
53

Reconfigurable Network-on-Chip Security Architecture

SUBODHA CHARLES and PRABHAT MISHRA, University of Florida, USA

Growth of the Internet-of-things has led to complex system-on-chips (SoCs) being used in the edge devices in

IoT applications. The increased complexity is demanding designers to consider several critical factors, such

as dynamic requirement changes, long application life, mass production, and tight time-to-market deadlines.

These requirements lead to more complex security concerns. SoC manufacturers outsource some of the in-

tellectual property cores integrated on the SoC to untrusted third-party vendors. The untrusted intellectual

properties can contain malicious implants, which can launch attacks using the resources provided by the

on-chip interconnection network, commonly known as the network-on-chip (NoC). Existing efforts on se-

curing NoC have considered lightweight encryption, authentication, and other attack detection mechanisms

such as denial-of-service and buffer overflows. Unfortunately, these approaches focus on designing statically

optimized security solutions. As a result, they are not suitable for many IoT systems with long application

life and dynamic requirement changes. There is a critical need to design reconfigurable security architectures

that can be dynamically tuned based on changing requirements. In this article, we propose a tier-based re-

configurable security architecture that can adapt to different use-case scenarios. We explore how to design an

efficient reconfigurable architecture that can support three popular NoC security mechanisms (encryption,

authentication, and denial-of-service attack detection and localization) and implement suitable dynamic re-

configuration techniques. We evaluate our proposed framework by running standard benchmarks enabling

different tiers of security and provide a comprehensive analysis of how different levels of security can affect

application performance, energy efficiency, and area overhead.

CCS Concepts: • Computer systems organization → System on a chip; Multicore architectures; Reconfig-

urable computing; • Hardware → Network on chip;

Additional Key Words and Phrases: Hardware security, machine learning

ACM Reference format:

Subodha Charles and Prabhat Mishra. 2020. Reconfigurable Network-on-Chip Security Architecture. ACM

Trans. Des. Autom. Electron. Syst. 25, 6, Article 53 (August 2020), 25 pages.

https://doi.org/10.1145/3406661

1 INTRODUCTION

We are living in the era of the Internet-of-things (IoT), an era in which the number of connected
devices exceeds the human population. The growth of IoT has been astounding over the last cou-
ple of decades, leading to projections of more than 50 billion connected devices by 2020 [22]. In
addition to the sheer number of the devices, the complexity of these devices and different use cases
in which we use them have grown remarkably. Not so long ago, our imagination was limited to

This work was partially supported by National Science Foundation (NSF) grant SaTC-1936040.

Authors’ addresses: S. Charles and P. Mishra, University of Florida, 432 Newell Drive, Gainesville, FL 32611-6120; emails:

{subodha96, prabhat}@ufl.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2020 Association for Computing Machinery.

1084-4309/2020/08-ART53 $15.00

https://doi.org/10.1145/3406661

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

https://doi.org/10.1145/3406661
mailto:permissions@acm.org
https://doi.org/10.1145/3406661

53:2 S. Charles and P. Mishra

Fig. 1. Dynamic changes in IoT application characteristics: an example IoT SoC (a), application flow (b), and

runtime change in requirements (c).

phones and personal computers that can run few custom applications. Today, we are developing
devices that are fundamentally integrated in our day-to-day life, ranging from fitness trackers,
smart homes, and smart cars, all the way to smart cities. Unlike the microcontroller-based devices
in the past, even resource-constrained IoT devices consist of one or more complex system-on-chips
(SoCs). The SoC components are connected by the interconnection network, known as network-
on-chip (NoC) [17]. Given the rapid growth in the recent past, it is difficult to even comprehend
what lies in the future. Because of this, the designers of these devices face challenges at a scale not
observed before. Critical factors that affect the design choices are as follows.

Dynamic requirements and use-case scenarios. In the early days of IoT and embedded devices in
general, they were intended for a single or very few use cases. The requirements and working
conditions were well defined and predictable. Therefore, it was easy to make design choices to fit
the requirements. For example, a device for a power-thrifty application was designed to conserve
power at the cost of performance, whereas a high-performance system exhibited a different yet
predictable trade-off. In comparison to that, the devices manufactured today are intended to serve
general-purpose applications that are diverse and sometimes not yet defined. Therefore, it is not
possible to statically optimize the devices to fit each use case. The designers should keep room for
dynamic reconfigurability to address the dynamic requirements. For example, Figure 1(a) shows an
IoT architecture that has been optimized during design time based on application characteristics

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

Reconfigurable Network-on-Chip Security Architecture 53:3

shown in Figure 1(b). However, this design may not be beneficial during runtime due to changes
in usage scenarios, application inputs, and other parametric variations. Figure 1(c) shows that
runtime reconfiguration would be useful because the computation, communication, and storage
requirements can change based on specific task execution traces (phases).

Long application life. In the pre-IoT era, before devices became integrated into our everyday
lives, the devices were only required to last for a few years. In the case of a phone or a personal
computer, new features would come into products within a few years or even few months, and the
previous models would become outdated. In contrast, if someone was building a smart house or a
smart grid, it could be expected to last well over 10 years. However, the requirements of a smart
system over a long life span of 10+ years can change drastically. For example, a car equipped
with state-of-the-art security mechanisms will be secure in the present day but will not be secure
against future attacks. The system is secure until the zero-day vulnerability is exposed. Clearly,
IoT devices must be adaptable on-field to changing application requirements.

Mass production and tight time-to-market deadlines. The projection of 50 billion devices by 2020
can only happen if devices are introduced at a rapid pace. We already observe this in the market
with devices being manufactured in very short periods. To achieve this, it is a common practice for
SoC vendors to outsource several components of the SoC. This globally distributed supply chain of
intellectual property (IP) cores make the SoCs vulnerable to trust and integrity issues. The poten-
tial space for SoC vulnerabilities is huge once we consider the seven classes of SoC-level security
vulnerabilities [18]: permissions and privileges, buffer errors, resource management, information
leakage, numeric errors, crypto errors, and code injection. Based on Common Vulnerabilities and
Exposures (CVE-MITRE) estimates, if hardware-level vulnerabilities are removed, the overall sys-
tem vulnerability will reduce by 43% [16, 18]. Therefore, securing systems against these potential
threats throughout the device lifetime is a top priority.

1.1 Motivation

Summarizing the three critical factors we introduced, it is evident that securing IoT devices based
on complex SoCs throughout the device lifetime among changing requirements and use-case sce-
narios should be considered during design time. Due to the resource-constrained nature of IoT
SoCs, it is not always feasible to enforce the strongest security mechanisms. Security has to be
considered among other interoperability constraints such as performance, power, and area over-
heads. In addition, employing the full security arsenal may not be required depending on the ap-
plication characteristics and use-case scenarios. For example, consider a smart watch that is used
for browsing the Internet at home, as well as in a public coffee shop. It may be okay to trust the
wireless network at home and impose a lightweight security requirement in favor of a lower en-
ergy profile. However, a stronger security mechanism is necessary when communicating with the
untrusted network in a coffee shop at the cost of power and performance. But if the current state of
the device battery is low, it might be desirable to compromise on security and save more power to
ensure application execution. The trade-off between performance and energy is also integrated in
modern-day smart phones by the introduction of “power-saver” modes. Similarly, the discussion
on security among other interoperability constraints is required.

According to our threat model, the security threat comes from the malicious IPs integrated on
the SoC. Due to mass production and tight time-to-market deadlines, most SoC manufacturers
outsource IP cores to third-party vendors. These third-party manufacturers are not always trust-
worthy. Their IPs might contain hardware Trojans and other malicious implants that can launch
both active and passive attacks on other legitimate components on the SoC once they are activated.
We call these third-party IPs potentially malicious IPs. Due to the distributed nature of the NoC,

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

53:4 S. Charles and P. Mishra

Fig. 2. Overview of a typical SoC architecture with secure and non-secure zones.

malicious IPs use resources offered by the NoC to launch attacks [19]. To capture these scenarios,
we use an architecture and threat model as described in the following.

1.2 Architecture and Threat Models

In our work, we use an architecture model similar to the one shown in Figure 2. It shows an NoC-
based SoC divided into secure and non-secure zones similar to the architecture proposed in the
ARM TrustZone architecture [2]. The secure zone comprises IPs we can trust to not contain mali-
cious implants (secure IPs), and the non-secure zone contains IPs obtained by tthird-party vendors
(potentially malicious IPs) that cannot be trusted. An IP in one secure zone (top left) communicates
secure information with a secure IP in the other zone (bottom right). Since the packets traverse
through the non-secure zone, the presence of a malicious IP can pose a security threat.

Depending on increasing capabilities of malicious IPs, we divide the threats into tiers. Each tier
is assumed to include the capabilities of the previous tier. For example, a malicious IP classified in
tier 3 has capabilities of tiers 1 and 2 as well.

Tier 1:

• Malicious IPs can eavesdrop on the packets traversing through the network [9, 12, 13].
• Copied packets can cause information leakage.

Tier 2:

• Malicious IPs can corrupt/spoof packets. Corrupted packets can lead to the erroneous exe-
cution of programs and system failures [47].

• Spoofed packets inject new packets to the network, causing the system to malfunction.
• Packets can be rerouted to malicious IPs to leak information.

Tier 3:

• Malicious IPs can launch denial-of-service (DoS) attacks on a critical component of the SoC,
causing significant performance degradation [10, 11].

We propose our reconfigurable security architecture to secure the SoC against these different
capabilities of malicious IPs depending on the usage scenario. The goal is to ensure secure com-
munication between secure IPs and to prevent any attacks. Major contributions of this work are
as follows:

• We propose a reconfigurable fabric that would enable utilization of security primitives in a
plug-and-play manner based on application requirements.

• We implement a tier-based security architecture that allows reconfigurable security. Solu-
tions proposed for each tier are countermeasures for the capabilities of malicious IPs at
each tier. An overview of possible attacks and corresponding countermeasures is shown in
Figure 3.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

Reconfigurable Network-on-Chip Security Architecture 53:5

Fig. 3. Potential attacks and corresponding countermeasures in the tier-based security architecture.

• We show that the security architecture can be dynamically reconfigured based on changing
application requirements.

• We implement these mechanisms on an NoC-based SoC and evaluate the efficiency of differ-
ent security tiers in terms of performance, energy, and area. Then we discuss how different
levels of security can be used depending on the use-case scenario.

The primary objective of the work is not to improve any of the security tiers when taken sepa-
rately. Instead, the goal is to introduce a framework to integrate them together and discuss pros and
cons of activating each one against the other. The remainder of the article is organized as follows.
Section 2 introduces some relevant background and presents prior work in this area. Section 3 ex-
plains our reconfigurable security architecture. Section 4 presents the experimental results. Finally,
Section 5 concludes the article.

2 BACKGROUND AND RELATED WORK

This section introduces some key concepts used to implement our reconfigurable security archi-
tecture. Next, it surveys related efforts in both software and hardware domains.

2.1 Block Cipher Based Symmetric Encryption

In symmetric encryption, both encryption and decryption are done using the same key (K). Let E
denote the encryption algorithm. If the message to be encrypted is M , the ciphertextC is produced
by taking the key K and a plaintext M as inputs. This is denoted byC ← EK (M). Decryption algo-
rithm D performs the inverse operation to recover the plaintext denoted by M ← DK (C). Based
on input type, encryption algorithms are divided into two categories: block ciphers and stream ci-

phers. In block cipher based encryption schemes, the encryption algorithm comprises one or more
block ciphers. Formally, a block cipher is a function E that takes a β-bit key K and an n-bit plain-
textm and outputs an n-bit long ciphertext c . The values of β and n depend on the design and are
fixed for a given block cipher. To encrypt M using block ciphers, M of a given length is divided
into n-bit substrings where n is called the block size (n = |m |). Each block cipher encrypts an n-bit
plaintext m and concatenates the outputs at the end to create the ciphertext C corresponding to
M . The arrangement of block ciphers is defined by the mode of operation used in the encryption
scheme. The electronic code book (ECB) [20], cipher block chaining (CBC) [4], and counter mode
(CM) [39] are three common block cipher modes of operation.

2.2 Hashing

Unlike encryption that relies on the ability to “reverse” (decrypt) the encrypted data to produce the
plaintext, hashing data makes it extremely difficult to reverse. In fact, the security of a hash function
relies on the output being computationally hard to reverse (known as pre-image resistance) and
the hash function being collision resistant [54]. A hash function is a mathematical function that
takes a keyH and data to be hashed α as inputs and produces a hash digest Δ as the output denoted

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

53:6 S. Charles and P. Mishra

Fig. 4. Illustrative example of a DoS attack in an NoC setup with Mesh topology. The background color

shows the traffic rate that relates to congestion in the NoC. Due to the large number of packets injected

from the malicious IP to the victim IP, the NoC gets congested, leading to higher packet transfer delays.

by Δ← H (H ,α). A typical hash function produces a fixed-length digest irrespective of the size of
the input data.

2.3 DoS Attacks

Figure 4 shows an illustrative example of a DoS attack scenario on an NoC. A malicious IP injects
a large amount of traffic to a victim IP, causing heavy congestion in links close to the victim IPs.
The attack is typically targeted at a critical NoC component such as a memory controller. Due
to the congestion, legitimate memory requests from other IPs are severely delayed and the task
deadlines can be violated. Previous works in this area have explored several types of DoS attacks
on NoCs [24].

2.4 Related Work on Reconfigurable Software Security

The idea of reconfigurable security has been well studied in the software level. Early operating
systems such as Multics implemented Mandatory Access Control schemes [3]. However, modern
commercial operating systems such as Windows and Unix implement Discretionary Access Con-

trol systems, giving more control to the user to change access control depending on the require-
ments [29] at the expense of security. The kernel that is considered as the most secure among
commercially available operating systems—Security-Enhanced Linux (SELinux)—implements Linux

Security Modules, which give the capability to change security policies through security hooks and
a policy engine. Similar to reconfigurable security in the software and firmware level, the goal
of this work is to propose a reconfigurable security architecture in hardware that can be tailored
during execution based on the interoperability constraints consisting of power, performance, and
area.

2.5 Related Work on Reconfigurable Hardware Security

Hardware security reconfiguration has been discussed in different contexts. Hsu et al. [32] pro-
posed a reconfigurable security architecture based on edge computing for IoT networks. The au-
thors discussed how to interface multiple protocols (Bluetooth, ZigBee, etc.) together without
changing functionality of the upper layers of a layered communication architecture. Wang et al.
[52] proposed a reconfigurable encryption/decryption architecture that supported multiple crypto-
graphic algorithms and allowed dynamic selection of algorithms depending on the requirements.
Two reconfigurable encryption schemes and a reconfigurable signature scheme were proposed
by Hesse et al. [31]. Their work relied on using a “common reference string” (CRS) to derive
“short-term” keys from “long-term” keys. Long-term keys are kept offline, whereas short-term
keys are used in cryptographic operations. In case of a leak, it is possible to update short-term
keys effectively, only by “reconfiguring” the CRS, without changing long-term keys. Similar ideas
have been been explored in authentication to allow execution of several authentication protocols

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

Reconfigurable Network-on-Chip Security Architecture 53:7

Table 1. Security Primitives and Corresponding Reconfigurable Parameters

Security Primitive Reconfigurable Parameters

Encryption (tier 1) Blockcipher, Key size, Block size, IV length
Authentication (tier 2) Hash function, Key size, Input size
DoS attack detection and localization Detection only/Detection and localization,
(tier 3) Detection interval

dynamically [33, 50]. Other mechanisms that optimize security parameters depending on SoC be-
havior have also been proposed [9, 27, 28, 46]. Although the preceding approaches discuss recon-
figuration of some of the cryptographic primitives independently, to the best of our knowledge,
there are no prior efforts in developing a comprehensive security architecture that can enable
seamless reconfiguration of a wide variety of security primitives in NoC-based SoCs.

2.6 Related Work on NoC Security

Securing the SoC using security primitives implemented in the NoC has been studied previously
in several directions. Lightweight security architectures for NoC-based SoCs were proposed by
Sajeesh and Kapoor [45] and Sepúlveda et al. [47]. Intel introduced TinyCrypt [34], a cryptographic
library with a small footprint, for constrained embedded and IoT devices. Prior efforts on light-
weight encryption have targeted both IoT [41, 51] and RF communication [21]. Pereñíguez-García
and Abellán [43] presented a hash-based authentication scheme to prevent eavesdropping in wire-
less NoCs. Unfortunately, their mechanism incurs unacceptable performance overhead [36]. Ex-
isting countermeasures for DoS attacks tried to prevent the hardware Trojan that causes the DoS
attack from triggering, using techniques such as obfuscating packets through shuffling, inverting,
and scrambling [6]. If the Trojan gets triggered, techniques such as latency monitoring [35], cen-
tralized on-chip traffic analysis [23], and security verification techniques [6] tried to detect the
attack. Previous work introduced a lightweight and distributed approach for DoS attack detection
and localization [10], which we are using in this work to implement security in one of the tiers.
None of the preceding approaches consider reconfiguration of NoC security primitives. To the
best of our knowledge, the work presented in this article is the first attempt to propose a reconfig-
urable security architecture for NoC-based SoCs that can be dynamically reconfigured depending
on use-case scenarios.

3 RECONFIGURATION OF NOC SECURITY PRIMITIVES

This section presents our proposed reconfigurable security architecture. It consists of a reconfig-
urable security engine (RSE), which is a dedicated IP on the SoC and security mechanisms imple-
mented at routers and network interfaces (NIs) as outlined in Section 3.1. Although there are many
security primitives, we consider three commonly utilized security primitives in NoCs (encryption,
authentication, and DoS attack prevention). The security tiers are selected together with relevant
parameters. We define a set of parameters that have been proposed in existing literature, as well
as parameters that became reconfigurable due to our architecture. Each security tier is associated
with the reconfigurable parameters as shown in Table 1.

The reconfigurable parameters in encryption and authentication are self-explanatory and have
been discussed in other works [31, 50, 52]. Tier 3 allows decoupling of DoS attack detection and
localization. If detection only is selected, the SoC will detect an ongoing DoS attack but not localize
the malicious IP, whereas the other option enables both detection and localization. The detection

interval defines the duration in which the detection mechanism is active. It can be always active,

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

53:8 S. Charles and P. Mishra

Fig. 5. Additional hardware implemented at NIs and routers to facilitate our reconfigurable security archi-

tecture. ENC, encryption; AUT, authentication; DOS, DoS attack detection.

leading to quick detection of DoS attacks, or can be periodically active to save power. The follow-
ing sections describe each of these components in detail. Section 3.1 describes our reconfigurable
security architecture. The next three sections present reconfigurable encryption, authentication,
and DoS attack detection and localization mechanisms used in our architecture, respectively.

3.1 Reconfigurable Security Architecture

Our reconfigurable security architecture has two main parts: tier-based security countermeasures
and a reconfiguration mechanism. Figure 5 shows how the security countermeasures are integrated
in the NoC. The encryption and authentication tiers are integrated in the NI, whereas dedicated
hardware for DoS attack detection and localization is implemented in each router and IP. Different
tiers of security and their capabilities are outlined in Section 1.2. The reconfiguration mechanism
decides which security tier to activate and which parameters to pass to the selected tier based on
the system characteristics and security requirements. Security tiers and parameters are selected
using the reconfiguration registers (RRGs) integrated into each NI that are modified by the recon-
figuration mechanism.

The reconfiguration mechanism has two types of components integrated into the SoC:

(1) Security agent: A security agent (SAG) is integrated in each NI. SAGs monitor the network
for potential security attacks and also check system characteristics such as NoC conges-
tion and battery life through sensors.

(2) Reconfigurable security engine: An RSE is a dedicated IP integrated on the SoC that contains
security policies and makes decisions on when to reconfigure security based on the data
given by SAGs.

Figure 6 shows an overview of how the RSE is connected on the SoC, and Figure 5 shows how
the SAGs are integrated into each NI. The SAGs offer three different services:

(1) Gather data about system characteristics such as battery level and NoC congestion.
(2) Pass messages received by security tiers to the RSE. For example, if an ongoing DoS at-

tack is detected, SAGs send that information to the RSE, which can make the decision on
activating the localization component of security tier 3 to localize the attack.

(3) Set the RRG in each NI to indicate which tier of security to activate according to the
decisions made by the RSE.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

Reconfigurable Network-on-Chip Security Architecture 53:9

Fig. 6. Example SoC including an RSE. Figure 5 shows a zoomed-in and more detailed version of the same

architecture considering only four IPs.

Algorithm 1 describes the main steps of reconfiguration. The RSE periodically pings the SAGs
to gather data about system characteristics (line 2). This is called the security heartbeat. After
gathering battery level and NoC congestion information, the RSE then decides which security tier
and parameters to activate based on its security policy and passes that data to the SAGs, who set
the RRGs (lines 11–14). In addition to decisions made at each security heartbeat, a SAG can also
interrupt the RSE if a potential security threat is detected (line 6). The RSE will follow the same
process and set the RRGs. The RSE and SAGs communicate using a separate NoC, called the service

NoC, that facilitates all packets transferred between the RSE and SAGs without interfering with
the data transferred between IPs. The IPs read the RRGs to identify which security tier to activate
together with its parameters and configures security accordingly (lines 15–26). When a packet is
injected into the NoC, it first goes through the security mechanisms depending on what tier is
activated (lines 27–29).

This approach allows easy decoupling of the RSE, SAGs, security policy, security tiers, and re-
configurable parameters so that each component can be modified independently at design time
depending on system requirements. The next three sections describe the components of tier-based
security countermeasures: encryption (Section 3.2), authentication (Section 3.3), and DoS attack
detection and localization (Section 3.4). A list of notations used to illustrate our approach is pre-
sented in Table 2.

3.2 Reconfigurable Encryption

To encrypt packets in real-time embedded systems, the encryption scheme should support high-
speed encryption with low costs and latency. To achieve this, the operation mode of the encryption
scheme must support pipelined and parallelized implementations. Furthermore, due to the nature
of packets transferred and routing protocols used in the NoC, some of the packet fields, such
as addresses, sequence numbers, and ports, need to be transferred in plaintext. These fields are
mainly the header fields of the packet. This leads to the requirement of an authenticated encryp-
tion with associated date (AEAD) scheme. According to our threat model and proposed tier-based
security model, encryption and authentication should be decoupled. Therefore, an authenticated

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

53:10 S. Charles and P. Mishra

Table 2. Notations Used to Illustrate Our Approach

Notation Description

EK (M) A message M encrypted using the key K

A ‖ B Concatenation of two bit strings A and B

A ⊕ B Bitwise XOR of two bit strings A and B

{q}d D-bit representation of binary value q (e.g., if d = 4, {1}d = 0001)

MSBu (S) Gives the most significant (leftmost) u bits of S

len(A) Number of bits in A

0u String of u zero bits

X · Y Multiplication of two elements X , Y ∈ GF (0n), where GF corresponds to a Galois field

ALGORITHM 1: Main Steps in Security Reconfiguration

/* Send security heartbeat periodically */

1 if timer > securityHeatBeatPeriod then

2 send security heartbeat to all SAGs and gather data -D

3 reconfigureSecurity(D)

4 restartTimer()

5 end

6 if upon event potentialAttack == TRUE: then

7 get data sent by SAG - D; // get data sent by SAG with interrupt

8 reconfigureSecurity(D)

9 restartTimer()

10 end

/* Major steps of reconfigure security function */

11 Function reconfigureSecurity(D)

12 Tn , Pn ← selectSecurityTier(D); // select one from T1,T2,T3 and relevant parameters

13 send selected security tier (Tn) and parameters (Pn) to SAGs

14 setReconfigurationRegisters(Tn , Pn)

15 Tn , Pn ← readReconfigurationRegisters()

16 if Tn == T1: then

17 Q ← encryption(Pn)

18 end

19 else if Tn == T2: then

20 Q ← encryption(Pn) + authentication(Pn)

21 end

22 else if Tn == T3: then

23 Q ← encryption(Pn) + authentication(Pn)

24 monitorDoS(Pn)

25 end

26 end

/* Send packets in to the NoC */

27 Function sendPackets(M)

28 send Q (M)

29 end

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

Reconfigurable Network-on-Chip Security Architecture 53:11

Fig. 7. Encryption and authentication in CM.

encryption scheme that allows isolation of the two stages is required. Furthermore, the architecture
should allow easy plug-and-play of security primitives that allows the selection of reconfigurable
parameters. To cater to these requirements, we use CM in our experiments. Figure 7 shows an
overview of CM including both encryption and authentication components. It is evident from the
setup that the framework supports easy decoupling of encryption and authentication, allowing
activation of encryption only (tier 1) or both encryption and authentication (tier 2) through the
values written in RRGs during runtime. In this section, we present how the encryption scheme in
CM is implemented in the NoC, and Section 3.3 describes the NoC implementation of authentica-
tion.

Letm1,m2, . . . ,mb−1,m
∗
b

denote a sequence of b bit strings that construct the plaintext. Each bit
string in the sequence, also known as a data block, has length n, except form∗

b
with lengthu where

1 ≤ u ≤ n. This gives that the total length of plaintext in bits is (b − 1) × n + u. The ciphertext
associated with this sequence follows the form c1, c2, . . . , cb−1, c

∗
b

where each block is n bits long
except for the final block c∗

b
, which is u bits long.

The encryption algorithm is shown in Algorithm 2. Each block cipher in CM encrypts the string
IV ‖ {q}d using a symmetric key K (line 5), where IV refers to the initialization vector, which is
a nonce.1 The output rq of the block cipher is XORed with the plaintext mq sent to that block
(line 6). The final block, which can potentially have less bits (u), is XORed with the most significant
u bits of the block cipher output (line 8). The outputs are concatenated to create the ciphertext of
length (b − 1) × n + u (line 9). The decryption process is the exact inverse of this and is omitted in
this article to save space. In our experiments, we used Galois counter mode (GCM), which uses the
same setup and AES as the block cipher together with Galoish hash as the hash function. Complete
details of GCM can be found in the work of McGrew and Viega [38].

3.3 Reconfigurable Authentication

Encryption ensures that an eavesdropper cannot read the sensitive data; however, authentication
is required to ensure that the adversary does not corrupt/spoof the packets. To address this, we
use a hash-based message authentication code (HMAC). With HMAC, the receiver is able to verify
a message by checking a tag appended to the end of the packet by the source. The receiver can
recompute the original authentication tag and check whether both tags match to see that the

1A nonce is a random string that is distinct for each invocation of the encryption operation for a fixed key.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

53:12 S. Charles and P. Mishra

ALGORITHM 2: Encryption in CM

1 Inputs: plaintext to encrypt M =m1 ‖m2 ‖ · · · ‖m∗b
2 Output: ciphertext corresponding to the plaintext C

3 Procedure: encryption (parameters Pn = {block cipher EK , key K , Initialization Vector IV })

4 for q = 1, . . . ,b − 1 do

5 rq ← EK (IV ‖ {q}d)

6 cq ← rq ⊕mq

7 end

8 c∗
b
←m∗

b
⊕MSBu (EK (IV ‖ {b}d))

9 C ← c1 ‖ c2 ‖ · · · ‖ c∗b
10 return C

message has not been changed during NoC traversal. The tag is computed by using a hash function
that takes the message to be authenticated and a key as inputs. In our approach, since the encrypted
data is used as a part of the message to be authenticated, we are following the Encrypt-then-MAC

authentication technique, which is more secure than Encrypt-and-MAC [26].
In our AEAD scheme, the associated data was not included in the encryption process. However,

associated data (A) should be used when calculating the tag. Similar to M and C , A can also be
denoted as a sequence of bit strings a1,a2, . . . ,al−1,a

∗
l
. Each bit string in A has a length of n,

except for the last block, a∗
l
, with length v , where 1 ≤ v ≤ n. It follows that a∗

l
can be a partial

block and the total length of A in bits is (l − 1) × n +v . If Sq = IV ‖ {q}d , the authentication tag
(T) can be calculated as

T = MSBt (H (H ,A,C) ⊕ EK (S0)), (1)

where |T | = t andH (H ,A,C) = Xl+b+1 [38]. The variableXi for i = 0, 1, . . . , l + b + 1 is defined as

Xi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎩

0 for i = 0
(Xi−1 ⊕ ai) · H for i = 1, . . . , l − 1

(Xl−1 ⊕ (a∗
l
‖ 0b−v)) · H for i = l

(Xi−1 ⊕ ci) · H) for i = l + 1, . . . , l + b − 1

(Xl+b−1 ⊕ c∗l ‖ 0b−u) · H for i = l + b
(Xl+b ⊕ (len(A) ‖ len(C)) · H) for i = l + b + 1,

whereH is the hash function that takes the hash key H as one of the inputs. The t-bit tag is then
appended to the packet and injected into the network. Any tampering done to the packet will
cause the tag verification at the receiver’s end to fail, resulting in the packet being discarded and
a retransmission of the packet from the source. This will make sure that the corrupted/spoofed
packets will be discarded by NIs before they reach the IPs. The tag calculation method given in
Equation (1) is according to the Galois hash function used in our experiments. Other commonly
used hash functions for message authentication include SHA-256 [25] and MD5 [44].

3.4 Reconfigurable DoS Attack Detection and Localization

We implement the DoS attack detection and localization mechanism proposed by Charles
et al. [10]. The previous work is a monolithic functionality, whereas in this article, we propose
a reconfigurable DoS attack detection and localization algorithm. Moreover, we integrate it with
reconfigurable encryption and authentication. The basic idea is to statistically analyze network
traffic and to model communication patterns. Using the model, two curves are obtained that cap-
ture system characteristics. First, upper bounds of packet arrival curves (PACs) are calculated at
each router and then destination packet latency curves (DLCs) are constructed at each IP. PAC

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

Reconfigurable Network-on-Chip Security Architecture 53:13

Fig. 8. Two sample event traces where the blue trace shows packet arrivals at a router under normal operation

(Pr) and the red trace shows packet arrivals in the presence of a DoS attack (P̃r).

bounds are used to detect DoS attacks, and once an attack is detected, DLCs are used to localize
the malicious IP.

An overview of this approach together with the parameters passed from our reconfigurable
architecture is shown in Algorithm 3. The detection and localization mechanisms are implemented
in such a way that localization can be disabled without affecting the detection mechanism. This is
defined by the DoSTier parameter. In that case, an ongoing attack will be detected, but the malicious
IP will not be localized. Although this approach gives better performance and energy efficiency,
the malicious IP can launch the attack again unless it is diagnosed separately. Similarly, to achieve
improved energy efficiency, the detection mechanism at the routers can sleep periodically. The
sleep time is defined by the detectionInterval parameter. In such a scenario, energy efficiency will
improve while compromising with delays in DoS attack detection. An SoC running tasks with soft
deadlines can afford to have a DoS attack detection mechanism that is not always active. However,
if there are tasks with hard deadlines, it is better to detect immediately (no sleeping) to avoid
delays caused by DoS attacks. The next two sections describe the two major steps—detection and
localization—and as PACs and DLCs in detail.

ALGORITHM 3: DoS Attack Detection and Localization Mechanism

1 Procedure: monitorDoS (parameters Pn = {DoSTier, detectionInterval})

2 if DoSTier == detectOnly then

3 detectDoS(detectionInterval); // start packet monitoring at routers and check for PAC

bound violations

4 end

5 if DoSTier == detectAndLocalize then

6 detectDoS(detectionInterval); // start packet monitoring at routers and check for PAC

bound violations

7 localizeDoS(); // if a potential attack is detected, initiate localization mechanism

to pinpoint the malicious IP

8 end

3.4.1 DoS Attack Detection Using PAC Bounds. Upon arriving at a router (r), a packet is seen as
an event and can be recorded with arrival curves [7]. The packet stream (Pr) comprises all of the
packets that arrive at r during the execution of a particular program. Figure 8 illustrates a com-
parison of two different packet streams, one normal and one compromised, over the time interval

[1, 17]. Pr (blue) shows the normal stream of packet arrivals, and P̃r (red) shows a compromised
stream with an influx in packets over the same time. For some half-closed interval, [ta , tb), the
total number of packets passing through r is called the packet count (Npr

[ta , tb)), which is defined

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

53:14 S. Charles and P. Mishra

Fig. 9. Graph showing upper bound of PACs (λu
pr

(Δ)). The green line with round markers shows the PAC

bound, whereas the normal operational area is shaded in green. PACs corresponding to Pr and P̃r are shown

in blue and red, respectively.

in Equation (2). The parameters needed to calculate Npr
[ta , tb) are Npr

(ta) and Npr
(tb), which are

the maximum number of packets before time ta and time tb , respectively.
∀ta , tb ∈ R+, ta < tb ,n ∈ N:

Npr
[ta , tb) = Npr

(tb) − Npr
(ta). (2)

Then we construct the upper PAC bound (λu
pr

(Δ)) for every router from the previously collected
packet arrival data. To construct an upper bound, the maximum number of arrivals is necessary
for any time interval Δ(= tb − ta). Equation (3) defines how this is done by sliding a window of
length Δ over Pr to calculate the maximum number of packets arrivals within that window:

λu
pr

(Δ) = max
t ≥0
{NPr

(t + Δ) − NPr
(t)}. (3)

The process is repeated for several fixed Δ to construct the upper PAC bound. Once the upper
PAC bound is constructed, it can be used in detecting abnormal behaviors in real time by the leaky

bucket algorithm. Figure 9 shows a PAC bound and two PACs corresponding to Pr and P̃r from

Figure 8. It illustrates how P̃r , the compromised stream, goes beyond the shaded region indicating
there is a DoS attack happening.

3.4.2 DoS Attack Localization Using PAC Bounds and DLCs. The localization method uses DLCs
in addition to PAC bounds. While every router along the path constructs PACs, every destination IP
constructs a DLC. Figure 10 shows two examples of DLCs with Figure 10(a) being normal operation
and Figure 10(b) corresponding to an attack scenario. The DLCs capture the latency of a packet (y-
axis) from source to destinationDi against the number of hops traversed by the packet from source
to destination (x-axis). The distribution of latencies against each hop count follows the normal
distribution, which is represented by its mean and variance. The mean and variance of the latency
distribution of packets traveling k hops to reach Di are denoted by μi,k and σi,k , respectively.
The packet header holds the source and hop count information that the destination will extract
for profiling. From this, the destination constructs a graph capturing the latency of packets from
source to destination against the number of hops. Mean and variance for the distribution at each
hop count is calculated after every packet has arrived.

Should a violation be flagged during the detection phase, the local IP attached to that router
initiates the diagnosis. By referring to its DLC, it finds the packets that have suspicious (longer
than usual) latencies using the parameterized μi,k and σi,k values. The local IP then uses the source
address of the delayed packets to get the congestion data from the other routers in that path. We

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

Reconfigurable Network-on-Chip Security Architecture 53:15

Fig. 10. Two sample DLCs constructed at an IP. Under normal operation, the variance of the distribution is

small, whereas in a DoS attack scenario, it can be large. For example, the latency distribution at hop count 4

in Figure 10(b) has a large variance compared to Figure 10(a), and it helps in identifying the malicious IP.

Fig. 11. Illustrative example with local IP (D), attacker IP (A), victim IP (V), and the candidate malicious IP

(S) as found by D.

can only conclude that the source address of the delayed packets is a candidate malicious IP. If we
conclude that the source address of the delayed packets is where the attack is originated can lead
to many false positives. Therefore, the method relies on the victim pinpointing the attacker and
other IPs removing the false positives. The behavior of each router during DoS attack localization
is given in Algorithm 4.

We explain the behavior of the algorithm using Figure 11. The attacker IP, A, launches a DoS
attack at V , and two other IPs, S and D, are located along the same congested path. Routers of D
andV both will flag a potential attack (lines 1 and 2) and check the DLC for candidate malicious IPs.
Even though S andD are not the attacker or the victim, packets originating from S with destination
D will be delayed since they are on the congested path. Therefore, the router of S will be flagged
as a candidate malicious IP by D (lines 3–7). As a result, the router of S will receive a message
from the router of D indicating that its local IP is the attacker, which will cause the flag to be set
to 1 (lines 8–12). However, S will receive another message from V , since S is on the path from V
to A, indicating that A is the potential attacker. This will cause the flag at S to be changed to 2
(lines 13–15). The router of A will only receive the message from V , which will cause the flag to
remain at 1. When the timeout occurs, the flag at S is set to 2, and therefore no action is taken.
However, the router of A has a flag set to 1, and therefore a broadcast is sent indicating that A is
the attacker (lines 16–20).

The overview of both DoS attack detection and localization is shown in Figure 12. The attack
detection phase occurs first and is shown in the left part of the figure. The localization of the mali-
cious IP occurs after detection as shown in the right part of the figure. The complete methodology
is described in the work of Charles et al. [10]. Unlike in their work, we use the service NoC to pass
messages between IPs when localizing the malicious IP to reduce the localization time.

4 EXPERIMENTAL RESULTS

In this section, we first present the experimental setup used to evaluate our framework and then
show the performance and energy data for different security tiers. Finally, we discuss the area
overhead and security guarantees provided by the architecture.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

53:16 S. Charles and P. Mishra

Fig. 12. Overview of the DoS attack detection and localization framework. The system behavior is captured

using PAC bounds and DLCs. The curves are then used in real-time DoS attack detection and localization.

ALGORITHM 4: localizeDoS(): Event Handlers for Routers

1 upon event attacked == TRUE:

2 send a signal to local IP

3 upon receiving address of the candidate malicious IP S from local IP:

4 send a query to the router of S for its congestion status

5 if S is congested then

6 sends a diagnostic message < S,D > to all routers in the path from S to D indicating that S is the

potential attacker
7 end

8 upon receiving a diagnostic message < S,D > from port pi :

9 start TIMEOUT if all f laд == 0

10 if S is local IP and f laд[pi] == 0 then

11 f laд[pi] = 1 // local IP is the malicious IP

12 end

13 if S is not local IP then

14 f laд[pi] = 2 // local IP is not the malicious IP

15 end

16 upon event TIMEOUT:

17 if f laд contains 1 then

18 broadcasting that its local IP is the attacker

19 RESET

20 end

21 upon event RESET:

22 f laд[pi] = 0 for all ports pi

4.1 Experimental Setup

Our experimental setup was built using the gem5 cycle-accurate full-system simulator [5, 14]. We
modeled an 8 × 8 Mesh NoC-based SoC with 64 IPs. The GARNET2.0 detailed on-chip interconnec-
tion network model was used for the NoC after modifying the default garnet model to include our
reconfigurable security architecture [1]. The delay for encryption/decryption and authentication
was assumed to be 12 cycles [45]. GARNET2.0 uses the routing infrastructure provided by gem5’s
ruby memory system model. We set the number of pipeline stages in the router to be 3, and each
link is assumed to consume 1 cycle to transfer a packet between neighboring routers. Each mes-
sage from an IP goes through the security operations implemented at the NI and is then divided

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

Reconfigurable Network-on-Chip Security Architecture 53:17

Table 3. Reconfigurable Parameter Values Used in Our Experiments

Security Primitive Reconfigurable Parameters

Encryption (tier 1) AES Block cipher, 128-bit key, 128-bit block, 96-bit IV
Authentication (tier 2) Galois hash, 128-bit key, 128-bit input
DoS attack detection and localization Detection and localization both active,
(tier 3) Detection always active without sleeping

Table 4. Execution Time Comparison in Terms of Number of Clock

Cycles Across Different Security Levels Using Real Benchmarks

FFT RDX FMM LU

No-Sec 3.444E+08 2.419E+10 8.807E+09 3.684E+09

Tier 1 3.638E+08 2.669E+10 9.422E+09 3.968E+09

Tier 2 3.833E+08 2.918E+10 1.004E+10 4.251E+09

Tier 3 3.849E+08 2.939E+10 1.009E+10 4.275E+09

into flits (flow control units) before being injected into the NoC through its local router. The NoC
then routes the packet depending on the routing protocol (XY routing in our experimental setup),
and the NI at the destination performs decryption and tag validation before sending the message
to the destination IP. The output statistics of the gem5 simulation were fed to the McPAT power
modeling framework to obtain power consumption [37].

We tested the system using four real benchmarks (FFT, RADIX, FMM, LU) from the SPLASH-2
benchmark suite [55] and six synthetic traffic patterns (uniform random (URD), tornado (TRD),

bit complement (BCT), bit reverse (BRS), bit rotation (BRT), transpose (TPS)). When running both
real benchmarks and synthetic traffic patterns, each IP in the top (first) row of the Mesh NoC
instantiated an instance of the task. Real benchmarks used eight memory controllers that provide
the interface to off-chip memory, which were connected to the bottom eight IPs. As synthetic
traffic patterns do not use memory controllers, the destination of injected packets were selected
based on the traffic pattern. For example, uniform random selected the destination from the
eight IPs at the bottom row with equal probability. Source and destination modeling was done
this way to mimic the secure and non-secure zones. When simulating DoS attacks, a malicious
IP that is randomly placed in the middle rows (non-secure zone) injected more packets into the
NoC targeted at one of the destination IPs, which receive high traffic from legitimate requests.
According to our architecture model, the IPs in the top row (secure zone) communicate with the
IPs in the bottom row (secure zone) through the other six rows (non-secure zone) of IPs. Our
approach will work the same for any other secure, non-secure zone selection and malicious IP
placement. Table 3 shows the reconfigurable parameters selected in our experiments.

These choices were motivated by the capabilities of the simulator, as well as the lightweight
nature of IoT and embedded devices [8].

4.2 Performance Results

To evaluate the execution time for each application, we simulated the setup with different security
levels. Figure 13 and Table 4 show results for four levels of security when running real benchmarks:

• No-Sec: NoC without implementing any security.
• Tier 1: Tier 1 security implemented. Encryption only.
• Tier 2: Tier 2 security implemented. Encryption and authentication.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

53:18 S. Charles and P. Mishra

Fig. 13. NoC delay and execution time comparison across different security levels using real benchmarks.

Fig. 14. NoC delay comparison across different levels of security when running synthetic traffic patterns.

• Tier 3: Tier 3 security implemented. Encryption, authentication, and DoS attack detection
and localization.

Figure 13(a) shows NoC delay (end-to-end NoC traversal delay) of different security tiers. Com-
pared to No-Sec, 40%, 57%, and 58% more delay is observed on average across all benchmarks in
Tier 1, Tier 2, and Tier 3, respectively. Execution time is compared in Figure 13(b), and it shows a
similar trend. Tier 1, Tier 2, and Tier 3 take 7%, 12.7%, and 13.2% more time to execute each simu-
lation, respectively. The impact of security features is less in total execution time since it includes
instruction execution, memory operations, and so forth, in addition to NoC traversal delay. The
difference between performance in Tier 2 and Tier 3 is very small (0.5% in execution time) since the
DoS attack detection mechanism can run in parallel to normal router computations once separate
hardware is implemented. Charles et al. [10] reported that there is no performance overhead in
their five-stage router pipeline. However, since we have implemented a three-stage router pipeline
that makes the normal router computations take place faster, DoS attack detection can take a bit
longer depending on crossbar contention at that time, and therefore we observe a slight delay.

The same experiments were run on synthetic traffic patterns, and results are shown in Figure 14.
We can only capture NoC delay when running synthetic traffic patterns since running synthetic
traffic patterns do not include instruction execution and memory operations. We observe 50%, 66%,
and 67% more NoC delay on average in Tier 1, Tier 2, and Tier 3, respectively, when compared to

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

Reconfigurable Network-on-Chip Security Architecture 53:19

Table 5. Area Occupied by Security Tiers

Tier 1 Tier 2 Tier 3
Tier 1

(Overhead)
Tier 2

(Overhead)
Tier 3

(Overhead)

Area 609696 µm2 618473 µm2 620228 µm2 4.2% 5.7% 6%

Table 6. Power Consumption of Our Approach

Tier 1 Tier 2 Tier 3
Tier 1

(Overhead)
Tier 2

(Overhead)
Tier 3

(Overhead)

Power 5,304 mW 5,387 mW 5,546 mw 3.2% 4.8% 7.9%

No-Sec. Both Figure 13 and Figure 14 show us that added security comes at the expense of perfor-
mance. Therefore, the security level has to be reconfigured depending on the use-case scenario.

4.3 Overhead Analysis

This section provides details on area and power overhead of our proposed framework. It also
discusses overhead associated with various components including service NoC, RSE, and security
tier changes.

4.3.1 Area Overhead. Additional hardware is required to implement our reconfigurable security
architecture. To evaluate this area overhead in comparison with the NoC that does not implement
any security (No-Sec), we implemented the security tiers using Verilog. We modified the RTL of
an open source NoC architecture [40] and conducted our experiments using Synopsys Design
Compiler with a 90-nm Synopsys library (saed90nm). Results are shown in Table 5. Area overhead
was calculated for each security tier. For example, area overhead for Tier 2 includes overhead
introduced by encryption and authentication hardware. Since our proposed framework requires
all features to be integrated so that the RSE can select which tier to activate, the total area overhead
is the overhead to implement Tier 3 security, which is 6%. If a certain SoC designer decides to only
integrate features in Tier 1 (encryption), overhead would be 4.2%.

If Tier 3 is implemented, in addition to the additional hardware required at routers and NIs, each
IP stores and processes the DLCs. The result of μi,k + 1.96σi,k is calculated and stored for each
hop count in the DLC as a 4-byte integer. This aggregates to a total memory space of 1 ×m × 4
parameters to store the DLC, wherem is the maximum hop count between two IPs in the NoC. It
is safe to assume that this additional memory space is negligible since the IPs typically have much
more bandwidth than any other NoC component.

4.3.2 Power Overhead. The power overhead is introduced by the additional computations re-
quired to implement the reconfigurable security architecture. Compared to No-Sec, each packet
injected into the network will have to go through encryption when Tier 1 is enabled. At the des-
tination, the inverse process of decryption takes place. These processes consume extra power.
Tier 2 consumes extra power for the tag computation and validation part, and Tier 3 for construct-
ing DLCs at each IP and monitoring DoS attacks at each router. The gem5 output statistics were
fed into the McPAT power modeling framework to obtain power consumption. The NoC power
model in McPAT was modified according to the work done by Ogras and Marculescu [42]. Power
consumption when running the four real benchmarks (FFT, RADIX, FMM, LU) were recorded, and
average power consumption is compared in Table 6 together with power overhead introduced by
each security tier. Tier 1 has a power overhead of 3.2%, which consists of overhead for encryption.
Note that each tier includes capabilities of the tier below. In other words, 4.8% power overhead in

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

53:20 S. Charles and P. Mishra

Tier 2 includes both encryption (3.2% in Tier 1) and authentication (1.6%) power overhead. Simi-
larly, Tier 3 consumes 7.9% power overhead, which includes the 4.8% overhead for Tier 2 and an
additional 3.1% for DoS detection and localization. The results are consistent with the previous
studies on lightweight NoC encryption done by Sepúlveda et al. [47].

4.3.3 Overhead of the Service NoC. The service NoC proposed in our architecture is responsible
for transferring packets intended for the following purposes:

• DoS attack localization
• Communication between SAGs and RSE
• Key distribution for encryption and authentication.

The proposal to use a separate NoC instead of using one NoC for all purposes was motivated by
state-of-the-art commercial SoCs that implement multiple physical NoCs to carry different types
of packets [48, 53]. The Intel Knights Landing (KNL) architecture features four parallel NoCs [48]
and has been widely deployed in the Intel Xeon processor family. The Tilera TILE64 architecture
comprises five parallel 2D Mesh NoCs, each used for a different purposes such as communication
with main memory, communication with I/O devices, and user-level scalar operand and stream
communication between tiles [53].

The trade-off here is performance versus area. When many different types of packets are used
in the NoC, the packet must contain data to distinguish between those types. Existing buffer space
has to be shared between packet types. Both of these concerns add performance overhead, and
when scaling up to 64 IPs, the overhead becomes significant. However, contrary to intuition, addi-
tional wiring between nodes incur minimal overhead as long as the wires stay on-chip due to the
advancements in fabrication processes. Furthermore, the more expensive and scarce commodity
is the on-chip buffer area compared to wiring bandwidth. If virtual channels are used for different
types of packets [19] and buffer space is shared, the increased buffer spaces and logic complexity
will equal that of another physical network. The work of Yoon et al. [56] provides a comprehen-
sive analysis about the trade-offs between having virtual channels and several physical NoCs [56].
Using their analysis that fits the NoC parameters we have chosen, the area and power overhead
of having two physical NoCs compared to one NoC are 6% and 7%, respectively.

4.3.4 Overhead of RSE Implementation. The RSE is a dedicated IP on the SoC that decides the
security tier to be used based on the security policies. The policy engine can be implemented as
a finite state machine (FSM) where the security tiers are the states and state transitions happen
depending on the policies. In our work, we have discussed a specific implementation where RSE
decides which security tier and parameters to activate based on battery level and NoC congestion
information. The implementation of such an FSM incurs negligible area and power overhead [15].

4.3.5 Overhead of Changing Security Tiers. It is worthwhile discussing what happens to the
in-flight packets on the NoC during a security tier change. When changing from Tier 1 to Tier 2,
the transition forces an authentication tag to be included in the NoC packets. However, the in-
flight packets when the transition happens does not contain an authentication tag since they were
injected when the architecture was in Tier 1. Therefore, any packet that does not contain an au-
thentication tag will be dropped. Since we do not expect security to be reconfigured frequently,
the performance overhead due to the dropped packets is negligible. In fact, security reconfigu-
ration is expected to be less frequent compared to traditional reconfiguration techniques such
as dynamic voltage scaling (DVS) or dynamic cache reconfiguration (DCR). In DCR or DVS, the
reconfiguration frequency depends on the length of a phase in a task, which is in the order of mil-
liseconds or seconds. We envision that security reconfiguration frequency will be in the order of

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

Reconfigurable Network-on-Chip Security Architecture 53:21

Table 7. Maximum Number of Packets in Flight at Any Given Time Compared to Total Number

of Packets Injected When Running Each Real Benchmark

FFTFFT RDXRDX FMMFMM LULU

Total No. of Packets InjectedTotal No. of Packets Injected 809,632809,632 103,987,824103,987,824 25,629,24825,629,248 11,820,88011,820,880

Maximum No. of Packets in Flight atMaximum No. of Packets in Flight at

Any Given TimeAny Given Time
532532 569569 585585 630630

Maximum No. of Packets in Flight asMaximum No. of Packets in Flight as

a Percentage of Total No. of Packetsa Percentage of Total No. of Packets
0.0657%0.0657% 0.0005%0.0005% 0.0023%0.0023% 0.0053%0.0053%

minutes of even hours. To quantify the performance overhead for dropping packets, we profiled the
maximum number of in-flight packets at any given time when Tier 1 is active. Table 7 shows the
results as a comparison of total number of packets injected when running each benchmark.

Dropping packets will not affect the accuracy of operation, since the IPs that injected the
dropped packets will retransmit the requests after not receiving a response. Such retransmission
mechanisms are already in place for NoC error correction protocols [30]. Note that packet drop-
ping is not required when transitioning from Tier 2 to Tier 3 (or vice versa) due to the nature of
the DoS attack detection mechanism. We have added this discussion in Section 4.3.5.

4.4 Security Analysis

In this section, we discuss the security guarantees of different security tiers.
Tier 1 implements encryption only. Therefore, the secrecy of packets is ensured, whereas the

integrity of packets is not. An eavesdropper on the NoC will be unable to read the critical data in
a packet unless it manages to break the cipher. The security of the cipher depends on the security
of the operation mode, CM in this case, as well as the block cipher. Each block in CM is treated
independently while encrypting. In such a setup, using the same IV ‖ {q}d string with the same
key K can cause the “two time pad” situation. In our method, using a nonce as the IV for each
encryption addresses this. Further security can be ensured by setting the string to IV ‖ seqj ‖ q,
where q corresponds to the block cipher ID and seqj represents the sequence number of the jth

packet. It gives per message and per block variability and ensures that the value is a nonce. The
use of IV ‖ seqj ‖ q string allows reusing the IV , and it can be reset after a certain number of
encryptions. GCM uses AES as its block cipher. AES has been shown to be resistant against all
known cryptographic attacks and is yet to be broken [49].

Tier 2 adds another layer of security on top of encryption by enabling authentication. This ad-
dresses the issue of data integrity. The authentication tag validation relies on the fact that unless
the hash key is known, no other key and input string combination should produce the same hash
digest. If this condition fails, an adversary will be able to alter the packet content, regenerate a tag
for that string, and replace the existing tag with it. Then the corrupted packet will be validated
as a legitimate packet. To ensure that this does not happen, the chosen hash function has to be
collision resistant. Our choice of hash function—Galois hash—adheres to this criteria and is also
pre-image and secondary pre-image resistant [38].

Tier 3 contributes the last layer of security of our framework—DoS attack detection and lo-
calization. To evaluate the efficiency of the approach, we ran simulations in the presence of one
malicious IP placed at random in the middle rows (non-secure zone). The malicious IP injected
more packets into the NoC targeted at one of the destination IPs. The packet stream periods and
attack periods were selected at random. Packet steam periods were assigned a value between 2
and 6 μs at random, and attack periods were assigned a random value between 10% and 80% of
the packet stream period. Experiments were conducted using the six synthetic traffic patterns and

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

53:22 S. Charles and P. Mishra

Fig. 15. DoS attack detection time for 8 × 8 Mesh topology in the presence of one malicious IP.

Fig. 16. DoS attack localization time for 8 × 8 Mesh topology in the presence of one malicious IP.

random placements of malicious IP launching the DoS attack. Out of the collected traces, 10 of
them were selected such that the test cases include all synthetic patterns and applicable malicious
IP placements. Figure 15 shows the detection time for the 10 test cases. The results show that the
detection time depends on the attack period and is approximately twice the attack period. This
confirms that DoS attack detection can be done in real time. The final step of Tier 3—DoS attack
localization—can be done in real time as well, as shown in Figure 16. The efficiency of DoS attack
localization was evaluated by measuring the time between detecting the attack and localizing the
malicious IP. Figure 16 shows the results of our experiments using the same 10 test cases running
synthetic traffic patterns.

The detection time and localization time both depend on characteristics of the NoC and the
position of victim/malicious IPs in the NoC. The proposed method detects a DoS attack when the
number of packet arrivals within a given time window exceeds the upper bound. The time taken
for this to happen depends on the the constructed upper bound, packet arrival trends at routers
along the path of the DoS attack, attack period, and packet stream period during normal operation.
If the upper bound is tight during normal operation for a particular time window, it only takes few
additional packets to violate it. Therefore, some test cases can exceed the upper bound, quickly
leading to detection times being very close to the packet stream period. Some can take longer to
exceed the interval, as within that time window, the upper bound was not violated.

The localization time depends heavily on the time it takes for the diagnostic packets to tra-
verse from the IPs connected to the routers that flagged the attack to the potentially malicious
IP. The localization time varies for each topology and victim/malicious IP placement. For exam-
ple, if we used a Point2Point topology, localization needs diagnostic message to travel only one
hop, whereas a Mesh may require multiple hops. Therefore, localization is faster in Point2Point
compared to a Mesh. In general, the localization time is less compared to detection time because
the localization process completes once the small number of diagnostic packets reach all of the
potentially malicious IPs, whereas detection requires many packets before violating a PAC bound
during runtime.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

Reconfigurable Network-on-Chip Security Architecture 53:23

The results are consistent with the work done by Charles et al. [10], who showed that the frame-
work is capable of detecting and localizing DoS attacks across different topologies and determin-
istic routing protocols. Therefore, it is a perfect fit for real-time IoT applications.

5 CONCLUSION

In this article, we presented a reconfigurable security architecture that allowed enabling/disabling
of security levels (tiers) depending on the use-case scenario. Security cannot be considered alone
in resource-constrained IoT devices. The interoperability constraints—performance, energy effi-
ciency, and area—should be taken into account when deciding the level of security required. We
introduce a tier-based security architecture and proposed an efficient reconfiguration mechanism
that allows monitoring system characteristics and decides which security mechanism(s) to acti-
vate based on security policies. The proposed tier-based security mechanisms comprise encryp-
tion, authentication, and DoS attack detection and localization. Experimental results discussed how
different tiers can affect the interoperability constraints and the security guarantees. Our reconfig-
urable security architecture is lightweight and provides real-time security guarantees. Therefore, it
is ideal for resource-constrained IoT devices that have dynamic requirements and long application
life.

REFERENCES

[1] Niket Agarwal, Tushar Krishna, Li-Shiuan Peh, and Niraj K. Jha. 2009. GARNET: A detailed on-chip network model

inside a full-system simulator. In Proceedings of the 2009 International Symposium on Performance Analysis of Systems

and Software. IEEE, Los Alamitos, CA, 33–42.

[2] ARM. 2008. Security on ARM TrustZone. Retrieved July 31, 2020 from https://www.arm.com/products/silicon-ip-

security.

[3] D. Elliott Bell and Leonard J. La Padula. 1976. Secure Computer System: Unified Exposition and Multics Interpretation.

Technical Report. Mitre Corporation, Bedford, MA.

[4] Mihir Bellare, Joe Kilian, and Phillip Rogaway. 1994. The security of cipher block chaining. In Proceedings of the 1994

Annual International Cryptology Conference. 341–358.

[5] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava Basu, Joel Hestness,

et al. 2011. The gem5 simulator. ACM SIGARCH Computer Architecture News 39, 2 (2011), 1–7.

[6] Travis Boraten, Dominic DiTomaso, and Avinash Karanth Kodi. 2016. Secure model checkers for network-on-chip

(NoC) architectures. In Proceedings of the 2016 International Great Lakes Symposium on VLSI (GLSVLSI’16). IEEE, Los

Alamitos, CA, 45–50.

[7] Samarjit Chakraborty, Simon Künzli, and Lothar Thiele. 2003. A general framework for analysing system properties

in platform-based embedded system designs. In Proceedings of the 2003 Conference on Design, Automation, and Test in

Europe (DATE’03), Vol. 1. 10190.

[8] Subodha Charles, Alif Ahmed, Umit Y. Ogras, and Prabhat Mishra. 2019. Efficient cache reconfiguration using machine

learning in NoC-based many-core CMPs. ACM Transactions on Design Automation of Electronic Systems 24, 6 (2019),

Article 60, 23 pages.

[9] Subodha Charles, Megan Logan, and Prabhat Mishra. 2020. Lightweight anonymous routing in NoC based SoCs.

In Proceedings of the 2020 Design, Automation, and Test in Europe Conference and Exhibition (DATE’20). IEEE, Los

Alamitos, CA.

[10] Subodha Charles, Yangdi Lyu, and Prabhat Mishra. 2019. Real-time detection and localization of DoS attacks in NoC

based SoCs. In Proceedings of the 2019 Design, Automation, and Test in Europe Conference and Exhibition (DATE -19).

IEEE, Los Alamitos, CA, 1160–1165.

[11] Subodha Charles, Yangdi Lyu, and Prabhat Mishra. 2020. Real-time detection and localization of distributed DoS

attacks in NoC based SoCs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. Early

Access. February 10, 2020.

[12] Subodha Charles and Prabhat Mishra. 2020. Lightweight and trust-aware routing in NoC based SoCs. In Proceedings

of the 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI’20).

[13] Subodha Charles and Prabhat Mishra. 2020. Securing network-on-chip using incremental cryptography. In Proceed-

ings of the 2020 IEEE Computer Society Annual Symposium on VLSI (ISVLSI’20).

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

https://www.arm.com/products/silicon-ip-security
https://www.arm.com/products/silicon-ip-security

53:24 S. Charles and P. Mishra

[14] Subodha Charles, Chetan Arvind Patil, Umit Y. Ogras, and Prabhat Mishra. 2018. Exploration of memory and cluster

modes in directory-based many-core CMPs. In Proceedings of the 2018 12th IEEE/ACM International Symposium on

Networks-on-Chip (NOCS’18). IEEE, Los Alamitos, CA, 1–8.

[15] Saurabh Chaudhury, Krishna Teja Sistla, and Santanu Chattopadhyay. 2009. Genetic algorithm-based FSM synthesis

with area-power trade-offs. Integration 42, 3 (2009), 376–384.

[16] CWE. 2017. Common Weakness Enumeration Home Page. Retrieved July 31, 2020 from https://cwe.mitre.org/.

[17] William J. Dally and Brian Towles. 2001. Route packets, not wires: On-chip interconnection networks. In Proceedings

of the 38th Annual Design Automation Conference. ACM, New York, NY, 684–689.

[18] DARPA. 2017. DARPA System Security Integrated Through Hardware and Firmware (SSITH). Retrieved July 31, 2020

from https://www.darpa.mil/news-events/ssith-proposers-day.

[19] Jean-Philippe Diguet, Samuel Evain, Romain Vaslin, Guy Gogniat, and Emmanuel Juin. 2007. NOC-centric security

of reconfigurable SoC. In Proceedings of the 1st International Symposium on Networks-on-Chip (NOCS’07). IEEE, Los

Alamitos, CA, 223–232.

[20] Ibrahim F. Elashry, Osama S. Faragallah, Alaa M. Abbas, S. El-Rabaie, and Fathi E. Abd El-Samie. 2012. A new method

for encrypting images with few details using Rijndael and RC6 block ciphers in the electronic code book mode.

Information Security Journal: A Global Perspective 21, 4 (2012), 193–205.

[21] Daniel Engels, Xinxin Fan, Guang Gong, Honggang Hu, and Eric M. Smith. 2009. Ultra-lightweight cryptography

for low-cost RFID tags: Hummingbird algorithm and protocol. Centre for Applied Cryptographic Research Technical

Reports 29 (2009), 1–16.

[22] Dave Evans. 2011. The Internet of Things: How the Next Evolution of the Internet Is Changing Everything. White Paper.

Cisco.

[23] Leandro Fiorin, Gianluca Palermo, and Cristina Silvano. 2008. A security monitoring service for NoCs. In Proceedings

of the 6th IEEE/ACM/IFIP International Conference on Hardware/Software Codesign and System Synthesis. ACM, New

York, NY, 197–202.

[24] Leandro Fiorin, Cristina Silvano, and Mariagiovanna Sami. 2007. Security aspects in networks-on-chips: Overview

and proposals for secure implementations. In Proceedings of the 10th Euromicro Conference on Digital System Design

Architectures, Methods, and Tools (DSD’07). IEEE, Los Alamitos, CA, 539–542.

[25] Henri Gilbert and Helena Handschuh. 2003. Security analysis of SHA-256 and sisters. In Proceedings of the 2003

International Workshop on Selected Areas in Cryptography. 175–193.

[26] Henri Gilbert, Matthew J. B. Robshaw, and Yannick Seurin. 2008. How to encrypt with the LPN problem. In Proceedings

of the 2008 International Colloquium on Automata, Languages, and Programming. 679–690.

[27] Guy Gogniat, Tilman Wolf, and Wayne Burleson. 2005. Reconfigurable security primitive for embedded systems. In

Proceedings of the 2005 International Symposium on System-on-Chip. IEEE, Los Alamitos, CA, 23–28.

[28] Guy Gogniat, Tilman Wolf, and Wayne Burleson. 2006. Reconfigurable security support for embedded systems. In Pro-

ceedings of the 39th Annual Hawaii International Conference on System Sciences (HICSS’06), Vol. 10. IEEE, Los Alamitos,

CA, 250a.

[29] Fred T. Grampp and Robert H. Morris. 1984. The UNIX system: UNIX operating system security. AT&T Bell Labora-

tories Technical Journal 63, 8 (1984), 1649–1672.

[30] Cristian Grecu, Andre Ivanov, Res Saleh, Egor S. Sogomonyan, and Partha Pratim Pande. 2006. On-line fault detec-

tion and location for NoC interconnects. In Proceedings of the 12th IEEE International On-Line Testing Symposium

(IOLTS’06). IEEE, Los Alamitos, CA, 1–6.

[31] Julia Hesse, Dennis Hofheinz, and Andy Rupp. 2016. Reconfigurable cryptography: A flexible approach to long-term

security. In Proceedings of the 2016 Theory of Cryptography Conference. 416–445.

[32] Ruei-Hau Hsu, Jemin Lee, Tony Q. S. Quek, and Jyh-Cheng Chen. 2018. Reconfigurable security: Edge-computing-

based framework for IoT. IEEE Network 32, 5 (2018), 92–99.

[33] Shao-Hsiu Hung, Jui-Hung Yeh, and Jyh-Cheng Chen. 2011. sRAMP: Secure reconfigurable architecture and mobility

platform. Security and Communication Networks 4, 4 (2011), 395–409.

[34] Intel. 2016. Using TinyCrypt Library, Intel Developer Zone. Retrieved July 31, 2020 from https://software.intel.com/

content/www/us/en/develop/tools/system-studio/documentation.html.

[35] J. S. Rajesh, Dean Michael Ancajas, Koushik Chakraborty, and Sanghamitra Roy. 2015. Runtime detection of a band-

width denial attack from a rogue network-on-chip. In Proceedings of the 9th International Symposium on Networks-

on-Chip. ACM, New York, NY, 8.

[36] Brian Lebiednik, Sergi Abadal, Hyoukjun Kwon, and Tushar Krishna. 2018. Architecting a secure wireless network-

on-chip. In Proceedings of the 2018 12th IEEE/ACM International Symposium on Networks-on-Chip (NOCS’18). IEEE,

Los Alamitos, CA, 1–8.

[37] Sheng Li, Jung Ho Ahn, Richard D. Strong, Jay B. Brockman, Dean M. Tullsen, and Norman P. Jouppi. 2009. McPAT:

An integrated power, area, and timing modeling framework for multicore and manycore architectures. In Proceedings

of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture. ACM, New York, NY, 469–480.

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

https://cwe.mitre.org/
https://www.darpa.mil/news-events/ssith-proposers-day
https://software.intel.com/content/www/us/en/develop/tools/system-studio/documentation.html
https://software.intel.com/content/www/us/en/develop/tools/system-studio/documentation.html

Reconfigurable Network-on-Chip Security Architecture 53:25

[38] David McGrew and John Viega. 2004. The Galois/counter mode of operation (GCM). Submission to NIST Modes of

Operation Process 20 (2004).

[39] David A. McGrew. 2002. Counter Mode Security: Analysis and Recommendations. Cisco Systems.

[40] Alireza Monemi, Jia Wei Tang, Maurizio Palesi, and Muhammad N. Marsono. 2017. ProNoC: A low latency network-

on-chip based many-core system-on-chip prototyping platform. Microprocessors and Microsystems 54 (2017), 60–74.

[41] Effy Raja Naru, Hemraj Saini, and Mukesh Sharma. 2017. A recent review on lightweight cryptography in IoT. In

Proceedings of the 2017 International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC’17).

IEEE, Los Alamitos, CA, 887–890.

[42] Umit Y. Ogras and Radu Marculescu. 2013. Modeling, Analysis and Optimization of Network-on-Chip Communication

Architectures. Vol. 184. Springer Science & Business Media.

[43] Fernando Pereñíguez-García and José L. Abellán. 2017. Secure communications in wireless network-on-chips. In

Proceedings of the 2nd International Workshop on Advanced Interconnect Solutions and Technologies for Emerging Com-

puting Systems. ACM, New York, NY, 27–32.

[44] Ronald Rivest. 1992. The MD5 Message-Digest Algorithm. Retrieved July 31, 2020 from https://tools.ietf.org/html/

rfc1321.

[45] K. Sajeesh and Hemangee K. Kapoor. 2011. An authenticated encryption based security framework for NoC archi-

tectures. In Proceedings of the 2011 International Symposium on Electronic System Design. IEEE, Los Alamitos, CA,

134–139.

[46] Johanna Sepúlveda, Daniel Flórez, and Guy Gogniat. 2015. Reconfigurable security architecture for disrupted pro-

tection zones in NoC-based MPSoCs. In Proceedings of the 2015 10th International Symposium on Reconfigurable

Communication-Centric Systems-on-Chip (ReCoSoC’15). IEEE, Los Alamitos, CA, 1–8.

[47] Johanna Sepúlveda, Andreas Zankl, Daniel Flórez, and Georg Sigl. 2017. Towards protected MPSoC communication

for information protection against a malicious NoC. Procedia Computer Science 108 (2017), 1103–1112.

[48] Avinash Sodani, Roger Gramunt, Jesus Corbal, Ho-Seop Kim, Krishna Vinod, Sundaram Chinthamani, Steven Hutsell,

Rajat Agarwal, and Yen-Chen Liu. 2016. Knights landing: Second-generation Intel Xeon Phi product. IEEE Micro 36,

2 (2016), 34–46.

[49] William Stallings, Lawrie Brown, Michael D. Bauer, and Arup Kumar Bhattacharjee. 2012. Computer Security: Princi-

ples and Practice. Pearson Education, Upper Saddle River, NJ.

[50] L. Thulasimani and M. Madheswaran. 2010. Implementation of an energy efficient reconfigurable authentication unit

for software radio. International Journal on Computer Science and Engineering 2, 04 (2010), 1375–1380.

[51] Muhammad Usman, Irfan Ahmed, M. Imran Aslam, Shujaat Khan, and Usman Ali Shah. 2017. SIT: A lightweight

encryption algorithm for secure Internet of Things. arXiv:1704.08688.

[52] Zhu Wang, Yan Yao, Xiaojun Tong, Qinghua Luo, and Xiangyu Chen. 2019. Dynamically reconfigurable encryption

and decryption system design for the Internet of Things information security. Sensors 19, 1 (2019), 143.

[53] David Wentzlaff, Patrick Griffin, Henry Hoffmann, Liewei Bao, Bruce Edwards, Carl Ramey, Matthew Mattina, Chyi-

Chang Miao, John F. Brown III, and Anant Agarwal. 2007. On-chip interconnection architecture of the tile processor.

IEEE Micro 27, 5 (2007), 15–31.

[54] Robert S. Winternitz. 1984. A secure one-way hash function built from DES. In Proceedings of the 1984 IEEE Symposium

on Security and Privacy. IEEE, Los Alamitos, CA, 88–88.

[55] Steven Cameron Woo, Moriyoshi Ohara, Evan Torrie, Jaswinder Pal Singh, and Anoop Gupta. 1995. The SPLASH-

2 programs: Characterization and methodological considerations. ACM SIGARCH Computer Architecture News 23, 2

(1995), 24–36.

[56] Young Jin Yoon, Nicola Concer, Michele Petracca, and Luca P. Carloni. 2013. Virtual channels and multiple physical

networks: Two alternatives to improve NoC performance. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems 32, 12 (2013), 1906–1919.

Received August 2019; revised March 2020; accepted June 2020

ACM Transactions on Design Automation of Electronic Systems, Vol. 25, No. 6, Article 53. Pub. date: August 2020.

https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc1321

