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Interpreting the results of a quantum computer can pose a significant challenge due to inherent noise in

these mesoscopic quantum systems. Quantum measurement, a critical component of quantum computing,

involves determining the probabilities linked with qubit states post-multiple circuit computations based on

quantum readout values provided by hardware. While there are promising classification-based solutions, they

can either misclassify or necessitate excessive measurements, thereby proving to be costly. This paper puts

forth an efficient method to discern the quantum state by analyzing the probability distributions of data post-

measurement. Specifically, we employ cumulative distribution functions to juxtapose the measured distribution

of a sample against the distributions of basis states. The efficacy of our approach is demonstrated through

experimental results on a superconducting transmon qubit architecture, which show a substantial decrease

(88%) in single qubit readout error compared to state of the art measurement techniques. Moreover, we report

additional error reduction (12%) compared to state-of-the-art measurement techniques when our technique is

applied to enhance existing multi-qubit classification techniques. We also demonstrate the applicability of our

proposed method for higher dimensional quantum systems, including classification of single qutrits as well as

multiple qutrits.
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1 INTRODUCTION
It is broadly recognized that quantum computing holds the promise to outperform classical comput-

ing in a variety of complex problem domains, thanks to quantum phenomena such as entanglement

and superposition [1–7]. Unlike a classical computer, which operates in a single state at any

given moment, a quantum computer can inhabit a blend of states simultaneously. However, this

quantum advantage comes at the expense of increased noise and unwanted entanglement with

the environment, complicating the processing of wanted information [8–12]. Furthermore, the

measurement of a quantum system forces it to collapse into a specific known state with some

probability, necessitating multiple computations (shots) to gather the outcomes.
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Fig. 1. An overview of quantum measurement. (a) Unlike traditional approaches that consider each data
point separately, our proposed approach considers all data points together. (b) Example of a linear quantum
state discrimination in the IQ space. The model is trained by configuring the quantum computer to output
known samples of basis states |0⟩ and |1⟩, which are measured and used to divide the measurement space
with a hyperplane. When performing inference, a measurement that is located above the hyperplane will
generate a prediction of |1⟩; and a measurement located below the hyperplane will generate a prediction of
|0⟩. Training data was sampled from ibm_quito, and the hyperplane was computed using scikit learn.

Noise within quantum systems, manifesting as computational errors, can originate from several

sources including (a) the preparation of the initial state, (b) during computation itself, and (c)

at the point of result measurement [13]. The focus of this study is on the mitigation of these

quantum measurement errors. Namely, to foster robust quantum computing, it is essential to

alleviate measurement errors which can range from 5% to 30% in contemporary devices [14, 15].

Current quantum computers apply a combination of sensitive hardware (detectors) and standard

classification techniques to deduce the properties of the quantum state. This data-driven analysis is

carried out on classical computers and requires numerous repetitions of quantum circuit executions

(shots) on the quantum computer to converge to an accurate solution on the classical machine. The

classification used to link a quantum measurement to its deduced quantum state is referred as a

qubit discriminator.
Figure 1a shows an overview of the measurement procedure in quantum computers. Common

physical representations of quantum computers, such as superconducting transmons, characterize

a collapsed qubit as a 2-component vector – the in-phase and quadrature components (IQ) of a

wave observed as it passes through the resonator [16, 17]. The quantum measurement device yields

sets of results, including IQ points. Subsequently, a classifier labels each point as either |0⟩ or |1⟩.
Our approach leverages the measurement data to construct a cumulative distribution function,

which is compared to the training distributions via convex optimization. As a result, this method

does not disregard potential hidden statistical traits present in the measurement data.

Quantum measurement error arises due to noisy measurement readings as well as classification

errors caused by imperfect discriminators. Hence, the accuracy of the quantum computer is contin-

gent on the performance of the qubit discriminator. In response to these challenges, we suggest an

enhanced classification method aimed at boosting measurement precision. Specifically, this paper

makes the following key contributions.

• We propose a framework for mitigation of quantum measurement errors using cumulative

distribution functions to accurately classify quantum measurements.
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• We also propose a scalable enhancement to existing discriminators to significantly improve

discriminator accuracy.

• Experimental evaluation demonstrates the effectiveness and efficiency of our model with

real quantum data in terms of non-linearity, statistical consistency, and versatility compared

to state-of-the-art qubit and qutrit discriminator approaches.

Our framework comes at modest performance reduction, yielding a computational complexity

of 𝑂 (𝑛 · 𝑘 · log (𝑘)), for 𝑘 being the number of quantum measurements and 𝑛 denoting the number

of qubits. In comparison, traditional methods have a computational complexity of 𝑂 (𝑐 · 𝑘), since
for each of the 𝑛 qubits we form a partition function traversing all 𝑘 samples for each qubit.

This paper is organized as follows. Section 2 surveys related efforts. Section 3 describes our

proposed framework. Section 4 proves error bounds for our proposed discrimination method.

Section 5 presents the experimental results. Finally, Section 6 concludes the paper.

2 BACKGROUND AND RELATEDWORK
In this section, we first provide background on quantum computing. Next, we describe state-of-the

art methods for qubit state discrimination. Finally, we highlight the limitations of the existing

methods to identify the areas for improvement.

2.1 Quantum Computing
We briefly describe the foundational principles of quantum computing, beginning with the funda-

mental units that store information, followed by the processes involved in informationmanipulation,

and finally with the retrieval of results.

2.1.1 Qubits. Quantum bits, or qubits, are the fundamental building blocks of quantum computing,

similar to how classical bits are in classical computing. Unlike classical bits, which can only take on

the value of 0 or 1, a qubit can be in a state that is a superposition of 0 and 1. The state of a qubit |𝜓 ⟩
is represented as |𝜓 ⟩ = 𝛼 |0⟩ + 𝛽 |1⟩, where 𝛼 and 𝛽 are complex numbers such that |𝛼 |2 + |𝛽 |2 = 1.

The probability of measuring each state is given by the square of the corresponding coefficient.

Moreover, qubits have the property of entanglement, meaning that the state of one qubit can be

intimately connected to the state of another, regardless of the distance between them.

2.1.2 Qudits. While qubits are a two-state quantum system, qudits generalize this concept to 𝑑-

level systems where 𝑑 > 2. In other words, if a qubit is a quantum state in a 2-dimensional complex

vector space (a 2-level system), a qudit is in a 𝑑-dimensional complex vector space (a 𝑑-level system).

Just like a qubit can be in a superposition of two states, a qudit can be in a superposition of 𝑑

different states. Mathematically, a qudit |𝜙⟩ can be represented as |𝜙⟩ = ∑
𝑖 𝑎𝑖 |𝑖⟩, where 𝑖 ranges

from 0 to 𝑑 − 1, the 𝑎𝑖 ’s are complex numbers such that

∑
𝑖 |𝑎𝑖 |2 = 1. This implies that there’s a

probability associated with measuring the qudit in any of its possible states, and these probabilities

sum to 1. Qudits are of particular interest as they can represent and manipulate more information

than qubits, potentially enabling more efficient quantum algorithms [18, 19].

2.1.3 Quantum Gates and Circuits. Quantum gates are the basic operations that can be applied to

qubits and qudits in a quantum computing system. They are represented as unitary matrices and

can manipulate the state of a quantum system in various ways, including changing a single qubit

or qudit, or entangling multiple qubits or qudits. A sequence of quantum gates forms a quantum

circuit, which can be used to perform complex quantum computations [20–22]. Quantum circuits

operate on principles of linearity and unitarity, ensuring that the sum of probabilities of all possible

outcomes always equals one.
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2.1.4 Measurement. Measurement in quantum systems involves coupling a qubit or a qudit with a

measurement device (apparatus), like a resonator in superconducting systems. The quantum state

influences the state of the measurement device, which is then read out. This readout is processed

to yield measurement signals. However, these signals do not directly reveal the quantum state

– instead, they represent certain physical properties (like frequency shifts in a resonator) that

correlate with the quantum state. Hence, a classifier is needed to map these measurement signals

back to the quantum states. In other words, the classifier decodes the signals from the measurement

device, determining whether it represents a 0 or a 1 in the case of a qubit (or 0 through d-1 for

qudits). This step is more generally known as quantum state discrimination (classification) and is a

crucial component in unveiling the results of a quantum computation. Furthermore, measurement

itself is prone to various noise sources which are both classical and quantum in nature. For example,

classical noise may be introduced as analog signals must travel through various stages of a dilution

refrigerator to an analog-to-digital converter. Quantum noise may enter as the measurement device

itself is a quantum system that may entangle with unwanted degrees of freedom [23].

2.2 Related Work
Machine learning techniques are widely used for qubit state discrimination [24–35]. Linear Dis-

criminant Analysis (LDA) is one such model commonly used for qubit state discrimination. A

hyperplane is selected to partition the IQ vector space into regions of |0⟩ and |1⟩ based on the

measured IQ outputs from the training data, which the model assumes follows a Gaussian distribu-

tion. Figure 1b visualizes this method, and highlights the difficulty of the classification task. Due to

noise in quantum systems (imperfect measurement devices, environmental contamination, and

qubit cross-talk), sampled data contains high variance and may appear in the partition, leading to

misclassifications.

Other machine learning models such as k-nearest neighbors (kNN) [26, 27], deep neural networks

(DNN) [27–34], and support vector machines (SVM) [28] have been used with quantum IQ data to

partition the measurement space into regions of |0⟩ and |1⟩. Some of these models also consider

the effects of quantum “crosstalk” – a phenomena where unwanted interactions among qubits

can be predicted and accounted for post-readout. While these methods offer alternative ways to

partition, they each implement the same inference workflow by mapping each qubit measurement
to a single location within the partition space. An overall qubit state is obtained by analyzing the

frequencies associated with each prediction class. Beyond variations in the partitioning method,

further improvements have been obtained by enabling models to tag samples as “inconclusive”

[28, 35], and discarding such samples from processing. Some of these methods can be extended to

classify higher energy states [34].

2.3 Limitations of State-of-the-Art Approaches
The existing quantum measurement classification methods have the following fundamental limita-

tions.

• The existing models operate by partitioning the IQ space into regions corresponding to

each basis state. Regardless of the partitioning method used, the measurement space is often

inherently noisy from hardware error, leading to classifications shown in Figure 1b.

• The existing methods map a single IQ measurement tuple into a single quantum state. Since

only a single measurement tuple is used for prediction, valuable statistical information

encoded within the distribution of test data is neglected. For example, using data collected

from the IBM Quito quantum computer, the |1⟩ basis state contains higher variance than
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the |0⟩ state [14], and thus sample variance – a distribution property – contains information

about bitstate unused by state-of-the-art methods.

• Existing methods assume properties of quantum data (Gaussian) and partition boundaries

(linear, quadratic). Since quantum measurements diverge from ideal distributions, such

assumptions may introduce bias.

• Some current methods operate by discarding data deemed “inconclusive”.We believe amethod

that quantifies uncertainty without discarding data can outperform these techniques.

• Most qubit discriminator models are difficult to effectively boost (combine with other models).

While ensemble techniques exist, such methods require significantly more computation and

have not to date demonstrated superior results for quantum discrimination.

• It is difficult to quantify or guarantee convergence with many state-of-the-art qubit dis-

criminator methods. Quantum circuits are often sampled for tens of thousands of iterations,

since no stochastic framework exists to bound the error associated with classification. In

practice, many quantum engineers evaluate the accuracy of the discriminator by using a test

set. Sampling is repeated until the discriminator reaches an accuracy threshold on the test

set, requiring potentially thousands of additional quantum samples. Moreover, test sets can

be biased, leading to inaccurate conclusions.

We propose a sophisticated quantum discriminator that overcomes these limitations, guarantees

convergence, and as an additional benefit, can produce an estimate for the number of samples

needed to attain convergence within a threshold without requiring a holdout (testing) set.

3 DISTRIBUTION-BASED CLASSIFICATION FOR MITIGATING QUANTUM
MEASUREMENT ERRORS

The goal of measurement classification is to take the results of measuring qubits in a quantum

register (a collection of IQ points) and correctly identify the corresponding bitstring labels. For

example, after measuring the quantum state
1√
2

( |00⟩ + |11⟩), the classifier should provide bitstrings
“00" and “11", each occurring with equal probability. Traditionally, classifiers are trained to partition

the IQ space, as shown in Figure 1b. We choose to use linear discriminant analysis (LDA) and

k-nearest neighbors (kNN) as baselines for this work, due to their prevalence in the community

and widespread use in open source libraries, such as Qiskit, and high performance among other

discrimination methods [27] on IBM’s quantum machines for single qubit state discrimination.

Rather than providing yet another approach to partition the IQ space, we propose an entirely

novel distribution-based classification workflow that overcomes the shortcomings outlined in

Section 2. Unlike previous methods which produce classifications for every measurement shot, our

method directly estimates the probabilities of |0⟩ and |1⟩ in one task.

In this section, we first outline the use of cumulative distribution functions (CDF) for classification.

We then show an example of classification on a single qubit using CDFs. Finally, we incorporate

our CDF approach to existing classification techniques, as highlighted in Figure 3 – providing the

advantages of CDF while also being scalable even for a large number of qubits.

3.1 Classification using Cumulative Distribution Functions
It is a well established fact that the Cumulative Distribution Function (CDF) uniquely characterizes

a probability distribution. Since a qubit exists in a superposition of states |0⟩ and |1⟩, it follows
that the qubit exists in a mixed distribution of basis states |0⟩ and |1⟩. Thus, its unique CDF can be

decomposed into a linear (convex) combination of |0⟩ and |1⟩ CDFs, where the weights associated
with the constituent |0⟩ and |1⟩ CDFs directly represent the true proportion of measurements that
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Fig. 2. Visualization of single qubit quantum measurement. (a) Quadrature measurement variance shown on
IBM Quito for the |0⟩ and |1⟩ basis states. (b) Visualization of the distribution approach to single qubit state
discrimination. The training |0⟩ and |1⟩ empirical CDFs (eCDFs) are shown in gray. The sample qubit eCDF
is shown in blue, and the fitted eCDF estimate is shown in red. The fitted eCDF is obtained by creating a
convex combination of both gray curves with weights selected to follow the blue curve as closely as possible,
as outlined in Section 3.2. The coefficients used for the combination are the estimate for the quibt’s state.
Data obtained from ibm_quito. Each curve is computed using Algorithm 1.

collapsed into each of the |0⟩ and |1⟩ states. This decomposition for an arbitrary qubit superposition

is depicted in Figure 2.

Properties like randomness, state stability, and variance are inherently accounted for in the CDF.

Additionally, by analyzing the CDF of the qubit as a whole, we avoid the need to classify each shot

individually to arrive at a state estimate. Instead, we analyze properties of the qubit measurement

distribution, the |0⟩ measurement distribution, and the |1⟩ measurement distribution to determine

the superposition. Next, we discuss methods for estimating each of these CDFs and the procedure

used for the decomposition.

3.2 Empirical CDF based SingleQubit Classification
We begin by preparing a training data set of size 𝑘 for both |0⟩ and |1⟩ quantum states. Each state

is prepared, measured, and tagged with the associated |0⟩ or |1⟩ label. Since each measurement

consists of both the in-phase and quadrature components, both the |0⟩ and |1⟩ data sets have

dimensions (𝑘 × 2). We then construct a test distribution of dimensions (𝑘 × 2) by placing the qubit

into a random mixed distribution of |0⟩ with proportion 𝛼 and |1⟩ with proportion 1 − 𝛼 , where
𝛼 is randomly selected. We will evaluate our method’s ability to reproduce 𝛼 given the test data,

the training data, and the training labels. Next, we study the distribution of both the |0⟩ and |1⟩
training data sets. We estimate the CDF of both sets by computing the empirical CDF (eCDF). The

empirical CDF is a consistent and unbiased estimator that converges absolutely to the true CDF.

Moreover, the Dvoretzky–Kiefer–Wolfowitz inequality [36] provides a closed form error bound for

each of the eCDF estimators as a function of the sample size. The eCDF is computed by finding the

proportion of values in the data set less than or equal to 𝑥 , given by

𝑃 (𝑋 ≤ 𝑥) = 1

𝑘

𝑘∑︁
𝑖=1

𝐼 (𝑡𝑖 ≤ 𝑥) (1)

where 𝑡𝑖 runs through each element of the set. Here, 𝐼 (𝑞) is the indicator function, which is given

as 1 if 𝑞 is true, and 0 otherwise. Since this sum denotes the number of elements less than 𝑥 , we
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implement binary search to compute this sum in log(k) complexity using the index of 𝑥 in the

sorted set. We then perform a linear interpolation to transform these staircase-like empirical CDFs

to smooth estimates — a technique useful for small data sets.

Algorithm 1 describes the procedure for computing the eCDF for 𝑥 given a sorted array of either

in-phase or quadrature quantum measurements. Using this method, we compute individual eCDFs

for the in-phase and quadrature component for each basis state. Similarly, we compute eCDFs for

the in-phase and quadrature component for the sample. We use least squares regression to obtain a

value for 𝛼 , under the constraint 0 ≤ 𝛼 ≤ 1, such that we minimize

(𝛼 ·𝐹0,quad (𝑥) + (1−𝛼 ·𝐹1,quad (𝑥)))−𝐹sample,quad (𝑥) + (𝛼 ·𝐹0,in (𝑥) + (1−𝛼) ·𝐹1,in (𝑥))−𝐹sample,in (𝑥) (2)

where 𝐹 (𝑥) denotes an eCDF estimate, in denotes the in-phase dataset component, and quad denotes
the quadrature component of the quantum measurement dataset. We use

√
𝛼 and

√
1 − 𝛼 as the

estimates for the qubit’s state. Overall, 𝛼 is computed in 𝑘 log(𝑘) time complexity.

Algorithm 1 Empirical CDF (eCDF) function computation

input: 𝑥 : Value to evaluate the eCDF at, array: Sorted array of quantum measurement data

output: Interpolated eCDF estimate for 𝑥

1: procedure eCDF-Curve(𝑥, 𝑎𝑟𝑟𝑎𝑦)
2: if 𝑥 ≥ 𝑎𝑟𝑟𝑎𝑦 [𝑙𝑒𝑛(𝑎𝑟𝑟𝑎𝑦) − 1] then
3: return 1

4: else if 𝑥 ≤ 𝑎𝑟𝑟𝑎𝑦 [0] then
5: return 0

6: end if
7: 𝑢𝑝𝑝𝑒𝑟 ← binarySearch(𝑥 , 𝑎𝑟𝑟𝑎𝑦)
8: 𝑙𝑜𝑤𝑒𝑟 ← upper − 1
9: 𝑑𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 ← array[upper] − array[lower]
10: return lower + ((𝑥 − array[lower])/difference)
11: end procedure

3.3 Empirical CDF-based Multi-Qubit Classification
In the previous section, we demonstrated how an eCDF single qubit discriminator can be used instead

of a traditional discriminator. This is possible since the eCDF discriminator model decomposed

the sample distributions into two basis states, representing the full state space of a qubit. In this

section, we show how the method can be employed with existing methods for quantum computers

with more than one qubit.

With the single qubit eCDF estimation method, it is possible to effectively decompose the mixed

distribution of a single qubit into known distributions of |0⟩ and |1⟩ states using estimation and

regression techniques. On a machine of 𝑛 qubits, this method generates 𝑛 constraints on the position

space of 2
𝑛
basis states. To illustrate this point, suppose we have a quantum computer with 𝑛 = 2

bits, and it is estimated from the above method that qubit 0 decomposes into |0⟩ with frequency

𝛼0 and that qubit 1 decomposes into |0⟩ with frequency 𝛼1. From this, we have the following

constraints (X indicates a “don’t care” bit that can take any value): (1) The frequencies of states

|𝑋0⟩ given by |00⟩ and |10⟩ sum to 𝛼0, (2) the frequencies of states |0𝑋 ⟩ given by |00⟩ and |01⟩ sum
to 𝛼1, and (3) the frequencies of states |00⟩, |01⟩, |10⟩, and |11⟩ sum to 1.

For a computer with 𝑛 qubits, the solution space contains 2
𝑛
unique basis states, 𝑛 + 1 constraints,

with 2
𝑛 − (𝑛 + 1) remaining free variables. For time complexity purposes, a qubit discriminator can

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2024.



1:8 Zachery Utt, Daniel Volya, and Prabhat Mishra

not typically constrain all 2
𝑛
states. We demonstrate how the constraints can improve performance

and enhance state of the art classification methods. To underscore this claim, we employ a linear

discriminator to classify quantum measurements and measure classification performance before

and after the constraints are applied. Our workflow is highlighted in Figure 3.

Fig. 3. A high-level overview of the multi-qubit measurement classification procedure that consists of three
stages. The first stage (Traditional Classification) uses existing methods to produce an estimate. The second
stage (Constraint Generation) applies the eCDF method to each qubit to generate constraints. The final stage
applies the constraints to the existing estimate to produce a new estimate (Refined Classification).

We begin by creating a training distribution for each qubit in the |0⟩ and |1⟩ quantum states

in the same manner as the single qubit method. We then generate a sample convex label vector

𝜶 by sampling a random proportion of measurements from each of the 2
𝑛
states. For example, if

𝜶 =
[
0.25 0.75 0 . . . 0

]
, 25% of our test distribution would be sampled from the 00000 state,

and 75% of our test distribution would be sampled from the 00001 state.

Next, we employ an existing state of the art analysis method (i.e. LDA) to produce an estimate

for the qubit’s state, given as �̂� 1. This is done by first training 𝑛 traditional models on each qubit’s

training set. In the traditional method, each IQ pair in the test set is classified independently as |0⟩
or |1⟩, producing an estimate bitstring. This is repeated for every qubit string in the test set and the

frequencies are computed to generate �̂� 1.

Finally, we generate the constraints and produce a refined estimate �̂� 2 that adheres to each

constraint. As described in the previous section, we create eCDF estimates for each qubit’s |0⟩, |1⟩,
and test distributions. We compile these constraints into 𝜷 , a vector of length 𝑛 which, for each

qubit, independently estimates the proportion of that qubit’s test distribution measured in the |0⟩
state. Due to the presence of free variables, there are many possible candidates which adhere to

all 𝜷 constraints. Rather than considering all of them, we define the refined estimate �̂� 2 as the

distribution closest to �̂� 1 that adheres to all 𝛽 constraints. In other words, we update the estimate

�̂� 1 to satisfy the marginal probabilities given by the constraints 𝜷 while minimizing ∥�̂� 1 − �̂� 2∥.

3.4 Empirical CDF based SingleQudit Classification
In this section, we show how the eCDF classification method can be extended for quantum sys-

tems with more than 2 basis states. Some existing classification methods, like linear discriminant

analysis, support vector machines, and binary logistic regression do not naturally extend beyond 2
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prediction categories. While strategies like “one-vs-rest” can be used to train binary models for

each category, such methods are associated with higher training costs, lower performance, and

greater susceptibility to class imbalance.

Rather than training multiple models (as done in “one-vs-rest”), we take the approach of designing

a multi-class solution for qubit state discrimination. Assume that our qudit has 𝑐 basis states. Then,

our convex optimization operation can be expressed as:

𝑐−1∑︁
𝑖=1

(𝛾𝑖 · 𝐹 |𝑖 ⟩,quad (𝑥)) + (1 −
𝑐−1∑︁
𝑖=1

(𝛾𝑖 ) · 𝐹 |𝑖 ⟩,quad (𝑥)) − 𝐹sample,quad (𝑥)+

𝑐−1∑︁
𝑖=1

(𝛾𝑖 · 𝐹 |𝑖 ⟩,in (𝑥)) + (1 −
𝑐−1∑︁
𝑖=1

(𝛾𝑖 ) · 𝐹 |𝑖 ⟩,in (𝑥)) − 𝐹sample,in (𝑥) (3)

The above optimization leads to the value of 𝛾𝑖 when the function is minimized. We demonstrate

the efficacy of this method in Section 5.3 on a quantum computer with a single qutrit.

3.5 Empirical CDF based MultipleQudit Classification
The single qudit method can be extended to machines with multiple qudits. Rather than exploring

the exponential basis state space formed from a sequence of qudits, we build a scalable estimation

pipeline by performing traditional classification (see Section 3.3) with constraints produced from

the marginal distribution of each individual qudit (see Section 3.4). We demonstrate the efficacy of

such a pipeline in Section 5.4 on a quantum computer with two qutrits.

4 ERROR BOUNDS OF ECDF-BASED DISCRIMINATION
Even after a traditional model has been trained, reliably evaluating its performance can prove

challenging. Strong model performance on the training set does not necessarily translate to strong

performance on new data, due to over-fitting. Thus, model performance is often measured by

computing the accuracy of the model on a holdout set. In this section, we discuss a statistics-driven

approach to provide an accurate performance estimate without the use of a holdout set.

4.1 Error Bounds
Our goal in this section is to produce a confidence interval for 𝛼 such that for a given confidence-

level 𝑝 and a number of shots 𝑘 , we compute a sufficient upper and lower estimate for 𝛼 .

Lemma: Let 1 − 𝑝 be a confidence level, and let {𝐹𝑛 (𝑥)} be a sequence of eCDFs, and let {𝑘𝑛}
denote the number of data points used to fit each eCDF.

Then, for all 𝑥 and for 0 ≤ 𝑖 ≤ 𝑛,

𝑃 (𝐹𝑖 (𝑥) − 𝜖𝑖 ≤ 𝐹𝑖 (𝑥) ≤ 𝐹𝑖 (𝑥) + 𝜖𝑖 ) ≥ 1 − 𝑝 (4)

where

𝜖𝑖 =

√︄
ln

2

𝑛 ·𝑝

2 · 𝑘𝑖
Proof: This is derived from previous work by Dvoretzky, Kiefer, Wolfowitz, and Massart [37]

(later enhanced by Kolmogorov and Smirnov) which proved for a single distribution with a true

cCDF 𝐹 (𝑥), and an eCDF 𝐹 (𝑥), a 1 − 𝑝 confidence interval is given by

𝑃 (𝐹 (𝑥) − 𝜖 ≤ 𝐹 (𝑥) ≤ 𝐹 (𝑥) + 𝜖) ≥ 1 − 𝑝

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2024.
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where

𝜖 =

√︄
ln

2

𝑝

2 · 𝑛
In our method, we are separately computing 𝑛 empirical CDFs. We can apply the Bonferroni

adjustment method

𝑝family =
𝑝

𝑛

to create a family-wide confidence interval. This allows us to extend our expression for a single

confidence interval to a set of confidence intervals in which we are (1 − 𝑝) confident that all
confidence intervals in the sequence are correct. ■

4.2 Confidence Interval Construction
In light of the three error bounds in Equation 4, we view each bound as a space of CDFs, where

all three spaces contain their respective true CDF with 1 − 𝑝total confidence, as shown in Figure 4.

Since we view the sample CDF as a sum of CDFs from both the |0⟩ and |1⟩ weighted by 𝛼 , we can

attain error bounds on 𝛼 by exploring the maximum and minimum values such a weight can take

while staying within the bounds.

0.0

0.2

0.4

0.6

0.8

1.0 |0> CDF Estimate
|1> CDF Estimate
Sample CDF Estimate

Fig. 4. Visualization of the 99% confidence interval for the family of in-phase eCDFs. If many samples were
taken, and all 3 eCDF confidence intervals were generated for each sample, we would find for at least 99% of
samples, all 3 eCDF intervals correctly contain the true CDF for all 𝑥 .

From its construction, to attain the lowest possible value for 𝛼 , we would select the |0⟩ curve
from the family of |0⟩ curves to be as similar (from a least squares perspective) as possible to the

sample curve. We would likewise select the |1⟩ curve to be as far from the sample curve as possible.

We assume that we have a working quantum computer in which measured readout values are

statistically correlated with quantum state. Specifically, we will assume that the true |0⟩ CDF is
greater than the true |1⟩ CDF for all 𝑥 . Since the sample CDF is a weighted convex sum of the true

|0⟩ and |1⟩ CDF, it lies between both curves. As shown in Figure 5, the maximum 𝛼 occurs when

𝐹 |0⟩ (𝑥) is maximized and 𝐹 |1⟩ (𝑥) is minimized while staying as close as possible to 𝐹sample (𝑥).

5 EXPERIMENTS
This section demonstrates the effectiveness of our proposed quantum measurement methods

compared to the state-of-the-art approaches. We first outline our experimental setup for single

qubit architectures. Next, we show how our method can be implemented on machines with multiple

qubits. Lastly, we show how our method can be implemented on machines with multiple qudits.

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2024.
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0.8

1.0 |0> CDF Estimate
|1> CDF Estimate
Sample CDF Estimate

(a) Curve selection to minimize 𝛼

0.0

0.2

0.4

0.6

0.8

1.0 |0> CDF Estimate
|1> CDF Estimate
Sample CDF Estimate

(b) Curve selection to maximize 𝛼

Fig. 5. Curve selection examples. In this scenario, we have a 99% confidence interval for𝛼 given as (0.186, 0.316)
with a point estimate 𝛼 = 0.249.

5.1 Experimental Setup
We use ibm_quito, a 5-qubit machine, to initialize states and perform measurements. Quantum

circuits and measurements are performed to output |0⟩ and |1⟩ basis states for each qubit. Each

measurement is performed 20,000 times (shots), thereby obtaining 20,000 samples of IQ measure-

ments in each of the |0⟩ and |1⟩ quantum states. Data was partitioned into a training and testing

set. We evaluate the effectiveness of our proposed methods compared to each state-of-the-art

approach implemented in Qiskit [38]. We use Scipy’s optimizations library to perform all necessary

minimization using the “Nelder - Mead” method.

5.2 Classification Results for SingleQubits
For a single test, we first shuffle the entirety of the experiment dataset. The set is then partitioned

into training and testing data. We then generate 1,000 random values for 𝛼 , each of which lies

between 0 and 1. For each value of 𝛼 , we then build a mixed testing dataset of size 5,000 composed

of 100 · 𝛼% randomly selected values from the testing data of |0⟩ and (1 − 𝛼)% randomly selected

values from the testing data of |1⟩. The model is then evaluated on how well it can reconstruct

the value of 𝛼 . We evaluate the mean absolute error (MAE) as the absolute difference between the

measurement and truth, given as |𝛼 − 𝛼 |.
Figure 6a shows the resulting Mean Absolute Error (MAE) of using two traditional discriminators

(LDA and kNN) versus our eCDF-based method. The eCDF model attained a lower error at all

training sizes and greatly diminished variance as the sample size enlarged. This demonstrates that

our proposed approach (eCDF) outperforms traditional discriminators.

Figure 6b shows that our approach attains much lower variance than its machine learning based

counterparts, and thus performs more consistently than other methods.

5.3 Classification Results for SingleQutrits
As qutrits are not part of the native device specification, we manually calibrated qutrits on IBM

Quito using OpenPulse. This first involved a frequency sweep to find the excitation response for

𝑘𝑒𝑡2. Next, we conduct an amplitude sweep to search for the 𝜋-pulse that induces a transition from

|1⟩ → |2⟩. To reach each of the qutrit states, we perform the following: initialize the qutrit to |0⟩
using a reset; use IBMQ’s calibrated X-gate to rotate the qutrit from |0⟩ → |1⟩; and finally use our

custom 𝜋-pulse to transition from |1⟩ → |2⟩. We repeat this procedure for each qutrit on the device.

Using the generated data, we constructed a training and test set for a single qutrit, with basis

states |0⟩ , |1⟩, and |2⟩. We compare our eCDF qutrit state discriminator with a k-nearest neighbors

ACM Trans. Quantum Comput., Vol. 1, No. 1, Article 1. Publication date: January 2024.
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(b) Single Qubit MAE distributions
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(c) Single Qubit Comparison of Standard Errors

Fig. 6. Mean Absolute Error (MAE) for single qubit reconstruction. (a) Comparison using two traditional
models – k-nearest-neighbors (kNN) and linear discriminant analysis (LDA) – and our proposed eCDF
discriminator method. The data was shuffled across 120 iterations; and for each iteration, 1000 random
distributions were generated, reconstructed, and evaluated. (b) MAE distributions for single qubit state
readout of proposed eCDF compared with kNN and LDA. (c) Standard error comparisons showing the
tendencies for each model’s errors to vary around the means shown in (a)

(kNN) discriminator. Figure 7a shows that the eCDF discriminator achieves a lower mean absolute

error (MAE) in all training samples. Moreover, Figure 6c shows that the eCDF discriminator attains

a lower variance, and thus performs more consistently than its machine learning counterpart on

qutrit measurement data.

5.4 Classification Results for MultipleQubits
We begin by configuring the quantum computer to output each of 2

5
basis states for the 5 qubit

machine. Similarly, each measurement is performed 𝑘 = 20, 000 times. It should be noted, however,

that for the purpose of evaluating our method, we consider all 2
𝑛
states as candidates for output of

the quantum computer. In practice, our method does not require enumeration of all 2
𝑛
states, and

only considers a maximum ofmin (2𝑛, 𝑘) states. For a single test, we shuffle the dataset and partition

the experimental data into training and testing datasets. We generate a test vector by producing a

random convex vector 𝜶 of size 2
𝑛
. We construct a test dataset of size 5,000 by randomly sampling

𝛼𝑖% values from the 𝑖𝑡ℎ basis state.

The estimation pipeline is evaluated on how well it can reconstruct the value of 𝛼 . We compute

the mean absolute error as the value
∥𝜶−�̂�2 ∥2

2
𝑛 , which we compare to the baseline mean absolute error
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Quantum Measurement Classification using Statistical Learning 1:13

2000 4000 6000 8000
Training Samples

0.005

0.010

0.015

0.020

M
ea

n 
Ab

so
lu

te
 E

rro
r

kNN
eCDF

(a) Single Qutrit Comparison of Accuracy

0.00 0.02 0.04 0.06
Mean Absolute Error

0

25

50

75

100

De
ns

ity

kNN
eCDF

(b) Single Qutrit MAE distributions

1000 5000 8000
Training Samples

0.000

0.002

0.004

0.006

0.008

0.010

0.012
kNN
eCDF

 M
AE

 S
ta

nd
ar

d 
Er

ro
r

(c) Single Qutrit Comparison of Standard Errors

5000 10000 15000
Training samples

0.00825

0.00850

0.00875

0.00900

0.00925

0.00950

LDA
    

 LDA + eCDF

M
ea

n 
A

sb
so

lu
te

 E
rr

or

(d) Multi-Qubit Comparison of Accuracy

Fig. 7. Mean Absolute Error (MAE) for single qutrit reconstruction. (a) Comparison between k-nearest-
neighbors (kNN) and our proposed eCDF discriminator method. The data was shuffled across 60 iterations;
and for each iteration, 1000 random distributions were generated, reconstructed, and evaluated as described
above. (b) MAE distributions for single qutrit readouts using proposed eCDF method compared with kNN.
(c) Standard error comparisons showing the tendencies for each model’s errors to vary around the means
shown in (a). (d) MAE improvement for multi-qubit reconstruction of LDA with the proposed eCDF correction.
The data was shuffled, and for each iteration 100 random distributions were generated, reconstructed, and
evaluated.

given by
∥𝜶−�̂�1 ∥2

2
𝑛 . As shown in Figure 7d, the qubit discriminator pipeline with our proposed eCDF

model outperforms the traditional discriminator for all training sizes. Therefore, it is beneficial to

combine eCDF with traditional models.

5.5 Classification Results for MultipleQutrits
We extend the dimensionality of our quantum system to demonstrate the robustness of our dis-

criminator. Using the same IBM Quito computer, we constructed a training and test set for a pair of

two qutrits with basis states |00⟩ , |01⟩, |02⟩, |10⟩ , |11⟩, |12⟩, |20⟩ , |21⟩, and |22⟩. We select a random

sample consisting of a known proportion from each combination of basis states. We compare

the MAE of the standalone k-nearest neighbors (kNN) discriminator before and after adding the

eCDF correction. Figure 8 shows that with the same inputs, the eCDF method attains significant

reductions in MAE at all training levels. These findings highlight the robustness of the eCDF

discriminator pipeline and its applications into high-dimensional spaces.
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Fig. 8. Mean Absolute Error (MAE) for multi-qutrit reconstruction. (a) Multi-qutrit reconstruction using kNN
and our proposed estimation pipeline with eCDF correction. The data was shuffled across 300 iterations,
and for each iteration 100 random distributions were generated, reconstructed, and evaluated. (b) MAE
distribution for a set of two qutrits using kNN and our eCDF correction using a training set of 800 samples.
The figure shows that the usage of the pipeline shifts discriminator outcomes towards lower MAE.

6 CONCLUSION
Quantum measurement classification is fundamental to a successful execution of any quantum

algorithm. Measurement classification includes several nuances, such as inherent physical error as

well as randomness associated with measured data. In this work, we have introduced a new qubit

classifier model that is able to outperform current state-of-the-art machine learning discrimina-

tors. The model’s performance improvement is achieved through its novel statistical distribution

viewpoint, which enables the model to capture important features while diminishing effects of

noise and bias associated with individual measurement. Specifically, our proposed eCDF technique

significantly reduces mean absolute error (up to 88%) compared with the state-of-the-art in single

qubit classification accuracy, with similar improvements in higher dimensional architectures (up

to 70% for single qutrits). We demonstrated that this method offers a fundamental improvement

(up to 12%) to state-of-the-art multi-qubit classification methods by building a qubit discriminator

pipeline that first applies existing qubit discrimination, followed by an eCDF qubit correction stage.

In addition to superior performance, our eCDF method can generate confidence intervals for qubit

state without requiring a holdout set.

As demand for quantum computing increases, classification techniques that can attain conver-

gence with fewer measurements enable quantum providers to trade off valuable quantum computer

resources with processing performed on classical computers. This work opens a path to building

robust, yet simple, measurement classifiers based on fundamental statistical principles. It invites

quantum engineers to engage with quantum data at the distribution level and provides a framework

to add independent qubit distribution insights into existing quantum classification workflows.
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