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Abstract—Hardware Trojan detection has emerged as a critical
challenge to ensure security and trustworthiness of integrated
circuits. A vast majority of research efforts in this area has
utilized side-channel analysis for Trojan detection. Functional
test generation for logic testing is a promising alternative but
it may not be helpful if a Trojan cannot be fully activated or
the Trojan effect cannot be propagated to the observable outputs.
Side-channel analysis, on the other hand, can achieve significantly
higher detection coverage for Trojans of all types/sizes, since it
does not require activation/propagation of an unknown Trojan.
However, they have often limited effectiveness due to poor
detection sensitivity under large process variations and small
Trojan footprint in side-channel signature. In this paper, we
address this critical problem through a novel side-channel-aware
test generation approach, based on a concept of Multiple Exci-
tation of Rare Switching (MERS), that can significantly increase
Trojan detection sensitivity. The paper makes several important
contributions: i) it presents in detail a scalable statistical test
generation method, which can generate high-quality testset for
creating high relative activity in arbitrary Trojan instances; ii)
it analyzes the effectiveness of generated testset in terms of
Trojan coverage; and iii) it describes two judicious reordering
methods that can further tune the testset and greatly improve the
side channel sensitivity. Simulation results demonstrate that the
tests generated by MERS can significantly increase the Trojans
sensitivity, thereby making Trojan detection effective using side-
channel analysis.

I. INTRODUCTION

Hardware Trojan attacks relate to malicious modifications
in the design of Integrated Circuits (ICs) at different stages
of the design or fabrication process [2]. An adversary can
introduce these modifications in a design in order to cause
disruption in normal functional behavior and/or to leak secret
information from a chip during operation in field. Since the
threat of hardware Trojan in the form of a malicious implant
in a design came into light about a decade ago through an
US Department of Defense announcement [3], it has triggered
vast body of research activities in threat analysis as well as
design/validation solutions to evaluate this threat and protect
against it. Hardware Trojan attacks are also being increasingly
recognized in the semiconductor industry as a serious concern
in terms of security and trustworthiness of ICs.

A Trojan is expected to be covert and difficult to detect,
i.e. an intelligent adversary will likely insert a Trojan circuit
in a way that evades detection during post-manufacturing
functional/parametric testing, but manifests itself during long
hour of in-field operation. This can be achieved by externally
triggering its operation or by making it dependent on rare cir-
cuit conditions inside an IC. The condition of Trojan activation

as commonly referred to as trigger condition, which can be
purely combinational or sequential. The latter is related to the
clock or a sequence of rare events in the state elements (e.g.
flip-flops of registers). The internal circuit nodes affected by a
Trojan activation are referred to as payload of a Trojan. Fig. 1
shows some example Trojan circuits including a combinational
and a sequential Trojan. For example, a Trojan circuit could
be triggered only when a data bus attains a unique rare value
or when the number of times it attains the rare value equals
to a particular count. The malicious effects of Trojan payloads
can range from passive, such as leakage of secret information,
to altering the original functionality of the chip in a critical or
destructive fashion.

(a) Combinational Trojan

(b) Sequential Trojan

Fig. 1: Example of a combinational and a sequential Trojan
with triggers (A, B) from rare internal nodes, and payload S.

Protection against hardware Trojan attacks can be accom-
plished in two broad ways: (1) design-for-security (DfS) tech-
niques that make Trojan insertion difficult or make a Trojan
easily detectable through post-silicon testing; and (2) manufac-
turing test approaches that aim at detecting an arbitrary Trojan
by observing its effect into a circuit’s operational behavior.
The first class of techniques, primarily relies on different types
of hardening approaches - e.g. insertion of dummy cells into
empty spaces in a circuit layout; or key-based obfuscation
of a design that makes malicious alteration by an adversary
provably hard. DfS techniques, however, come at the cost
of additional design, verification, and test time, as well as
hardware overhead. For example, key-based obfuscation, even
though is capable of providing high level of robustness against
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Trojan attacks, come at a cost of 10% or more area overhead
[4]. More importantly, design solutions, however, only work
for new designs and not legacy designs, and hence has limited
applicability. Hence, efficient test/validation approaches that
can provide high level of confidence regarding IC trustworthi-
ness in presence of Trojan threat provides an attractive solution
to the IC manufacturers.

Existing test generation solutions for hardware Trojan de-
tection can be broadly classified into two categories: 1) logic
testing and 2) side-channel analysis. In logic testing approach,
directed tests are generated to activate rare events in a circuit
and propagate the malicious effect of a Trojan in logic values
to observable outputs. Such approaches are known to be more
effective in detecting ultra-small Trojans (typically a few gates
in size). The main challenge with logic testing approaches,
however, is the difficulty to trigger a Trojan and observe
its effect, particularly in the presence of complex sequential
Trojans, and the inordinately large number of possible Trojan
instances that an adversary can exploit. On the other hand,
side-channel analysis approaches depend on the measurement
and analysis of physical side-channel parameters like power
signature or path delay of an IC in order to identify a structural
change in the design. Unlike logic testing, these approaches
do not require Trojan activation in order to detect them. Side-
channel analysis (SCA), primarily based on supply current,
has been extensively investigated by large number of research
groups and various solutions to increase the signal-to-noise
(SNR) have been proposed. A disadvantage of SCA arises
from the large process variations (e.g. 20X leakage power
and 30% delay variations in 180nm technology [5]) which
can potentially mask the minute effect of a Trojan in the
measured side-channel parameter. A solution to the sensitivity
problem can be achieved by judicious test generation approach
that aims at maximizing the sensitivity for an arbitrary Trojan
in unknown circuit location. In the remainder of the paper,
we focus on transient current or power as our side-channel
parameter of interest. Some of the concepts however can
be applied to other side-channel parameters. To maximize
sensitivity of a given Trojan, one needs to amplify activity
inside the Trojan circuit and simultaneously minimize the
background activity (i.e. activity in the original circuit). We
present a novel statistical test generation framework that can
maximize the detection sensitivity for an arbitrary Trojan.

The goal of our work is to generate efficient test vectors
for Trojan detection using side-channel analysis. We use the
relative switching of the Trojan with respect to the whole cir-
cuit to indicate the sensitivity of the side channel signals. The
statistical test patterns can maximize relative Trojan detection
sensitivity under any process noise. Process variation is not
expected to affect our side channel sensitivity computation
since we consider switching activity instead of actual current
or power values. The proposed method can be combined
with any existing process calibration approaches (such as
one in [24] or [25]) to minimize the false positives/negatives
and maximize Trojan coverage. The following are the major
contributions of this paper:

1) It presents, for the first time in our knowledge, a
statistical test generation approach for increasing side-

channel analysis based Trojan detection sensitivity. The
proposed approach can be applicable to any transient
current based Trojan detection approach.

2) The methodology, referred to as MERS (Multiple Exci-
tation of Rare Switching) for statistical test generation,
is shown to derive a compact testset that can trigger each
of the rare nodes to satisfy rare switching for multiple
times.

3) Reordering methods are proposed to reduce the total
switching of the circuit and thus further increase the
sensitivity of side channel analysis. A simple and low-
cost method based on Hamming distance of input vector
pairs is introduced to reorder the tests. We also develop
another simulation based method to more effectively
balance switching in rare nodes and the total switching.

4) Design partition methods are proposed for scalable test
generation for large designs. By functionally and/or
structurally partitioning the design into regions, we
apply targeted test generation on each region and sig-
nificantly improve the side channel sensitivity for large
designs.

Our side-channel based approach is targeted towards detect-
ing unknown Trojans, which means it will remain equally ef-
fective even if the adversary is aware of the proposed method.
This is due to the following two reasons: (1) the proposed
test generation method is statistical in nature - so, unlike
conventional deterministic test approaches, it maximizes the
activation probability for arbitrary Trojans designed with any
trigger condition; and (2) it maximizes the detection sensitivity
of unknown Trojans, however “stealthy”, by amplifying its ef-
fect in side-channel signature. Our simulation platform inserts
large number of arbitrary Trojans in a design and shows that
the proposed approach is highly effective in detecting them.

The rest of the paper is organized as follows. Section II
presents related work in side channel analysis and functional
test generation for Trojan detection. Section III describes
our proposed MERS test generation algorithm and the test
reordering algorithms to improve sensitivity of side channel
analysis. Section IV describes the experimental setup and
presents results on a set of ISCAS benchmarks with detailed
analysis. Section V presents results for two large designs (AES
cipher and DLX processor). Section VI concludes the paper.

II. RELATED WORK

The underlying assumption for Trojan insertion is that
an adversary is fully aware of the design functionality and
therefore can hide the Trojan in a hard-to-find place. One way
to address this issue is to obfuscate [4] or encrypt [15] the
design such that the adversary cannot figure out the actual
functionality and therefore cannot insert the Trojan in a covert
manner. Unfortunately, smart attacker can effectively bypass
both obfuscation [16] and encryption [33] methods. A promis-
ing direction is to develop efficient techniques for hardware
Trojan detection. Prior research on Trojan detection can be
classified into two broad categories: side-channel analysis and
functional test generation.

Side-channel analysis approaches are based on analysis
of side-channel signatures such as circuit transient current
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[9][10][14], power consumption [12][13], path delay [11], or
intermediate values from debug infrastructure [19]. The basic
idea is to compare the side-channel signature with the pre-
characterized golden value for a Trojan-free IC (or a model
of the IC). If the observed value of the measured parameter
differs by more than a threshold from the golden value,
the presence of a Trojan is suspected. Unfortunately, side-
channel analysis has a common issue, i.e., the sensitivity of
side-channel signatures is susceptible to thermal and process
variations. Therefore, it would be difficult to detect small
combinational Trojans. In this paper, we also rely on transient
current (switching activity) to identify Trojan.

Compared with [9][10][14], our approach can greatly in-
crease the side-channel sensitivity of Trojan of any type or
size, because we take advantage of functional testing. In other
words, our test vectors are generated in a statistical way, and
they are more effective in creating switching in Trojan, as well
as reducing background switching. The approach proposed
by Banga and Hsiao [9] partitions a design into circular
regions (with a center and radius) for side channel analysis. A
region is a group of flip-flops along with combinational gates
connecting them. However, there are two major drawbacks
with their partitioning approach. First, there are thousands
of regions identified even for a small ISCAS89 benchmark
s3271. It may be infeasible to generate targeted tests for
each of the regions in large designs. Next, regions identified
by their approach may overlap with each other, while our
approach can ensure the regions are disjoint. Banga et al.
proposed in [10] to partition a circuit into flip-flop groups
based on structural connectivity. However, the scalability of
the approach to large designs with datapaths and control
structure is limited. Moreover, it is difficult to judge their
effectiveness since they only tested on very small circuits.
Salmani et al. [14] proposed a layout-aware approach for
improving localized switching to detect Trojan. Their approach
is based on reordering the scan cells (flip-flops) in the chip,
which is orthogonal to our approach of test generation for
improving switching.

Another category of Trojan detection approaches is to gen-
erate functional test patterns that are likely to fully activate the
Trojans. These approaches can overcome the effect of thermal
and process variations on side-channel signals. They rely on
the fact that an adversary will choose a trigger condition for the
Trojan using a set of rare nodes. Various approaches tried to
maximize the rare node activation to increase the likelihood of
activating Trojans. ATPG for Trojan detection is investigated
in [6][32]. A major problem with ATPG based Trojan detection
methods is the scalability issue. ATPG can be used to activate
a Trojan if all the triggers are known. However, this is not
feasible for Trojan detection since Trojans are likely to have
unknown number of triggers hidden at stealthy locations. It
would be practically infeasible to use ATPG to test all possible
trigger conditions. MERO [7] takes the advantage of N-detect
test [23] to maximize the trigger coverage by activating the
rare nodes. The test generation ensures that each of the nodes
gets activated to their rare values for at least N times. It is
shown that if N is sufficiently large, a Trojan with trigger
condition based on these rare nodes is likely to be activated

by the generated test set. Saha et al. [8] improve the test
pattern generation of MERO [7] by using genetic algorithm
and Boolean satisfiability for ATPG. Their approach could
more effectively propagate the payload of possible Trojan
candidates. A design-for-test (DFT) infrastructure technique
by Salmani et al. [21] inserts dummy flip-flops to increase
the transition probability of low-transition nets, and therefore
increases the side-channel sensitivity for Trojan detection.
Zhou et al. [22] further improved their approach by selecting
the most beneficial nets to insert dummy flip-flops based on
fanout analysis. Farahmandi et al. [20] attempted to localize
Trojan using symbolic algebra from a formal verification
approach, while it is not scalable to large circuits.

Direct application of test generation approaches is not
suitable for improving side-channel sensitivity for Trojan
detection. The objective of increasing side-channel sensitivity
is very different from the ones in both MERO [7] as well as
its enhanced version by Saha et al. [8]. Unlike these existing
techniques, our proposed approach requires the creation of a
pair of test vectors to maximize switching in rare nodes. Our
algorithm creates multiple excitation of rare switching which
is important in making side-channel based Trojan detection
effective. The basic concept is presented in our conference
paper [1], but it does not provide a scalable test generation
framework for different DFT structures. Moreover, we also
try to simultaneously minimize the background switching to
maximize the relative switching.

Our test generation method also originates from N-detect
test. Compared with MERO [7], which focuses on logic testing
with N-detect test, we target generating vectors for side-
channel analysis. The primary difference is that MERO tries
to assign rare values (0 or 1), whereas our approach tries to
assign rare transitions (0 → 1, or 1 → 0). Specifically, they
have three important differences. First, MERO’s goal is to
generate tests which can fully trigger the Trojan and observe
the propagated Trojan effect. Our algorithm aims at creating
more switching in possible Trojan triggers to greatly improve
the side-channel sensitivity and expose hideous Trojans. Next,
MERO’s approach is mostly limited to combinational Trojans
with smaller number of triggers. MERO is not effective for
sequential Trojans or larger Trojans. Our approach focuses
on switching of rare nodes, which makes it effective to any
type/size of Trojans hidden at any location. Finally, by utilizing
functional and structural partitioning, our approach is scalable
to large designs with a large number of rare nodes or possible
triggering conditions.

III. SCALABLE TEST GENERATION FOR SIDE-CHANNEL
AWARE TROJAN DETECTION

In this section, we present the proposed methodology for
side-channel aware test generation in detail. The methodol-
ogy is based on the concept of statistically maximizing the
switching activity in all the rarely triggered circuit nodes.

The effectiveness of a test pattern for side channel analysis
is measured in two ways: (1) the ability to create most
switching inside a Trojan or to activate a Trojan; (2) the
ability to create high Trojan-to-circuit switching. We mea-
sure DeltaSwitch as the switching introduced by the Trojan,
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which is the difference of number of switches between the
golden circuit and the Trojan-infected circuit. We measure
RelativeSwitch as the ratio of DeltaSwitch to the total number
of switches (TotalSwitch) in the golden circuit. An effective
test vector should be capable of creating large DeltaSwitch,
and more importantly it should create large RelativeSwitch, as
it is directly related to the sensitivity for side channel analysis.

RelativeSwitch = DeltaSwitch/TotalSwitch (1)

The major challenges for generating high-quality test vectors
are as follows: (1) we are not sure of the location where the
Trojan is inserted in the circuit; (2) the Trojan is stealthy
and has very low activity when it is not triggered. These
characteristics have made random tests not effective in mag-
nifying the side channel signal for Trojan detection. Fig. 2
shows two example Trojan instances. The 4-trigger Trojan will
only be activated by the rare combination 1011 and the 8-
trigger Trojan will only be activated by the rare combination
10110011. If the possibility of each rare node to take its rare
value is 0.1, the probability to have these two Trojans fully
triggered is 10−4 and 10−8, respectively.

(a) A 4-trigger Trojan

(b) An 8-trigger Trojan

Fig. 2: Trojans with rare nodes as trigger conditions.

A. Overview

In this subsection, we provide the overview of the workflow
for scalable test generation for side-channel aware Trojan
detection. As shown in Fig. 3, we first simulate the circuit to
get the rare nodes, which have low probability to be 0/1. We
partition the design into regions, apply our MERS approach to
generate tests and also reorder the tests for each region. The
vectors from all regions are combined into a test suite that
can create high relative switching for arbitrary Trojans in the
design.

Rare Nodes Identification: In our experiments, we simu-
late the circuit with 100,000 random vectors and note down the
probability of values for internal nodes. Nodes with probability
less than the rare threshold are identified as rare nodes.

These rare nodes are the candidates for Trojan triggers. We
sample stealthy Trojans with triggers from the rare nodes for
evaluation of our test generation approach.

Design Partitioning: A major challenge of large designs
is that the supply current of a golden chip for a high-activity
vector can be very large compared to the additional current
consumed by a small Trojan. If we can carefully partition a
circuit into nearly-isolated regions (i.e. with low connectivity
between them), we can more effectively generate tests for each
region. After partitioning the design, test generation can target
on the rare nodes inside each region, but also try to avoid
creating too many background switching.

Test Generation: Our test generation approach (MERS)
is based on creating a set of test vectors for each candidate
rare node individually to have rare switching multiple (at least
N ) times. Our approach utilizes the principle of N -detect [23]
tests to increase the likelihood of partially or fully activating
a Trojan. MERS can generate a high-quality testset for these
rare nodes individually to have rare switching for N times.
If N is sufficiently large, a Trojan with triggering conditions
from these rare nodes is likely to have high switching activity
even though it might not be fully activated.

Test Reordering: The order of test vectors matters as we
are counting the switching between two vectors. Our goal is
to further improve the side channel sensitivity. The challenge
is to keep the high-quality in creating switching on rare nodes,
and at the same time to reduce the background switching. We
introduce Hamming-distance based reordering and simulation
based reordering to resolve this challenge.

Testset Evaluation: In our experiments, we insert a Trojan
into the design, then apply all test vectors in the combined test-
set. The side-channel sensitivity is reported as the maximum
relative switching of the testset. To show that our approach
has good coverage on Trojans hidden at different locations,
we experimented on 1000 Trojan samples to evaluate the
effectiveness of testsets. From a pool of potential rare Trigger
nodes, a Trojan of given size is created by randomly choosing
the trigger nodes and the payload. After that we verify if this
trigger condition and payload make a functionally valid Trojan,
i.e. it can be activated using a valid input condition and its
malicious effect propagates to any observable output. Thus,
we consider only valid random Trojans in our evaluation. The
statistical nature of MERS ensures that even if an adversary
chooses different locations or trigger conditions for inserting
Trojans, the test set can maximize the detection sensitivity for
them.

Algorithm 1 shows the steps for scalable test generation
on large designs. We first simulate the circuit to identify
rare nodes and generate stealthy Trojan samples. If design
partitioning is enabled, the design is partitioned according to
natural boundaries based on functionality. If the design has no
such natural boundaries, or the partitioned region is till too
large, we can perform structural partitioning based on circuit
connectivity. For each region, we apply our high-quality test
generation approach MERS (Algorithm 2), followed by test
reordering (Algorithm 3 or 4) for further improvement in side
channel sensitivity. Finally, the test patterns from all region
will be combined together to evaluate the effectiveness of our
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Fig. 3: Scalable test generation for side-channel analysis based
Trojan detection.

test generation approach on the Trojan samples.

Algorithm 1: SCALABLE TEST GENERATION

Input: Circuit under test
Output: Test patterns for Trojan Detection

// Rare nodes identification
1: Simulation to identify nodes with low probability
2: Generate Trojan samples with triggers from rare nodes
// Design Partitioning

3: if Design partition is enabled then
4: if Design has natural submodules then
5: Functional partition into regions.
6: end
7: if Design (or any region) is large then
8: Structural partition based on connectivity.
9: end

10: end
// Test Generation

11: for each region do
12: Test generation with MERS (Algorithm 2)
13: Test reordering with Algorithm 3 or 4
14: end

// Evaluation of Test Patterns
15: Combine the testsets from all regions
16: Evaluate side-channel sensitivity on Trojan samples

B. Design Partitioning

There are at least three advantages of dividing a large design
into smaller regions. (1) For a designated region, region-based
MERS (Algorithm 2) will only target the rare nodes in that
region to have rare switching for N times. The quality of
tests is likely to improve and many rare nodes can achieve
rare switching a lot more than N times. (2) The rare nodes
outside of the designated region will be ignored. Since the
test generation process doesn’t try to switch those rare nodes,
it is likely to create fewer switching in the outside regions
and reduce the background switching. (3) Assuming that the
sequential circuits is equipped with scan-chains, we can shift
0’s into the flip-flops (the pseudo primary inputs) that are
outside of the designated region. This can further reduce the
background switching of other regions.

The partitioning approach should divide the design into re-
gions, which have minimum inter-connections between them.
In other words, we want each region to be functionally
independent or have as few connections as possible to other
regions, so that the test generation process can increase the
activity of one region (or few regions) while minimizing the
activity of all others. A complex circuit under test usually
comprises of several functional modules (or regions), which
are interconnected according to their input/output dependen-
cies. For the example in Fig. 4a, the DLX processor has four
pipeline stages (IF, ID, EXE, and MEM). It can be naturally
partitioned into four regions according to the functional mod-
ules: Fetch, Decode, Execute, and Memory. We can fill the
pipeline such that the different pipeline stages are activated one
at a time during test generation. An alternative to functional
partitioning is structural partitioning as shown in Fig. 4b.
Structural partitioning is the only choice when functional
partitioning is not possible (e.g., flattened netlist). Structural
partitioning can use hypergraph partitioning approach [27]
or any other region-based partitioning approaches [9]. It is
important to note that our approach can effectively combine
both partitioning techniques. For example, after functional
partitioning has been performed on DLX processor (Fig. 4a),
structural partitioning (Fig. 4b) can be applied on the Decode
module (accounting for 71% of the whole design area) to
further partition it into smaller regions.

We use structural partitioning to improve the side chan-
nel sensitivity for the three ISCAS sequential benchmarks:
s13207, s15850, and s35932. Since these benchmarks are flat
netlists (i.e. we cannot easily identify any functional regions),
we use hypergraph partitioning [27] to find relatively isolated
regions. The circuit is transformed into a hyper-graph, where
each gate is a vertex and the set of gates sharing an edge is
a hyper-edge. The goal of partitioning is to divide the graph
into two partitions of roughly same size1 (each contains 45% to
55% of the total number of vertices). The constraint is that the
minimal number of hyper-edges will be cut by the partition
process. This constraint is to ensure that the vertices inside
each region have high connectivity, while the connectivity

1We have performed structural partitioning [27] with partition factor p =
50%, which generally achieves better SCS than a skewed partition. If the
designer can afford the cost, different partition factor p can be explored.
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between regions is minimal. This is a well-studied problem
in hypergraph, and we used the tool from [27] to satisfy this
purpose. The whole design is first partitioned into two regions
of almost equal size with minimal hyper-edge cuts. Each of the
two regions can be partitioned into two smaller sub-regions,
and so on. In other words, we can partition the design in a
recursive manner to have 2 regions, 4 regions and 8 regions.

(a) Functional Partitioning
(b) Structural Partitioning

Fig. 4: (a) A design with functional modules can be naturally
partitioned. (b) A flat design can be structurally partitioned to
find regions with minimum inter-connections being cut.

C. Multiple Excitation of Rare Switching (MERS)

The basic idea of MERS is that if we can make a rare node
switch N times where N is sufficiently large, it significantly
improves the chance of switching in a Trojan associated with
that rare node. The rare switching in our algorithm specially
refers to a rare node switching from its non-rare value to
its rare value. The reason to choose this criteria is two-
fold: (1) it is more difficult to switch from non-rare to rare
value than from rare to non-rare value; (2) it defines the
switching between the previous vector and the current vector,
and it usually helps to create an extra switching between
the current vector and the next vector. This will increase the
probability of switching of a Trojan which has rare nodes
as its trigger conditions. Our approach is also applicable to
sequential Trojans, which requires the rare condition to occur
a certain number of times to be fully triggered.

Algorithm 2 shows the steps of MERS to generate high
quality tests for creating switching in rare nodes, so as to
assist side channel analysis for hardware Trojan detection.
The algorithm is fed with the golden circuit netlist, the list
of random test patterns (V ) and a list of rare nodes (R)
(which is obtained by random vector based circuit simulation
beforehand). First, we simulate each random pattern and count
the number of rare nodes (RV ) that take their rare values. We
sort the random patterns in descending order of RV , which
means that the vector with ability to activate the most number
of rare nodes goes first. Next, we initialize the rare switching
counter Si for each rare node to 0. In the next step, we mutate
vectors from the random pattern set to generate high quality
tests. We mutate the current vector one bit at a time and we
accept the mutated bit only if the mutated vector can increase
the number of nodes to have rare switching. In this step, only
those rare nodes with RS < N are considered. The mutation

Algorithm 2: MULTIPLE EXCITATION OF RARE SWITCH-
ING (MERS)
Input: Circuit netlist (targeted region), rare switching

requirement (N ), the list of rare nodes
(R = {r1, r2, ..., rm}), the list of random patterns
(V = {v1, v2, ..., vn})

Output: MERS test patterns (T )

1: for each random vector v in V do
2: Simulate the circuit with the input vector v
3: Count the number of nodes (RV ) in R with their rare

values satisfied
4: end
5: Sort vectors in V in descending order of RV

6: for each node ri in R do
7: Set its rare switching counter (Si) to 0
8: end

9: Initialize previous vector tp as a vector of all 0’s
10: for each vector vj in V do
11: Simulate the circuit with vector pair (tp, vj)
12: Count the number of rare switches (RS)
13: Set v′j = vj
14: for each bit in v′j do
15: Mutate the bit and re-simulate the circuit with

vector pair (tp, v′j)
16: Count the number of rare switches (R′S)
17: if R′S > RS then
18: Accept the mutation to v′j
19: end
20: end
21: Update Si for all nodes in R due to vector v′j
22: if v′j increases Si for at least one rare node then
23: Add the mutated vector v′j to T
24: Set tp = v′j
25: end
26: if Si ≥ N for all nodes in R then
27: Break
28: end
29: end
30: return MERS test patterns T

process repeats until each rare node has achieved at least N
rare switches. The output of the test generation process is
a compact set that improves the switching capability in rare
nodes, compared to random patterns. The complexity of the
algorithm is O(n ∗ m), where n is the total number of test
vectors mutated during the process, and m is the number of
bits in primary inputs. The runtime to generate MERS tests
can be found in Table I.

The testset generated by MERS is expected to be very
effective in increasing the likelihood of rare nodes to switch
and thus increasing the activities in Trojans. In other words,
MERS testset is capable of maximizing the DeltaSwitch (the
numerator in Equation 1). MERS testset is already a very high
quality testset in terms of criteria for DeltaSwitch. However,
MERS testset also creates more switching in other parts of
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the circuit, when it is making efforts to switch rare nodes.
This characteristic of increased TotalSwitch would be further
illustrated in the Section IV. In order to maximize relative
switching, we need to have TotalSwitch in control as well.
In the following subsections, we propose two methods to
tune the MERS testset, so that it can: (1) still be effective
for DeltaSwitch, (2) reduce TotalSwitch and improve the
effectiveness for RelativeSwitch. The first method is a heuristic
approach based on hamming distance of test vectors, which
can reduce the total switching. The second one is simulation
based, in which we try to balance the rare switching and the
total switching while we explore all the candidate vectors.

Algorithm 3: TESTS REORDERING BY HAMMING DIS-
TANCE (MERS-h)
Input: List of Test Patterns (Torig = {t1, t2, ..., tn})

produced by Algorithm 1
Output: Improved Test Patterns (Thamm)

1: Initialize Thamm = {}
2: Initialize previous test tp as a vector of all 0’s
3: while Torig is not empty do
4: mindist = int max
5: bestidx = −1
6: for all remaining tests tj in Torig do
7: if mindist > hamming dist(tp, tj) then
8: mindist = hamming dist(tp, tj)
9: bestidx = j

10: end
11: end
12: Add tbestidx to the end of Thamm

13: Remove tbestidx from Torig

14: Update tp = tbestidx
15: end
16: return Thamm

D. Test Reordering
1) Hamming Distance based Reordering: If two consecu-

tive input vectors have the same values in most bits, it is very
possible that the internal nodes will also have a lot of values in
common. A simple heuristic to reduce total switching in circuit
is to have similar input vectors. We use the Hamming distance
between two vectors to represent the similarity. Algorithm
3 shows our approach to reorder the testset by Hamming
distance. The algorithm is a greedy approach to explore all
candidate vectors and take the best one in terms of Hamming
distance. We first check the Hamming distances between the
previous vector and all the remaining vectors, then we select
the vector which has the minimum Hamming distance as the
next vector. The time complexity of Algorithm 3 is O(n2),
where n is the testset size. Fortunately, it is of low cost to
calculate the Hamming distance between two input vectors,
so the actual run-time is very short.

2) Simulation based Reordering: The reordering problem
to improve the relative switching is actually a multi-objective
optimization problem: maximize the DeltaSwitch and mini-
mize the TotalSwitch as in Equation 1. We do not know the

Algorithm 4: TESTS REORDERING BY SIMULATION
(MERS-s)

Input: List of Test Patterns (Torig = {t1, t2, ..., tn})
produced by Algorithm 1

Output: Improved Test Patterns (Tsim)

1: Initialize Tsim = {}
2: Initialize previous test tp as a vector of all 0’s
3: while Torig is not empty do
4: maxp = int min
5: bestidx = −1
6: for all remaining tests tj in Torig do
7: Simulate the circuit with vector pair (tp, tj)
8: Count the number of RareSwitch and TotalSwitch
9: profit = C ∗RareSwitch− TotalSwitch

10: if maxp < profit then
11: maxp = profit
12: bestidx = j
13: end
14: end
15: Add tbestidx to the end of Tsim

16: Remove tbestidx from Torig

17: Update tp = tbestidx
18: end
19: return Tsim

DeltaSwitch, because the location and type of the Trojan is
unknown. However, rare switching between two vectors is a
good indicator for DeltaSwitch, which means a large number
of rare switching would imply a large DeltaSwitch in Trojan.
We redefine the optimization goal as to maximize the rare
switching and minimize the total switching at the same time
between vector pairs. We formalize the problem as shown in
Equation 2. We need to explore the best weights to balance
between the two objectives:

maximize (w1 ∗RareSwitch− w2 ∗ TotalSwitch) (2)

We propose an approach as shown in Algorithm 4 based on
real simulation of the test vectors to maximize the combined
objective. We introduce a concept of profit to indicate the
fitness of a test vector to follow the previous test vector. profit
is defined as (C ∗RareSwitch− TotalSwitch), where C is
the ratio of two weights w1 and w2. It is meant to maximize
the rare switching (activity in Trojan circuits) and minimize
the total switching of the whole circuit. In the experiment
section, we will explore different weight ratios and check the
influence of weight ratios on side channel sensitivity.

Algorithm 4 shows our approach to tune the testset by
simulation with profit as a reordering criterion. By exhaus-
tively checking the profit between the previous vector and
all the remaining vectors, we select the vector which has
the maximum profit as the next following vector. The time
complexity of Algorithm 4 is O(n2), where n is the test length.
However, it is much slower than Algorithm 3, because it is
time-consuming to simulate input vector pairs and calculate
profit.
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In Algorithm 1, we leave the choice of reordering algorithm
to the designer. If simulation time is a concern, Algorithm 3
should be chosen. If the designer wants higher side channel
sensitivity and can afford longer simulation time, Algorithm 4
is more suitable. It is possible to combine the fast reordering
of Algorithm 3 and the exhaustive exploration of Algorithm
4. The complexity of Algorithm 4 is O(n2), where n is the
number of candidate vectors to be reordered. If we can reduce
n, we can improve the runtime of Algorithm 4. For example,
we can use Algorithm 3 in the first pass. In the second pass, we
can divide the test suites in multiple parts and apply Algorithm
4 on each of them. Increasing the number of divisions will
reduce the runtime but at the cost of result quality.

IV. EVALUATION RESULTS

A. Experimental setup

The test generation framework, including the MERS core
algorithms and the evaluation framework, is implemented
using C. As shown in Fig. 3, the test generation framework
can identify rare nodes, generate MERS testset, further tune
the testset, and evaluate the effectiveness of testsets on random
Trojans. We evaluated our approach on a subset of ISCAS-85
and ISCAS-89 benchmark circuits, as well as two large designs
AES cipher and DLX processor [31]. The sequential circuits
are converted into full scan mode. We also implemented the
MERO [7] approach with parameter N of 1000 for comparison.
We did our experiments on a server with AMD Opteron Pro-
cessor 6378 (2.4GHz). The runtime for different benchmarks
and different methods is shown in Table I. The table also shows
the number of rare nodes in each benchmark. We used 0.1 as
the rare threshold to select rare nodes. We can see that if we
use Algorithm 3 to reorder by Hamming distance, our runtime
is about half of MERO on average. If we use Algorithm 4
to reorder by simulation, our runtime is about 7% longer on
average. So it is reasonable to say that our test set is more
effective than MERO given the similar test generation time.

TABLE I: Runtime comparison for MERO [7], MERS-h and
MERS-s, with N=1000, rare threshold = 0.1

Benchmark Nodes
(rare / total)

Runtime (s)
MERO [7] MERS-h MERS-s

c2670 63 / 1010 30051.53 13378.1 18296.09
c3540 331 / 1184 9403.11 6106.94 24264.45
c5315 255 / 2485 80241.52 45607.01 84669.78
c6288 45 / 2448 15716.42 4154.93 6957.47
c7552 306 / 3720 160783.37 81431.09 144908.08
s13207 592 / 2504 23432.04 12876.97 41576.67
s15850 679 / 3004 39689.63 20631.58 58084.93
s35932 896 / 6500 29810.49 7335.27 38496.78

Average 396 / 2857 48641 23940 52157

B. Evaluation Criteria

When applying a testset to a circuit with Trojan, there are
four criteria to evaluate the effectiveness of the testset:
• AvgDeltaSwitch: the average delta switch when applying

the testset on this Trojan-infected circuit.
• MaxDeltaSwitch: the maximum delta switch when ap-

plying the testset.

• AvgRelativeSwitch: the average relative switch when
applying the testset.

• MaxRelativeSwitch: the maximum relative switch when
applying the testset. We choose this criterion as the Side
Channel Sensitivity because this directly determines
whether a Trojan can be detected through side-channel
analysis.

AvgDeltaSwitch and MaxDeltaSwitch reflect the activity in
Trojan, and AvgRelativeSwitch as MaxRelativeSwitch reflect
the sensitivity of the side channel signal in detecting the
Trojan.

As for evaluation of testsets, we would expect a high-quality
testset to have a good coverage over all possible Trojans. In our
experiments, we apply the testset to 1000 randomly inserted
Trojan samples and compute these four values for each Trojan
instance. We would then take the average of these four metrics,
which would reflect the capability of the testset to enable
detection of different Trojans through side-channel analysis.
The average MaxRelativeSwitch would be most suitable for
Side Channel Sensitivity evaluation, which is to maximize the
sensitivity for an arbitrary Trojan in unknown circuit location.

C. Different Scan Modes
For sequential benchmarks used in our paper, we assume

that the sequential gates (i.e. the flip-flops) have full-scan
capability during test. The scan flip-flips (SFF) form a scan
chain as shown in Fig. 5. The initial states of the circuit can be
set by the scan chain. Test vectors feed values to the primary
inputs (PI) and the scan flip-flops (also called pseudo-PI).
The controllability of the circuit states largely depends on the
working mode of the scan chain. The transition test involves
applying a vector pair (V1, V2) to the circuit. The first vector
is to launch the circuit into a desired state. The transitions
will be captured after V2 is applied. V1 will set the PI values
as well as the initial states of circuit through SFFs. V2 will
feed the circuit with a different set of PI values. V2 may or
may not feed the SFFs with new values depending on the scan
mode. We measure the number of switching in the circuit for
side-channel analysis after V2 is applied.

A conventional scan chain (Fig. 5a) can Launch-on-Shift
(LoS) and Launch-on-Capture (LoC) modes [28]. In both of
these two modes, V2 only feeds the circuit with new values
to PIs. The flip-flops will have values either directly from V1

(shift by 1) or after propagating for one clock cycle. For LoS
mode, the second vector V2 is immediately applied after V1

is shifted into SFFs. For LoC mode, the second vector V2

waits for one clock cycle after V1 is applied to the circuit.
An enhanced scan chain (Fig. 5b) can work in Enhanced
mode [29], [30]. Compared to the LoS and LoC, the enhanced
scan chain has one extra redundant flip-flop attached to each of
the SFF. After the shifting process, the SFFs hold states for V1

and the redundant FFs hold states for V2. This feature enables
both V1 and V2 to feed arbitrary values to the sequential gates.
It comes at the cost of doubling the number of flip-flops.
However, it provides high controllability and testability into
the sequential circuits. In our experiments, unless explicitly
specified, we assume the enhanced scan mode is used for the
sequential benchmarks.
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(a) Scan chain (b) Enhanced scan chain

Fig. 5: Scan chains are used to set initial states for flip-flops.
A conventional scan chain can work in LoC and LoS modes.
An enhanced scan chain can work in Enhanced mode.

(a)

(b)

Fig. 6: Impact of N (number of times that a rare node have
rare switching) on MaxDeltaSwitch for benchmarks (a) c2670
and (b) c3540.

D. Exploration of N

Fig. 6 shows the distribution of MaxDeltaSwitch over 1000
random 8-trigger Trojan samples for two ISCAS-85 bench-
marks. We choose different N to generate MERS testsets, to
compare with the Random (10K vectors) testset. For each test-
set, the box plot shows (minimum, first quartile, median, third

quartile, maximum) values of MaxDeltaSwitch of the 1000
Trojan samples. It is clear from these plots that the distribution
of MaxDeltaSwitch is constantly improving with increasing
N . For c2670, the average MaxDeltaSwitch (as shown by
the red lines) can reach 18.67 for MERS (N = 1000), while
Random testset can achieve only 12.15. For c3540, the average
MaxDeltaSwitch can reach 11.13 for MERS (N = 1000),
while for Random testset it is only 9.19. The fact that the
quality of MERS tests improves with increasing N is not
surprising. It is similar to N -detect tests for stuck-at faults,
where fault coverage is expected to improve with increasing
N . The testset size also increases with N . The sizes of testsets
for MERS (N = 10, 20, 50, 100, 200, 500, 1000) are (71,
140, 347, 656, 1262, 3142, 6199) for c2670, and (161, 302,
742, 1441, 2858, 7070, 14250) for c3540. In most of our
experiments, we choose a value of N = 1000, which is a
good balance between testset quality and testset size. For fair
comparison with Random testset, we will only take the first
10K vectors of MERS testset if it is larger than 10K.

(a)

(b)

Fig. 7: MaxDeltaSwitch versus TotalSwitch for different N
for benchmarks (a) c2670 and (b) c3540. MERS creates more
switching in Trojan, as well as increased total switching.

E. Effect of Increased Total Switching

Fig. 7 shows the average MaxDeltaSwitch and the average
TotalSwitch of the testsets for 1000 8-trigger Trojan samples
for different values of N . For both of the two benchmarks,
the average TotalSwitch increases with N as well as the
average MaxDeltaSwitch. It is obvious that all the MERS
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(a)

(b)

Fig. 8: Side Channel Sensitivity versus TotalSwitch for
Random, MERS, MERS-h and MERS-s (with different C) for
benchmarks (a) c2670 and (b) c3540.

testsets have much larger average TotalSwitch, compared
with the Random testset. For c2670, the average TotalSwitch
for MERS (N = 1000) is 644.9, which is about 1.25X times
of that of the Random testset (515.7). For c3540, the average
TotalSwitch for MERS (N = 1000) is 808, while Random
testset is only 649.2. The insight that we can get from here is
that MERS tends to increase the TotalSwitch of the circuit,
although it is designed to increase switches in rare nodes. The
following subsection will show that the proposed reordering
methods would be effective to reduce TotalSwitch and thus
increase side channel sensitivity.

F. Effect of Weight Ratio (C)

The effectiveness of the two reordering methods can be
observed in Fig. 8 and Fig. 9. As shown in Fig. 8, MERS-h can
reduce TotalSwitch and thus increase the relative switching
(i.e. the Side Channel Sensitivity), compared with the original
MERS testset. For MERS-s with different weight ratio C, side
channel sensitivity improves steadily with a small C, and then
goes down when C is too large. As the weight ratio tries
to balance DeltaSwitch and TotalSwitch, a large C will
outweigh the influence of TotalSwitch, which will make it
less different from the original MERS testset. In the following
experiments, we choose the weight ratio as C = 5, as it
provides a good balance between the total switching and rare
switching.

(a)

(b)

Fig. 9: Distribution of Side Channel Sensitivity for Random,
the original MERS, MERS-h and MERS-s (with different C)
for benchmarks (a) c2670 and (b) c3540.

Fig. 9 shows detailed distribution of Side Channel Sensitiv-
ity for 1000 8-trigger Trojan samples with different choices
of C. The reordering methods are working well to improve
Side Channel Sensitivity, which is built on the fact that the
original MERS testset is already of high quality in terms of
DeltaSwitch, or switching in Trojans.

G. Increase in Trojan Activity
Figure 10 shows the distribution of the change in side-

channel sensitivity for two benchmarks, comparing with Ran-
dom testset and MERO [7]. In Figure 10(a) and (b), we can see
that our two approaches (MERS-h and MERS-s) can greatly
improve the SCS compared with Random testsets as well as
MERO [7]. Figure 10(c) and (d) show the Delta SCS when
we look at each Trojan. Table II summarizes the percentage of
Trojans whose SCS increased with our approaches. Compared
with Random testsets, more than 96.2% Trojans (for 1000
samples) have higher SCS with our approaches. Compared
with MERO testsets, more than 89.1% Trojans have higher
SCS with our approaches.

TABLE II: Percent of Trojans (for 1000 Trojan samples) with
SCS increased

Benchmark MERSh-Rand MERSs-Rand MERSh-MERO MERSs-MERO
c2670 96.2% 97.1% 89.1% 91.2%
c3540 99.8% 99.5% 92.3% 93.4%

Table III shows that MERS (N=1000) is very effective in
creating DeltaSwitch caused by arbitrary Trojans due to its
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Fig. 10: Distribution of Side Channel Sensitivity (SCS) and
Delta SCS (1000 Trojan samples), comparing our approaches
with Random testsets and MERO [7].

statistical nature. The average Max Delta Switch increases
by 31.11% and the average Avg Delta Switch by 187.33%
on average for different benchmarks, compared with Random
testset. This shows the effectiveness of MERS in creating
Trojan activity.

Table IV shows that MERS is also helpful in improv-
ing RelativeSwitch. The average AvgRelativeSwitch increased
by 158.16%, compared with Random testsets. For average
MaxRelativeSwitch (Side Channel Sensitivity), MERS has
an average improvement of 18.89%. However, Side Channel
Sensitivity values for benchmark c3540 and c6288 are not
as good as those of Random testsets. This is due to the
fact that MERS testset also increases the total switching,
when it is making efforts to cause rare nodes switching. This
phenomenon is illustrated and explained in Fig. 7 and Fig. 8,
and this side effect can be improved by the two reordering
algorithms as shown in Table V and VI.

TABLE III: Comparison of MERS (N=1000) with Ran-
dom (10K) for average MaxDeltaSwitch and average
AvgDeltaSwitch, over 1000 random 8-trigger Trojans.

Benchmark average MaxDeltaSwitch average AvgDeltaSwitch
Random MERS Improv. Random MERS Improv.

c2670 12.15 18.67 53.67% 1.4289 6.8561 379.83%
c3540 9.19 11.13 21.16% 1.3716 2.9058 111.85%
c5315 9.51 13.80 45.16% 1.3116 3.9300 199.64%
c6288 6.63 7.26 9.63% 1.0636 4.8448 355.50%
c7552 8.53 12.00 40.76% 1.3488 2.7700 105.36%
s13207 6.63 8.83 33.18% 0.6428 0.9771 52.01%
s15850 7.53 10.84 43.99% 0.7465 1.3609 82.29%
s35932 15.16 15.37 1.35% 2.1803 6.8060 212.16%

Avg. Improv. – – 31.11% – – 187.33%

TABLE IV: Comparison of MERS (N=1000) with Random
(10K) for average MaxRelativeSwitch (Side Channel Sen-
sitivity) and average AvgRelativeSwitch, over 1000 random
samples of 8-trigger Trojans.

average MaxRelativeSwitch
(Side Channel Sensitivity) average AvgRelativeSwitch

Benchmark Random MERS Improv. Random MERS Improv.
c2670 0.02469 0.03108 25.90% 0.00255 0.01054 314.14%
c3540 0.02670 0.01933 -27.59% 0.00214 0.00361 69.12%
c5315 0.00526 0.00766 45.72% 0.00075 0.00200 165.65%
c6288 0.00534 0.00395 -26.06% 0.00059 0.00219 270.68%
c7552 0.00452 0.00852 88.48% 0.00058 0.00113 94.65%
s13207 0.00756 0.00844 11.64% 0.00066 0.00085 28.22%
s15850 0.00593 0.00716 20.70% 0.00053 0.00082 54.25%
s35932 0.00523 0.00587 12.29% 0.00060 0.00223 268.54%

Avg. Improv. – – 18.89% – – 158.16%

H. Side Channel Sensitivity Improvement

To this point, we have explored the parameters: N for
MERS and C for MERS-s. We choose N = 1000 and C = 5
in the following experiment to compare our proposed schemes
with Random testset and MERO. Table V and VI show
the improvement of proposed approaches on Side Channel
Sensitivity for 4-trigger and 8-trigger Trojans.

Table V shows that MERS, MERS-h and MERS-s have
10.37%, 138.44% and 152.26% improvement over the Ran-
dom testsets, respectively. While the original MERS testsets
is 23.95% worse than MERO testsets, MERS-h and MERS-s
have 52.62% and 62.01% improvement over MERO. Table VI
shows the results for 8-trigger Trojans. Compared to Random
testsets, MERS, MERS-h and MERS-s can have 18.89%,
107.53% and 96.61% improvement, respectively. The original
MERS testsets is 12.43% worse than MERO testsets. MERS-h
and MERS-s testsets can improve the Side Channel Sensitivity
by 40.79% and 38.50%, respectively.

In this section, we explore the impact of different values
of N for MERS and observe the effectiveness of MERS to
maximize Trojan activity as N increases. We confirm the
superiority of MERS testsets over Random testsets in Section
IV-G on creating switching activity in randomly sampled
Trojans. We observed that the total switching was also likely to
increase while MERS made efforts to maximize rare switching
in Trojans. The two reordering methods (MERS-h and MERS-
s) successfully had the total switching under control while
maintaining the rare switching high.

V. SCALABILITY TO LARGE DESIGNS

In this section, we investigate the scalability of our approach
to large designs. We compare the controllability of different
scan modes and their effects on side channel sensitivity. We
apply region-based MERS on the three sequential ISCAS
benchmarks and side channel sensitivity can improve as we
divide the design into more regions. We also generate tests for
two large benchmarks (AES cipher and DLX processor) from
OpenCores and design partitioning can significantly improve
the side channel sensitivity.

A. Controllability of Different Scan Modes

The scan modes have direct influence on the effectiveness
of our region-based MERS approach. Fig. 11 shows the Total
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TABLE V: Comparison of average Side Channel Sensitivity between Random (10K), MERO, and MERS testsets, N=1000,
C=5 for MERS-s, over 1000 random samples of 4-trigger Trojans.

Benchmark
Comparison

Testsets
Proposed
Schemes

Improvement
to Random

Improvement
to MERO

Random MERO MERS MERS-h MERS-s MERS MERS-h MERS-s MERS MERS-h MERS-s
c2670 0.01703 0.02571 0.02231 0.03035 0.03308 31.01% 78.27% 94.31% -13.23% 18.07% 28.69%
c3540 0.02144 0.04238 0.01336 0.10677 0.11067 -37.71% 397.97% 416.16% -68.48% 151.96% 161.16%
c5315 0.00445 0.01082 0.00747 0.01287 0.01586 67.79% 188.97% 256.29% -30.97% 18.89% 46.59%
c6288 0.00480 0.00395 0.00313 0.00741 0.00896 -34.81% 54.47% 86.85% -20.88% 87.50% 126.80%
c7552 0.00351 0.00737 0.00491 0.01250 0.01168 39.61% 255.63% 232.38% -33.46% 69.50% 58.42%
s13207 0.00568 0.00617 0.00619 0.00773 0.00826 9.07% 36.24% 45.49% 0.31% 25.29% 33.80%
s15850 0.00447 0.00487 0.00474 0.00691 0.00634 6.14% 54.83% 42.06% -2.75% 41.86% 30.17%
s35932 0.00354 0.00463 0.00361 0.00500 0.00512 1.89% 41.17% 44.53% -22.12% 7.90% 10.48%

Avg. Improve. – – – – – 10.37% 138.44% 152.26% -23.95% 52.62% 62.01%

TABLE VI: Comparison of average Side Channel Sensitivity between Random (10K), MERO, and MERS testsets, N=1000,
C=5 for MERS-s, over 1000 random samples of 8-trigger Trojans.

Benchmark
Comparison

testsets
Proposed
Schemes

Improvement
to Random

Improvement
to MERO

Random MERO MERS MERS-h MERS-s MERS MERS-h MERS-s MERS MERS-h MERS-s
c2670 0.02469 0.03204 0.03108 0.03729 0.03984 25.90% 51.05% 61.40% -3.01% 16.37% 24.35%
c3540 0.02670 0.05532 0.01933 0.11974 0.10037 -27.59% 348.53% 275.96% -65.05% 116.47% 81.44%
c5315 0.00526 0.00875 0.00766 0.01020 0.01129 45.72% 94.03% 114.78% -12.38% 16.66% 29.14%
c6288 0.00534 0.00412 0.00395 0.00649 0.00790 -26.06% 21.55% 47.97% -4.20% 57.49% 91.72%
c7552 0.00452 0.00914 0.00852 0.01437 0.01149 88.48% 217.78% 154.00% -6.70% 57.31% 25.74%
s13207 0.00756 0.00838 0.00844 0.01053 0.01112 11.64% 39.24% 47.05% 0.69% 25.58% 32.63%
s15850 0.00593 0.00722 0.00716 0.00923 0.00818 20.70% 55.69% 37.94% -0.87% 27.86% 13.28%
s35932 0.00523 0.00638 0.00587 0.00692 0.00700 12.29% 32.39% 33.80% -7.90% 8.58% 9.74%

Avg. Improve. – – – – – 18.89% 107.53% 96.61% -12.43% 40.79% 38.50%

Switching and the Side Channel Sensitivity when different
scan modes are used for region-based MERS approach (each
benchmark has four regions in this example). In Fig. 11(a), the
Enhanced mode can greatly reduce the Total Switching com-
pared with LoC and LoS. In Fig. 11(b), the Enhanced mode
can greatly improve the Side Channel Sensitivity compared
with LoC and LoS.

There are two factors that enable the Enhanced mode to do
much better than the LoC and LoS modes. (1) We try to reduce
the background switching by assigning 0’s to the flip-flops that
are outside of the targeted region. For the Enhanced mode, we
assign 0’s to both V1 and V2 for those flip-flops outside of the
targeted region. This enables the Enhanced mode to have full
controllability to turn the other regions “dark”. For the LoC
and LoS modes, we assign 0’s to V1 for those flip-flops that
are outside of the targeted region, while V2 cannot directly
assign values to flip-flops. For LoC mode, the flip-flop states
before capture will be the states after the circuit propagates
one cycle after V1. For LoS mode, the flip-flop states will be
shifted by 1 from V1. (2) The Enhanced mode has the benefit
of using V2 to assign arbitrary values to the flip-flops inside
the targeted region. In contrast, LoC has no direct control over
the states after one clock cycle and LoS has to assign the in-
region flip-flops to V1 shifted by 1. In our MERS approach
(Algorithm 2), we mutate both the PIs and the pseudo-PIs (i.e.
the values for the in-region flip-flops) to generate high quality
test for each region. Under the Enhanced mode, we can mutate
the vector V2 to find beneficiary values for pseudo-PIs.

B. Effectiveness of Design Partitioning

Fig. 12 shows the results for region-based MERS approach
on the three sequential benchmarks. We compare the MERS
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Fig. 11: Comparison of Enhanced, LoC and LoS modes.

testsets produced by 1 region, 2 regions, 4 regions and 8
regions. The Total Switching and Side Channel Sensitivity
numbers are the averaged values of 1000 random in-region
(out-region) Trojans. Here an in-region Trojan means that its
trigger edges and payload edge belong to the same region. We
have 125 random in-region Trojans from each of the 8 regions
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Fig. 12: (a) Total Switching. (b) Side Channel Sensitivity for in-
region Trojans samples. (c) Side Channel Sensitivity for cross-
region Trojans.

to form a set of 1000 random Trojans for each benchmark.
As shown in Fig. 12(a), the averaged Total Switching

decreases drastically as we partition the design into more
regions. As the number of regions doubles, the averaged Total
Switching reduces almost by half. MERS with 8 regions can
reduce the Total Switching by 7.40X for s13207, 6.28X for
s15850, and 8.12X for s35932, compared to MERS with only
1 region. As shown in Fig. 12(b), Side Channel Sensitivity
improves significantly as the number of regions increases for
in-region Trojans. MERS with 8 regions can improve the Side
Channel Sensitivity by 6.24X for s13207, 7.51X for s15850,
and 7.49X for s35932, compared to MERS with only 1 region.

Fig. 12(c) shows the average SCS of 1000 cross-region
Trojan samples. We can still see the trend that SCS will
greatly increase as we divide the design into more regions. We
observe slightly lower SCS compared with in-region Trojan
samples. For the benchmark s13207, cross-region Trojan sam-
ples have 16.1% less SCS for 2 Regions, 14.0% less SCS for

4 Regions, and 7.9% less SCS for 8 Regions, compared with
in-region Trojan samples. For the benchmark s35932, cross-
region Trojan samples have 18.8% less SCS for 2 Regions,
22.5% less SCS for 4 Regions, and 20.3% less SCS for 8
Regions, compared with in-region Trojan samples. Thus the
conclusion is that cross-region Trojans can still significantly
benefit from the proposed approach.

C. Test Generation for Large OpenCores Benchmarks

In this subsection, we apply our region-based MERS ap-
proach on two large designs (AES cipher and DLX processor).
AES cipher has 15086 nodes and DLX processor has 18123
nodes. They are about three times as large as the largest ISCAS
benchmark s35932. The results show that our approach is
scalable for large designs. Direct application of MERS on
AES takes about 7 days to generate and reorder tests, and
about 9 days for DLX. After functionally partitioning AES
into three regions, the largest region can finish in 4 days (we
generate the tests for each region in parallel). After functional
partitioning of DLX and structural partitioning of its decode
module, we can finish the test generation and reordering for
DLX in 3 days. In this part, we assume that the designs are
equipped with enhanced scan chain, which provides us the
most controllability for test generation.

(a) Functional partition on AES (b) Functional partition on DLX +
structural partition on Decode.

Fig. 13: Design partition for AES and DLX.

1) AES: Fig. 13a shows the abstracted representation of
an AES cipher. We use functional partition to segment it into
three regions. It has two obvious submodules: Key Expansion
and Round Permutation, which we choose as two regions. The
third region contains the rest of the circuit, which is mostly
the control logic and input/output buffers.

Table VII compares the side channel sensitivity on 15
random Trojans for three testsets: Random, MERS (whole de-
sign), MERS-FP (with functional partition). For the MERS and
MERS-FP, we use the test generation detailed in Algorithm 2
and the test reordering detailed in Algorithm 3. Compared
with the Random testset, the MERS testset can improve the
side channel sensitivity by only 5% on average. The MERS-
FP testset can improve the side channel sensitivity by 160%
on average. The functional partition significantly improved the
side channel sensitivity (about 2.6X) over the Random testset.

2) DLX: Fig. 13b shows the abstracted representation of a
DLX processor. We use functional partition to segment it into
four regions: Fetch, Decode, Execute, and Memory. However,
the Decode consumes majority of the chip area (accounting
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TABLE VII: AES testsets: [Random, MERS, MERS-FP]

Testset Random MERS MERS-FP
Trojan 1 0.00125 0.00154 0.00568
Trojan 2 0.00119 0.00135 0.00538
Trojan 3 0.00136 0.00143 0.00525
Trojan 4 0.00170 0.00151 0.00573
Trojan 5 0.00125 0.00167 0.00568
Trojan 6 0.00107 0.00132 0.00196
Trojan 7 0.00105 0.00143 0.00235
Trojan 8 0.00148 0.00158 0.00196
Trojan 9 0.00090 0.00083 0.00110
Trojan 10 0.00083 0.00107 0.00127
Trojan 11 0.00267 0.00237 0.00389
Trojan 12 0.00227 0.00255 0.00356
Trojan 13 0.00235 0.00226 0.00952
Trojan 14 0.00262 0.00235 0.00635
Trojan 15 0.00235 0.00228 0.00354
Average SCS 0.00162 0.00170 0.00421
Average Improve. - 5% 160%

TABLE VIII: DLX testsets: [Random, MERS, MERS-FP,
MERS-FP+SP]

Testset Random MERS MERS-FP MERS-FP+SP
Trojan 1 0.00045 0.00059 0.00059 0.00202
Trojan 2 0.00055 0.00067 0.00067 0.01515
Trojan 3 0.00066 0.00087 0.00087 0.00448
Trojan 4 0.00050 0.00062 0.00065 0.00448
Trojan 5 0.00079 0.00059 0.00059 0.00202
Trojan 6 0.00042 0.00085 0.00085 0.00285
Trojan 7 0.00061 0.00090 0.00090 0.00384
Trojan 8 0.00081 0.00099 0.00099 0.00632
Trojan 9 0.00051 0.00096 0.00096 0.00210
Trojan 10 0.00059 0.00086 0.00126 0.00673
Trojan 11 0.00045 0.00073 0.00078 0.02273
Trojan 12 0.00038 0.00067 0.00067 0.00202
Trojan 13 0.00075 0.00093 0.00093 0.00384
Trojan 14 0.00051 0.00079 0.00079 0.00210
Trojan 15 0.00050 0.00062 0.00062 0.01515
Average SCS 0.00056 0.00077 0.00081 0.00639
Average Improve. - 37% 43% 1033%

for 71% of the whole design area). We used the hypergraph
partitioning tool hMETIS [27] to further partition the Decode
region into four regions of roughly equal size (in terms of
number of gates/vertices).

Table VIII compares the side channel sensitivity on 15
random Trojans for four testsets: Random, MERS (whole
design), MERS-FP (with functional partition), MERS-FP+SP
(with functional partition followed by structural partition).
Compared with the Random testset, the MERS testset can
improve the side channel sensitivity by about 37% on average,
and MERS-FP testset can improve by 43%. The MERS and
MERS-FP has very close side channel sensitivity numbers,
because the Decode region is very huge. The MERS-FP+SP
testset can significantly improved the side channel sensitivity
(about 11X times) over the Random testset. The experiments
on AES and DLX have shown that our approach is scalable to
large designs to greatly improve the side channel sensitivity
for hardware Trojan detection.

VI. CONCLUSIONS

We have presented a framework for scalable test generation,
called MERS, which can significantly improve the Trojan
detection sensitivity in side-channel analysis based Trojan de-
tection. The approach aims at statistically increasing switching

activity in an unknown Trojan to amplify the Trojan effect in
presence of large process variations. Such a test generation
approach will, in general, be effective for any side-channel
analysis approaches that rely on activity in Trojan circuits (e.g.
transient current, dynamic power profile, or electromagnetic
emanation based methods). MERS is effective for any Trojan
forms/sizes, as long as a Trojan is implanted through alter-
ations in a circuit structure - the most dominant mode of Trojan
implantation. Our simulation results on a set of benchmark
circuits show that the proposed approach can significantly
improve the side channel sensitivity by 97%, compared with
random tests for a large set of arbitrary Trojans. Furthermore,
our approach is scalable to large designs (e.g. AES cipher and
DLX processor), which can improve side channel sensitivity
by 1.6X times for AES, and 10X times for DLX. Further,
the approach can work for different DFT configurations. Our
results demonstrated that a scalable statistical test generation
can serve as an essential component in any side channel
analysis based hardware Trojan detection framework.
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