

[Circuits | TSM | MCE | MEW__|
s9234 | 86.7 | 87.6 87.5
513207 | 919 | 92 ()
s15850 | 88.7 | 88 881
s38417 | 715 | 73.6 74
538584 | 764 | 766 76.5

bitmasks. Now, the DCE extracts the number and positions of
the bitmasks from the compressed data. It extracts the index cor-
responding to the dictionary entry as well. It then proceeds to
create a bitmask. Initially, it creates a vector of the length of
the uncompressed vector. It then finds the positions and types
of bitmasks and inserts the bitmasks in those positions. Along
with the bitmask generation, it does a parallel dictionary lookup
in the same way as traditional dictionary based compression.
The two results are now XORed. The final result is sent to the
output buffer.

VI. EXPERIMENTS

In this section, we compare the compression performance and
decompression overhead of our approach with other popular test
compression algorithms. Section VI-A compares the compres-
sion efficiency, while Section VI-B presents the decompression
overhead. To demonstrate the usefulness of our method, we have
applied it on the tests which were obtained from the MINTEST
ATPG program [28] for the five largest ISCAS’89 circuits.

A. Compression Performance

Table II shows the compression performance of TSM, MCE,
MEW using the five largest ATPG programs. As expected, MCE
and MEW generated better compression by exploiting compat-
ible edges and thereby selecting larger cliques. However, larger
clique may not always generate better results when TSM is able
to directly match with a large number of test vectors. For ex-
ample, in case of s15850, TSM has performed better than others
due to the fact that almost 88% of the test vectors are matched
directly in TSM, whereas around 65% of the test vectors are di-
rectly matched using MCE and MEW.

To compare the performance of MEW and MCE, we analyze
$38417. As expected, for s38417 in Table II, MEW performs
better than MCE, which in turn performs better than TSM. The
is due to the fact that a large number of test vectors can be
compressed using one or two bitmasks. The number of directly
matched test vectors for TSM, MCE, and MEW are 54%, 38%,
and 37%, respectively. However, when we consider matching
by one or two bitmasks, TSM only covers 8%, while MCE and
MEW matches 31.5% and 34% respectively. This huge disparity
in bitmask-based matches makes MEW the best method fol-
lowed by MCE. In some cases, like $9234, MCE is seen to per-
form 0.1% better than MEW because using MCE, almost 91%
of the test vectors can be compressed either directly or using
one or two bitmasks. However, for MEW, the number reduces
to 90.4%. This minor disparity is due to the fact that we use
heuristic method for clique partitioning.

Table III compares the run time information for compression
of the test cases obtained from the five largest ATPG programs.

BASU AND MISHRA: TEST DATA COMPRESSION USING EFFICIENT BITMASK AND DICTIONARY SELECTION METHODS

TABLE III
COMPRESSION TIME OF OUR THREE COMPRESSION SCHEMES

[| Time taken in seconds |
Circuits [TSM | MCE [MEW |

§9234 1 1 1
$13207 12 17 17
s15850 1 1 2
s38417 3 4 4
538584 6 13 14

m Bitmask Based = Dictionary Based mProposed Method (MEW)
100%

90%
c 80%
S 70% -
& 60% -
£ 50% -
g 40% -
Q 30% -
O 20% |
10%
0% -
$9234 $15850 $13207 s38417 $384584
Circuits
Fig. 9. Compression efficiency for different circuits.

TABLE IV
COMPARISON OF COMPRESSION EFFICIENCY FOR DIFFERENT CIRCUITS

Compression Efficiency

Compression Efficiency
128 scan chains(%)

64 scan chains(%)

Circuit | Dictionary Our Dictionary Our
based approach based approach
$9234 67.46 75.73 70.12 87.54
s13207 85.43 84.88 91.53 92.01
s15850 75.88 79.28 81.98 88.12
s38417 42.73 65.29 36.75 74.00
s38584 70.77 72.54 70.77 76.51
M Proposed Method (MEW) Dictionary based M Selective Huffman
90.00%
80.00% -
70.00% -
§ 60.00% -
2 50.00% -
'g- 40.00%
S 30.00%
20.00%
10.00%
0.00% -
128 64 32

Number of scan chains

Fig. 10. Compression performance of s15850 for different scan chain lengths
and 64 dictionary entries.

It can be seen that although MEW is expected to give the best
compression performance, it takes the largest compression time.

In the remainder of this section, our proposed approach refers
to MEW. We compare the compression performance of our ap-
proach with those obtained by employing the algorithms of Li
et al. [1] and Seong et al. [6]. Fig. 9 shows the comparison be-
tween the three techniques. Here, we have considered only 128
scan chains. We have compared the test data obtained from the
5 largest circuits using 128 dictionary entries.

The first bar represents the compression if bitmask-based
compression technique [6] is directly applied for compressing
the test data. The second bar represents the compression using
dictionaries of fixed-length indices [1]. The third bar, which
represents our method, gives the best compression efficiency.

1283

M Proposed Method (MEW)
100.00%

90.00%
80.00%
70.00%
60.00%
50.00%
40.00% -
30.00%
20.00%
10.00%

0.00%

Dictionary based M Selective Huffman

Compression

128 64 32
Number of scan chains

Fig. 11. Compression performance of s15850 for different scan chain lengths
and 128 dictionary entries.

TABLE V
COMPRESSION EFFICIENCY FOR DIFFERENT CIRCUITS

\ | Best Compression Efficiency(%) |

Circuit | Dictionary | Bitmask based | Our approach
Entries Compression
c1355 16 34.27 60.28
c499 16 59.15 62.06
c6288 16 33.64 66.35
Proposed Method (MEW) W Dictionary based
100.00%
90.00%
80.00%
- 70.00% +——
2 60.00% ——
£ 5000% ——
g 40.00% +——
O 30.00% +——
20.00% +—— ——
10.00% +——
0.00% T

s5378+s9234 $13207+s15850 $38417+s38584

Circuit combinations

Fig. 12. Compression performances of different circuit combinations with our
approach and dictionary-based compression.

TABLE VI
COMPARISON OF COMPRESSION EFFICIENCY FOR DIFFERENT CIRCUITS

Compression Efficiency | Compression Efficiency

64-bit scan chains(%) 128-bit scan chains(%)
Circuit | [24] Our approach [24] Our approach
$9234 52 75.73 45 87.54
s13207 | 75 84.88 81 92.01
s15850 | 63 79.28 64 88.12
s38417 | 48 65.29 37 74.00
s38584 | 62 72.54 67 76.51

The key point to be noted here is the difference between the
applications of our approach and the algorithm of Seong er al.
[6]. Although both rely on bitmasks, due to differences in the
dictionary selection algorithm, our approach outperforms the
conventional bitmask based approach [6] by 30% to 60%. It
is also evident that our approach significantly outperforms (up
to 30%) the existing dictionary based compression algorithm
[1]. This can be attributed to the introduction of bitmasks in
our approach. Bitmasks allow bit changes (which was absent in
the dictionary-based compression [1]) and thus matches more
vectors.

1284

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2010

TABLE VII
PERFORMANCE OF DIFFERENT COMPRESSION SCHEMES USING MINTEST TEST DATA

Best Compression Efficiency(%) |

Existing Methods [

Our Approach |

Circuits | Golomb| Selective | RL Huff- | Tunstall | LZW| 9- Var2Var Hetero. | Multilevel | FDR| TSM| MCE| MEW
9] Huffman | man [11] | [12] [13] | coded Huffman | comp. Huffman [16]
[10] [14] [19] [15] [17,18]
$9234 45 54 42 59 71 55 67 - 61 61 87 88 88
s13207 | 80 30 16 34 82 85 91 94 89 88 92 92 92
s15850 | 63 38 32 45 76 71 80 44 75 72 89 88 88
s38417 | 28 45 44 68 71 63 64 47 64 65 71 74 74
s38584 | 57 40 43 50 75 69 72 81 73 64 76 77 77
TABLE VIII W Proposed Method (MEW) Dictionary based m Selective Huffman
TEST COMPRESSION TIME FOR DIFFERENT TECHNIQUES 1600
1400
\ [Time needed in seconds | 5 1200
Circuits | Selective Huffman [Our approach | g 1000
9234 26 1 2 8007
513207 22 17 g 600 - ——
15850 33 2 © 400
s38417 15.8 4 200 -
s38584 17.8 14 0

We now compare the compression efficiencies obtained by
Li et al. [1] with our approach for the test cases obtained from
the 5 ATPG programs using both 64- and 128-bit scan chains.
Table IV demonstrates that in almost all cases, our approach pro-
vides better compression efficiency than dictionary-based com-
pression [1].

We now compare the performance of our approach against the
selective Huffman coding [10] on test vectors obtained from one
of the largest circuits, that is s15850. Fig. 10 presents the results
of comparison of the two compression schemes for 64 dictio-
nary entries and variable number of scan chains. Fig. 11 com-
pares the two approaches for 128 dictionary entries and variable
number of scan chains.

It can be seen that our approach works better with greater
number of scan chains. The reason is quite obvious. With
smaller number of scan chains and larger dictionary entries,
less number of bit vectors can be profitably compressed using
bitmasks. It is important to note that our approach performs
better than the dictionary based compression scheme in all
cases. Although the selective Huffman coding gives better
compression performance, it has significant decompression
area and performance overhead as discussed in Section VI-B.

So far we have demonstrated that our approach outperforms
the existing approaches for test data compression in the pres-
ence of don’t cares in the test data. We have also applied our
algorithm in test data sequences which do not have don’t cares.
These test data are obtained from some of the MINTEST ATPG
programs [28]. We have compared results of our approach with
those obtained when compressed using the existing bitmask-
based compression method [6]. Table V presents the results of
test data compression (without don’t cares). As expected, our
approach provides better compression than the bitmask-based
compression [6].

In our next experiment, we combine pairs of test data sets
that have nearly the same number of scan chains and then
compress them. This is done in order to test the performance

128 64

Number of scan chains

32

Fig. 13. Gate numbers for decompression using the three methods for 64 dic-
tionary entries.

B Proposed Method (MEW)
3000

Dictionary based M Selective Huffman

2500

2000

1500 -

1000 -

Gate Number

500 -

0 -
128 64

Number of scan chains

32

Fig. 14. Gate numbers for decompression using the three methods for 128-bit
dictionary entries.

of our compression algorithm on really huge data sets which
are formed by the combination of a pair of test data. We then
compare our approach with the dictionary-based compression
algorithm [1]. We create three sets of test data by combining the
test data of the circuits in each set. The sets are {s5378, 59234},
{s13207,s15850}, and {s38417,s38584}. The results are
shown in Fig. 12. It can be seen that our approach performs up
to 25% better than Li et al. [1].

We have compared our approach with the algorithm proposed
by Wurtenberger et al. [24] that compressed test data by remem-
bering the mismatches from the dictionary entries. The com-
parison results are given in Table VI for the ISCAS’89 bench-
marks. Our approach performs 10%-30% better compression
than them.

Table VII presents the comparison of our approaches (TSM,
MCE, and MEW) with various existing compression tech-
niques. Table VIII compares our test compression time with
that of selective Huffman coding.

BASU AND MISHRA: TEST DATA COMPRESSION USING EFFICIENT BITMASK AND DICTIONARY SELECTION METHODS 1285

B. Decompression Overhead

This section compares area overhead of our DCE with other
approaches. We have used the DCE to decompress the com-
pressed data obtained from s15850. The results are compared
with those obtained using dictionary based compression [1] and
selective Huffman-based compression [10].

Fig. 13 shows the results for 64 dictionary entries while
Fig. 14 presents it for 128 dictionary entries. In both cases
our method requires less area (number of gates) compared
to selective Huffman-based encoding. However, it requires
larger area compared to dictionary-based compression. This is
quite obvious since dictionary based compression has only few
states, whereas we need more states due to use of bitmasks.
Our decompression engine has three primary components that
contribute to the area overhead: SRAM to store the dictionary,
bitmask generation logic, and final XOR. The last two compo-
nents are not needed in dictionary-based compression.

VII. CONCLUSION

This paper presented a test compression algorithm that com-
bines the advantages of dictionary-based compression [1] and
bitmask-based compression [6]. This paper developed efficient
bitmask and dictionary selection techniques for test data com-
pression in order to create maximum matching patterns in the
presence of don’t cares. Our test compression technique used
the dictionary and bitmask selection methods to significantly
reduce the testing time and memory requirements. We have ap-
plied our algorithm on various benchmarks and compared our
results with existing test compression techniques. Our algorithm
outperforms existing dictionary based compression [1] by up
to 30%, giving a best possible compression of 92%. Our ap-
proach also generates up to 60% improvement in compression
efficiency compared to bitmask-based compression [6] without
introducing any additional performance or area overhead.

ACKNOWLEDGMENT

The authors would like to thank Prof. K. Chakrabarty for pro-
viding the test data for ISCAS’89 benchmarks obtained from
MINTEST ATPG programs.

REFERENCES

[1] L.Li, K. Chakrabarty, and N. Touba, “Test data compression using dic-
tionaries with selective entries and fixed-length indices,” ACM Trans.
Des. Autom. Electron. Syst., vol. 8, no. 4, pp. 470-490, 2003.

[2] H. Wunderlich and G. Kiefer, “Bit-flipping BIST,” in Proc. Int. Conf.
Comput.-Aided Des., 1996, pp. 337-343.

[3] N. Touba and E. McCluskey, “Altering a pseudo-random bit sequence
for scan based bist,” in Proc. Int. Test Conf., 1996, pp. 167-175.

[4] F.Hsu, K. Butler, and J. Patel, “A case study on the implementation of
Illinois scan architecture,” in Proc. Int. Test Conf., 2001, pp. 538-547.

[5] M. Ros and P. Sutton, “A hamming distance based VLIW/EPIC code
compression technique,” in Proc. Compilers, Arch., Synth. Embed.
Syst., 2004, pp. 132-139.

[6] S. Seong and P. Mishra, “Bitmask-based code compression for em-
bedded systems,” IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst., vol. 27, no. 4, pp. 673-685, Apr. 2008.

[7] M.-E. N. A. Jas, J. Ghosh-Dastidar, and N. Touba, “An efficient test

vector compression scheme using selective Huffman coding,” IEEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 22, no. 6, pp.

797-806, Jun. 2003.

A. Jas and N. Touba, “Test vector decompression using cyclical scan

chains and its application to testing core based design,” in Proc. Int.

Test Conf., 1998, pp. 458-464.

A. Chandra and K. Chakrabarty, “System on a chip test data compres-

sion and decompression architectures based on Golomb codes,” I[EEE

Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 20, no. 3, pp.

355-368, Mar. 2001.

[10] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Optimal selective
Huffman coding for test-data compression,” IEEE Trans. Computers,
vol. 56, no. 8, pp. 1146-1152, Aug. 2007.

[11] M. Nourani and M. Tehranipour, “RL-Huffman encoding for test com-
pression and power reduction in scan applications,” ACM Trans. Des.
Autom. Electron. Syst., vol. 10, no. 1, pp. 91-115, 2005.

[12] H.Hashempour, L. Schiano, and F. Lombardi, “Error-resilient test data
compression using Tunstall codes,” in Proc. IEEE Int. Symp. Defect
Fault Tolerance VLSI Syst., 2004, pp. 316-323.

[13] M. Knieser, F. Wolff, C. Papachristou, D. Weyer, and D. MclIntyre, “A
technique for high ratio LZW compression,” in Proc. Des., Autom., Test
Eur., 2003, p. 10116.

[14] M. Tehranipour, M. Nourani, and K. Chakrabarty, “Nine-coded com-
pression technique for testing embedded cores in SOCs,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 13, pp. 719-731, Jun. 2005.

[15] L. Lingappan, S. Ravi, A. Raghunathan, N. K. Jha, and S. T.
Chakradhar, “Test-volume reduction in systems-on-a-chip using
heterogeneous and multilevel compression techniques,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol. 25, no. 10, pp.
2193-2206, Oct. 2006.

[16] A. Chandra and K. Chakrabarty, “Test data compression and test
resource partitioning for system-on-a-chip using frequency-directed
run-length (FDR) codes,” IEEE Trans. Computers, vol. 52, no. 8, pp.
1076-1088, Aug. 2003.

[17] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Multilevel-Huffman
test-data compression for IP cores with multiple scan chains,” /EEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 16,no. 7, pp. 926-931,
Jul. 2008.

[18] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Multilevel Huffman
coding: An efficient test-data compression method for IP cores,” IEEE
Trans. Comput.-Aided Des. Integr. Circuits Syst., vol. 26, no. 6, pp.
1070-1083, Jun. 2007.

[19] X. Kavousianos, E. Kalligeros, and D. Nikolos, “Test data compres-
sion based on variable-to-variable Huffman encoding with codeword
reusability,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol. 27, no. 7, pp. 1333-1338, Jul. 2008.

[20] S.Redaand A. Orailoglu, “Reducing test application time through test
data mutation encoding,” in Proc. Des. Autom. Test Eur., 2002, pp.
387-393.

[21] E. Volkerink, A. Khoche, and S. Mitra, “Packet-based input test data

compression techniques,” in Proc. Int. Test Conf., 2002, pp. 154-163.

S. Reddy, K. Miyase, S. Kajihara, and 1. Pomeranz, “On test data

volume reduction for multiple scan chain design,” in Proc. VLSI Test

Symp., 2002, pp. 103-108.

[23] F. Wolff and C. Papachristou, “Multiscan-based test compression and
hardware decompression using LZ77,” in Proc. Int. Test Conf., 2002,
pp. 331-339.

[24] A. Wurtenberger, C. Tautermann, and S. Hellebrand, “Data compres-
sion for multiple scan chains using dictionaries with corrections,” in
Proc. Int. Test Conf., 2004, pp. 926-935.

[25] K.Basuand P. Mishra, “A novel test-data compression technique using
application-aware bitmask and dictionary selection methods,” in Proc.
ACM Great Lakes Symp. VLSI, 2008, pp. 83-88.

[26] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Al-
gorithms. Boston, MA: MIT Press, 2001.

[27] M. Garey and D. Johnson, Computers and Intractability: A Guide to
the Theory of NP-Completeness. New York: Freeman, 1979.

[28] 1. Hamzaoglu and J. Patel, “Test set compaction algorithm for combi-
national circuits,” in Proc. Int. Conf. Comput.-Aided Des., 1998, pp.
283-289.

[8

—

[9

—

[22

1286

Kanad Basu (S°08) received the B.E. degree in
electronics and telecommunication engineering from
Jadavpur University, Calcutta, India, in 2007. He
is currently pursuing the Ph.D. degree from the
Department of Computer and Information Science
and Engineering, University of Florida, Gainesville,
FL.

His research interests include the area of post
silicon validation, test compression, and system
verification.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, VOL. 18, NO. 9, SEPTEMBER 2010

Prabhat Mishra (S’00-M’04-SM’08) received the
B.E. degree from Jadavpur University, Calcutta,
India, in 1994, the M.Tech. degree from the Indian
Institute of Technology, Kharagpur, India, in 1996,
and the Ph.D. degree from the University of Cali-
fornia, Irvine, in 2004, all in computer science.

He spent several years with various semicon-
ductor and design automation companies including
Texas Instruments, Synopsys, Intel, and Freescale
(Motorola). He is currently an Assistant Professor
with the Department of Computer and Information
Science and Engineering, University of Florida, Gainesville. His research
interests include design automation of embedded systems, reconfigurable
architectures, and functional verification. He is the coauthor of the book
Functional Verification of Programmable Embedded Architectures (Kluwer,
2005). He is also the coeditor of the book Processor Description Languages
(Morgan Kaufmann, 2008).

Dr. Mishra currently serves as Program Chair of IEEE High Level Design Val-
idation and Test (HLDVT) workshop, Information Director of ACM Transac-
tions on Design Automation of Electronic Systems (TODAES), Guest Editor of
Springer International Journal of Parallel Programming (IJPP), as a program/or-
ganizing committee member of several ACM and IEEE conferences, and as a
reviewer of many premier journals, conferences and workshops. He is a profes-
sional member of ACM. His research has been recognized by various awards,
including an NSF CAREER Award in 2008, the EDAA Outstanding Disserta-
tion Award in 2005 and the CODES+ISSS Best Paper Award in 2003.

