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Dynamic cache reconfiguration (DCR) is an effective technique to optimize energy consumption in many-core

architectures.While early work onDCR has shown promising energy saving opportunities, prior techniques are

not suitable for many-core architectures since they do not consider the interactions and tight coupling between

memory, caches and network-on-chip (NoC) traffic. In this paper, we propose an efficient cache reconfiguration

framework in NoC-based many-core architectures. The proposed work makes three major contributions. First,

we model a distributed directory based many-core architecture similar to Intel Xeon Phi architecture. Next,

we propose an efficient cache reconfiguration framework that considers all significant components, including

NoC, caches and main memory. Finally, we propose a machine learning based framework that can reduce

the exploration time by an order of magnitude with negligible loss in accuracy. Our experimental results

demonstrate 18.5% energy savings on average compared to base cache configuration.
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1 INTRODUCTION
Many-core architectures emerged as the most promising solution to satisfy growing performance

demand under tight power and thermal constraints. [6, 23]. Multiple cores operating at a lower

frequency than a single fast core enable better power and performance (PnP) trade-off by running

the workloads in parallel. The ITRS (International Technology Roadmap for Semiconductors)

2015 roadmap projects that the increased demand for information processing will drive a 30-fold

increase in the number of cores by 2029 [17]. Indeed, one of the most recent many-core processor

architectures - the Intel Xeon Phi, code named “Knights Landing" (KNL), features 64-72 Atom cores

and 144 vector processing units [30].
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The growing number of cores can be utilized effectively only if they have a fast and high through-
put connection to memory. Thus, network-on-chip (NoC) has become the standard interconnect

solution to address the communication requirements of many-core chipmulti-processors (CMP) [25].

The NoC connects a wide variety of components including processor cores, co-processors, caches

and memory controllers to each other. In addition to an efficient NoC, optimal cache architecture

is essential to reduce the memory access time as well as power consumption. The working set

of the applications favors different cache sizes, while its spatial locality determines favored line

size. Furthermore, applications with different temporal locality can benefit from different cache

associativity. Studies have also shown that cache subsystem reconfiguration could lead to significant

energy savings by meeting application’s diverse cache requirements [12, 14, 33, 34]. According to

Amdahl’s law, such a large contribution to the overall energy consumption makes these elements

good candidates for PnP optimization. As the cache architecture affects the traffic being injected

into the NoC, studying the memory hierarchy and NoC components at the same time is vital for

on-chip PnP estimation of CMPs.

Dynamic cache reconfiguration (DCR) has been well studied as an effective cache energy opti-

mization technique [34, 40]. DCR allows runtime tuning of the cache parameters (e.g., cache size,

associativity and line size) after deciding when and how to configure them using optimization

algorithms. This enables the CMP to optimize energy consumption while maintaining the appli-

cation’s quality of service (QoS) standards. In a typical CMP architecture, level 1 (L1) caches are

private for each core, whereas the level 2 (L2) cache is shared across all cores. Such an arrangement

introduces dependencies between the L1 and L2 caches as the configuration of one can affect the

cache accesses of the other, and vice versa [35]. Therefore, DCR techniques are commonly used to

optimize L1 caches. Similarly, cache partitioning (CP) improves performance by eliminating the

inter-task interference on a shared cache [15]. Hence, it is employed to judiciously divide portions

of L2 cache to each core.

Dynamic tuning of multi-level caches is challenging since the exploration space is prohibitively

large. Even with a small number of tunable cache parameters, the exploration space can grow

exponentially making it impractical to do a simulation-based exhaustive exploration [32]. Several

heuristics were proposed to reduce the exploration space by utilizing the independence between

various cache parameters [12, 32]. Unfortunately, these approaches suffer from accuracy and

inconsistency across different architectures.

Previous works on DCR and CP have not considered NoC traffic when calculating the overall

system energy, and therefore are not suitable for making accurate architectural decisions. Our

exploration framework is developed considering the complete memory hierarchy and NoC traffic. In

order to explore the prohibitively large design space effectively, we propose and analyze a machine

learning (ML) algorithm which predicts runtime and energy of applications with different cache

configurations. This enables us to significantly reduce the exploration time, while maintaining the

accuracy within an acceptable range.

Our major contributions can be summarized as follows;

(1) DCR-CP-NoC co-optimization: Since DCR in L1 and CP in shared L2 are closely coupled,

we explore DCR and CP together in an NoC based many-core architecture and compare it to

previous studies on two-level cache configuration in bus-based architectures. This is the first

attempt to consider NoC interactions during DCR.

(2) Efficient static profiling: We propose a machine learning algorithm to reduce the overall

static profiling time compared to the exhaustive method by an order of magnitude with minor

impact on energy savings. Results are compared with exhaustive as well as heuristic-based

approaches.
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(3) Dynamic programming based optimization: We propose a dynamic programming (DP)

based algorithm to find optimal L1 cache configurations for each application and L2 partition

factors for each core. Effective utilization of DP allows this exploration to run with linear

time complexity with respect to the number of cores.

(4) Extensive evaluation: We accurately model the NoC traffic flow and energy consumption.

Then, we evaluate our approach by running 14 benchmarks on a realistic Intel Xeon Phi

configuration with 32 tiles [30] using the gem5 full-system simulator [5].

The remainder of the paper is organized as follows. Section 2 discusses the related work. Section

3 presents some background information required to understand our approach. Section 4 motivates

the need for this work. Section 5 describes our exploration framework. Section 6 presents the

experimental results. Finally, Section 7 concludes the paper.

2 RELATEDWORK
Reconfigurable cache architectures have been extensively studied utilizing techniques, such as

way shutdown, way management, cache partitioning and resizing [2, 21, 24, 40]. Settle et al. [29]

introduced a reconfigurable cache architecture specific for CMPs. These architectures were used

to explore cache reconfiguration techniques in several orthogonal directions ranging from single

core [32], multi core [13, 15], realtime [34], and embedded [35] systems. Cache partitioning (CP)

techniques are mainly focused on improving performance of many-core systems [18, 27]. Beckmann

et al. proposed JIGSAW, a cache organization method that addresses scalability and interference

issues of shared caches. However, their work only discussed reconfiguration in L2 cache. As shown

in [35] and [15], reconfiguring L1 would change the L2 traffic and therefore, requires simultaneous

L1 and L2 reconfiguration. The existing L1/L2 reconfiguration methods are primarily based on

static and/or dynamic analysis [34, 35]. These methods explore various configurations and decide

which one to use depending on application characteristics. If application characteristics are known

a priori, static analysis is beneficial since dynamic analysis can pose significant overhead and lead

to unpredictable performance impact. However, dynamic analysis of a limited set of configurations

is the only option when static profiling is not feasible. The above approaches can lead to unrealistic

results in NoC-based many-core architectures since they do not consider the energy impact of NoC

traffic during exploration.

Studies on NoC traffic exploration proves the fact that NoC traffic largely affects the CMP

PnP statistics [7]. Several studies were carried out in efficient distribution of memory traffic to

provide quality-of-service guarantees [19], optimum memory controller placement [37] and task

scheduling [28]. Yet, the impact on NoC traffic behavior as a result of cache configuration has

not been studied to this date. Combining the effects of NoC communication to overall energy

consumption, Chen et al. proposed to dynamically turn on and off L2 cache banks to save energy

in optical NoCs which has silicon-photonic links [9]. This work is fundamentally different from

ours as it works with optical NoCs that communicate using laser beams that shows completely

different characteristics compared to an electrical on-chip network.

One of the major concerns in static and dynamic analysis of possible cache configurations

is the exploration time. The exploration space grows significantly with the number of tunable

cache parameters and levels of cache (L1, L2 etc.). In order to reduce the exploration complexity,

heuristic-based approaches [12, 32] consider only a small set of potential configurations based

on specific observations (such as independence or priority of specific parameters). While these

approaches can reduce the exploration time, the quality of results can be far from the optimal. Our

proposed approach utilizes machine learning to drastically reduce the exploration time with minor

(acceptable) loss in the quality of results. Our work provides a coherent framework that enables
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the exploration of optimum cache configurations in NoC-based many-core CMPs while addressing

the exploration space complexity by a machine learning based static profiling technique.

3 BACKGROUND
3.1 Configurable Cache Architecture
Figure 1 shows a standard NoC-based many-core architecture with a shared L2 cache, private

instruction (IL1) and data (DL1) caches. Both L1 and L2 caches are reconfigurable. L1 cache config-

uration can be changed by changing its capacity, line size and associativity. L2 cache is partitioned

among all the cores and the partitions are decided depending on the application requirements.

Fig. 1. Many-core architecture with private instruction (IL1) and data (DL1) caches as well as shared L2 cache.

The cache architecture used in our work contains four separate banks operating as four separate

ways. Figure 2 shows cache configurability of L1 caches with an illustrative example. If the base

cache size is 4kB, we have four 1kB banks [39] (Figure 2a). Cache associativity can be reconfigured by

concatenating neighboring ways (Figure 2b). To change cache sizes, gated Vdd is used to shutdown

banks causing the effective cache size to shrink. A 4kB cache can have 4-way, 2-way and 1-way

(direct mapped) associativity. However, if the cache size is reduced to 2kB, it can only have 2-way

and 1-way associativity because a 4-way associativity will mean shutting down or concatenating

half of the bank/way and that is not supported in the architecture (Figure 2c). Line size can be

changed by changing the number of unit length blocks fetched during each cache access (Figure 2d).

This reconfigurable cache architecture has very little overhead and requires simple hardware

changes [40]. Runtime re-configuration of L1 cache is done by using special configuration registers.

The configuration registers inform the cache tuner which is a lightweight process implemented on

hardware, to concatenate ways to change associativity. Similarly, the configuration registers can be

configured to shut down ways causing the cache size to change. It is important to note that our

contribution is an efficient technique that determines which cache configuration should be used for

a given application. As explained in related work and following sections, run-time configuration of

caches is a well studied problem and our architecture proposes to use existing mechanisms to tune

the cache once an optimum configuration is found.

For the shared L2 cache, we use a way-based partitioning method that differs from traditional

LRU replacement policy that implicitly partitions cache sets based on demand [29]. Figure 1 depicts

a cache set with 8-way associativity which can be partitioned in the granularity of ways. Each core

will access only the group of ways assigned to it in all the cache sets. LRU replacement is enforced

in each individual group by maintaining a separate set of “age bits”. Way-based partitioning is

useful for exploiting energy efficiency. Number of ways assigned to a core is referred to as the

core’s partition factor. Core 1 in Figure 1 for example has an L2 partition factor of two. In our

study we use static cache partitioning. In other words, each core’s L2 partition factor is constant
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Fig. 2. Cache configurability of a 4kB cache arranged as 4 banks. (a) base cache layout with 4 banks, (b)
change of associativity by way concatenation, (c) change of cache size by shutting down ways, (d) change of
line size by fetching subsequent blocks and storing them in subsequent cache blocks.

throughout system execution and is predetermined. Since L1 DCR has a major impact on L2 CP,

the exploration framework should support tuning of all possible parameters simultaneously [32].

For example, the number of L2 accesses is dependent on the number of L1 misses. Also, the miss

penalty of the L1 cache is dependent on the configuration of the L2 cache.

3.2 Memory modes in KNL architecture
Knights Landing (KNL) is the codename for the second generation Xeon-Phi processor introduced

by Intel which targets highly parallel workloads [30]. An overview of the KNL architecture is

shown in Figure 3. It has 36 tiles arranged in a Mesh interconnect. It supports two types of memory

- (i) multi-channel DRAM (MCDRAM) which is a 16 gigabyte high-bandwidth memory, and (ii)

double data rate (DDR) memory which has a capacity of 384 gigabytes with less bandwidth. The

architecture gives the option of configuring these two memories in several configurations which

are called memory modes.
KNL introduces three memory modes which can be selected during boot time from the BIOS.

These modes are Flat, Cache and Hybrid (Figure 4). The introduction of the memory modes enables

the exploitation of the different characteristics of applications running on the processor.
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Fig. 3. Overview of the KNL architecture [30].

• Flat Mode: In Flat mode, the MCDRAM and the DDR memory are both mapped in the same

system address space. This mode is ideal for applications with data that can be separated into

categories of a larger, low-bandwidth region, and a smaller, high-bandwidth region.

• Cache Mode: In Cache mode, MCDRAM acts as a last level cache which sits in between the

DDR memory and L2 cache. The cache is direct mapped with a cache line size of 64-bytes.

All memory requests first go to the MCDRAM for a cache memory lookup. If there is a cache

miss, they are sent to the DDR memory.

• Hybrid Mode: In Hybrid mode either a quarter or a half of the MCDRAM is used in Cache

mode and the rest is used as Flat mode memory. The DDR memory will be served by the

cache portion. This works well for a variety of applications that take advantage of storing

frequently accessed data in flat memory while also benefiting from regular caching.

Fig. 4. Three memory modes available in KNL architecture - Flat, Cache and Hybrid [30].

4 MOTIVATION
4.1 Impact of DCR on Power and Performance
As an illustrative example, we ran FFT benchmark from SPLASH-2 benchmark suite on a similar

architecture and recorded energy and runtime values for two DL1 configurations - 32K_2W_32B1

and 8K_1W_32B [36]. IL1 configuration is the same for both executions. As shown in Figure 5,

they give different runtime and energy values. If the performance of the system is not critical,

1
In this paper, we show cache configurations using three parameters. For example, 32K_2W_32B represents a cache with

32kB cache capacity, 2-way set associativity and 32 byte line size
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using the configuration that gives the least energy consumption (8K_1W_32B) should be selected.

If the performance target is to execute the application in 4ms , we can observe in Figure 5b that

8K_1W_32B does not meet the requirement. In that case, 32K_2W_32B should be selected which

meets the desired performance even though it consumes more energy.

(a) Energy Consumption (b) Runtime

Fig. 5. Energy consumption and runtime of two cache configurations running FFT. The choice of a specific
configuration presents a trade-off between energy savings and performance overhead.

In reality, the number of possible cache configurations is much larger than two. For example,

Section 5.3 shows that there are 504 valid cache configurations in our specific exploration framework.

When NoC power consumption is considered, the energy optimization problem becomes even

more complex.

With NoC being the most preferred interconnection technology in modern CMPs, it is imperative

to account for the NoC while exploring the cache configurations. As shown in Figure 6, power

consumption of the NoC portion of CMP is a function of the application executed, L1 and L2

configurations. We observe that with increased L1 cache size, NoC power consumption decreases.

This is expected because increasing L1 cache size causes less L1 misses and as a result, fewer packets

being injected to the network. From the NoC power model illustrated in Section 5.2, we can see

that decreasing number of packets on the network decreases the NoC power. NoC power is shown

in this figure instead of energy for comparisons across applications by eliminating the performance

factor. In this study, both the applications are running on exactly the same CMP model.

(a) FFT (b) RADIX

Fig. 6. NoC dynamic power consumption with different DL1 configurations and L2 partition factors. IL1
cache is fixed at 32K_2W_64B.
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Figure 7 illustrates NoC energy consumption as a percentage of total energy. NoC energy, core

energy and energy contribution from other components (last level cache, memory, etc.) are shown

for comparison. As expected, the NoC energy consumption decreases with increasing cache size

and associativity. More precisely, NoC energy consumption percentage reduces by more than half

from 22% to 10% when DL1 cache size is doubled. This is expected since the number of requests

going to off-chip memory is reduced. It further reduces to 3% with further increase in DL1 size

and IL1 associativity. A fixed line size of 64B and a fixed partition factor of 2 are used for all three

experiments. Irrespective of the choice of partition factor, our results show that NoC is an important

contributor to overall energy consumption.

Fig. 7. Core and NoC energy as a percentage of total CMP energy consumption. Line size is fixed at 64B and
a partitioning factor of 2 is used for every application. 16K_2W_32K_2W interpreted as 16kB IL1 with 2-way
associativity and 32kB DL1 with 2-way associativity.

Given the above observations, it is evident that ignoring the energy contribution from NoC

when exploring L1 DCR and L2 CP trade-offs in an NoC based many-core architectures can lead

to misleading conclusions. Therefore, it is important to model NoC traffic as well as its energy

accurately.

4.2 Impact of Memory Modes in KNL Architecture
To further emphasize the importance of cache reconfiguration exploration in many-core archi-

tectures, we ran some experiments on Intel Xeon Phi 7210 hardware platform which implements

the KNL architecture [16]. The selection between different memory modes is essentially a cache

reconfiguration as the total amount of memory is fixed and it is divided among shared cache and

main memory to fit the application characteristics. The two extreme configurations out of all the

possibilities are Flat and Cache modes since Cache mode allocates all 16GB of MCDRAM memory

as cache and Flat mode allocates it as main memory. Since the Hybrid configurations fall in the

middle, we ran tests using these extreme configurations to illustrate their effects on application

runtime.

Figure 8 shows execution time of 6 complex benchmarks running on KNL Flat and Cache

modes. All these applications show benefits in the Cache mode. Yet, the percentage speedup varies

drastically between a minimum of 2.3% for LINPACK benchmark to a maximum of 77.1% for LBS3D.
This behavior is expected when executed on Xeon Phi hardware board since the Cache mode is able

to exploit the memory access patterns in LBS3D benchmark, and as a result, provided significant

performance improvement compared to Flat mode. On the other hand, Cache mode is slightly

better than Flat mode in case of LINPACK memory access patterns. It is important to note that the

execution time for each application is normalized with respect to the execution time in Flat mode.

Therefore, the comparison shows how much Cache mode will benefit over Flat mode for a given

application.

This proves that state-of-the-art CMPs support different cache configurations and as a result,

application power and performance can vary drastically. However, instead of the limited number
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Fig. 8. Execution time variation in Cache vs Flat memory modes in Intel Xeon Phi 7210 processor.

of possible cache configurations introduced in the KNL architecture, it is beneficial to have more

tunable cache parameters so that more optimization opportunities are available. This has not been

possible due to the lack of simulation frameworks that capture all the significant components in a

CMP including NoC, caches and main memory. The simulation framework should be accompanied

by an efficient cache reconfiguration framework which selects the best cache configuration for a

given application.

4.3 Design Space of Possible Cache Configurations
Even though having more tunable cache parameters gives more optimization opportunities, it

can cause the number of possible cache configurations (design space) to grow exponentially. This

makes it infeasible to run all possible cache configurations exhaustively and come to a conclusion

on the best cache configuration for a given application. The existing solutions for this as explained

in Section 2, suffer from loss of accuracy and inconsistency across architectures. Therefore, we

propose a machine learning based approach that achieves high accuracy and drastically reduces the

exhaustive exploration time. We provide a detailed calculation for the motivation of our approach

in Section 5.3.1 after we have defined the terminology used in our paper in section 5.1.

5 EFFICIENT CACHE-NOC-MEMORY CO-EXPLORATION
Figure 9 shows an overview of our cache reconfiguration framework. It consists of two parts:

(i) static profiling of application programs, and (ii) runtime (dynamic) inter-application cache

reconfiguration. The static profiling is used to determine the most profitable cache configuration

for a given application under various design constraints. This is done by reducing the exploration

space using a machine learning based approach (Section 5.3) and running a dynamic programming

based optimization algorithm to find the optimum cache configurations (Section 5.4 and Section

5.5). An optimum cache configuration table is created at this stage - each row of the table contains

the most profitable cache configuration for an application. When an application starts execution,

the cache tuner changes the cache based on the configuration stored in the table at runtime. This

cache tuning is possible according to the reconfigurable cache architecture described in Section 3.1.

The goal of this paper is to develop a framework that efficiently constructs the optimum cache

configuration table. Using the configurations in the table to tune the cache during runtime is beyond

the scope of this paper. Runtime configuration is a well studied problem and existing mechanisms

can be applied to deal with it.

This section is organized as follows. We first provide the problem formulation (Section 5.1)

followed by the power/energy models (Section 5.2). The next three subsections describe the three

important steps in our static profiling framework: (i) machine learning based static profiling (Section

5.3), (ii) dynamic programming based per-core optimization (Section 5.4), and (iii) optimization

across all cores (Section 5.5).
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Fig. 9. Overview andmain steps in our proposed approach. An optimum cache configuration table is generated
through static analysis (machine learning reduces the static profiling effort, and dynamic programming finds
the best possible configuration for an application). When an application starts execution (during runtime),
the cache tuner selects the respective configuration from the optimum cache configuration table and tunes
the cache parameters.

5.1 Problem Formulation
We model the many-core system with the following parameters and convert the exploration into a

minimization problem.

• The CMP consists of n cores. The set of all cores is denoted by P : {p1, p2, ..., pn }.
• Each core consists of private IL1 and DL1 caches. Each private cache can be configured into r
different configurations as explained in Section 3. Set of all cache configurations are - C : {c1,

c2, ..., cr }.
• The L2 cache, which is shared among all n cores, is α-way associative with way-based

partitioning support.

• m independent applications T : {τ1, τ2, ..., τm } are executed on the CMP model without

violating quality of service (QoS) requirements quantified by a Performance Target D. In a

given application mix, each application can finish at different times, but there is a common

soft deadline by which all applications should be completed. Violations of this performance

target deteriorate the QoS. The illustrative example in Section 4 introduces the usage of D.
How to select D for a given application set is described in more detail in Section 6.2.

The assumption of a common soft deadline for an application set, which is represented by the

performance target, is made to generate results that are comparable with existing approaches. In

many classes of embedded systems, the tasks can be divided into multiple sets of tasks, where the

priority as well as the deadline is same for the tasks in each set. In other words, the priority as well

as the deadline will be different for tasks in two different sets. In the extreme, each set may contain

only one task, thereby, enabling individual deadlines for each task. Our approach is applicable for

tasks with individual deadlines without any changes to the proposed algorithm.

The goal of our optimization algorithm is to find a reconfiguration scheme R for IL1 and DL1

and a partition scheme Π for the L2 cache such that the assigned applications run with minimal

energy E without violating QoS standards where;

E = Ecores + Ecaches + Enoc + Ememory + Edirector ies (1)

The inputs to the proposed algorithm are as follows:

• Set of all possible L1 cache configuration schemes R which assigns a cache configuration to

each IL1 and DL1 cache for each application - R : T→ CI ,CD .

• Set of all possible L2 cache partitioning schemes Π : {w1,w2, ...,wn } which assignswk ways

to core k .
• An application mapping scheme M: T→ P which maps them applications to the available

cores. The application mapping is beyond the scope of this paper and M is assumed to be

available. Here, δk denotes the number of applications mapped to core k .

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 000. Publication date: 2019.



Efficient Cache Reconfiguration using Machine Learning in NoC-based Many-Core CMPs 000:11

Let τk,i denote the i
th

application running on core k . Similarly, ϵk,i (cI , cD ,wk ) is the total CMP

energy consumption for τk,i with cI , cD as IL1 and DL1 cache configurations, respectively, andwk
partition factor. In other words, ϵk,i (cI , cD ,wk ) denotes the energy contribution to total energy E
from τi . Here, tk,i (cI , cD ,wk ) represents the time spent by τk,i with the said cache configurations.

Then, the optimization problem can be expressed as the minimization of:

E =
n∑

k=1

δk∑
i=1

ϵk,i (cI , cD ,wk ) (2)

subject to:

max

k=1..n
(

δk∑
i=1

tk,i (cI , cD ,wk )) ≤ D (3)

n∑
k=1

wk = α ;wk ≥ 1,∀k ∈ [1,n] (4)

As shown in Equations (1) and (2), E consists of energy consumption in cores, caches, NoC,

off-chip memory and directories. The constraint in Equation (3) guarantees that all applications

will meet the required QoS standards quantified by the performance target D whereas Equation (4)

verifies that the partitioning scheme is valid.

5.2 Cache Coherent Traffic Flow and Energy Models
This section describes the traffic flow and energy model used in the NoC and Cache of our architec-

ture model.

5.2.1 NoC Traffic and Energy Model. Since dynamic power consumption of an NoC is a function of

the traffic flow, we need to model a realistic traffic flow and use an energy model that captures the

changes in the traffic flow. For this purpose, we model the traffic flow of Cache memory mode in

KNL architecture. An example is shown in Figure 10 to illustrate the traffic behavior of a memory

request in Cache mode. When multiple cores are active and send many packets to the network,

their contention for resources is captured by the model presented in [1]. We used the same model

in our experiments that includes a credit-based flow control mechanism, buffers, arbiters, etc. to

capture packet behavior accurately.

Fig. 10. Traffic model in Cache memory mode in KNL architecture in case of an L1 and MCDRAM miss: (1)
L1 cache miss. Memory request injected on the network to check the tag directory, (2) request forwarded to
MCDRAM which acts as a cache after miss in tag directory, (3) request forwarded to memory after miss in
MCDRAM, (4) data read from memory and sent to the requester.
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In a typical mesh network where a router is connected to each processing element, energy

consumption for sending one bit of data from a source tile (ts ) to a destination tile (td ) can be

calculated using the Manhattan distance between them [4]. The bit energy metric defined by Ye et

al. [38] defines the dynamic part of the communication energy as

Ebit = EF + EL + EB (5)

where EF , EL and EB represent the energy consumption per bit by the switch fabric, link and buffer,

respectively. If Vi represents the supply voltage for tile i and bit energy values are measured at

VDD , the energy needed to transmit one bit through P tiles can be abstracted by [26];

Ets ,tdbit =
∑
i ∈P

(EF (i) + EL(i) + EB (i)) ·
V 2

i

V 2

DD
(6)

The links connecting the routers consume power because of their switching activity (toggle between

logic 0 and logic 1). Power consumption in a traditional router with four pipeline stages (routing

computation, virtual channel allocation, switch allocation and switch traversal) is a combination of

power consumed in buffers, arbiter, allocator and crossbar switch. This is captured by EB and EF .
Assuming that the architecture is fixed, the energy model in Equation 6 shows two main contrib-

utors to NoC power:

(1) Number of packets injected to the network - this is directly related to the number of cache

misses in L1 and L2 caches.

(2) Average hops traversed by packets - depends on the placement of NoC components such as

memory controllers, home directories and last level cache.

This NoC energy model was adopted from the work done by Ogras et al. [25] and it is validated

with both simulations and real hardware data.

5.2.2 Cache Energy Model. The total energy consumption of cache (Ecache ) is not only the energy

consumed by the cache memory (Earray ), but also the energy consumed by the memory addressing

path (Eaddress_path ) and the I/O path (EI/O_path ) [31]. Therefore, the total cache energy consumption

can be calculated as;

Ecache = Earray + Eaddress_path + EI/O_path (7)

Eaddress_path is determined by the switching activity of the address bus. The tag and data memory

arrays usually dominate the total cache energy consumption Earray . The energy model used in our

approach is based on dynamic logic where bit lines are pre-charged on every access. Therefore,

the energy consumed by the tag and data arrays will be determined by the number of accesses.

The I/O path includes I/O pads as well as address and data buses connected to it. Out of these

components, the switching activity of the I/O pads usually dominate that energy component

(EI/O_path ). Therefore, the three main components of Ecache can be computed as follows;

Earray = α · taд_access + β · blk_access (8)

Eaddress_path = γ · bsr_addr_bus (9)

EI/O_path = δ · bsr_addr_pad + ϵ · bsr_data_pad (10)

where;

taд_access - access rates of bit-lines in cache tag arrays

blk_access - access rates of bit-lines in cache block arrays

bsr_addr_bus - bit switching rates of address bus
bsr_addr_pad - bit switching rates of address pads

bsr_data_pad - bit switching rates of data pads

α , β ,δ ,γ , ϵ - constants depending on VLSI implementation.
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This model is similar to the cache energy model implemented in the widely usedMcPAT simulator

and has been verified with hardware data [20]. We used the default energy models available in the

McPAT simulator for other components in the SoC.

5.3 Efficient Static Profiling using Machine Learning
We need a profile table including the runtime and energy consumption of each application when

running with all valid cache configurations to give as input to the optimization algorithm (second

and third steps of Algorithm 2).

5.3.1 Design Space of Possible Cache Configurations. According to the reconfigurable cache ar-

chitecture described in Section 3, both IL1 and DL1 have 6(= 3 + 2 + 1) possible configurations

each. When two possible line sizes are used (64B and 32B), changing IL1 and DL1 at the same

time, it gives 72(= 6 × 6 × 2) candidates for IL1 and DL1. It is in-feasible to profile application

with all possible L1 reconfiguration schemes R, all possible L2 partition schemes Π, for the whole

application set T and all possible application mappings schemes M [35].

As a solution for this, Wang et al. [32] proposed to reduce the exploration time significantly

based on the following observations:

• All the applications in Table 2 are independent with no inter-application data sharing. An

application can always start and complete on the assigned core without any migrations

happening during runtime.

• The L1 cache is private for each core and the configuration of L1 in one core doesn’t have

any effect on the other core’s configuration as there are no multi-threaded applications that

map to two cores in our application set.

• With L2 partitioning, each application uses an independent portion of the shared cache which

makes it a logical private cache.

With the applications and all the caches being independent, we can profile each application as

it was running on a uni-processor with awi -way associative L2 cache with the capacity equal to

wi
w ×oriдinal cache size . In this case, the total number of simulations requiredwould be |R|×(α−1)·m.

Thus, it takes 72 × 7 × 14 = 7056 simulations for 14 application. Even after this reduction, the

simulations take approximately one month to complete. Since the number of simulations can

grow exponentially with the number of tunable cache parameters and applications, this exhaustive

exploration becomes in-feasible, when the design space becomes arbitrarily large. As a solution,

we propose a machine learning based approach which runs only few simulations and uses that as

training data to tune a neural network model which then predicts the rest of the profile table. With

this method, time required to build the full profile table would be much lower. Figure 11 shows

profile table entries for five L1 cache configurations (out of 72 possible configurations) created by

machine learning.

Fig. 11. A portion of the profile table generated from the machine learning algorithm for stringsearch bench-
mark. 32kB_2W_64B_16kB_1W_64B interpreted as 32kB IL1 with 2-way associativity and 64B line size and
16kB DL1 with 1-way associativity and 64B line size. Time and Energy are reported inms andmJ, respectively.

ACM Trans. Des. Autom. Electron. Syst., Vol. 00, No. 0, Article 000. Publication date: 2019.



000:14 S. Charles et al.

5.3.2 Algorithm. First, a portion of the profile table entries are filled up by simulating an application

on different configurations. Next, several models are trained with the collected data, and the

model with least error is selected. If the error is within a threshold, then we predict the rest

of the profile table entries using that model. Otherwise, we collect additional training data by

running more simulations, and repeat the procedure until the error threshold criteria is satisfied.

Algorithm 1 describes our machine learning based approach. Here,Xall denotes the set of all possible

configurations for an application. Xsim is the set of configurations on which we already simulated

the application and have the corresponding table entries Ysim . The remaining configurations are

in Xpred and needs to be predicted. It is evident that Xall = Xsim + Xpred . Initially, all the table

entries are empty. Thus, Xpred = Xall and Xsim = ∅ [line 2-3]. In the subsequent iterations,

some of the configurations (Xsel ) are randomly selected from Xpred for simulation [line 6]. After

simulating with Xsel configurations, Ysel entries are put into the profile table. Consequently, Xsel
configurations are removed from Xpred and added to Xsim [line 7-9]. Size of Xsel determines the

number of simulations carried out in each iteration. Next, we train multiple models with the filled

table entries Ysim and their configurations Xsim . For model building purpose, these entries and

configurations are divided into three groups - training (Xtrain ,Ytrain), cross-validation (Xcv ,Ycv )
and testing (Xtest ,Ytest ) [line 10-11]. This essentially means that Xsim = Xtrain + Xcv + Xtest and

Ysim = Ytrain + Ycv + Ytest . Training set is used for training the model. Cross-validation is used

for hyper-parameter tuning such as learning rate or regularization parameter. Test set is used for

determining the prediction accuracy of models. A standard split is used in our experiments - 70% for

training, 15% for cross-validation, and 15% for testing. These models are further tuned by parameter

sweeping [line 13-19]. In our experiments, we trained a shallow neural network, and changed

the number of nodes in the hidden layer during the parameter sweep. If the prediction error is

larger than the error threshold ϵ , we collect more simulation data and repeat the model building

procedure. Alternatively, if error is within the threshold, then the model is used for predicting the

rest of the profile table. Input to the model will be the configuration set Xpred and output will be

the predicted energy and runtime values (Ŷpred ) [line 20]. Full profile table is built by combining

predicted data Ŷpred and simulated data Ysim [line 21].

To calculate the error threshold, Normalized Root Mean Square Error (NRMSE) is used (Equation

11). Using NRMSE is advantageous, since it is a relative measurement. So the same threshold can

be used for all applications.

NRMSE = 100% ∗
√
MSE/Ȳ (11)

where, MSE is the mean squared error and Ȳ is the average value. NRMSE is measured over the test

data set, Ytest and Ŷtest while calculating the threshold. As experimental results demonstrate, our

machine learning framework can give a speedup of 7.76 times when the error threshold is set at 5%.

5.4 Per-Core Optimization
We tackle the optimization problem in two steps. First we find the optimum L1 cache configuration

for each core and then optimize across all cores to find the best L2 partition scheme. This subsection

illustrates optimizing each core with best L1 cache configuration. Since static partitioning is used,

applications running on one core will have the same partition factor - wk . Thus, we find best

R under different L2 partition factors. Mathematically, the goal is to find L1 configuration R to

minimize Ek (wk ) =
∑δk

i=1
ϵk,i (cI , cD ,wk ) constrained by

∑δk
i=1

tk,i (cI , cD ,wk ) ≤ D, with k and wk
fixed ∀k ∈ [1,n] and ∀wk ∈ [1,α − 1].

To find minimum energy consumption, this can be discretized to simplify the problem and we

use a dynamic programming (DP) algorithm on that. Let ϵmin
k (wk ) =

∑δk
i=1

min{ϵk,i (cI , cD ,wk )} and

ϵmax
k (wk ) =

∑δk
i=1

max{ϵk,i (cI , cD ,wk )} denote minimum and maximum possible energy on core k .
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Algorithm 1: Profile table generation using Machine Learning

/* Model building */

1 foreach application do
2 Xpred = Xall
3 Xsim = ∅

4 min_error = ∞

5 while Xpred ! = ∅ andmin_error > ϵ do
6 Xsel = randomSample(Xpred )
7 Xpred = Xpred − Xsel
8 Xsim = Xsim + Xsel
9 Ysel = simulate(Xsel )

10 [Xtrain, Xcv , Xtest ] = distr ibute(Xsel )

11 [Ytrain, Ycv , Ytest ] = distr ibute(Ysel )
12 foreach regression algorithm do

/* Parameter sweep */

13 foreach param do
14 model = train(Xtrain, Ytrain, Xcv , Ycv , param)

15 Ŷtest = predict (Xtest ,model )
16 error = nrmse(Ytest , Ŷtest )
17 if error < min_error then
18 min_error = error
19 sel_model =model
20 end
21 end
22 end
23 end

/* Profile table entry prediction */

24 Ŷpred = predict (Xpred , sel_model )
25 Yall = Ysim + Ŷpred
26 end

Thus, the energy consumption Ek (wk ) of core k is bounded by these min and max values. Let ΦE
i

be the current solution for the first i applications where E is the cumulative energy consumption

achieving best runtime. Runtime T [i][E] for ΦE
i is stored in a two-dimensional table T and the

solution for ΦE
i is updated whenever the runtime can be improved. The recursive formula used in

our DP approach is shown in Figure 12.

If (T [i][E] > T [i − 1][E − ϵk,i (cI , cD ,wk )] + tk,i (cI , cD ,wk )) {
T [i][E] = T [i − 1][E − ϵk,i (cI , cD ,wk )] + tk,i (cI , cD ,wk )}

Fig. 12. Recursive formula for dynamic programming.

The final optimal energy consumption E∗k (wk ) is found by;

E∗k (wk ) = min{Ek | T [δk ][Ek ] ≤ D} (12)

At the end of the DP algorithm, Equation 12 provides the solution for core k with partition factor

wk , which has minimum energy consumption with QoS constraints satisfied.

5.5 Optimizing the Entire CMP
Now that we have the optimal energy E∗k (wk ) calculated for a given partition factorwk on core k,

we combine the solutions across all cores to find the minimum total CMP energy consumption E∗

within all partition schemes Π as;

E∗ =min{
n∑

k=1

E∗k (wk )}, ∀{w1,w2, ...,wn} ∈ Π (13)
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Our approach across all the steps starting from building the profile table is summarized in Algorithm

2. Optimizing for each core to find best L1 configuration is shown in step 2. At each iteration (lines

3 to 25), all discretized energy values (ϵ) and L1 cache configurations for current application τk,i
are examined. The recursive DP algorithm given in Figure 12 is included in lines 3 to 24 in two

parts - initially for the first application and then from application 2 to δk .
Time complexity for step 2 isO(n ·α ·δk · |R| · (ϵmax −ϵmin)/qt ), where ϵ

max −ϵmin
is the energy

range and qt is discretization interval. We have used a constant qt in the DP algorithm throughout

our exploration. Step 3 iterates through all valid Π to find the final solution with time complexity

O(n · |Π|). Since cache parameters are constant for the given architecture model, time complexity

for both step 2 and step 3 is linear with respect to n.
When calculating the exact runtime without neglecting the constant factors, it is important to

note that |Π| depends on the constraint in Equation 4. Therefore, this becomes the classic “stars

and bars" problem in combinatorics. A theorem in combinatorics states that For any pair of positive
integers n and k , the number of k-tuples of positive integers whose sum is n, is equal to the number of
(k −1)-element subsets of a set with n−1 elements. Therefore, according to our notation, |Π| =

(α−1

n−1

)
.

However, this calculation is not required since in reality, the number of ways (α ) is as small as 8 or

16 (8-way or 16-way). Given that n represents the number of active cores, If n is greater than α , the
cache partitions will have to be shared among cores. If n is less than or equal to α , |Π| would be

small (e.g., if α = 16 and n = 12, |Π| = 1365). Therefore, this calculation can be done in constant or

linear time for most of the scenarios.

Algorithm 2: Selection of optimal cache configurations

/* 1st step: Building profile table (Section 5.3) */

1 Run Algorithm 1

/* 2nd step: Optimize on each core (Section 5.4) */

2 for k = 1 to n do
3 forwk = 1 to α − 1 do
4 for ϵ = ϵmin

k (wk ) to ϵmax
k (wk ) do

5 for cI , cD ∈ C do
6 if ϵk,1(cI , cD, wk ) == ϵ then
7 if tk,1(cI , cD, wk ) < T [1][ϵ ] then
8 T [1][ϵ ] = tk,1(cI , cD, wk )

9 end
10 end
11 end
12 end
13 for i = 2 to δk do
14 for ϵ = ϵmin

k (wk ) to ϵmax
k (wk ) do

15 for cI , cD ∈ C do
16 ϵ ′ = ϵ − ϵk,i (cI , cD, wk )

17 if T [i − 1][ϵ ′] + tk,i (cI , cD, wk )<T [i][ϵ ]
18 then
19 T [i][ϵ ]=T [i − 1][ϵ ′] + tk,i (cI , cD, wk )

20 end
21 end
22 end
23 end
24 E∗

k (wk ) = min{ϵk |T [δk ][ϵk ] ≤ D }

25 end
26 end

/* 3rd step: Optimize across all cores (Section 5.5) */

27 for all Πj = {w1, w2, ..., wn } ∈ Π do
28 E∗

j =
∑n
k=1

E∗
k (wk )

29 E∗ =min(E∗, E∗
j )

30 end
31 return E∗
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6 EXPERIMENTS
6.1 Experimental Setup
We used a cycle-accurate full-system simulator - gem5 [5] and “GARNET2.0" [1] NoC model that

is integrated with gem5, to model the multi-core architecture. Our goal was to model a realistic

architecture that included reconfigurable L1, L2 caches, and an accurate NoC traffic model. Our

previous work modeled the KNL architecture on the gem5 simulator by modifying the default

gem5 source to capture the behavior of Memory and Cluster modes in KNL [8]. There are other

multi-core architectures such as Tilera TILE64 [3] and Kalray’s MPPA-256 [10], which allows for

predictable data transfers and composition of memory accesses. However, we did our experiments

on the gem5 KNL model since we had validated the gem5 simulator model with results from real

hardware (Intel Xeon Phi 7210 hardware board) in our previous work [8].

However, the full KNL implementation is quite complex to be modeled on gem5. For example,

gem5 does not support tiles with 2 cores. Hence, there is one core in each tile in our experiments. This

mimics the scenario where one core in each tile is switched off in the hardware board. Furthermore,

KNL runs AVX512 instructions whereas our gem5 KNL model runs X86 instructions. Cache sizes

were chosen such that the applications we used get a realistic hit percentage of around 95% in

L1 cache. If we used a larger cache size, the L1 hit rate would be 100%, and any discussion about

cache reconfiguration will be meaningless. Modeling the entire KNL architecture in a simulator is

beyond the scope of this paper. Our goal was to model a realistic NoC traffic model. Even though

the absolute values are not the same, the relative advantages/disadvantages of reconfiguration

are accurately captured as shown in our previous work as well [8]. The core contributions of the

paper - cache reconfiguration mechanism and machine learning-based exploration space reduction

remains intact irrespective of the architecture.

The complete set of simulation parameters are summarized in Table 1. Power results were

obtained by feeding the gem5 output statistics to McPAT power modeling framework [20].

Table 1. System configuration parameters.

Processor Configuration

Number of cores 32

Core frequency 1.4 GHz

Instruction Set Architecture x86

Memory System Configuration

L1 Cache private, reconfigurable, separate instruc-

tion and data cache. Each 32kB in size.

L2 Cache reconfigurable, shared cache. 512kB in size.

Cache coherence MESI Two-Level directory-based cache co-

herence protocol

Memory Size 4GB DDR

Interconnection Network Configuration

Topology 8x4 Mesh

Routing Scheme X-Y deterministic

Router 4 port, 4 input buffer router with 3 cycle

pipeline delay

Link Latency 1 cycle

To evaluate the effectiveness of our approach, we use 14 benchmarks selected from MiBench [11]

- bitcnts, crc, dijkstra, patricia, qsort, sha, stringsearch and SPLASH-2 [36] - FFT, Radix, Lu, FMM,
Cholesky, Water-Nsquared, Barnes benchmark suites. In order to make the size of MiBench bench-

marks comparable with SPLASH-2, we use reduced (but well verified) input sets. Table 2 lists the

application sets which are combinations of the selected benchmarks used in our experiments. We
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choose 3 application sets where each core contains 2 benchmarks, 2 application sets where each

core contains 3 benchmarks and 1 application set where each core contains 4 benchmarks.

Out of the 32 cores in the 8x4 Mesh interconnect, we chose 16 cores just for experimental

purposes. Simulation time can be prohibitive with larger number of cores. This is evident from the

results in Figure 17. Besides being practical, this core configuration enables us to mimic that about

50% of the cores from a chip will be typically utilized at a given time. As mentioned in Section 5.1,

mapping of applications to cores is beyond the scope of this paper and the application mapping

is assumed to be given as an input. The task mapping problem in soft real-time system has been

studied before [22]. For our experimental results, to get the application mapping, we ran each

application with the base cache configuration and grouped them so that the total execution time

for each set of applications is comparable. We cannot get the execution time to be exactly the

same since it depends on cache configuration. However, the intent is to have a fair comparison

and therefore not pair up a task with quick execution time with a task with very long execution

time. This was done to make sure behaviors such as NoC congestion will be captured throughout

application runtime. Otherwise, if most cores finish their tasks and only some are running, the

experiments will give results that do not capture traffic congestion in NoC. If a task is parallelized,

it can be viewed as multiple tasks and mapping can be performed (a smart mapping algorithm is

likely to map them to the cores in a cluster). The performance target D is set in a way that there is

a feasible L1 cache assignment for every partition factor in every core. In other words, all possible

L2 partition schemes can be used.

Table 2. Application sets from the MiBench [11] and SPLASH-2 [36] benchmarks.

Application set Cores 1, 2, 3, 4 Cores 5, 6, 7, 8 Core 9, 10, 11, 12 Core 13, 14, 15, 16
Set 1 stringsearch, sha FFT, Barnes stringsearch, Lu sha, FFT

Set 2 crc, Barnes Radix, Lu Cholesky, sha qsort, FMM

Set 3 bitcnts, stringsearch FMM, Water-Nsquared Barnes, Lu Cholesky, sha

Set 4 Radix, Lu, FFT crc,sha,stringsearch qsort, Barnes, Water-Nsquared bitcnts, FMM, stringsearch

Set 5 patricia, Water-Nsquared, Barnes dijkstra, bitcnts, qsort Cholesky, Radix, crc patricia, sha, Lu

Set 6 Lu, stringsearch, FFT, patricia Water-Nsquared, FMM, qsort, dijkstra FFT, Cholesky, dijkstra, sha crc, Radix, qsort, bitcnts

6.2 Performance Target Selection
Equation (3) gives the performance target as a measure of providing the expected QoS for the

application sets. Figure 13 shows the optimal energy consumption variation as a function of the

performance target D for application set 1 in Table 2. We swept the target from 8100ms to 8600ms .
When the target is shorter than 8180ms , there was no feasible solution. As the target was increased,
it converged to the optimal which was 5324 mJ . Therefore, it is clear that the performance target

will affect the best possible energy calculated by our approach. In our experiments, we selected the

target such that each core can converge to an optimal energy under the base configuration. In this

example, the selected target was 8400ms .

Fig. 13. Energy consumption variation with performance target. A relaxed target leads to more energy savings.
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6.3 Accuracy of Profile Tables Built with Machine Learning

Section 5.3 describes our machine learning algorithm for building the profile table with less

number of simulations. Figure 14 shows the total amount of training data required for all benchmarks

over different error thresholds. Here, training data is expressed as a percentage value. This is the

ratio of profile table entries filled using simulations and total number of profile table entries, for all

14 benchmarks. Error threshold is expressed using NRMSE. As expected, the more training data we

use, lower the error threshold is. Error is less than 6% even with only 10% of training data. This

essentially means approximately an order-of-magnitude speedup in profile table generation time

compared to exhaustive simulations. Figure 15 provides the training data requirement for each

benchmark. We can see that some benchmarks require a lot of training data for accurate predictions

(e.g., Barnes, Lu, dijkstra etc.), while some benchmarks need much less (e.g., bitcnts, sha etc.). This

observation forms the basis of using error threshold instead of fixing training data percentage.

Error threshold based approach allows more simulation time for benchmarks that require more

training data to be accurate.

Fig. 14. Average training data required with varying error threshold for all benchmarks. e.g., by using 12.86%
training data, we can achieve results within 5% error margin.

Fig. 15. Required training data for different error thresholds. Less than 6% error is observed with as little as
10% data.

To evaluate our approach, we compare results of the predicted profile tables with profile tables

obtained from exhaustive and heuristic-based approaches. Figure 16 compares the accuracy of the

following 3 strategies that can be used to build the profile table by showing the optimal energy

consumption;

• Exhaustive: All cache configurations explored exhaustively. This acts as the reference which
gives the global optimal solution.

• Our approach (ML): Configurations selected keeping the error threshold at 5% as training

data and Algorithm 1 used for predicting.

• Heuristic [32]: Cache configurations selected using ICT heuristic (configurations where

DL1 and IL1 are the same) proposed by Wang et al..
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Algorithm 2 uses these profile tables to get the optimum cache configurations while maintaining

QoS standards. Those values are then normalized to the energy consumption of the base cache

configuration. As discussed in Section 6.1, our reconfigurable L1 cache has a base size of 32kB and

a shared 512kB L2 cache. We observe in Figure 16 that compared to the base configuration, the

profile table built with the exhaustive approach can achieve 18.49% energy savings on average

across all application sets. The energy savings provided by our approach (ML) is very accurate

(within 0.95% on average). It achieves the highest performance in set 1 with an error of only 0.2%,

whereas heuristic gives an error of 6.9%. Heuristic-based approach gives relatively worse results as

it populates only a portion of the profile table based on ICT. Therefore, it is likely that the optimum

configuration found by exhaustive exploration is not in the profile table at all. In contrast, our

approach uses the training data to predict the whole table and therefore, depending on the accuracy

of the prediction, converges closer to the optimal.

Fig. 16. Energy consumption observed compared to the Base cache configuration across all profile table
generation techniques. Goal is to get results similar to exhaustive approach.

The runtime of these approaches are shown in Figure 17. It takes 36.73 days to complete the

exhaustive exploration using the modified gem5 simulator on an unparallelized setup. Heuristic

selects 16.67% of the total exploration space and hence, shows a speedup of six times. In contrast,

our approach selects only 12.86% of the total exploration space as training data and takes 5 minutes

to tune the neural network model which results in an effective speedup of 7.76 times. The time

taken to train the ML algorithm is negligible compared to the profiling time. Therefore, we obtain

higher accuracy while consuming less time compared to the heuristic approach.

Fig. 17. Times taken for different static profiling approaches. Our approach takes least time.

Our machine learning approach populates the whole profile table unlike the heuristic method

which populates less than 10% of it. This allows us to estimate energy consumption for all possible

cache configurations, and as a result, leads to better energy savings. Specifically, our approach

provides up to 7% (3% on average) improvement in energy efficiency while being 1.29 times faster

compared to heuristic method. Most importantly, our approach is 7.76 times faster compared to

the exhaustive method and still provides close to optimal energy savings (on average deviation of

0.05%).
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7 CONCLUSIONS
This paper explores cache configuration optimization in an NoC based many-core architecture

and addresses the issue of large exploration space in DCR. We significantly reduce the exhaustive

exploration time by employing a machine learning based approach. This approach selects only a

few configurations and trains a neural network model which then predicts the rest of the profile

table. The proposed DCR algorithm then finds the optimum L1 configuration for each core and

optimum partition factor for the shared L2 cache. The results show an average energy savings of

18.49% compared to the base configuration across all application sets. The ML predictions gave

energy savings within 0.95% accuracy on average compared to the exhaustive method with a 7.76

times speedup which proves to be better than previously proposed heuristic-based methods both in

terms of accuracy and speedup. Overall, our approach provides an order-of-magnitude reduction

in exploration effort with negligible impact on accuracy.
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