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Directed Test Generation for Activation of Security

Assertions in RTL Models
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Assertions are widely used for functional validation as well as coverage analysis for both software and hard-

ware designs. Assertions enable runtime error detection as well as faster localization of errors. While there is

a vast literature on both software and hardware assertions for monitoring functional scenarios, there is lim-

ited effort in utilizing assertions to monitor System-on-Chip (SoC) security vulnerabilities. We have identified

common SoC security vulnerabilities and defined several classes of assertions to enable runtime checking of

security vulnerabilities. A major challenge in assertion-based validation is how to activate the security as-

sertions to ensure that they are valid. While existing test generation using model checking is promising, it

cannot generate directed tests for large designs due to state space explosion. We propose an automated and

scalable mechanism to generate directed tests using a combination of symbolic execution and concrete sim-

ulation of RTL models. Experimental results on diverse benchmarks demonstrate that the directed tests are

able to activate security assertions non-vacuously.
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1 INTRODUCTION

System-on-Chip (SoC) security is critical as more and more personal computing needs as well as
physical infrastructures are controlled by a chip with the prevalence of Internet-of-Things (IoTs).
Attackers take advantage of security vulnerabilities to inject malicious software. Tools such as
anti-virus are not enough to protect from these attacks if the underlying hardware (SoC) is vul-
nerable. A typical SoC consists of a wide variety of components including processor cores, memory,
controllers, converters, and so on. Due to time-to-market constraints coupled with cost considera-
tions, SoC design methodology involves multiple third-party vendors in a long supply chain. As a
result, SoC security vulnerabilities can arise in any stage, from design to fabrication, as well as post
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deployment. In contrast to a software vulnerability that can be modified after deployment, fixing
a hardware vulnerability becomes more and more difficult and expensive in later stages. Existing
approaches try to mask some of these vulnerabilities using firmware patching or utilizing in-built
reconfigurable primitives. However, these approaches may not work in all scenarios. Therefore,
detecting and removing vulnerabilities in early stages is very important in SoC designs. In this
work, we plan to utilize assertions for monitoring SoC security vulnerabilities.

Assertion-based Verification (ABV) is a common practice in industry today for functional val-
idation of SoC designs [2, 3]. Assertions define the properties that should hold. For example, a
functional assertion can check that the output of an adder is equal to the sum of two inputs irre-
spective of the implementation. In addition to checking the inputs and outputs, assertions can also
increase the observability of internal states, which enables runtime error detection as well as faster
localization of errors. While there is a vast literature on both software and hardware assertions
for monitoring functional scenarios, there is limited effort in utilizing assertions to monitor SoC
security vulnerabilities.

One major challenge in assertion-based validation is to efficiently activate all assertions. Cover-
age of all assertions is fundamentally different from code coverage due to the vacuity problem. Di-
rected tests are promising in activating assertions, since a significantly smaller number of directed
tests can achieve the same coverage goal compared to random or pseudo-random tests [4–13].
Simulation-based validation can handle large designs but cannot guarantee activation of asser-
tions due to exponential input space complexity. In practice, designers need to manually write
directed test patterns to cover many hard-to-activate assertions. As expected, manual test writing
can be time consuming and error prone (requiring numerous trials and errors), and may not be
feasible for large designs.

While formal methods are effective in automated generation of directed tests [14–39], these ap-
proaches expect formal specification and do not directly support Hardware Description Language
(HDL) models. Moreover, the extra procedure of conversion from HDL to formal specification
may introduce errors. Most importantly, the complexity of real world designs usually exceeds the
capacity of the model checking tools, leading to state space explosion. Concolic testing is a promis-
ing direction that combines the advantages of simulation-based validation and formal methods by
effective utilization of symbolic execution and concrete simulation [40].

Concolic testing has been used extensively in software domain to cover functional events [40–
43] as well as assertions [44]. While early work on concolic testing of Register-transfer Level (RTL)
models is promising, there are no prior efforts in activating assertions using concolic testing. In
this article, we propose an automated mechanism to generate directed tests using concolic testing
to activate security assertions. To the best of our knowledge, our approach is the first attempt in
utilizing concolic testing for activation of security assertions.

Specifically, this article makes four major contributions:

(1) We define security assertions to monitor a wide variety of SoC security vulnerabilities.
(2) We map the problem of activating security assertions non-vacuously to the problem of

activating branches in a design. We propose an efficient approach to convert security
assertions to equivalent branch targets.

(3) We propose an efficient test generation method using concolic testing to cover the branch
targets. The generated test vectors are guaranteed to activate the corresponding security
assertions.

(4) To address the path explosion problem in concolic testing, we develop an effective heuris-
tic of path exploration to quickly reach the target.
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The remainder of the article is organized as follows. Section 2 discusses the background and
the related work. Section 3 presents an overview of our test generation framework. Sections 4 and
5 describe security assertions and concolic testing for activating security assertions, respectively.
Section 6 presents the experimental results. Section 7 describes the applicability and limitations of
our approach. Finally, Section 8 concludes the article.

2 BACKGROUND AND RELATED WORK

In this section, we present the related efforts in assertion-based validation as well as test generation
for activating assertions.

2.1 Assertion-based Validation

There are mainly two types of approaches for defining hardware assertions: language-based and
library-based [45]. Language-based approaches provides syntax for formally defining assertions.
Two of the most popular assertion specification languages are Property Specification Language
(PSL) [46] and System Verilog Assertions (SVA) [47]. Both of these languages support temporal
assertions and formally is an extension of temporal logic [48]. Some other examples are ForSpec
[49], SALT [50], a SystemC extension [51], and so on. However, library-based approaches adds
assertion support to existing languages. One such example is Open Verification Library (OVL)
[52]. OVL has support for Verilog, VHDL, PSL, and SystemVerilog. Library-based approaches can
be used to quickly write common types of assertions. Unfortunately, they are not generic enough
to cover all possible scenarios. In this article, we use SVA to express our SoC security assertions.

2.2 Concolic Testing for Activating Assertions

Concolic testing is a directed test generation technique combining symbolic execution [53] and
concrete simulation. It addresses the state explosion problem in formal methods, such as bounded
model checking [54]. Concolic testing explores one path at a time by alternating one of the
branches from the previous simulation path until reaching the target statement. Concolic testing
has been extensively explored in software domain to cover functional events [40–43]. These ap-
proaches utilize different path selection heuristics and optimizations to achieve specific coverage
goals. Korel and Al-Yamo [44] explored concolic testing to find an input that violates assertions by
analyzing data dependency to guide test generation. However, these approaches are all designed
for software (sequential) models, and are not suitable for hardware designs where multiple mod-
ules are running concurrently with different clock domains and interacting with each other. While
there are initial efforts in applying concolic testing on RTL models for test generation [8, 55], none
of them deals with hardware assertions.

2.3 Test Generation for Hardware Assertion Coverage

Existing test generation approaches for activating hardware assertions can be broadly classified
in two categories: simulation-based and formal methods. The first category uses simulation-based
methods [56, 57]. In transaction-level, Ferro et al. [56] proposed a framework for supervising
SystemC TLM simulation of PSL temporal properties with combinatorial testing tools. In
register-transfer level (RTL), Pal et al. [57] restricted that assertions are defined over the interface
of a module (input and output) and proposed an approach to bias random test generation for
assertion coverage. The second category uses model checking [58–60]. From non-deterministic
finite automata (NFA), Tong et al. [59] utilized model checking to generate test for assertions with
the assumption that the signals in assertions refer to the primary inputs. The above approaches
have one major drawback. To enable test generation, they restrict the assertions to have variables
of only specific types (e.g., primary inputs/outputs of modules). As a result, these approaches
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Fig. 1. Overview of our proposed methodology that consists of two major steps: generation of security as-

sertions and test generation for activation of security assertions. The generated security assertions can be

embedded in the design or defined as separate validation goals. Our approach converts security assertions

to branch targets and activates them non-vacuously using concolic testing.

cannot be applied on assertions that may require complex interactions between any internal
variables. Our test generation framework does not impose any restriction on assertion variables,
and thereby enables test generation for activating a wide variety of assertions.

3 OVERVIEW

Our proposed methodology consists of two major steps as shown in Figure 1. The first step is to an-
alyze the RTL model and identifying the security vulnerabilities. Then insert security assertions to
detect those vulnerabilities. The second step converts the security assertions to branch statements
and embed them into the design. Then, it utilizes concolic testing to generate a compact test set to
efficiently cover (activate) the target branches (security assertions). While formal methods try to
explore all possible paths at the same time (can lead to state space explosion), concolic testing has
the inherent advantage of scalability, since it explores one execution path at a time. Note that the
embedded branch targets are used for test generation purpose only. Once test generation is com-
pleted, these branch targets should be removed from the design (RTL model) and replaced with
the original secuirty assertions. The two major steps of our proposed methodology are described
in details in Sections 4 and 5, respectively.

4 SYSTEM-ON-CHIP SECURITY ASSERTIONS

While there is a vast literature on both software and hardware assertions for monitoring func-
tional scenarios, there are limited efforts to define and utilize assertions to monitor SoC security
vulnerabilities [61, 62]. We have reviewed a wide variety of security vulnerabilities listed in the Na-
tional Vulnerability Database [63] and related research [61], and identified common SoC security
vulnerabilities that are related to SoCs [64]. Note that there is a fundamental difference between
exceptions and security vulnerabilities. The exceptions are defined today by SoC designers based
on the point of view of functional correctness, whereas the security vulnerabilities outlined in this
article are solely from security and trust perspectives. For example, an adversary may trigger (e.g.,
using a Trojan) an exception (e.g., divide by zero) solely to gain a higher privilege level, such that
private memory or registers can be accessed.

This section tries to answer two important questions about security assertions: how to generate
them and how to embedded them in RTL designs. First, we describe eight classes of SoC security
vulnerabilities. Next, we outline how to generate security assertions to capture these vulnerabili-
ties. Finally, we discuss how to embed these assertions in RTL designs.
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4.1 Eight Classes of SoC Security Vulnerabilities

4.1.1 Permissions and Privileges. Permissions and privileges are the main components of the
access control subsystem. Specifically, different resources are controlled by different permissions
and privileges. For example, in ARM7 processor, seven different modes are defined, such as user
mode, interrupt mode, and supervisor mode. It is critical to check whether the conditions for trig-
gering privileged modes are satisfied before changing modes.

4.1.2 Resource Management. Certain resources should be protected against any illegal access,
including accessing special hardware from non-privileged modes, misuse of design-for-debug in-
frastructures during normal usage, and so on. For example, JTAG allows engineers to trace se-
cure memory during post-silicon validation and debug of security features. However, JTAG should
never be enabled during normal usage.

4.1.3 Illegal States and Transitions. The behavior of an SoC can be modeled as a finite state
machine (FSM). The valid states or transitions can be verified during functional validation. At-
tackers are more interested in the backdoor that allows undefined states/transitions. To verify the
existence of illegal states and transitions, we could use assertions of valid states and transitions
to alarm any violation, or enumerate all possible invalid states and transitions to prevent specific
vulnerabilities.

4.1.4 Buffer Issues. Modern SoCs consist of advanced features (e.g., out-of-order execution and
speculative execution) as well as a large number of heterogeneous buffers. Similar to software
buffer errors, these buffers in deeper pipelines require significant validation efforts to detect any
remaining flaws. For example, prefetched instructions in buffers should be flushed if the branch
prediction is incorrect. Otherwise, these flaws can be exploited to mount an attack.

4.1.5 Information Leakage. Modern SoCs try to isolate a secure world from a non-secure world.
Information from the secure world should never be leaked to non-secure world directly. ARM uses
TrustZone as an approach to provide the secure world [65]. There should be safeguards present to
prevent non-secure world from accessing TrustZone directly.

4.1.6 Numeric Exceptions. Numeric exceptions represent the erroneous/illegal behaviors (e.g.,
divide by zero) during arithmetic computations. Even if the program does not lead to illegal nu-
meric computation, an attacker can make it happen and utilize it to create a vulnerability.

4.1.7 Malicious Implants. In software community, code injection means allowing attackers to
run arbitrary code. Similarly, hardware Trojans, inserted by an untrusted third party, allow attack-
ers to execute an arbitrary path after applying specific input patterns. This can lead to information
leakage or other unintended consequences. Trojans are usually inserted in hard-to-detect and rare-
to-activate areas, making it hard to detect them during validation.

4.1.8 Spectre and Meltdown. Spectre [66] and Meltdown [67] vulnerabilities were discovered
in January 2018. These types of vulnerabilities allow an attacker to steal valuable information
from any device that uses a vulnerable processor. In Spectre attacks, an attacker can read arbitrary
memory location from an allocated memory location whereas Meltdown allows to read all mem-
ory locations of a system. These two attacks exploit speculative execution, branch prediction and
caching, which are widely used to improve processor performance. Due to speculative execution,
a process may be able to operate on data before it is determined whether the process has the per-
mission to access the data. In other words, the protected data is stored in the CPU cache without
checking the proper permission. A hacker can utilize this vulnerability and apply side-channel
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Fig. 2. Overview of assertion generation framework for the eight classes of SoC vulnerabilities.

attacks to identify the protected resource. Note that this vulnerability exploits architectural side-
channel but does not rely on physical side-channel analysis [68–73].

4.2 Generation of Security Assertions

The security assertions can be generated by analyzing the design (RTL models) for the vulnerabili-
ties described in Section 4.1. More assertions can be added based on designer inputs or application-
specific considerations. Figure 2 shows an overview of assertion generation. Assertions for several
types of vulnerabilities can be derived based on static code analysis, whereas we need to employ
dynamic analysis to generate assertions for two cases. Please note that if the RTL models of specific
components are not available, we need to utilize trace analysis to generate system-level assertions.
For example, to generate security assertions related to malicious implants, we need to first deter-
mine rare nodes (signals) in the design, and then generate combinations of these rare nodes as
potential triggers as security assertions. In this section, we outline the assertion generation for
each vulnerability class.

4.2.1 Permissions and Privileges. By analyzing the specification, we first determine the variable
that represent the privilege level, e.g., CPSR in ARMv7. For each entry to a privileged operation
block, we need to generate an assertion. For the ease of illustration, we use user to represent
current privilege, and admin to represent root privilege. Before privileged operation blocks, we
are interested in the variable α : privilege_level, and define the property P : privilege_level
== admin, as shown in Listing 1. We can use static analysis of the design to identify permissions
and privileges and generate assertions.

Listing 1. Permissions and Privileges.

4.2.2 Resource Management. Concurrent assertions are powerful in protecting resources from
misuse in an unexpected way. For example, to protect JTAG from getting used during normal
operation mode, we need to generate the assertion as shown in Listing 2. Based on a list of resources
and their usage scenarios, we can generate security assertions that capture unspecified usage of
resources.

Listing 2. Resource Management.
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Fig. 3. FSM example.

Fig. 4. FSM with protected state.

4.2.3 Illegal States and Transitions. The behaviors of modules as well as their interactions (pro-
tocols) can be expressed in the form of FSM. Therefore, we can express both valid and invalid
(illegal) transitions as security assertions. As shown in Figure 3, circles represent states and edges
represent transitions between states. Listing 3 gives an example of two assertions. For example, if
there is a valid transition from state A to state B when variable a is true, then it can be encoded
as the first assertion shown in Listing 3. Similarly, the second assertion in Listing 3 can be used to
ensure that no transitions are allowed from state C to state A.

Listing 3. Illegal States and Transitions.

Some of the common illegal vulnerability attacks are due to unspecified (do not care) states,
laser attacks and step-up time violation. To identify whether the unspecified states are handled
without any vulnerability, we can add assertions to these states and check whether there is access
to a protected state from an unauthorized state. To generate corresponding security assertions,
we extract the finite state machines from a design, identify the unspecified states/transitions and
generate the assertions to prevent accessing the protected states from unauthorized states. More-
over, we can write assertions to prevent access of protected state from any other state that does
not have any transition. As shown in Figure 4 States S01, S10 and S11 are defined states. State S11

is a protected state and state S00 is a do not care state (likely created during synthesis). We can
generate assertions as shown in the Listing 4 to detect any illegal access to protected state S11.

Listing 4. Protected state.
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4.2.4 Buffer Issues. Assertions can be generated for all boundary cases related to buffers. To
prevent access of the buffer index beyond its limits, immediate assertions should be added before
each buffer access. For example, in Listing 5, before accessing Buffer[index], the variable index
needs to satisfy property P : index >= 0 && index <= limit.

Listing 5. Buffer Errors.

In many scenarios, we may require concurrent assertions to ensure global interactions. For ex-
ample, to ensure the flush of instruction buffer (IB) after branch prediction failure, we can use the
assertion shown in Listing 6.

Listing 6. Buffer Errors Concurrent Assertion.

4.2.5 Information Leakage. To protect secret information from directly leaking to non-secure
world, tagging is one potential solution. We assume that the results of secure world can only be
passed to non-secure world through special interface (privileged instructions). For each normal
operation consisting of both secure and non-secure variables, we need to check if the result is
assigned to a non-secure variable. Assume s is a secure variable in Listing 7. The operation of as-
signing the addition of s and a to b needs to check the tag of b. One way to generate assertions
for information leakage is by using Information Flow Tracking (IFT). IFT is used to prevent in-
formation leakage. As shown in the Listing 7, we can instrument the code with tags that allow
information flow tracking and then write assertions.

Listing 7. Information Leakage.

Another way of generating security assertions to detect information leakage is to check for paths
that are likely to leak the assets (secrets). By using random simulation, we can get the probability
of leaking secure assets from different paths. After getting the probabilities, we can use a high
threshold to actually identify which paths are most likely to leak valuable information. Then, we
can write assertions for those selected paths.

4.2.6 Numeric Exceptions. Numeric exceptions are more relevant to the implementation of SoC
designs. We need to generate one assertion for each possible numeric exception during arithmetic
computation. For example, in case of a divide-by-zero exception, we can generate an immediate
assertion as shown in Listing 8.
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Listing 8. Numeric Errors.

When generating assertions to detect numeric exceptions, we used static code analysis. We
analyzed the code to check numeric exceptions such as divide by zero and incorrect usage of
signed and unsigned integers.

4.2.7 Malicious Implants. Malicious modifications (e.g., hardware Trojans) can be inserted dur-
ing pre-silicon or post-silicon stage. In the pre-silicon stage, hardware Trojans are usually hidden
in rare-to-activate branches or rare execution of concurrent statements. For example, we can gen-
erate assertions for each rare branch by adding an assertion for each rare trigger condition as
shown in Listing 9.

Listing 9. Malicious Implants.

First, we need to check for rare nodes (signals) and rare branches where hardware Trojans are
likely to hide in a design. To identify rare nodes and branches random simulation can be used.
We ran millions of random tests on a benchmark and analyzed the simulation trace to identify
the branches that are not getting activated (or gets activated less than a specific threshold). These
branches are identified as rare branches. Furthermore, we also analyzed the simulation trace with
signal values to identify rare signals. As an example, if a signal has value 0 only for 1% of the
random simulation (the signal has value 1 for the remaining 99% time), then we consider that
signal having value 0 as a rare condition. When we used these mechanisms to identify the rare
nodes, there can be huge number of rare nodes that need to be considered. Once we have the set of
rare nodes, we can insert assertions for various trigger conditions consisting of a set of rare nodes.
Clearly, there is a trade-off between rareness coverage using security assertions and potentially
exponential number of triggers based on a set of rare nodes. To reduce the number of rare nodes
and make the assertion generation applicable in reality, we can set a high threshold to generate
only the set of extremely rare nodes.

4.2.8 Spectre and Meltdown. There are several variants of Spectre and Meltdown vulnerabili-
ties such as Spectre-RSB (Return Stack Buffer Mispredict), Spectre-BTB (Branch Target Injection),
Meltdown-US (Supervisor-only Bypass), and so on. To identify the spectre and meltdown vul-
nerabilities, we statically analyze the code and recognize whether the processor supports either
speculative execution or out-of-order execution. Then, we can write assertions to protect resources
such as return stack buffer and branch target buffer as shown in Listing 10. This assertion detects
speculative exploitation of overfill of RSB.

Listing 10. Spectre Attacks.
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4.3 Embedding Security Assertions in RTL Designs

There are two orthogonal ways of embedding assertions in the RTL model of an SoC design: im-
mediate and concurrent assertions. Please note that immediate assertions can be converted to con-
current assertions by modifying the antecedent. However, as described below, it would be natural
to use a specific one depending on the type of security vulnerability.

4.3.1 Immediate Assertions. Immediate assertions are powerful in detecting vulnerabilities
such as numeric errors. Immediate assertions are flexible and can vary based on the potential
statements or blocks. For immediate operations, it is important to find out the exact location,
the relevant variable (e.g., trigger) α , and the assertion, assert (P (α )), can be inserted. Immedi-
ate assertions are inherent for checking specific operations, such as divide-by-zero checking and
out-of-boundary checking.

4.3.2 Concurrent Assertions. Concurrent assertions, however, are checked each clock cycle, rep-
resenting expected properties of SoCs. Concurrent assertions are useful to express any FSM-related
vulnerabilities (e.g., illegal states and transitions). Each concurrent assertion can be defined using
assert property (P ). The property P should be derived from the specification of SoCs and vulnera-
bility classes.

5 AUTOMATED GENERATION OF DIRECTED TESTS

In this article, activation of security assertions refers to finding counter-examples that fails the
security assertions non-vacuously. Vacuity is defined in Reference [74] as follows: If there exist
a sub-formula ψ of a formula ϕ such that ψ can be replaced with arbitrary formula and does not
affect the outcome of model checking, then the formula ϕ is vacuous in model M . For example, in
the formula p −→ q, it is vacuously valid if p is always false, since we can replace q with any sub-
formula. We address the vacuity problem by converting the formulas into specific branch targets
and applying concolic testing to activate them.

Listing 11 shows the branches that are converted from two types of assertions (immediate asser-
tions and concurrent assertions) in Arbiter. Note that the conversions from assertions to branches
are the same for these two types, except that an individual concurrently running block is needed
to wrap the branches from concurrent assertions. In Listing 11, the first assertion is an immedi-
ate assertion and its corresponding branch is directly embedded in the same place as the assertion.
However, the second assertion is converted into an always block that is running concurrently with
all the other blocks. To find counter-examples that make the security assertions fail non-vacuously,
we need to generate tests to activate branch targets that are converted from the security assertions.

5.1 Conversion of Security Assertions to Branches

To generate a test to activate security assertion P , we first map the assertion activation problem to
branch coverage problem in concolic testing. Algorithm 1 shows our procedure to convert security
assertion P to blocks containing a corresponding branch target. In this section, we introduce the
details of converting security assertions to branches. In this article, we consider assertions with
logic operator, implication (|− >) and delay (##). Although SVA supports many more operators,
we have considered these three operators, since they can represent a wide variety of security as-
sertions. Note that we have also utilized other SVA operators for representing security assertions
in NoC architectures as well as SweRV RISC-V processor in Section 6.2. Moreover, some of the re-
maining SVA operators can be constructed using the above operators as discussed in Section 5.1.3.
This section is organized as follows. First, we describe the major steps in Algorithm 1: abstract
syntax tree (AST) generation, modification of AST with timing, and conversion of modified AST
to branch targets. Next, we perform complexity analysis of Algorithm 1.
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Listing 11. An example of branch conversion in Arbiter.

Fig. 5. (a) Simplified AST for assert (a ##7b |− > ##[4 : 9] c). Logic operator, implication and delay are non-

terminal nodes (oval), and others are terminals (rectangle). (b) Readjusted AST with timing. All delays are

converted to local history values.

5.1.1 Abstract Syntax Tree Generation. To understand the meaning of one assertion, we parse
the assertion and build an AST for it. Three types of operators are selected as non-terminal for
our simplified AST, i.e., logic operator, implication and delay. Others are treated as terminals. For
example, if the original assertion is assert (a ##7b |− > ##[4 : 9] c), which means if a is 1 in clock
0 and b is 1 in clock 7, then c must be 1 in any clock between clock 11 and clock 16. The simplified
AST for this assertion is shown in Figure 5(a).

5.1.2 Modification of AST with Timing. As delays represent the future events, which cannot be
evaluated in the current clock cycle, we transform delays into retrieving history values. We assume
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that there exists a global clock counter (as shown in Listing 12), and the design remembers all the
“necessary” history values. We use a[clk_cnt] to represent the history value of a in clock clk_cnt.
Figure 5(b) shows the readjusted AST for Figure 5(a). There are two things to consider:

(1) Adjustment is local to its own children for each non-terminal nodes. For example, the left
sub-tree in Figure 5(a) (a ##7b) adjusts the delay of 7 to its left child. If we look at the
whole expression, then the history values of a should be at least 11 cycles ahead of c . This
localization property make adjustment efficient.

(2) For delay range, we adjust the longest delay to the left side and modify the range appro-
priately, e.g., ##[4 : 9] in Figure 5(a) rotates the ## − 9 to the left side and adjusts itself to
##[−5 : 0].

Listing 12. Global clock counter.

5.1.3 Conversion of AST to Branch Target. After we adjust AST with timing, each node is at-
tached with non-positive delay (implicitly 0 delay). From adjusted AST, we construct branches
by post-order traversal of the adjusted AST with the help of a stack S . Each part of the clause is
represented by a unique variable except for the clauses that can be directly accessed. Stack S con-
tains the visited variables that have not been combined by other clauses. Algorithm 1 shows how
the target branch is generated (in italic bold text) with the help of stack S . The generated code of
Figure 5(b) is shown in Listing 13. As shown in Algorithm 1, RTL code is generated based on the
root type of each sub-tree. We consider the following three root types:

ALGORITHM 1: Assert2Branch

/* Input: assertion P. */

/* Output: B containing generated blocks. */

1 Construct simplified AST for assertion P

2 Readjust AST with delay information

3 Empty stack S

4 for Post-order traversal readjusted AST do

5 if current node n is an implication then

6 Convert implication to logic operator

7 end

8 if current node n is a variable then

9 Push n to S

10 end

11 if current node n is delay then

12 Pop variable a from S

13 Add delay to a

14 Push the modified variable to S

15 end

16 if current node n is a logic operator then

17 Pop all variables of its children from S

18 Combine the children with its operator

19 Push the result to S

20 end

21 end

22 Create branch to test the variable in S
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Delay: For a single delay, we retrieve the history value of the variable, e.g., when we visit the
node ## − 7 in Figure 5(b), the node a is in the top of stack S . We pop a from S , and push back
a[clk_cnt - 7]. A delay range represents an OR operation on all the values, e.g., ##[−5 : 0]c means
c[−5]|c[−4]|...|c[0]. Listing 13 shows the expansion of ##[−5 : 0]c using for-loop and uses variable
p2 to represent this part. When a single delay is applied, we skip generating a new variable for the
clause, e.g., ## − 7a directly utilizes the history value of a instead of generating a new variable.

Logic Operator: When the root is a logic operator, Algorithm 1 combines all its children (contains
delay information) using the operator. As each child is already represented by a single variable in
the stack S , we just pop all of them from S , and use a new variable to represent the combined result.

Implication: Implication, A |− > B, contains two parts: A is called the antecedent, and B is called
the consequent. There are two implication operators in SVA, i.e., overlapped implication (|− >)
tests consequent sequence at the clock when its antecedent sequence is activated, while nonover-
lapped implication (| =>) tests the consequent in the next clock cycle. The latter one can be con-
verted to the previous one by adding one cycle delay to the consequent sequence. As shown in
Listing 13, we convert the implication node into variable p3.

When we finish traversing the readjusted AST, the assertion expression is represented as a single
variable in top of stack S , e.g., p3 in Listing 13. A branch target is created by checking the value of
the final variable.

Many of the remaining operators can be constructed using the above operators. For example,
repetition operators can be constructed using the delay operator [75]. There are three types of
repetition operators. As described below, we can use the delay operator to simplify the operators
and build the stack S .

(1) Consecutive Repetition Operator: Repetition can be represented using the [*n] con-
struct, where n is a constant. A repetition range can be presented using[*m:n]. Here both
m and n are constants. For example, a[*2] ##1 b is same as (a ##1 a ##1 b).

(2) Goto Repetition Operator: This operator specify that there is one or more delay cycles
between each repetition of the expression. For example, a[->3] is equivalent to (!a[*0:$]

##1 a) [*3]).
(3) Nonconsecutive Repetition Operator: This operator allows for space between the rep-

etition of the terms. The difference between goto and nonconsecutive operator is that
repeating term need not to be true for a nonconsecutive operator. For example, a[=3] is
equivalent to ((!a[*0:$] ##1 a ##1 !a[*0:$]) [*3].

5.1.4 Complexity Analysis of Algorithm 1. For the ease of representation, we assume that the
design remembers all “necessary” values in the previous iterations. To achieve memory efficiency,
the clk_cnt can be as small as the largest delay in the whole assertion, e.g., 9 for assert(a ##7b |− >
##[4 : 9] c), as a result of introducing new variables. If we look at the code in Listing 13, then the
impact of a[clk_cnt - 16] is already stored in p1[clk_cnt - 9]. Thus, remembering older values than
the longest delay is a waste of memory. After determining the largest delay, we add a modulo
operation to Listing 12, i.e., clk_cnt<= clk_cnt mod (9 + 1), with an extra one to remember the
current clock. Assume that b is the longest delay and n is the length of the assertion. The memory

requirement complexity is O (bn), since the memory usage of the tree structure, the stack S , and
required new variables are linear to the length of assertion.

The running time of Algorithm 1 is dominated by post-order traversal of the AST, compared to
the AST construction and adjustment. For each node, the running time is linear to the number of
children. Then, each node contributes twice to the total running time. Since the number of nodes
in AST is linear to the length of the assertion, the running time complexity is O (n).
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Fig. 6. Overview of our test generation framework. After converting assertions to branch targets, concolic

testing is applied to generate tests to activate these branch targets (assertions).

Listing 13. The branch converted from Figure 5(b).

5.2 Test Generation Using Concolic Testing

Once the security assertions are converted to branches, we apply concolic testing to generate tests
to cover the generated branch targets. Figure 6 shows an overview of our test generation frame-
work. As discussed in Section 2.2, concolic testing combines concrete simulation and symbolic
execution. In Figure 6, the left side shows the concrete simulation part, and the right side shows
the symbolic execution part. To instruct symbolic execution, the concrete path needs to provide
every branch it takes. Instead of changing simulator to execute symbolically in each branch and
assignment, we use existing tools for simulation, and instrument the RTL design with display state-
ment to show which branch the simulation has taken. For example, the instrumented first block
of Listing 11 is shown in Listing 14.
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Fig. 7. Chaining of related blocks in CFGs. A block is chained to the blocks where its condition is likely to

be satisfied.

Listing 14. Instrumented first block in Arbiter.

Based on Algorithm 1, the security assertions in RTL design are converted into branch targets
in control flow graph (CFG). For example, the Listing 11 has three always blocks: the first always
block leads to the first CFG (CFG1), the second always block leads to the second CFG (CFG2),
and the last always block represents the CFG (CFG3). For every test that is generated by symbolic
execution, simulation will give the concrete execution and report every branch it takes. Based on
the branch information, constraints are constructed together with all the assignments inside the
corresponding blocks. The most important step in concolic testing is to find the best alternative
branch to flip, which will be discussed in the next section. With the selected alternative branch,
new constraints are constructed, and solved by an SMT solver to generate a new test for simulation.
The general idea is to efficiently explore different paths to get closer to the branch target converted
from a specific assertion.

To help alternative branch selection, we first chain the relative blocks together in the control
flow graph. We use the second assertion in Listing 11 as an example. The branch target is controlled
by the condition gnt1 & gnt2. Therefore, we need to create an edge (chain) from CFG3 (where дnt1
and дnt2 are used) to CFG2 (where дnt1 and дnt2 are assigned). Similarly, since the blocks in the
second CFG are controlled by the value of state , we also need to link CFG2 (use of state variable)
to CFG1 (assignment to state variable), as shown in Figure 7. This chaining process helps alterna-
tive branch selection concentrating only on related branches. When we consider the relevance of
one branch with the target, we calculate the distance from the immediate block following the al-
ternate branch to the target. In each iteration, the most relevant and reachable branch is selected
as the alternative branch to construct new constraints and generate a new test.

Figure 8 shows an example of alternative branch selection. In Figure 8, the initial test resulted
in the simulated path shown by dotted line. At this point, there are two choices to select alternate
branch: either flip branch b1 or flip branch b2. Based on our distance calculation from the target,
clearly b1 is the best choice. Once it is flipped, the target would be activated in the next iteration.

6 EXPERIMENTS

This section is organized as follows. First, we describe our experimental setup. Next, we describe
the benchmarks and associated security assertions. Finally, we present our test generation results.
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Fig. 8. A simple example for alternate branch selection.

Table 1. Types of Vulnerabilities Explored in Seven Benchmarks (More Potential

Vulnerabilities are Possible)

Vulnerability Arbiter PCI MEM GNG AES NoC SweRV
Permissions and Privileges � �
Resource Management � �
Illegal States & Transitions � � �
Buffer Issues � �
Information Leakage �
Numeric Exceptions �
Malicious Implants �
Spectre and Meltdown �

6.1 Experimental Setup

To evaluate our test generation technique in activating security assertions non-vacuously, we im-
plemented our framework in C++ using Icarus Verilog Target API [76] with Yices [77] as the con-
straint solver. As shown in Section 5.2, our framework first converted all security assertions to
branches and inserted them into modified designs. Next, it applied concolic testing to generate
test to activate the branches. Finally, we simulated the assertion-inserted instances (before con-
verting to branches) to validate the correctness of generated test sets. Our framework is compared
with EBMC [60] to show the performance improvement. We ran our experiments on two different
machines to demonstrate several aspect of our framework: (i) Intel i7-5500U @ 3.0 GHz CPU with
8 GB RAM, and (ii) Intel E5-2698 v4 @ 2.20 GHz CPU with 200 GB RAM.

6.2 Benchmarks and Assertions

To demonstrate the necessity of security assertions, we analyzed five SoC benchmarks and two
other large designs (Network-on-Chip benchmark and SweRV RISC-V Processor) and inserted se-
curity assertions outlined in Section 4. The types of potential vulnerabilities of seven benchmarks
are shown in Table 1. Note that the number of instances are more than the number of vulnerability
types, as each type may contain multiple instances. In the remainder of this section, we describe
each type of vulnerability and inserted instances in detail for the seven benchmarks.

Arbiter: We first analyzed a simple design, Arbiter, as shown in Listing 11. For this simple design,
we inserted the vulnerability of invalid states and transitions. Even for this small design, careless
design, fault injections, or transient errors can make it behave differently. For example, if the secu-
rity of the whole design relies on the gnt1 and gnt2 not asserted together, then assert(!(gnt1 & gnt2))
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should be added to the design. However, the number of invalid states and transitions would be
exponential when time is involved. For example, when we consider two consecutive cycles, as-

sert(!(gnt1 | => (gnt2 != req2))) should hold.

Peripheral Component Interconnect (PCI): Top module pci_master32_sm from Opencores
[78] contains eight modules such as pci_frame_crit and pci_irdy_out_crit. To mimic SoC design,
which contains different parts from untrusted third party, we inserted invalid states and transitions
to the subordinate modules (8 of 10) as well as the top modules (2 of 10). To generate vulnerable
instances, we randomly changed operators in all the modules.

Memory Design (MEM): This design is created to mimic the behavior of a simplified Trusted
Hardware (TH) implementation of memory, as shown in Listing 15. Trusted Hardware, e.g., Intel’s
Software Guard Extensions (SGX) [79], allows remote clients to upload private computation and
data to a secure container of a server with a TH. One key implementation of SGX is the introduction
of Process Reserved Memory and Enclave Page Cache (EPC), inhibiting invalid accesses even from
the kernel. The simplified design is shown in Listing 15, which contains input signal sc to denote
whether it is a secure access or not. The memory space is denoted by an array named mem with
size of 1 MB.

Listing 15. Simplified Memory of Trusted Hardware.

(1) Permissions and privileges. Assume the lower 1 kB of memory is allocated to EPC. Since
EPC should be accessed through secure container/process, each access to the lower 1 kB
should be checked. Although one conditional checking is already in place, assertions may
also help when implementation error, fault injection or Hardware Trojans exist, e.g., as-

sert(address <= 1,024 | => sc) can be inserted before any access to memory.
(2) Information leakage. In this simplified memory implementation, it does not explicitly de-

scribe the state of out signal when we want to write. For a buggy CPU design that connects
to this memory, a process may be able to read the previous access of another process from
the out port (including secure processes) with interleaved memory access. We may add a
concurrent assertion with (assert property (wr | => out == 0)).

(3) Buffer errors. Memory is a type of buffer, hence should be checked for buffer errors. Each
access to memory should be checked with assertions to test if address is in the range of
memory size. In this example, the memory size is 1 MB (220) and the length of address is
32 bits. We need assert(address < 2 ∗ ∗20) to check out-of-boundary accesses.
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We inserted a vulnerability related to permissions and privileges, by removing sc checking in
the first if statement. For vulnerabilities related to information leakage, we assume that attackers
are able to connect one specific location to out when it is a write operation.

Gaussian Noise Generator (GNG): We next inspected a computation-intensive design called
GNG. The design is downloaded from Opencores [78]. One possible numeric error in this design is
the assignments between signed and unsigned values as shown in the snippet of code in Listing 16.
The first assignment assigns an unsigned variable to a signed variable. The next assignment is the
computation between signed values. The final assignment assigns a signed value to an unsigned
value. We are concerned with the automatic transformation between signed and unsigned values.
For example, when the most significant bit of mul1 is 1, mul1_new is interpreted as a negative
value using a two’s complement representation. Then mul_new is added to a positive number and
converted to an unsigned number again. The behavior may or may not be the original intention
of this code. We want to generate assertions, e.g., assert(mul1[32] != 1), and guide the test plan
of debug. The developer should decide if it is a numeric error or the expected behavior. Since we
view this design as “buggy” by itself, we did not generate vulnerable instances for it.

Listing 16. GNG_interp.

Advanced Encryption Standard (AES): AES is a very commonly used crypto core, consisting
of ten rounds of block ciphers (substitution permutation networks). The substitution is shown in
Listing 17. We also inserted JTAG to dump internal variables during debug. The identified vulner-
abilities are:

(1) Resource management: As JTAG is for debug purpose only, it should be disabled during
normal usage. As a result, the dump signal should contains nothing related to any inter-
nal signals. We inserted a concurrent assertion assert property (!JTAG |-> (JTAG_out
== 0)) to detect whether attackers are bypassing the JTAG checking and dump internal
signals to infer the plaintext.

(2) Malicious implants: As module S contains a lot of rare branches, attackers are able to
construct rare trigger conditions for hardware Trojans. For example, the probability of
(out == 32’h7c7c7c7c) is 2−32 when (in == 8’h01) is true for all S_0, S_1, S_2 and S_3
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Listing 17. AES table.

together. Assertions like assert(out != 32’h7c7c7c7c) in module S4 can guide the designer
of a test plan to cover this specific potential trigger condition.

Network-on-Chip (NoC): We used security assertions to monitor vulnerabilities in an open
source NoC-based SoC generation platform [80]. We configured a 2 × 2 Mesh NoC that intercon-
nects 4 IPs. A mor1k processor [81] was used to configure the IPs. Then, we implemented a simple
message passing application using C and compiled it using the mor1k-tool-chain. We inserted se-
curity assertions that are mentioned in the Table 2 to detect various NoC attacks. The assertions
were inserted inside the router component of the NoC RTL design. These assertions can be used
to identify packet duplication, packet corruption, packet starvation, packet misrouting and packet
dropping as outlined in Table 3.

Spectre Attack in SweRV RISC-V Processor [82]: In this work, we are considering Spectre-RSB
variant of spectre vulnerability and trying to utilize security assertions to detect this vulnerabil-
ity. The processor stores the return address to RSB every time when a call instruction is executed
and uses that as a return target prediction when matching return is detected. One way to attack
the RSB is exploiting overfill or underfill of the RSB. We used SweRV RISC-V processor [82] as
our experimental setup and wrote security assertions to detect speculative exploitation of over-
fill and underfill of the RSB. We inserted assertions assert property(btb_rd_ret_f2 == 1’b1 |− >
rs_overpop_correct ==1’b1) and assert property(btb_rd_ret_f2 == 1’b1 |− > rs_underpop_correct
==1’b1) to detect and prevent accessing arbitrary illegal address locations.

6.3 Functional Assertion versus Security Assertions

As outlined in Section 2.1, functional assertions are widely used today for assertion-based valida-
tion. It is time-consuming to insert enough assertions into an industrial SoC design. Many research
efforts have been devoted for automated generation of functional assertions. Rogin et al. [83]
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Table 2. Security Assertions to Detect Various NoC Attacks

A# Description of Security Assertions

A1 Route can issue at most one request G ((
∑Npor ts

i=0 req_porti ) ≤ 1)

A2 Route should issue a request whenever a data is valid

G (data_valid ↔ (
∑Npor ts

i=0 req_porti ) == 1)

A3 Routing algorithm (XY ) should be correctly implemented
G ((destx > currentx ↔ destportnext == EAST ) ∨ (destx < currentx ↔ destportnext ==

WEST ) ∨ (desty > currenty ↔ destportnext == SOUTH ) ∨ (desty < currenty ↔
destportnext == NORTH ) ∨ (destportnext == LOCAL))

A4 Always at most one grant issued by the arbiter G ((
∑Npor ts

i=0 дnt_porti ) ≤ 1)

A5 As long as the request is available, it will eventually be granted by the arbiter within T
cycles (req_port U дnt_port ) → F (дnt_port )

A6 No grant can be issued without a request ¬req_port → X (¬дnt_port )
A7 Time between two issued grants is same for all requests

G (∀i, j ∈ {north,west , south, east , local }ΔTi = ΔTj )
A8 During multiplexing, output should be equal to input data

G ((
∑Npor ts

i=0 (selecti ∧ (dataini == dataout ))) == 1)

Table 3. NoC Security Vulnerabilities and Relevant Security

Assertion Mappings

Vulnerability Combinations
Packet Duplication G (A5 ∧A8)
Packet Corruption G (A1 ∧A5 ∧A8)
Packet Starvation G (A8)
Packet Dropping G (A1 ∧A2 ∧A3 ∧A4 ∧A5 ∧A6 ∧A8)

Packet Misrouting G (A1 ∧A3 ∧A4 ∧A8)

proposed to generate properties of a design by analyzing simulation traces. Hertz et al. [84]
improved the analysis process using data mining and developed a tool named Goldmine. The
generated rules from simulation traces are passed through a formal verification tool to verify the
correctness in the design. As the simulation data is inherently incomplete and non-deterministic,
the quality of mined assertions cannot be guaranteed. Moreover, as our case studies show, these
functional assertions are not suitable for detecting security vulnerabilities.

To demonstrate the necessity of security assertions and to emphasize the completeness and
coverage in detecting the security vulnerabilities, we compared our method with the state-of-the-
art functional assertion generation technique, GoldMine [84]. We analyzed five benchmarks and
inserted security assertions using the procedure outlined in Section 4. Then, Goldmine [84] was
applied on all the five SoC benchmarks to generate as many assertions as possible. To evaluate the
effectiveness of our security assertions, we randomly inserted 10 vulnerabilities into each design to
form 10 vulnerable instances and generated test patterns to activate these security vulnerabilities.
If any security assertion generated by the two methods (ours versus Goldmine) got activated,
then we claim the corresponding method detects the vulnerability. To avoid any bias, assertion
generation was performed before insertion of vulnerabilities. The types of potential vulnerabilities
of each benchmark and the detected instances are shown in Table 1 and Figure 9, respectively. Note
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Fig. 9. Comparison between our security assertions and functional assertions generated by Goldmine [84]

in detecting security vulnerabilities.

Table 4. Performance Comparison of Our Approach with EBMC [60] in Generating Tests

to Activate Security Assertions for Arbiter, PCI, MEM, GNG, and AES Benchmarks Using

Intel i7-5500U @ 3.0 GHz CPU with 8 GB RAM (EBMC Failed for MEM Benchmark Due to

Insufficient Memory)

EBMC [60] Our Approach
Benchmark No. of Lines Time Memory Time Memory

(s) (GB) (s) (GB)
Arbiter 25 0.01 0.004 0.01 0.009
MEM 40 — — 46.85 0.89
PCI 635 0.13 0.03 0.04 0.01

GNG 696 10.04 0.1 64.04 0.03
AES 340K 118 7.6 91.05 1.07

that the number of instances are more than the number of vulnerability types, as each type may
contain multiple instances.

Figure 9 shows that the functional assertions generated by GoldMine [84] cannot eliminate the
need for our dedicated security assertions. Specifically, our security assertions are able to detect
all the implanted security vulnerabilities while the functional assertions failed to detect most of
them. This is expected, because Goldmine tries to mine invariant to generate functional assertions.
In other words, the functional assertions represents expected functional behaviors, which is not
designed to capture unexpected behaviors of security vulnerabilities.

6.4 Test Generation Results

We have used our framework to generate tests for activating security assertions. The performance
comparison results are shown in Table 4, Table 5, and Figure 10. Results in Table 4 and Figure 10
are generated using a machine with Intel i7-5500U @ 3.0 GHz CPU with 8 GB RAM, whereas the
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Table 5. Performance Comparison of Our Approach with EBMC [60] in Generating Tests to Activate

Security Assertions for Custom AES Benchmarks Using Intel E5-2698 v4 @ 2.20 GHz CPU

with 200 GB RAM

EBMC [60] Our Approach

Benchmark No. of Lines Time Memory Time Time Memory Memory

(s) (GB) (s) Improvement (GB) Improvement

cb_aes_01 33K 2.89 0.17 0.90 3.2× 0.06 2.9×
cb_aes_10 334K 58.4 3.42 12.81 4.6× 0.59 5.8×
cb_aes_15 501K 113 6.42 27.9 4.1× 0.88 7.3×
cb_aes_20 668K 178 10.3 63.7 2.8× 1.23 8.4×
cb_aes_25 836K 260 15.0 127 2.1× 1.58 9.5×
cb_aes_30 1003K 411 20.7 230 1.8× 1.97 11×
cb_aes_35 1170K 478 27.1 372 1.3× 2.36 12×
cb_aes_40 1337K 617 34.3 578 1.1× 2.81 12×
Average — 265 14.7 177 2.6× 1.4 8.6×

Fig. 10. Performance comparison of our approach with EBMC [60] in generating tests to activate security

assertions for custom AES benchmarks using Intel i7-5500U @ 3.0 GHz CPU with 8 GB RAM.

results in Table 5 is generated using a machine with Intel E5-2698 v4 @ 2.20 GHz CPU with 200 GB
RAM.

Table 4 shows the performance comparison of our approach with EBMC [60] in generating tests
to activate security assertions for Arbiter, PCI, MEM, GNG, and AES benchmarks using Intel i7-
5500U @ 3.0 GHz CPU with 8 GB RAM machine. The first column shows the benchmarks. The
second column provides the number of lines in the Verilog RTL implementation of the bench-
mark. The third and the fifth columns describe the time(s) taken to activate security assertions by
EBMC [60] and our approach, respectively. Similarly, the fourth and sixth columns describe the
memory (GB) requirement of EBMC and our approach, respectively. For smaller and less complex
designs, such as Arbiter benchmark, EBMC is more efficient in time and memory as shown in
Table 4. This is expected, because EBMC quickly explore all paths in these small designs, while
concolic testing incurs inherent overhead associated with simulation and constraint solving. How-
ever, for complex designs our approach outperforms EBMC in memory requirements.

To highlight the importance of our approach in handling large designs, Figure 10 shows the
performance comparison of our approach with EBMC [60] in generating tests to activate security
assertions for custom AES benchmarks using Intel i7-5500U @ 3.0 GHz CPU with 8 GB RAM.
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Fig. 11. Memory requirement with respect to the total lines of code in custom benchmarks of AES.

We have used custom benchmarks of AES named as cb_aes_n (shown as aes_n for the ease of
illustration), where n is the number of rounds in AES. We varied the number of rounds to easily
control the size of our benchmarks. The number of unrolled cycles is just enough to activate the
assertions. For example, the number of unrolled cycles is n + 5 for each custom AES benchmark
cb_aes_n as it requires n cycles to get results from output. Figure 10(a) shows the time(s) taken
by these approaches to activate security assertions. Similarly, Figure 10(b) shows the memory
requirement (GB) by these approaches. As shown in Figure 10, EBMC failed for cb_aes_25 (836K
lines) or larger versions due to insufficient memory while our approach is able to run all the custom
benchmarks using a machine with 8 GB RAM.

To further identify the performance improvement between EBMC and our approach when in-
creasing the number of lines, we used the same custom AES benchmarks using a machine with
200 GB RAM. The results of this experiments are shown in Table 5. The first column represents the
custom benchmarks. The second column indicates the number of lines in the RTL implementation
of the custom benchmark. The third and the fifth columns describe the time(s) taken to activate
security assertions by EBMC [60] and our approach, respectively. Similarly, the fourth and sev-
enth columns describe the memory (GB) requirement of EBMC and our approach, respectively.
The sixth column provides the time improvement of our approach compared to EBMC. The last
column provides the memory improvement of our approach compared to EBMC.

Our approach is more efficient in memory usage. As shown in Table 5, our approach is up to
12× (8.6× on average) more efficient in memory usage compared to EBMC. To better visualize
the relationship between the memory requirement with respect to the size of the design, we plot
the memory requirement of two approaches for our custom benchmarks in Figure 11. Note that
the number of lines for each custom AES benchmark is the total lines after hierarchy flattening.
As we can see, the memory requirement of EBMC grows exponentially with the lines of code. It is
due to the state space explosion problem of model checking. However, the memory requirement
of our approach grows linearly with the lines of code, since it explores one path at a time, which
is linear to the code size. For the benchmark cb_aes_40 (around 1.3 million lines of code), EBMC
requires over 34 GB memory, while our approach only needs 2.8 GB. Due to exponential memory
requirement, EBMC is expected to fail for larger and more complex designs, while our approach
is expected to be scalable, since memory requirement increases linearly.

We ran both the EBMC and our approach to activate the security assertions mentioned in the
Table 2 for the NoC design. Table 6 presents the time(s) and space (MB) taken by EBMC [85] and our
approach to activate the security assertions. As shown in Table 6, our approach was able to activate
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Table 6. Comparison of Test Generation Performance

with EBMC [60] for Activating NoC Security Assertions

EBMC [60] Our Approach
Assertion Time Memory Time Memory

(s) (MB) (s) (MB)
A1 0.02 11.7 0.01 9.6
A2 0.02 12.0 0.01 9.3
A3 0.02 11.8 0.01 9.5
A4 0.01 11.2 0.01 9.8
A5 0.01 5.1 0.01 9.8
A6 0.01 4.8 0.01 9.9
A7 — — 8.78 37.3
A8 0.01 11.6 0.01 9.4

all the security assertions, whereas EBMC failed to activate the assertion A7. The arbiter property
A7 checks for the time intervals between grants. EBMC led to state space explosion (insufficient
memory) due to the liveliness nature of A7. Our approach activates the assertion A7, because con-
colic testing considers only one path at a time, which prevents the state space explosion problem.

7 APPLICABILITY AND LIMITATIONS

This section provides a brief discussion on applicability and limitations of our test generation
framework for activating security assertions. The core part of the work can be applied to any as-
sertions that can be translated to a branch, which is not limited by the language or the domain of
the assertions. We implemented the most widely used operators that can capture a wide variety of
security assertions. Moreover, many of the remaining operators can be constructed using the oper-
ators as mentioned in Section 5.1.3. In general, our approach would be able to handle any security
vulnerabilities that can be represented by commonly-used SVA operators. Section 6.2 shows NoC
case study using complex security assertions. Based on our experiments, we did not encounter any
security vulnerability that cannot be captured using the SVA language.

There are several inherent limitations in concolic testing such as path explosion and expensive
constraint solving. To mitigate the path explosion problem, we have considered the distance metric
from the simulated path to the target. Our future research will explore other mitigation techniques
including reinforcement learning [86] as well as path merging methods [87].

8 CONCLUSION

SoCs are widely used today in both embedded systems and IoT devices. While SoC security is
paramount, there are limited prior efforts in defining and detecting a wide variety of SoC secu-
rity vulnerabilities in RTL models. In this article, we explore the suitability of utilizing security
assertions to monitor SoC security vulnerabilities. A major challenge in assertion-based security
validation is how to activate all the security assertions to ensure that they are valid. While existing
model-checking-based directed test generation is promising, it cannot generate tests for large de-
signs due to state space explosion. We presented an automated and scalable mechanism to generate
directed tests using concolic testing to activate security assertions non-vacuously. Using a diverse
set of benchmarks, our experimental results demonstrated that our test generation approach is sig-
nificantly faster (up to 4.6×, 2.6× on average) compared to state-of-the-art test generation meth-
ods. Most importantly, our approach is scalable, since it has linear memory requirement, while
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state-of-the-art directed test generation method has exponential memory requirement. Our future
research will explore how to enable seamless integration of existing assertion-based functional
validation with the proposed SoC trust validation using security assertions.
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