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Concolic testing is a scalable solution for automated generation of directed tests for validation of hardware

designs. Unfortunately, concolic testing fails to cover complex corner cases such as hard-to-activate branches.

In this paper, we propose an incremental concolic testing technique to cover hard-to-activate branches in

register-transfer level (RTL) models. We show that a complex branch condition can be viewed as a sequence

of easy-to-activate events. We map the branch coverage problem to the coverage of a sequence of events. We

propose an efficient algorithm to cover the sequence of events using concolic testing. Specifically, the test

generated to activate the current event is used as the starting point to activate the next event in the sequence.

Experimental results demonstrate that our approach can be used to generate directed tests to cover complex

corner cases in RTL models while state-of-the-art methods fail to activate them.

1 INTRODUCTION
Functional validation is a major bottleneck for modern System-on-Chip (SoC) designs. According

to the Wilson Research 2020 functional verification study [1], more than 50% of development time

in hardware designs were spent in verification. Irrespective of the validation effort, only 32% of

the systems can achieve the first silicon success [1]. Simulation is the most widely used form of

functional validation. Even millions of random tests may not be able to activate complex corner

cases such as hard-to-detect branches in Register-Transfer Level (RTL) designs. Specifically, memory

and processor designs have complex hard-to-detect branches due to the nature of concurrency,

shared environments and memory consistency. As a result, it is unlikely to achieve 100% functional

coverage using random or constrained-random tests for industrial RTL designs. To improve the

coverage, verification engineers typically write manual tests to cover the remaining functional

scenarios. Manual test writing can be cumbersome and error-prone. In fact, it may be infeasible

to write manual tests for complex designs. There is a critical need for automated generation of

directed tests to verify such complex RTL models.

Automated test generation can be performed using formal as well as semi-formal techniques [2].

For example, SAT-based bounded model checking searches the state space to generate counterex-

amples (directed tests). Since the number of states increases exponentially with the increase of

unroll cycles, formal methods is likely to face state space explosion for complex designs. Concolic

testing is a semi-formal approach that uses an effective combination of concrete simulation and

symbolic execution. Concolic testing is scalable since it explores only execution path at a time

(unlike formal methods that tries to explore all possible paths).
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Fig. 1. An overview of concolic testing that effectively combines concrete simulation with symbolic execution.

Concolic testing has been successfully used as a directed test generation method in both soft-

ware [3, 4] and hardware domains [5]. Figure 1 shows an overview of the concolic testing framework.

The design is instrumented so that the tool can identify the executed path during simulation. Next,

the instrumented design is simulated using an initial vector. The initial test vector can be generated

using random or any other test generation methods. The execution path of the design is identified

by analyzing the simulation trace. Next, an alternate path is selected by negating one of the branch

constraints. The path constraints to activate the selected branch (alternate branch) will be sent to a

constraint solver. Constraint solver will produce a solution if the constraints are satisfiable. This

solution is used to generate a new test vector to activate the selected branch. If the constraint solver

cannot solve the constraints (solution is unsatisfiable), an alternate branch is selected. This process

continues until the expected coverage is achieved. Since concolic testing explores one path at a

time, it overcomes the state space exploration problem. However, concolic testing faces the path

exploration problem due to the exponential number of possible paths to explore. Path exploration

problem can be mitigated by using a profitable alternate branch selection approach.

1.1 Motivation: An Illustrative Example
Alternate branch selection depends on the coverage goal. Existing approaches [6] try to maximize

the overall coverage while try to cover specific branch target [5, 7]. In this paper, we are considering

activation of hard-to-activate branches in RTL models. Some branches become hard-to-activate due

to the complex temporal dependencies that should be preserved in-order to activate that branch.
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Fig. 2. Control and data flow graphs for the 𝑟𝑎𝑚 design in Listing 1. (BFS: Breadth First Search)

Example 1:We use a simple Verilog design (Listing 1) to describe various concepts in this paper.

Listing 1 has three 𝑎𝑙𝑤𝑎𝑦𝑠 blocks corresponding to three functionalities in a simple memory module:

write functionality (line 9 - 18), read functionality (line 19 - 28), system functionality (line 29 - 42).

While read and write are basic memory operations, the system functionality can be viewed as the
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top module (e.g., processor) trying to check a write followed by a read. For the ease of illustration,

we are not showing all the else blocks for the 𝑖 𝑓 statements. Figure 2 presents the control and data

flow for Listing 1. The three always blocks presented in the example corresponds to the three CFGs

as 𝐶𝐹𝐺1 (memory write), 𝐶𝐹𝐺2 (memory read) and 𝐶𝐹𝐺3 (check). The solid black lines represents

control flow when the branch condition is true, while the flow for the false condition is represented

using black dotted lines. □

Listing 1. Example of a memory module in Verilog

1 . module ram

2 . input c lk , r s t ,

3 . input [ADDR_W− 1 : 0 ] addr , / / w r i t e s i g n a l s
4 . input w_en ,

5 . input [DATA_W− 1 : 0 ] w_data , / / r e ad s i g n a l s
6 . input r_en ,

7 . output reg [DATA_W− 1 : 0 ] r_da ta , / / memory d e c l a r a t i o n
8 . reg [DATA_W− 1 : 0 ] mem [ 2 ∗ ∗ADDR_W− 1 : 0 ] ;

/ / Memory w r i t e
9 . always @( posedge c l k ) begin
1 0 . i f ( r_en ) begin
1 1 . / / B1
1 2 . end
1 3 . e l se begin
1 4 . i f ( w_en ) begin / / B2
1 5 . mem[ addr ] <= w_data ; / / B3
1 6 . end
1 7 . end
1 8 . end
/ / Memory r ead
1 9 . always @( posedge c l k ) begin
2 0 . i f ( r_en )

2 1 . i f ( w_en ) begin / / B5
2 2 . / / B7
2 3 . end
2 4 . e l se begin
2 5 . r _ d a t a <= mem[ addr ] ; / / B8
2 6 . end
2 7 . end
2 8 . end
/ / Check w r i t e f o l l o w e d by r ead
2 9 . always @( ∗ ) begin
3 0 . i f ( r_en ) begin
3 1 . i f ( w_en ) begin / / B9
3 2 . / / B11
3 3 . end
3 4 . e l se begin
3 5 . i f ( addr == ADDR) begin / / B12
3 6 . i f ( r _ d a t a == DATA) begin / / B13
3 7 . $display ( " Ta rge t " ) ; / / B15
3 8 . end
3 9 . end
4 0 . end
4 1 . end
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4 2 . end
4 3 . endmodule

Consider line 36 in Listing 1 that reads a value (𝑟_𝑑𝑎𝑡𝑎) from a specific memory address (𝑎𝑑𝑑𝑟 ).
For this condition to be true, a write should happen to that specific memory address with the

exact values. The read can only happen when read flag (𝑟_𝑒𝑛) is true and write flag (𝑤_𝑒𝑛) is false.

However, write can only proceed when read flag (𝑟_𝑒𝑛) is false and write flag (𝑤_𝑒𝑛) is true. These

are contradictory constraints that must be satisfied in-order to activate the branch. Existing concolic

testing fails unless the design is sufficiently unrolled in such cases. Unrolling for a large number of

cycles is not feasible for large designs.

1.2 Contributions
In this paper, we propose a sequence-based incremental concolic testing. Our proposed technique

uses edge exploration by traversing the Control Flow Graph (CFG) of the RTL design to identify

the event sequence. Next, it solves each sequence while maintaining the order and preserving each

solution for solving the next sequence incrementally. This paper makes the following three major

contributions.

(1) Proposes an event sequence based approach for concolic testing. For a given branch, the

sequence of events are identified by statically analyzing the concurrent CFGs of the RTL

design.

(2) Incrementally applies concolic testing on an event sequence and preserves the test vectors to

build the directed test to activate the target (hard-to-detect branches).

(3) Extensive experimental evaluation using a memory and a processor design demonstrates the

effectiveness of our approach.

This paper is organized as follows. Section 2 surveys existing test generation techniques. Section 3

defines related terms. Section 4 presents our proposed test generation framework. Section 5 presents

experimental results. Finally, Section 6 concludes the paper.

2 RELATEDWORK
In this section, we briefly describe memory verification methods and existing test generation efforts

using formal methods as well as concolic testing.

2.1 Verification of RTL Models
As AI and ML continue to advance, memory requirements are becoming increasingly sophisticated.

Memory modules need to deliver high performance while consuming minimal power. However,

the scaling of technologies has led to complex memory designs, posing challenges for verification.

To bridge the verification gap, design teams must employ advanced modeling and verification tech-

niques. These techniques ensure that the silicon behaves as expected throughout the development

process. Unlike software errors, rectifying errors in memory modules at later stages of the life

cycle becomes significantly more difficult. To tackle this, memory designers are utilizing various

verification techniques to verify the functionality of complex interactions within the memory

modules [8–11]. There are various efforts [10, 12] that rely on abstracted implementation and

provides verification guarantees. In contrast, the test patterns generated by our approach can

be used to simulate the actual implementation. While there is a recent effort [13] that considers

simulation of processor designs, but it assumes the availability of a golden ISA specification. In this

work, we explore the use of concolic testing to activate hard-to-detect branches in both processor

and memory designs, enabling comprehensive verification.
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2.2 Test Generation using Formal Methods
There are several test generation methods such as manual testing, random testing and formal meth-

ods. When compared to random testing formal methods are suitable for directed test generation

methods [2, 5, 7, 14–20]. Formal verification techniques mathematically prove system properties

based on formal models and specifications. Formal verification methods include model checking,

theorem proving, property checking, etc. Formal methods can also be applied to automated test-

ing [21–46]. For example, model checking is widely used for automated generation of directed

tests [2]. Specifically, a model checker uses the model of the design and the property (the negated

version of the target activity) to produce a counterexample. It performs bounded model checking

using binary decision diagrams (BDD) [47] or SAT solvers [48]. Unfortunately, model checking is

not scalable due to the state explosion problem. While there are promising avenues to reduce the

model checking complexity, formal methods are not scalable for automated test generation when

dealing with complex behaviors (e.g., hard-to-detect branches) as well as large designs.

2.3 Test Generation using Concolic Testing
Concolic testing is a promising alternative to model checking based test generation. Specifically, it

provides an effective combination of concrete simulation and symbolic execution [5]. Unlike model

checking that tries to explore all possible (exponential) execution paths at the same time, concolic

testing explores only one execution path at a time. Concolic testing has been successfully applied

on both software [3, 4, 49, 50] and hardware designs [5, 51–53].

Although concolic testing can avoid state explosion problem, it faces path explosion problem

since it needs to select a profitable path is each iteration. While there are promising solutions for

selecting beneficial branches [5], they are not suitable for complex corner cases such as hard-to-

detect branches with complex branch conditions. We propose an efficient mechanism to activate

complex branch conditions by identifying it as a sequence of simple conditions and incrementally

applying concolic testing to activate these simple conditions.

3 PRELIMINARIES AND DEFINITIONS
We define few terms that are used in this paper. While our approach is applicable on both Verilog

and VHDL designs, for the ease of illustration, we use Verilog examples in the remainder of this

paper.

Definition 1: Branch is a conditional statement which includes statements that should be

executed if the condition is satisfied. We consider ‘if’ and ‘case’ statements as branches. Note that

other statements (e.g., ‘for’ and ‘while’) can also be viewed as an ‘if’ statement. For example, line

36-38 in Listing 1 represent a branch statement. □

Definition 2: Branch condition is a Boolean expression that can be constructed using Boolean

operators (&&, ||, !) between Boolean expressions, or relational operators (<, >, >=, <= , ==, ! =)

between numeric expressions. For example, (𝑟_𝑑𝑎𝑡𝑎 == 𝐷𝐴𝑇𝐴) is the branch condition in Listing 1

(line 36). □

Definition 3: Each branch can have up to two blocks: if-block and else-block. Each block (𝐵) is

a sequence of statements that will be executed if the condition is true (if-block) or false (else-block).

For example, B13 in Listing 1 (line 36-38) represents the if-block for the branch in line 35. Similarly,

B15 (line 37) is the if-block for the branch in line 36. □

Definition 4: Control Flow Graph (CFG) represents a flow of control between the block-

s/branches in an ‘always’ or ‘initial’ block in Verilog designs. A CFG is a directed graph,𝐺 = (𝑁, 𝐸).
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Each node 𝑛 ∈ 𝑁 represents a block. Each edge 𝑒 = (𝑛𝑖 , 𝑛 𝑗 ) ∈ 𝐸 corresponds to a possible control

flow from block 𝑛𝑖 to block 𝑛 𝑗 . The edges inside a CFG are called intra-edges whereas the edges

between CFGs are called as inter-edges. For example, Figure 2 shows three CFGs corresponding to

the three ‘always’ statements in Listing 1. □

Definition 5: Simulation trace is a sequence of blocks executed by simulation for a finite number

of clock cycles (𝑐1, 𝑐2, ....., 𝑐𝑛) and corresponding test vectors (𝑡1, 𝑡2, ....., 𝑡𝑛) . This can be represented

as a tuple (𝑐𝑖 , <𝐵
𝑖
1
,...., 𝐵𝑖𝑗 , ....>) where 1 ≤ 𝑖 ≤ 𝑛 (total unroll cycles) and 1 ≤ 𝑗 ≤ number of all blocks.

𝐵𝑖𝑗 represent that for clock cycle 𝑐𝑖 , the test 𝑡𝑖 is used to simulate, and the block 𝐵 𝑗 is executed. □

Definition 6: Sequence (𝑆) is a sequence of blocks representing an execution path that should

be followed in order to get to a specific block in a CFG. Sequence 𝑆 can involve blocks from different

CFGs. Consider 𝑆𝑘 = < 𝐵1

1,𝑘
,...., 𝐵𝑖

𝑗,𝑘
, ..... >, where 𝐵𝑖

𝑗,𝑘
implies that the 𝑗-th block (𝐵 𝑗 ) is included in

the 𝑘-th sequence (𝑆𝐾 ) during the 𝑖-th clock cycle (𝑐𝑖 ). For example, to activate 𝑇𝑎𝑟𝑔𝑒𝑡 in Listing 1,

the execution path will include the following sequence of blocks in CFG3 (Figure 2): B9, B12, B13,

B15. □

Definition 7: Test sequence (𝑇𝑘 ) is a set of test vectors to activate the sequence of blocks in 𝑆𝑘 .

Specifically, 𝑇𝑘 consists of <𝑡
1

𝑘
, ..., 𝑡𝑖

𝑘
, .... 𝑡𝑑

𝑘
> where 1 ≤ 𝑖 ≤ 𝑑 and 𝑑 ≤ 𝑛. In 𝑡𝑖

𝑘
, 𝑖 is the clock cycle

and 𝑘 is the sequence id. □

Definition 8: Branch target is a block that we want to activate for a specific outcome of a

branch (true or false). The block that gets activated by activating the branch condition is the target

block (𝐵). 𝐵 can be activated by following a sequences stack (𝐵 =⇒ < 𝑆1, 𝑆2, ...., 𝑆𝑛 >). This implies

that in order to activate the branch target (𝐵), one needs to execute a predefined sequences stack in

a particular order. □

Definition 9: A hard-to-activate branch is identified as a branch that remains unactivated even

after applying a substantial number of random test patterns (𝑛) or running concolic testing up to𝑚

unroll cycles. Section 5.2 outlines the procedure for finding hard-to-activate branches as well as

provides illustrative examples of hard-to-activate branches in a cache design. □

4 INCREMENTAL CONCOLIC TESTING OF RTL MODELS
Figure 3 presents an overview of our proposed incremental concolic testing framework. It consists

of three major tasks: sequence identification, design instrumentation, and incremental concolic

testing.

Design
(RTL Models)

Sequence
Identification

Branch Targets
(Corner Cases)

Directed
Tests

Design
Instrumentation

Functional
Validation

 Incremental Concolic 

Concolic
Testing

Fig. 3. Overview of our test generation framework. It consists of three important tasks: sequence identification,
design instrumentation, and incremental concolic testing.

Algorithm 1 shows the relation between the three tasks. Given a design (D) and a branch target

(𝐵𝑖 ), the first step is to identify the sequences stack (𝑆𝑆) such that 𝐵𝑖 =⇒ < 𝑆1, 𝑆2, ...., 𝑆𝑛 >. The

second step is to instrument the design by converting each sequence to a branch statement. The

second step results in instrumented design (𝑖𝐷) and the target queue (𝑇𝑄). The third step is to apply

concolic testing for each of the branch statements in the order of the sequence. The generated
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test can be used to activate the branch target during functional validation. The remainder of this

section describes these three tasks in detail.

Algorithm 1 Sequence-Based Incremental Concolic Testing

Input Design (D), Branch target (𝐵𝑖 )

Output Test 𝑇
1: 𝑆𝑆 ←SequenceIdentification(𝐷 , 𝐵𝑖 )

2: <iD, TQ>←DesignInstrumentation(𝑆𝑆 , Design)

3: 𝑇 ←IncrementalConcolic(𝑖𝐷 ,𝑇𝑄)

4: Return 𝑇

4.1 Sequence Identification
Algorithm 2 shows the procedure for sequence detection for a given branch target which consists

of four major steps. The first step constructs the CFG for the design. This step can be performed

using any existing Verilog language parser [54]. Figure 2 shows the CFG representation of the

design in Listing 1. The next step extracts the branch condition for the target. This condition is

an expression of the signals (𝑆𝐸). The third step uses DependencySearch function to recursively

identify the assignment blocks that are relevant for each of the signal in 𝑆𝐸. The DependencySearch
function incorporates safeguards to prevent infinite loops caused by circular dependencies. This

is achieved by introducing a mechanism to track and skip signals that have already been visited

during the recursive search. The final output is a Sequence Stack (𝑆𝑆) containing the identified

blocks representing the execution path required to reach the specific block associated with the

given branch target. FindAssignmentBlock, gets the block which is closest to the branch target. This

ensures that the shortest possible test vector is generated. When traversing the CFG to find the

blocks that update a signal we traverse from the branch target. Therefore, the first block that is

detected is added to the dependency search. The distance calculation used in original concolic

testing [15] is used when finding the assignment block.

Example 2: In Listing 1, consider the target as line 37 where the block is (𝐵15) and this is represented
in Figure 2 as the “Target". Line 1 of Algorithm 2 produces three concurrent CFGs with inter-CFG

edges in Figure 2. Line 2 of Algorithm 2 produces the branch condition (line 36 in Listing 1) as

𝑆𝐸 ←<𝑟_𝑑𝑎𝑡𝑎 == DATA>. This signal expression consists of one signal (𝑟_𝑑𝑎𝑡𝑎) and one constant

value (𝐷𝐴𝑇𝐴). Since no action needed for 𝐷𝐴𝑇𝐴, the DependencySearch routine only tries to find

the assignment block corresponding to signal 𝑟_𝑑𝑎𝑡𝑎. The dependency search for 𝑟_𝑑𝑎𝑡𝑎 is shown

in Figure 2 using the two purple dotted lines. The signal 𝑟_𝑑𝑎𝑡𝑎 appears in one assignment (Line

25 in Listing 1) where 𝑟_𝑑𝑎𝑡𝑎 is assigned the value of𝑚𝑒𝑚[𝑎𝑑𝑑𝑟 ] in 𝐶𝐹𝐺2 block 𝐵8. The block 𝐵8

is pushed into 𝑆𝑆 . Then the dependency search is executed for the signals𝑚𝑒𝑚 and 𝑎𝑑𝑑𝑟 . Since

the 𝑎𝑑𝑑𝑟 is a primary input, the search will not continue for 𝑎𝑑𝑑𝑟 . An assignment exists for𝑚𝑒𝑚

in line 15 where𝑚𝑒𝑚[𝑎𝑑𝑑𝑟 ] is assigned the value of 𝑤_𝑑𝑎𝑡𝑎 in 𝐶𝐹𝐺1 block 𝐵3. The block 𝐵3 is

pushed into 𝑆𝑆 . Since𝑤_𝑑𝑎𝑡𝑎 is a primary input and there are no more assignments for𝑤_𝑑𝑎𝑡𝑎,

the recursion will end. Once the algorithm terminates, 𝑆𝑆 will have <𝐵3, 𝐵8>. □

4.2 Design Instrumentation
Algorithm 3 shows the procedure for branch generation for a given sequence set 𝑆𝑆 . As shown in

the algorithm, breadth first search is performed along the predecessors of the target block in the

CFG (Intra-BFS) to extract the conditions to activate the target. Line 1 of the algorithm identifies

the constraints for the target. For each sequence in the 𝑆𝑆 , it tries to identify the constraints
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Algorithm 2 Sequence Identification

Input Design (D), Branch target (𝐵𝑖 )

Output Sequence Stack (𝑆𝑆)

1: 𝐶𝐹𝐺 ← ConstructCFG(D)

2: 𝑆𝐸 ← GetSignalExpression(𝐵𝑖 .condition)

3: 𝑆𝑆 ← DependencySearch(𝐶𝐹𝐺 , 𝑆𝐸, ∅)
4: Return 𝑆𝑆

5: function DependencySearch(𝐶𝐹𝐺 , 𝑆𝐸, 𝑣𝑖𝑠𝑖𝑡𝑒𝑑)

6: for each signal 𝐴 ∈ 𝑆𝐸 do
7: if 𝐴 is not in 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 then
8: 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ← 𝑣𝑖𝑠𝑖𝑡𝑒𝑑 ∪ {𝐴}
9: 𝐵𝐴 ← FindAssignmentBlock(𝐶𝐹𝐺 , 𝐴)

10: 𝑆𝑆 .push(𝐵𝐴)

11: DependencySearch(𝐶𝐹𝐺 , GetSignalExpression(𝐵𝐴.condition), 𝑣𝑖𝑠𝑖𝑡𝑒𝑑)

12: end if
13: end for
14: Return 𝑆𝑆

15: end function

using the similar intra-BFS (line 3). The constraints can have either resolved Boolean expressions

or unresolved expressions. In the next step, constraints from the target are used to resolve the

unresolved constraints of the sequence. First an intersection is performed between the unresolved

constraints from the sequence and constraints from the target. The results of the intersection are

the new resolved constraints for the sequence. If still some of the constraints are unresolved in the

sequence, it searches through dependencies to identify any dependent signals for the target. If any

of the dependent signals are in the target constraints, the value of the target constraint is used to

resolve the sequence constraint. If there are still unresolved constraints, it implies that the scenario

is untestable (target branch cannot be activated).

Example 3: To identify the constraints for “Target” block (𝐵15 in Figure 2 and line 37 in Listing

1), intra-BFS is performed in 𝐶𝐹𝐺3. This search is represented using blue dotted lines in Figure 2.

Intra-BFS for “Target” is <𝐵15, 𝐵13, 𝐵12, 𝐵9>. Based on this traversal, we get the constraints to

activate “Target” as 𝑟_𝑒𝑛 = 1, 𝑤_𝑒𝑛 = 0, 𝑎𝑑𝑑𝑟 = 𝐴𝐷𝐷𝑅 and 𝑟_𝑑𝑎𝑡𝑎 = 𝐷𝐴𝑇𝐴. Next, Intra-BFS is

performed for the blocks in 𝑆𝑆 (<𝐵3, 𝐵8>). The constraints for 𝐵3 are 𝑟_𝑒𝑛 = 0,𝑤_𝑒𝑛 = 1,𝑚𝑒𝑚 = 𝑈𝑅,

𝑎𝑑𝑑𝑟 = 𝑈𝑅 and 𝑤_𝑑𝑎𝑡𝑎 = 𝑈𝑅, and the constraints for 𝐵8 are 𝑟_𝑒𝑛 = 1, 𝑤_𝑒𝑛 = 0, 𝑚𝑒𝑚 = 𝑈𝑅,

𝑎𝑑𝑑𝑟 = 𝑈𝑅 and 𝑟_𝑑𝑎𝑡𝑎 = 𝑈𝑅. Here,𝑈𝑅 means unresolved. There are three unresolved constrained

for 𝐵3. We can resolve the first constraint 𝑎𝑑𝑑𝑟 = 𝑈𝑅 to 𝑎𝑑𝑑𝑟 = 𝐴𝐷𝐷𝑅. We need to search for

dependencies to address the remaining two unresolved constraints (𝑚𝑒𝑚 and𝑤_𝑑𝑎𝑡𝑎). The search

of dependencies for 𝑤_𝑑𝑎𝑡𝑎 is shown in Figure 2 using red dotted lines. 𝑤_𝑑𝑎𝑡𝑎 is assigned to

𝑚𝑒𝑚[𝑎𝑑𝑑𝑟 ] and𝑚𝑒𝑚[𝑎𝑑𝑑𝑟 ] is assigned to 𝑟_𝑑𝑎𝑡𝑎. Once the search is complete, final dependency

for 𝑤_𝑑𝑎𝑡𝑎 can be identified as 𝑟_𝑑𝑎𝑡𝑎. Since 𝑟_𝑑𝑎𝑡𝑎 is included the target constraints, 𝑤_𝑑𝑎𝑡𝑎

gets the value of 𝑟_𝑑𝑎𝑡𝑎. After discarding the unresolved constraints, the final constraints for 𝐵3

are 𝑟_𝑒𝑛 = 0, 𝑤_𝑒𝑛 = 1, 𝑎𝑑𝑑𝑟 = 𝐴𝐷𝐷𝑅 and 𝑤_𝑑𝑎𝑡𝑎 = 𝐷𝐴𝑇𝐴 and for 𝐵8 are 𝑟_𝑒𝑛 = 1, 𝑤_𝑒𝑛 = 0,

𝑎𝑑𝑑𝑟 = 𝐴𝐷𝐷𝑅 and 𝑟_𝑑𝑎𝑡𝑎 = 𝐷𝐴𝑇𝐴. □
In Algorithm 3, for each of the sequences in 𝑆𝑆 , conditional branches are created using the

modified constraints (line 5) and these branches are embedded in the design. The newly created

branches are stored in the𝑇𝑄 (Target Queue) preserving the order in the 𝑆𝑆 . When the first sequence
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Algorithm 3 Design Instrumentation

Input Design (D), CFG, Target (𝐵𝑖 ), Sequence Stack (𝑆𝑆)

Output Instrumented Design (iDesign), Target Queue (𝑇𝑄)

1: Target Constraints 𝑇𝐶 ← IntraBFS(CFG, 𝐵𝑖 .block)

2: for each 𝑆 ∈ 𝑆𝑆 do
3: Sequence Constraints 𝑆𝐶 ←IntraBFS(CFG, 𝑆)

4: 𝑆𝐶 ←MODIFY(𝑇𝐶 , 𝑆𝐶 , CFG)

5: 𝑇𝑄 ←CreateBranch(𝑆𝐶 .resolved, D)

6: iDesign← instrumentDesign(D, TQ)

7: end for
8: Return iDesign, 𝑇𝑄

9:

10: function modify(𝑇𝐶 , 𝑆𝐶 , CFG)

11: 𝑆𝐶 .resolved← 𝑆𝐶 .unresolved ∩ 𝑇𝐶
12: for each 𝑐𝑜𝑛𝑠 ∈ 𝑆𝐶 .unresolved do
13: Depend Signal 𝐷𝑆 ←Search(CFG, 𝑐𝑜𝑛𝑠 .signal)

14: if 𝐷𝑆 ∈ 𝑇𝐶 then
15: 𝑐𝑜𝑛𝑠 .value← 𝑇𝐶[𝐷𝑆].value

16: 𝑆𝐶 .resolved← 𝑆𝐶 .resolved ∪ 𝑐𝑜𝑛𝑠
17: end if
18: end for
19: Return 𝑆𝐶

20: end function

is removed from the 𝑆𝑆 , corresponding branch of that sequence is the first element to insert in the

𝑇𝑄 . This process continues until 𝑆𝑆 is empty. Finally, the modified design is instrumented (line 6).

The goal of the instrumentation is to identify which path is executed by analyzing the simulation

log. We achieve this goal by adding print statements for all the branch conditions and end of the

blocks by using a unique identifier (block id) as illustrated in Example 4.

Listing 2. Branch creation for sequences

1 . i f ( r_en ==1 ' b0 && w_en==1 ' b1 &&

addr==ADDR && w_data==DATA) begin
2 . $display ( " Ta rge t 1 " ) / / B17
3 . end
4 . i f ( r_en ==1 ' b1 && w_en==1 ' b0 &&

addr==ADDR && r_da t a ==DATA) begin
5 . $display ( " Ta rge t 2 " ) / / B19
6 . end

Example 4: The 𝑆𝑆 to activate the “Target” block (𝐵15 in Figure 2) is <𝐵3, 𝐵8>. The resolved

constraints for both these sequences are presented in Example 3. Using those constraints, we can

create branch statements for 𝐵3 and 𝐵8. The created branches using Algorithm 3 for 𝐵3 and 𝐵8

are shown in Listing 2 from line 1 - 3 and line 4 - 6, respectively. The corresponding block ids of

these branches are stored in the 𝑇𝑄 as < 𝐵17, 𝐵19 >. After branch creation, instrumentation of

the design is conducted. By analyzing the CFG, each block is given a unique block identifier. Th

instrumentation of the first always block in Listing 1 (line 9 - 18) is shown in Listing 3. We add a

9



print ($display) statement at the end of each block. This will print the blocks that got activated in

each clock cycle along with clock cycle information. □

Listing 3. Example of design instrumentation

1 . always@ ( posedge c l k ) begin
2 . i f ( r_en ) begin
3 . $display ( " B1 " ) ;

4 . end
5 . e l se begin
6 . $display ( " B2 " ) ;

7 . i f ( w_en ) begin
8 . mem[ addr ] <= w_data ;

9 . $display ( " B3 " ) ;

1 0 . end
1 1 . e l se begin
1 2 . $display ( " B4 " ) ;

1 3 . end
1 4 . end

4.3 Incremental Concolic Testing
In this section, we present the incremental concolic testing scheme to activate a set of sequence

events in the preserved order. Figure 4 presents a pictorial representation of incremental test

generation. As shown in the figure, there are two sets: sequence set <𝑆1, 𝑆2, ....., 𝑆𝑁> and the

corresponding test set <𝑇1, 𝑇2, ...., 𝑇𝑁>. To activate a sequence 𝑆𝑥 , the required test is

∑𝑥
𝑘=1

𝑇𝑘 . For

example, 𝑇1 can activate 𝑆1, but to activate 𝑆2, we need both 𝑇1 and 𝑇2. A test set is a combination

of different test vectors. A test 𝑇𝑥 includes

∑𝑏
𝑖=𝑎 𝑡

𝑖
𝑥 where 𝑎, 𝑏 ≤ 𝑛 (unroll cycle). The test vectors in

𝑇1 are <𝑡
1

1
, 𝑡2

1
, ...., 𝑡𝑑

1
>, and the test vectors in 𝑇2 are <𝑡

𝑑+1
2

, 𝑡𝑑+2
2

, ...., 𝑡𝑑
′

2
>.

S1

S2

SN

Sequences Test vectors

T1

T2

TN

.....
 : 11101010...1010

 : 11101010...1010

.....
 : 11101010...1010

 : 11101010...1010

.....
 : 11101010...1010

 : 11101010...1010

Fig. 4. Incremental test generation for a sequence set. Here 𝑆 𝑗 implies the j-th element of the sequence
corresponding to branch 𝐵

𝑗
𝑖
, i-th branch in the design.

Algorithm 4 describes the incremental test generation using concolic testing to activate a sequence

of events preserving the order of events. Specifically, the test generated to activate the current event

is used as the starting point to activate the next event in the sequence. For each target in𝑇𝑄 , we run

concolic testing while changing the test set and the starting clock cycle (line 4). For the first target,
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the test set (𝑇 ) is generated randomly and it contains test vectors up to the unroll cycle (𝑛). The

first step of concolic framework is to calculate the distance from the target to all the blocks. From

the target breadth-first traversal is performed in the direction along the predecessors. The distance

is initialized to 0 and incremented by 1 when an edge traversal is completed. Next, Path (𝑃 ) is

generated by simulating the design with test set𝑇 . All the alternate branches from the current path

𝑃 is selected as the next step. When selecting the alternate branches, the clock is set to a specific

starting clock cycle value so that we only select the branches after the starting clock cycle value.

The path up to the starting clock cycle is set and unchanged. Then the selected alternate branches

are sorted using the distance and the clock value. This will lead to the most profitable alternate

branch. Using the trace of 𝑃 and the chosen branch, constraint vector is generated. The constraint

vector contains the value of the constraints for each of the clock cycles. Then the constraint vector

is solved using a constraint solver. The constraint solver produces a new test set and this is used to

simulate the design and get a new path. If the new path activates the target, the test set will be

added to 𝑇 . Also, the clock cycle of the selected branch will be set as the new starting clock cycle.

Hence, the test set generated for the target will be preserved and used as a starting point to the

next target in 𝑇𝑄 .

Algorithm 4 Incremental Concolic Testing

Input Design (D), Target Queue (𝑇𝑄), Unrolled Cycles (𝑛), 𝑙𝑖𝑚𝑖𝑡

Output Test Set 𝑇 = 𝑇1,𝑇2, ...,𝑇𝑁

1: 𝑇 ← Random Vectors

2: 𝑠𝑡𝑎𝑟𝑡 ←1

3: for each 𝑡𝑎𝑟𝑔𝑒𝑡 in 𝑇𝑄 do
4: 𝑇, 𝑠𝑡𝑎𝑟𝑡 ←CONCOLIC(D, 𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑇 , 𝑠𝑡𝑎𝑟𝑡 )

5: end for
6: return 𝑇

7:

8: function Concolic(Design, 𝑡𝑎𝑟𝑔𝑒𝑡 , 𝑇 , 𝑠𝑡𝑎𝑟𝑡 )

9: Distance Set 𝐷𝑆 ← ComputeDistance(𝑡𝑎𝑟𝑔𝑒𝑡 , Design)

10: Path 𝑃 ← Simulate(𝑇 , Design)

11: 𝑐𝑙𝑜𝑐𝑘 ← 𝑠𝑡𝑎𝑟𝑡

12: while 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 < 𝑙𝑖𝑚𝑖𝑡 do
13: 𝐴𝐵← AlternateBranch(𝑃 , 𝐷𝑆 , 𝑐𝑙𝑜𝑐𝑘)

14: 𝐶𝑉 ← BuildConstraints(𝐴𝐵, 𝑃 )

15: Test 𝑡 ← SolveConstraints(𝐶𝑉 )

16: 𝑃 ← Simulate(𝑡 , Design)

17: if 𝑃 activates the 𝑡𝑎𝑟𝑔𝑒𝑡 then
18: 𝑇 .𝑎𝑑𝑑 (𝑡)
19: 𝑠𝑡𝑎𝑟𝑡 ← 𝐴𝐵.clock

20: Break

21: end if
22: end while
23: return 𝑇 , 𝑠𝑡𝑎𝑟𝑡

24: end function

Example 5: Target Queue (𝑇𝑄) contains 2 branch targets <𝐵17, 𝐵19> which are shown in Listing 2.

Assume that the unroll cycle (𝑛) is 10 and search 𝑙𝑖𝑚𝑖𝑡 is 10 iterations. Concolic is used to activate
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the first branch target (𝐵17) which is corresponding to writing a value to the memory. The 𝑠𝑡𝑎𝑟𝑡

value is 1 and a random test set is used as initial setting. Suppose the test set to activate the target

(𝐵17) is identified in unroll cycle 3. Then the starting cycle is set as 4 for the next target (𝐵19). The

test set for activating 𝐵17 is shown in Listing 4 (line 1 - 3). This test set is used as a starting point to

activate the second branch target (𝐵19) which is corresponding to reading a value form a memory

(line 4 in Listing 4). □

Listing 4. Test to activate target

\ \ Move the ADDR i n t o R0

1 . MOVQ R0 , ADDR

\ \ Move the DATA i n t o R1

2 . MOVQ R1 , DATA

\ \ S t o r e DATA in R1 in ADDR memory in R0

3 . ST [ R0 ] , R1

\ \ Load the va lue in ADDR memory in R0 to R2

4 . LD R2 , [ R0 ]

While we utilize the core functions of concolic testing in Algorithm 4, we have incorporated

our primary contributions for finding sequences, instrumenting design with new branches, and

incrementally solving one sequence at a time to generate the required test to activate the target.

Note that the instrumented design (including new branches) are used for test generation purpose

only. We do not make any changes to the original design. During the functional validation, the

generated tests are used to activate the branch targets (corner cases) on the original design.

5 EXPERIMENTS
In this section, we evaluate the effectiveness of our proposed approach using a wide variety of

hard-to-activate branches in a memory and processor design. We first describe the experimental

setup. Next, we outline the corner case scenarios. Finally, we present the experimental results.

5.1 Experimental Setup
To demonstrate the applicability of our framework, we have applied incremental concolic testing

on two designs: (1) a re-configurable cache implementation, IOb-Cache [55], and (2) a processor

design [56], which implements 32-bit RISC-V instruction set. In order to generate the abstract

syntax tree of the RTL model, we use Icarus Verilog Target API [54]. We use Yices SMT solver [57]

for solving constraints. Incremental concolic testing is implemented on top of the concolic testing

framework proposed in [5]. In order to ensure validity of the generated test vectors, we simulate

the original design with the generated test and analyze the Value Change Dump (VCD) to confirm

the activation of the target (corner case scenario). We ran our experiments on Intel i7-5500U @

3.0GHz CPU with 16GB RAM machine.

5.1.1 Memory module. Memory module interfaces with a processor and main memory as shown

in Figure 5. The design of the IOb-Cache consists of four components: Front-End, Cache-Memory,
Cache-Control, and Back-End. The Front-End implements the interface between the processor and

the cache. The Front-End provides all data signals to the Cache-Memory and control signals are

routed to the Cache-Control. The IOb-Cache is word-aligned and returns the entire word. Cache-
Memory consists of various components including tag buffer, valid buffer, data write-through buffer,

and replacement policy unit. This design can be configured as direct-mapped or set associative
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Fig. 5. IOb-Cache [55] block diagram for selected configurations outlined in Table 1.

(N_way as shown in Table 1). The replacement policy unit supports three different modes: Least-

recently-used (LRU), Psuedo-least-recently-used (PLRU: MRU based, Binary tree-based). Finally,

Back-end is responsible for interfacing the main memory with the cache. IOb-Cache supports both

native and AXI interfaces. For the case studies in Section 5.2, we have selected configurations

presented in Table 1. With the above configurations, we flattened the IOb-Cache module eliminating

its hierarchy with Yosys [58] synthesis tool. The flattened RTL netlist is about 10,000 lines of code.

The number of CFGs is 597. The average depth of the CFG is 2 branches and the maximum depth

is 5 branches. A high-level block diagram with the inputs and outputs of the setup is presented

in Figure 5. This configuration is used for validation of different functional scenarios outlined in

Section 5.2.

Table 1. Configurations used for the IOb-Cache setup

Attribute Configuration 1 Configuration 2
Addr width 16 32

Data width 32 32

Ram type Native AXI

Write Policy Write Back Write through

Replacement Policy LRU PLRU_mru

N_way 4 4

5.1.2 Processor. PicoRV32 [56] consists of 32 internal registers and can be configured for dual-port

register implementation. During the experiments, we communicate with the processor with native

memory interface. Input and output configurations of the native memory interface are presented in

Figure 6. The specific configurations are listed in Table 2. Memory read operations are initiated by

the picorv32 core, signaling the need for data through the assertion of𝑚𝑒𝑚_𝑣𝑎𝑙𝑖𝑑 and specifying

the target address with𝑚𝑒𝑚_𝑎𝑑𝑑𝑟 . The read data is then communicated to the processor through

𝑚𝑒𝑚_𝑟𝑑𝑎𝑡𝑎. On the other hand, for memory write operations, the picorv32 core triggers writes

by asserting𝑚𝑒𝑚_𝑣𝑎𝑙𝑖𝑑 , providing the address and data through𝑚𝑒𝑚_𝑎𝑑𝑑𝑟 and𝑚𝑒𝑚_𝑤𝑑𝑎𝑡𝑎, and

indicating the write strobe with𝑚𝑒𝑚_𝑤𝑠𝑡𝑟𝑏. The flattened RTL netlist of Picorv32 is about 100,000

lines of code. The number of CFGs is 8695, average depth is 2, and maximum depth is 6 branches.

5.2 Corner Case Scenarios
We refer a branch as “hard-to-activate” if it does not get activated even after simulating for a

considerable amount of test patterns. In general, we use a threshold (e.g., after applying n test
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Fig. 6. Picorv32 [56] block diagram for selected configurations outlined in Table 2.

Table 2. Configurations used for the PicoRV32 setup

Attribute Value
REGS_16_31 Enabled

DUALPORT_REGS Enabled

PROGADDR_RESET 32’h 10_0000

STACKADDR 1024

TWO_STAGE_SHIFT Enabled

Interrupt requests Enabled

random patterns and m unroll cycles in concolic testing) to figure out hard-to-activate corner

cases. Table 3 shows various branches and how many times they are activated with the increasing

number of random test patterns for IOb cache. IOb case has 446 branches and 94 are considered

hard-to-activate even after 100,000 test patterns.

Table 3. Random testing applied to activate branches in IOb cache

# Test 100 1000 10000 100000

# Branches Activated 329 331 339 352

# Uncovered Branches 117 115 107 94

% of Uncovered Branches 26.2% 25.78% 23.99% 21.07%

We can further refine hard-to-activate branches where we try to activate the branches which were

not activated by previous random/constrained-random tests using concolic testing. We introduce a

parameter unroll cycles (m) with respect to the classical concolic testing. We have considered corner

cases as the branches that do not get activated after 15 unroll cycles using classical concolic testing

for IOb-cache. Table 4 illustrates the percentage of hard-to-activate corner cases after unrolling the

IOb design for different m values. In this example, concolic testing is able to activate 26 (out of 94)

but it still cannot activate 68 branches, which are considered as corner cases.

Table 4. Original concolic testing applied to activate branches, that are not activated by random testing

# Unroll Cycles 5 10 15

# Branches Activated 17 24 26

# Uncovered Branches 77 70 68

% of Uncovered Branches 81.91% 74.46 % 72.34%
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We identify the corner case scenarios (hard-to-detect branches) in a IOb design if it does not get

activated even after running 100,000 random test cases and 15 unroll cycles with classical concolic

testing. In case of Picrov32 design, we have used 100,000 random test cases and 50 unroll cycles as

threshold to identify the hard-to-detect branches. In this section, we present different illustrative

examples of corner case scenarios for memory and processor verification. Specifically, we consider

eight corner cases related to memory modules and three corner cases for the processor design.

5.2.1 Corner case scenarios for memory. We have illustrated different hard-to-detect branches

identified in memory verification.

Case 1: Write a specific value to memory as shown in Listing 5.

Listing 5. Case 1

1 . i f ( ready == 1 ' b1 )

2 . i f ( wst rb == 1 ' b1 )

3 . i f ( addr == 16 ' h1234 )

4 . i f ( w_data == 32 'hCAFEFEED ) begin
5 . $display ( " Ta rge t " )

6 . end

Case 2: Read a specific data form a specific address as shown in Listing 6. This scenario is similar

to the target in Listing 1.

Listing 6. Case 2

1 . i f ( ready == 1 ' b1 )

2 . i f ( wst rb == 1 ' b0 )

3 . i f ( addr == 16 ' h1234 )

4 . i f ( r _ d a t a == 32 'hCAFEFEED ) begin
5 . $display ( " Ta rge t " )

6 . end

Case 3: Back to back writes to the same address as shown in Listing 7. We copied the entries in

Listing 5 for 5 times and changed the data values.

Listing 7. Case 3

1 . i f ( ready == 1 ' b1 )

2 . i f ( wst rb == 1 ' b1 )

3 . i f ( addr == 16 ' h1234 )

4 . i f ( w_data == 32 'hCAFEFEED ) begin
5 . $display ( " Ta rge t 1 " )

6 . end

7 . i f ( ready == 1 ' b1 )

8 . i f ( wst rb == 1 ' b1 )

9 . i f ( addr == 16 ' h1234 )

1 0 . i f ( w_data == 32 'hABCEFEED ) begin
1 1 . $display ( " Ta rge t 2 " )

1 2 . end
. . .

Case 4: Back to back reads from the same address as shown in Listing 8. We copied the entries in

Listing 6 for 5 times and changed the data values.
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Listing 8. Case 4

1 . i f ( ready == 1 ' b1 )

2 . i f ( wst rb == 1 ' b0 )

3 . i f ( addr == 16 ' h1234 )

4 . i f ( r _ d a t a == 32 'hCAFEFEED ) begin
5 . $display ( " Ta rge t 1 " )

6 . end

7 . i f ( ready == 1 ' b1 )

8 . i f ( wst rb == 1 ' b0 )

9 . i f ( addr == 16 ' h1234 )

1 0 . i f ( r _ d a t a == 32 'hABCEFEED ) begin
1 1 . $display ( " Ta rge t 2 " )

1 2 . end
. . .

Case 5: Write data to a boundary location in memory as shown in Listing 9. We used the Listing 5,

created two copies, and changed the address value to 16’h0000 and 16’hFFFF, respectively.

Listing 9. Case 5

1 . i f ( ready == 1 ' b1 )

2 . i f ( wst rb == 1 ' b1 )

3 . i f ( addr == 16 ' h0000 )

4 . i f ( w_data == 32 'hCAFEFEED ) begin
5 . $display ( " Ta rge t 1 " )

6 . end

7 . i f ( ready == 1 ' b1 )

8 . i f ( wst rb == 1 ' b1 )

9 . i f ( addr == 16 ' hFFFF )

1 0 . i f ( w_data == 32 'hCAFEFEED ) begin
1 1 . $display ( " Ta rge t 2 " )

1 2 . end

Case 6: Read data from a boundary location in memory as shown in Listing 10. We used the same

Listing 6, created two copies, and changed the address value to 16’h0000 and 16’hFFFF, respectively.

Listing 10. Case 6

1 . i f ( ready == 1 ' b1 )

2 . i f ( wst rb == 1 ' b0 )

3 . i f ( addr == 16 ' h0000 )

4 . i f ( r _ d a t a == 32 'hCAFEFEED ) begin
5 . $display ( " Ta rge t 1 " )

6 . end

7 . i f ( ready == 1 ' b1 )

8 . i f ( wst rb == 1 ' b0 )

9 . i f ( addr == 16 ' hFFFF )

1 0 . i f ( r _ d a t a == 32 'hCAFEFEED ) begin
1 1 . $display ( " Ta rge t 2 " )

1 2 . end

Case 7: Verify front-end and back-end addresses for correct address translation as shown in

Listing 11. The specific address translations are identified by analyzing the RTL models of front-end

and back-end modules. In a write-back cache, data is only written back to the memory when a
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cache line is flushed. If the design doesn’t perform cache line flushes in certain scenarios, the

conditions inside the if statements may not always be evaluated as true, and the corresponding

display statements may not be executed. In this experiment, we use explicit flush commands (for

the specific address we set the 𝑐𝑎𝑐ℎ𝑒_𝑚𝑒𝑚𝑜𝑟𝑦_𝑖𝑛𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 bit) to flush the cache line while we try

to activate Case 7.

Listing 11. Case 7

1 . i f ( addr == 16 ' h1234 )

2 . i f ( f r on t _ end . d a t a_add r == addr [ 1 5 : 2 ] )

3 . $display ( " Ta rge t 1 " )

4 . end
5 . i f ( addr == 16 ' h1234 )

6 . i f ( back_end . wr i t e _ add r == addr [ 1 5 : 6 ] )

7 . $display ( " Ta rge t 2 " )

8 . end

Case 8: Verify cache hit for a specific memory read. As shown in Listing 12, when the required

write happens before the read, the cache hit should get triggered.

Listing 12. Case 8

1 . i f ( ready == 1 ' b1 )

2 . i f ( wst rb == 1 ' b0 )

3 . i f ( addr ==16 ' h1234 && r_d a t a =32 'hCAFEFEED )

4 . i f ( cache_memory . h i t == 1 ' b1 ) begin
5 . $display ( " Ta rge t " )

6 . end

5.2.2 Corner case scenarios for processor. In this section, we present three corner cases for execution
of a processor. Corner cases are illustrative examples of how to check several scenarios including

setting the program counter, writing some arbitrary value to internal registers and reading a

value from the internal register after writing. These types of test cases are useful in situations for

debugging programs on processor designs. Let’s assume a scenario where the processor needs to

be configured to run from the middle of a program based on the earlier execution traces. In this

case, sequence-based concolic testing allows for a division of the original firmware into several

segments and checking for specific coverage scenarios of the design at each segment.

Case 9: Reading from a specific register in SRAM as shown in Listing 13.

Listing 13. Case 9

1 . i f ( mem_la_addr == 32 ' h00120000 ) begin
2 . i f ( mem_la_read ) begin
3 . $display ( " Ta rge t " ) $ ;

4 . end
5 . end

Case 10: Setting the program counter to a specific value as shown in Listing 14.

Listing 14. Case 10

1 . i f ( ! ( l a t c h e d _ s t o r e && l a t c h ed_b r an ch )

2 . && reg_nex t_pc == 32 ' h00012004 ) begin
3 . i f ( ! i r q _pend ing ) begin
4 . $display ( " Ta rge t " ) $

5 . end
6 . end
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Case 11: Writing a specific value to internal register as shown in Listing 15.

Listing 15. Case 11

1 . i f ( cpuregs_wrda ta == 32 ' h64 ) begin
2 . i f ( ( l a t c h e d _ r d == 5 ' h4 ) && r e s e t n &&

3 . c pu r eg s _wr i t e && l a t c h e d _ r d ) begin
4 . $display ( " Ta rge t " ) $ ;

5 . end
6 . end

5.3 Test Generation Results
In this section, we present the results of our case study. We compare our approach with EBMC [59]

and the concolic framework presented in [5]. EBMC is a state-of-the art formal verification frame-

work that uses bounded model checking. The concolic framework [5] is state-of-the-art in activating

RTL branch statements using concolic testing. The number of unrolled cycles are determined based

on the complexity of the scenarios. This can be achieved by starting from a reasonable number

of unroll cycles and increment until the scenarios are covered. The number of unroll cycles is

analogous to the bound determination for bounded model checking. We set the bound for EBMC to

be equal to the number of unroll cycles for concolic testing.

The corner case activation results at system level are shown in Table 5. The first column represents

different corner case scenarios outlined in Section 5.2. For IOb cache we have selected the first

configuration. The second column provides the unroll cycles (bound for EBMC). For each approach,

we provide information about if the target (corner case) is activated (Yes or No) within the bound,

and if yes, what is the memory requirement (in MB) and run time (in seconds). As shown in Table 5,

EBMC only covers one scenario, and concolic [5] covers only 4 scenarios. Our approach successfully

covered all the 11 scenarios. EBMC is expected to fail for most of the scenarios due to state space

exploitation problem. The concolic framework in [5] activates some of the branches, however,

when dealing with contradictory and complex sequences, it fails to activate the target due to path

explosion problem ([5] selects branches based on the distance heuristics).

Table 5. Comparison of system-level target activation using EBMC [59], Concolic [5], and our approach

Cases Unroll Cycles
(Bound)

EBMC [59] Concolic [5] Our Approach

Activated Memory
(MB)

Time
(s) Activated Memory

(MB)
Time
(s) Activated Memory

(MB)
Time
(s)

1 20 No - - Yes 82.34 20.13 Yes 20.00 14.55

2 20 No - - No - - Yes 34.67 25.78

3 50 No - - Yes 215.84 50.67 Yes 67.89 20.78

4 50 No - - No - - Yes 182.56 82.91

5 20 No - - No - - Yes 19.78 14.43

6 20 No - - No - - Yes 30.24 23.91

7 20 Yes 597.81 2.01 Yes 20.56 4.93 Yes 15.23 4.81

8 20 No - - No - - Yes 50.67 30.88

9 100 No - - No - - Yes 170.91 61.71

10 100 No - - No - - Yes 53.59 85.60

11 100 No - - Yes 210.44 369.01 Yes 49.72 47.48

The final step of our framework is the functional validation using the generated test from

incremental concolic testing. To validate the generated test vectors from our approach, we simulate

the original design with the generated test and analyzed the VCD to confirm the activation of the

corner case scenarios. Figure 7 shows the VCD for the test generated for Case 2. For Case 2, the first
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sequence is writing the data value to the address. This is achieved in clock cycle 7 when the ready

signal has changed to 1 with 𝑎𝑑𝑑𝑟 = 16’h1234, 𝑤_𝑑𝑎𝑡𝑎 = 32’hCAFEFEED and 𝑤𝑠𝑡𝑟𝑏 = 4’hF. The

next sequence for Case 2 is reading a value from an address. This is activated in clock cycle 10. The

ready signal has changed to 1 with 𝑎𝑑𝑑𝑟 = 16’h1234, 𝑟_𝑑𝑎𝑡𝑎 = 32’hCAFEFEED and𝑤𝑠𝑡𝑟𝑏 = 4’h0.

0 10 ns 20 ns

0000 1234

000000+ CAFEFEED

0 F 0

xxxxxxxx CAFEFEED

Time
clk

addr[15:2]

wdata[31:0]

wstrb[3:0]

valid

rdata[31:0]

ready

hit

Fig. 7. Functional validation for Case 2.

To understand the limitation of the state-of-the-art RTL concolic framework in [5], we apply [5]

only on the module level. Specifically, we only consider the iob_ram module with ‘Case 2’ and

compare the performance between our approach and [5] with respect to memory and time while

increasing the unroll cycles. The experimental results are shown in Table 6. The concolic framework

in [5] was able to activate the target (Case 2) only when unrolled to 50 cycles whereas our approach

is able to activate the branch in 10 unroll cycles. The performance improvement of our approach

compared to [5] in terms of time and memory is 24 times and 12 times, respectively. It also highlights

another important aspect of the state-of-the-art concolic framework - it can activate corner cases

if the design is sufficiently unrolled, which can be infeasible for industrial designs since various

components in concolic testing (e.g., constraint solver) may not be able to handle such a large

number of constraints. Our proposed framework solves the corner case scenarios by incrementally

solving the sequence of events.

Table 6. Memory (MB) and time (s) taken to verify Case 2 at module level using [5] and our approach.

Unroll
cycles

Concolic [5] Our Approach
Activated Mem Time Activated Mem Time

10 No 52.4 29.92 Yes 10.9 0.59

20 No 86.3 70.59 Yes 11.4 1.75

30 No 121.2 137.25 Yes 12.9 7.09

40 No 154.8 225.37 Yes 12.1 6.22

50 Yes 164.6 286.09 Yes 13.1 11.75

5.4 Test Generation for Different Memory Configurations
Figure 8 shows the time and memory requirements of the two configurations, presented in Table 1,

in the IOb-cache design to activate 8 cases. Configuration 1, characterized by a 16-bit address

width, 32-bit data width, native RAM type, write-back policy, LRU replacement policy, and a 4-

way set-associative structure, consistently exhibits lower memory usage and shorter execution

times compared to Configuration 2. In Configuration 2, featuring a 32-bit address width, 32-bit

data width, AXI RAM type, write-through policy, PLRU_mru replacement policy, and a 4-way

set-associative structure, the higher memory consumption and longer execution times can be

attributed to the increased address width and the different memory access policies. The adoption

of AXI RAM type and write-through policy in Configuration 2 inherently demands more memory

resources and processing time. Still, the memory and the time requirements of configuration 2

remain scalable. This scalability is crucial for accommodating larger and more complex designs,

making our approach suitable for complex applications.
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Fig. 8. Memory and time comparison for two configurations shown in Table 1 for 8 cases

6 CONCLUSION
Concolic testing provides a scalable test generation framework using an effective combination

of simulation and formal methods. While it is promising for branch coverage in register-transfer

level (RTL) deigns, it cannot activate complex corner cases such as hard-to-activate branches. We

have developed an incremental concolic testing framework to cover such corner case scenarios

in RTL models. Specifically, this paper made three important contributions. First, we show that a

complex branch condition can be decomposed as a sequence of easy-to-activate events by traversing

respective control and data flow graphs. Next, we map the branch coverage problem to the coverage

of a sequence of events such that the test generated to activate the current event can be used as

the starting point for activating the next event in the sequence. Finally, we have developed an

efficient algorithm to cover the sequence of events by iterative invocation of concolic testing. Our

experimental results demonstrated that our approach can be used to generate directed tests to

cover complex branch targets in modern memory and processor designs, while state-of-the-art

methods fail to activate them.
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