
1

Feature-based Signal Selection for Post-silicon
Debug using Machine Learning

Kamran Rahmani and Prabhat Mishra Senior Member, IEEE

Abstract—A key challenge of post-silicon validation methodology is to select a limited number of trace signals that are effective during
post-silicon debug. Structural analysis used by traditional signal selection techniques are fast but lead to poor restoration quality. In
contrast, simulation-based selection techniques provide superior restorability but incur significant computation overhead. While early work
on machine learning based signal selection is promising [1], it is still not applicable on large industrial designs since it needs thousands of
simulations of large and complex designs. In this paper, we propose a signal selection technique that addresses the scalability issue of
simulation-based techniques while maintaining a high restoration performance. The basic idea is to train a machine learning framework
using a small set of circuits, and apply the trained model to the bigger circuit under test, without any need for simulating the large
industry-scale designs. This paper makes two fundamental contributions: i) this is the first attempt to show that learning from small related
circuits can be useful for signal selection, and ii) this is the first automated signal selection approach that is applicable on industrial
designs without sacrificing restoration quality. Experimental results indicate that our approach can improve restorability by up to 135.4%
(8.8% on average) while significantly reduce (up to 37X, 16.6X on average) the runtime compared to existing signal selection approaches.

Index Terms—Post-silicon debug, machine learning, signal selection, feature selection

F

1 INTRODUCTION

The goal of post-silicon validation is to ensure that
the fabricated, pre-production silicon functions correctly
while running actual applications under on-field operating
conditions. Post-silicon validation is a complicated process
that needs to be done under aggressive time to market
schedules. It accounts for more than 50% of the total
validation cost of the integrated circuit [2]. A key challenge in
post-silicon debug process is limited observability: limitations
of the number of output pins, along with the limitations
imposed by power and area constraints on trace buffer size,
imply that only a few hundreds (out of billions) of internal
signals can be traced during the execution. Furthermore, the
trace signals need to be selected during design phase with
appropriate routing hardware to trace buffer in-place. With
all these constraints, it is crucial to develop techniques to
select a set of signals that maximizes the observability during
post-silicon debug.

To address the discussed issues, there has been signif-
icant research on developing automated signal selection
techniques through pre-silicon analysis of the design in RTL
or gate level. The goal is to to select a set of trace signals S
that maximizes the restorability during the debug process.
Restoration is the process of reconstructing the unknown
signals based on the observed trace signals. There are two
main categories of signal selection techniques, structure-
based and simulation-based. Structure-based techniques
try to define a metric for the signals based on the circuit
structure which is used for evaluating the candidates -
usually greedy heuristic [3], [4], [5]. These approaches
are fast but provide inferior restoration performance. On
the other hand, simulation-based techniques [6] use mock

• Department of Computer & Information Science & Engineering, University
of Florida, Gainesvill, Florida. Email: {kamran,prabhat}@ufl.edu.

TABLE 1
Time complexity comparison of our approach and existing signal

selection techniques. N is the number of flip-flops in the circuit under
test.

Technique Mock
Simulations

Other
Computations

Simulation-based
[4] O(N2) None

Hybrid [4] O(N)
Fast metric
evaluations

Learning-based
[1] O(N)

Fast model
training and
predictions

Our approach None
Fast model

training and
predictions

simulation/restoration process to identify the top candidates.
They provide superior restoration performance but introduce
scalability challenges for large circuits. A hybrid selection
approach [7] has been proposed which tries to make a trade-
off between metric-based and simulation-based approaches.
However, use of less simulations to identify the top signals
impacts the restoration performance of the final selected set
of trace signals. Recently, a learning-based approach [1] has
been proposed where it applies machine learning regression
techniques to the circuit under test to reduce the overhead
of O(N2) simulations by O(N2) fast predictions, where N
is the number of flip-flops in the design. However, it still
needs O(N) simulations, typically thousands or millions of
simulations of the design, to train the selection model, which
limits its applicability on large industry scale circuits.

The main contribution of this paper is a novel technique
for signal selection that retains or improves the restoration
quality of simulation-based techniques while drastically re-
duces the signal selection time. To the best of our knowledge,
our approach is the first attempt in creating an automated

2

signal selection technique that is applicable on large industry-
scale designs while providing the best possible restoration
performance. Our approach is characterized by three key
components: (1) simulation-based techniques are applied on
a set of few small training circuits; and (2) a proper feature
vector is created to apply machine learning techniques to
learn the criteria for good trace signals; and (3) apply the
model to the larger circuit under test. The main idea is to
run only a small number of simulations to train the signal
selection model using a set of small related circuits (one
time process). Subsequently, our approach will utilize fast
predictions of the selection model replacing the need for
expensive simulation runs during the selection process in the
larger circuits. Table 1 summarizes the time complexity of
our approach compared to the existing state-of-the-art signal
selection techniques for a circuit with N flip-flops.

The remainder of the paper is organized as follows.
Section 2 presents the relevant background. We describe
our approach in Section 3 followed by experimental results
in Section 4. We discuss the related work in Section 5. We
conclude the paper in Section 6.

2 BACKGROUND AND MOTIVATION

Supervised learning is a technique of inferring an unknown
output for an input vector using a set of training examples
consisting of pairs of input vectors and corresponding
known outputs. There is two main categories for supervised
learning in machine learning, classification and regression.
Classification is predicting whether an element belongs to
a set of discrete values (or classes) whereas, regression is
predicting the value for a continuous function. An example
for classification is classifying an email as spam or legitimate
email based on some features of its content and meta data
(feature vector). On the other side, predicting the price of
a house based on its features like location, size, and age
(feature vector) would be a regression prediction as the price
is a continues value. In fact, classification is a special case of
regression where each class is assigned to a range of values
(or probabilities) of the prediction function. This is illustrated
in Figure 1. The classification predictor divides the outputs
to different classes, square and star. On the other hand, the
regression is a continuous function trying to fit the best line
passing through the inputs and outputs.

Rahmani et al. [1] proposed an approach that utilizes
regression techniques to reduce the number of simulations
from O(N2) in Chatterjee et al. [6] to O(N). However, it is
still computationally prohibitive in large industry circuits.
The feature-based signal selection approach we propose in
this paper addresses this issue. We first create a selection
regression model by applying simulation-based techniques
to a set of small circuits. After that, our approach replaces
mock simulations on the circuit under test with much faster
prediction using the regression model. This makes our
approach scalable and applicable to large industry circuits.

3 FEATURE-BASED SIGNAL SELECTION

Figure 2 shows the overview of our approach and its relation
to existing simulation based approaches [6], [7]. First, we
choose a set of small training circuits to build the selection

Classi�cation Regression

Fig. 1. Two different type of supervised learning. Classification is predict-
ing whether an element belongs to a set of discrete values (or classes)
whereas, regression is predicting the value for a continuous function.

model. For each training circuit, we apply a modified version
of both elimination-based [6] and augmentation-based [7]
approaches and select the best result. We then generate a set
of training vectors and add it to the training vectors set. Next,
we use this training set to create a selection model using
different machine learning regression techniques and pick
the one with best accuracy. In this step, we train a model that
learns the criteria of a good candidate signal and the relation
with its properties. This model can then be used to select trace
signals on any related design under signal selection without
expensive mock simulations involved. Related circuits are
those circuits that share the same restorability characteristic
for the set of feature defined in Section 3.4.1. For example,
they share the same set of logical gates or the same version
of standard cell library. It should be noted that the selection
model training is a one time process. Once it is done the
model can be used to select trace signal on any other related
circuits, as long as it shares same properties like connectivity
and coding guideline with the training circuits. In this paper,
we use Restoration Ratio (RR) - defined in Equation 1 -
to compare the performance of different signal selection
techniques.

RR =
#traced+#restored

#traced
(1)

3.1 Problem Formulation
The goal of any signal selection algorithm is to select a set
of trace signals S which includes w signals (out of N signals
in the circuit), so that the restored 1 signals during the post-
silicon debug process is maximized. Here w, which is the
trace buffer width, is a parameter of the selection algorithm.
To motivate our discussion in the next sections, we provide a
formulation of signal selection as a constrained optimization
representation. Note that any candidate signals set S can be
mapped to a unique input vector v = 〈f1, f2, ..., fN 〉 where
fi ∈ {0, 1}. Informally, fi = 1 means i-th flip-flop is selected
and is present in S. On the other hand, fi = 0 means that
i-th flip-flip is not selected as part of the signals in S. This
means, input vector v completely identifies the candidate
signals set S and vice versa. We will refer to v as the candidate
vector of S and S as the candidate signal set of v. In addition,
we define rm(v) to be the number of signals that can restored

1. For restoration process, we used the same method described in
existing works such as [4].

3

Elimination Based
Selection

Selected Signals

Generate feature vectors for the actual design
and apply the trained model to them

Selection Model Generation

Pick the best result and add the
feature vectors to the training set

For each training circuit, generate the feature
vectors and apply the following techniques

De�ne training vectors set
S as an empty set

Augmentation Based
Selection

Fig. 2. Overview of our proposed approach and its relation to existing
simulation based approaches [6], [7]. We generate a set of training
vectors by applying simulation-based techniques to a set of small training
circuits. We then use this training set to create a selection model which
can be used to select trace signals on any design without expensive
mock simulations involved.

where signals in v are traced in a windows of m cycles. Given
that, we can formulate signal selection as the optimization
problem defined below.

maximize rm(v)

under constraint
N∑

k=1

fk = w (2)

The above optimization problem includes both the simulation
windows (m) as well as the trace buffer width (w) as the
parameters.

3.2 Elimination-based Signal Selection
Algorithm 1 outlines the steps involved in the elimination-
based signal selection approach in Chatterjee et al. [6]. First,
all the flip-flops are selected as part of the candidate signals
set (i.e., they are set to 1 in v). In each iteration of the
algorithm, a signal with minimum impact on the restoration
ratio of the candidate signals vector is removed by setting
its value to 0 in v. This process stops when the number of
remaining flip-flips in the candidate signals vector is equal
to the trace buffer width (w). The final selected signals in v is
returned as the output for the algorithm. It should be noted
that our approach is not completely identical to Chatterjee
et al. [6] as we do not run any pre-processing on the initial
vector v for coarse-grained pruning of the signals which
can significantly degrade the performance of the final set of
signals. Our approach does not have computation limitation
similar to [6] as we run this algorithm only on a set of small
training circuits.

3.3 Augmentation-based Signal Selection
Algorithm 2 outlines the steps involved in selecting signals
using the augmentation-based technique similar to the
approach described by Li et al. [7]. In this technique, in each
iteration, we add the most beneficial signal to the candidate

Algorithm 1 Elimination-based Signal Selection
1: procedure ELIMINATIONBASED(circuit, w,m)
2: Create initial vector of v =< 1, 1, ..., 1 >, |v| = N
3: remainedSignals = N
4: while remainedSignals > w do
5: maxRestorability = −∞
6: maxIndex = −1
7: for i = 1; i <= N ; i++ do
8: if v[i] = 1 then
9: v[i] = 0

10: if rm(v) > maxRestorability then
11: maxRestorability = rm(v)
12: maxIndex = i
13: end if
14: v[i] = 1
15: end if
16: end for
17: v[maxIndex] = 0
18: remainedSignals = remainedSignals− 1
19: end while
20: return v
21: end procedure

signals set, instead of removing the least beneficial one. This
process stops when the total number of selected signals is
equal to trace buffer width w. The final vector of selected
signals v is returned as the algorithm output. Our approach
is different from Li et al. [7]. Because of computational
limitation, they use mock simulations only for top 5% of
the candidate signals, which can degrade the restoration
performance of the final selected signals. However, we do
not have this limitation as we run this selection technique
only on a set of small training circuits, not the actual circuit
under test.

Algorithm 2 Augmentation-based Signal Selection
1: procedure AUGMENTATIONBASED(circuit, w,m)
2: Create initial vector of v =< 0, 0, ..., 0 >, |v| = N
3: for selected = 1; selected <= w; selected++ do
4: maxRestorability = −∞
5: maxIndex = −1
6: for i = 1; i <= N ; i++ do
7: if v[i] = 0 then
8: v[i] = 1
9: if rm(v) > maxRestorability then

10: maxRestorability = rm(v)
11: maxIndex = i
12: end if
13: v[i] = 0
14: end if
15: end for
16: v[maxIndex] = 1
17: end for
18: return v
19: end procedure

4

3.4 Selection Model Generation

The core part of our approach is the training model gen-
eration and how to best choose the feature vectors. The
model should be generic enough so that it can be applied
to the circuit under test and accurate enough to produce
high quality result. Before going into details of our proposed
modeling technique, we would like to define few terms and
functions for a circuit with N flip-flops, mock simulation
window m.

• Fan-outg(x) for flip-flop f is defined as the number of
gates of type g (and, or, etc.) connected to its output.

• Fan-ing(x) for flip-flop f is defined as the number of gates
of type g (and, or, etc.) connected to its inputs.

• Connectivity(x) for flip-flop f is defined as the number
of flip-flops connected to it through other combinational
gates in both backward and forward directions.

• InputDistance(x) for flip-flop f is defined as the mini-
mum distance of the flip-flop from the primary input
signals (in terms of number of gates).

• OutputDistance(x) for flip-flop f is defined as the mini-
mum distance of the flip-flop from the primary output
signals (in terms of number of gates).

• ZeroProbability(x) for flip-flop f is defined as the per-
centage of 0 values for the flip-flop in a mock simulation
over m cycles.

• SingleRestoration(x) for flip-flop f is defined as the num-
ber of restored states in a mock simulation/restoration
process over m cycle if f is the only trace signal.

• SelectionOrderg(x) for flip-flop f is defined as the se-
quence number of selection when technique g is applied.
This number is 1 for the first (best) selected signal and N
for the last selected signal.

• Rank(g(x)) for flip-flop f is defined as the number of flip-
flops with g(x) <= g(f) divided by N. In other words,
it is the normalized relative rank of applying function g
to flip-flop f compared to the other flip-flops. This value
would be 1 and 1/N for the flip-flops with the maximum
and minimum value of g(f), respectively.

3.4.1 Feature Selection
Selecting the right features is the most important part of
any machine learning problem as it directly impacts the
quality of the model and solution. In our case, the features
should be selected such that it can model the true correlation
between structural properties of a signal and its performance
in state restoration. In addition, it should be independent of
the circuit size and structure. This is crucial as we want to
train our model using a set of small circuits and apply the
learning to the bigger circuit under test. Lastly, the generation
of feature vectors should not be computationally expensive
so it can easily scale while selecting signals in large industry-
scale circuits. In order to address these requirements, we
define feature vector v for flip-flop f in circuit c to have the
following components.

• Rank(Fan-outg(f)) for all gates of type g in the circuit.
• Rank(Fan-ing(f) for all gates of type g circuit.
• Rank(Connectivity(f)) for flip-flop f.
• Rank(InputDistance(f) for flip-flop f.
• Rank(OutputDistance(f)) for flip-flop f.
• Rank(ZeroProbability(f)) for flip-flop f.
• Rank(SingleRestoration(f)) for flip-flop f.

It can be seen that we have chosen features that are mostly
based on the circuit structure and fast to evaluate. In addition,
we are applying rank function to all the features to make
them relative values instead of using the absolute values.
This makes the features independent of the circuit size and
number of gates. Intuitively, our feature vector captures the
fan-in and fan-out of the signal, its relative position and
depth in the circuit, and its impact on restoring its neighbors
when selected as a trace signal. Our experiments have shown
that there is a high correlation between these features and
the restoration performance of a flip-flop.

3.4.2 Model Selection
In this step, we generate a selection model by applying
simulation based techniques on a small set of training circuits.
Intuitively, the model learns the criteria of a good trace
signal and the relation with its feature vector described
before. Algorithm 3 outlines the steps involved in creating
our selection model from a set of small training circuits. For
each circuit, we apply both augmentation and elimination
based techniques and pick the one with better result (the one
with better average restoration ratio for trace buffer widths
8, 16, and 32). Next, for each flip-flop f in the circuit we add
a pair of feature vector v and selection order rank r to the
training vectors set. Choosing selection order rank helps to
normalize the training data across all the circuits and makes
it independent of number of flip-flops in the circuit. This
is achieved by using a normalized rank number for all the
feature values instead of their absolute value. In other words,
regardless of size of the circuit and number of flip-flops,
the value for all the features will be between 0 and 1 (its
rank compared to other values in the circuit). This makes
it independent of the circuit size and uniform across all the
circuits. We then apply different regression techniques (like
svm, linear modeling, etc.) to the training vectors and return
the best one as the result. To measure the quality of a model
on a test vector set of size n, we use Mean Prediction Error
(MPE) defined as below.

MeanPredictionError = 1/n ∗
n∑

k=1

|r̂(vk)− r(vk)| (3)

Where r(vk) is the actual value and r̂(vk) is the predicted
value of r for vk. In order to avoid over-fitting 2 in our model
training, we use 5-fold cross-validation technique where we
use 20% of the vectors as test (validation) vectors and 80%
as the the training vectors.

3.5 Signal Selection Process
Once we have our selection model trained, it can be used
on any circuit for selecting trace signals. To motivate our
approach, we have used the smallest circuits in ISCAS’89
benchmarks 3 to train our model using cubist regression
technique. Figure 3 shows the actual versus predicted
selection ranks (using the trained model) on a set of flip-flops
in s38584 benchmarks (in this example, s38584 is assumed as
the actual design under signal selection). It can be seen that

2. Over-fitting happens when the model is too specific to the training
data, resulting in a high accuracy in training data and low accuracy in
new data.

3. s1494, s1488, s713, s1238, s1196, and s838.

5

Algorithm 3 Model Generation Algorithm
1: procedure MODELGENERATION(trainingCircuits, regres-

sionModels, m)
2: Create training vectors set trainingVectors
3: for each circuit c in trainingCircuits do
4: n = number of flip-flops in c
5: apply AugmentationBased(c,n,m) and Elimina-

tionBased(c,1,m) to c and pick the best one as g
6: for each flip-flop f in c do
7: Add < v, r > to trainingVectors where

v is the feature vector for the flip-flop and r is
Rank(SelectionOrderg(f))

8: end for
9: end for

10: apply all the models in regressionModels to train-
ingVectors

11: return model m with minimum MPE
12: end procedure

there is a high correlation between the real and predicted
values. This is significant as it enables us to select high
quality trace signals in the circuit under test using very fast
predication to generate the selection ranks based on the
feature vectors, instead of expensive mock simulations.

Fig. 3. Actual versus predicted values of selection ranks in s38584
benchmark. The high correlation between the values enables us to have
high quality trace signal selection using fast predictions instead of mock
simulations.

Algorithm 4 outlines our proposed signal selection tech-
nique. We first generate feature vectors for all the flip-flops in
the circuit. We then use these vectors to predict the selection
sequence rank for the flip-flops using the given selection
model m. We return the top w (trace buffer width) flip-flops
with the highest value of predicted selection sequence rank
as the result.

Algorithm 4 Signal Selection Algorithm
1: procedure SIGNALSELECTION(circuit, m, w)
2: Initialize predictionMap as an empty map
3: for each flip-flop f in circuit do
4: v = feature vector of f
5: r = m(v), the predicted value of selection sequence

rank of f using model m
6: Add < f, r > to predictionMap
7: end for
8: Sort predictionMap based on r values
9: return top w flip-flops with the highest values of r

10: end procedure

4 EXPERIMENTS

4.1 Experimental Setup

In order to evaluate the effectiveness of our proposed
signal selection technique, we have developed a cycle-
accurate simulator for ITC’99 and ISCAS’89 benchmarks
suites in C++. In addition to regular simulation, our simulator
can also perform restoration process using both forward
and backward restoration rules. Our simulator iterates on
the unknown signal and attempts to apply forward and
backward restoration rules to restore their values. The
process stops when it is not possible to restore any more
signals in the iteration. We validated the correctness of our
simulator by comparing the output values with the output
of Verilog simulation of the same benchmarks using Icarus
Verilog [8] simulator. We used the set of largest circuits in
ISCAS’89 as has been studied by previous works. We also
used the largest circuits in ITC’99 benchmarks. We used
a set of regression modeling techniques (glm, svmLinear,
cubist, earth, gaussprLinear, svmPoly, and treebag) in caret
package in R [9] as the modeling/prediction tool. In addition,
while running the modeling techniques, we used 5-fold cross
validation. We used a set of smallest ISCAS’89 benchmarks
(s1494, s1488, s713, s1238, s1196, and s838) to train our
selection model.

In our experiments, we did not use the reported numbers
of Chatterjee et al. [6] and Li et al. [7], as they used modified
versions of ISCAS’89 benchmarks with some specific opti-
mizations applied. In order to have a fair comparison, we
tried to obtain the executables of their implementations. Li et
al. [7] provided us with the executable file of their signal selec-
tion implementation and we used it for the selection process.
Unfortunately, we were not able to get the implementation
of Chatterjee et al. [6]. We used our own implementation
of their approach in our set of experiments. However, we
used the same parameters c = 64 and PT = 95% as they
reported in their paper. In addition, we used m = 32 as our
mock simulation window. In order to calculate the restoration
ratios, we fed our simulator with 100 sets of random input
vectors and reported the average restoration ratios for the
selected set of signals. However, we forced the circuits to
run in their normal operating mode by fixing their relevant
control (reset) signals, while randomly assigning values to
all the other inputs. The control signals include active low
reset signals g35 in s38584 and RESET in s35932 which were
set to ‘1’ in our experiments.

6

TABLE 2
Restoration ratios using our approach compared with existing selection approaches.

Circuit #Flip-
flops

Buffer
Width

Simulation-based
[6]

Hybrid
[7]

Learning-based
[1]

Our
Approach

Imp. over
the best

s5378 179
8 13.41 14.35 14.20 14.13 -1.5%
16 7.35 8.36 8.40 8.92 6.1%
32 4.47 4.99 4.93 5.12 2.6%

s9234 228
8.0 13.98 9.25 15.33 15.82 3.2%
16 8.30 6.13 8.76 9.10 3.9%
32 4.46 4.38 4.84 5.11 5.6%

s15850 597
8 26.33 21.90 44.03 45.12 2.5%
16 19.89 14.78 23.13 24.37 5.4%
32 13.19 10.88 13.92 13.82 -0.7%

s13207 669
8 35.52 33.60 47.18 49.30 4.5%
16 20.13 23.22 29.00 31.21 7.6%
32 11.25 13.64 15.42 16.13 4.6%

s38584 1452
8 N/A 27.00 54.25 127.72 135.4%
16 N/A 13.97 69.03 79.09 14.6%
32 N/A 7.50 43.66 44.02 0.8%

s38417 1636
8 N/A 37.71 52.33 53.27 1.8%
16 N/A 23.80 27.12 26.97 -0.5%
32 N/A 11.83 16.73 17.10 2.2%

s35932 1728
8 132.00 144.00 186.80 186.90 0.1%
16 67.45 72.00 93.60 93.42 -0.1%
32 34.63 36.00 46.98 47.15 0.4%

b15 449
8 5.99 N/A 6.15 7.18 16.7%
16 3.56 N/A 4.83 4.98 3.1%
32 34.63 N/A 3.31 3.46 4.53%

b17 1415
8 N/A N/A 14.12 14.43 2.1%
16 N/A N/A 13.19 13.31 0.9%
32 N/A N/A 7.93 8.77 10.6%

b18 3320
8 N/A N/A N/A 25.12 N/A
16 N/A N/A N/A 21.60 N/A
32 N/A N/A N/A 12.49 N/A

b19 6642
8 N/A N/A N/A 32.00 N/A
16 N/A N/A N/A 24.64 N/A
32 N/A N/A N/A 18.11 N/A

4.2 Model Selection

In order to choose the best regression model for our signal
selection application, we explored several models available
in caret package [9] in R. Figure 4 illustrates real versus
estimated values of selection rank in S38584 benchmark
using training circuits set of s1494, s1488, s713, s1238, s1196,
and s838. It can be observed that cubist is the best model
in our experiments with minimum prediction error and
highest correlation between the real and estimated value. In
fact, cubist outperformed other models consistently for other
benchmarks as well. For this experiment, we used 80% of our
training vector for actual training and the other 20% for the
testing. This can prevent us from biasing while training
the models. We selected cubist model as our regression
model for the rest of our experiments. Cubist is a non-linear
model, simpler than neural network, and designed to analyze
millions of records which makes it a good fit for our large
scale application.

4.3 Restoration Quality

Table 2 presents the restoration ratios of our approach
compared with previous state-of-the-art techniques [1], [6],
[7] using different ISCAS’89 and ITC’99 benchmarks. The
trace buffer sizes used in our experiment are 8× 4k, 16× 4k,

and 32 × 4k. The corresponding restoration ratio for each
technique is reported. The ones shown as ‘N/A’ for [6]
and [1] means that their technique was not able to finish
within 24 hour of runtime. In addition, unfortunately we
were not able to get the result of [7] for ITC’99 benchmarks
as their binary failed to parse the benchmarks. The last
column indicates the percentage of improvement using our
approach compared with the best (shown in bold) result
provided by the existing approaches. The results indicate
that our approach consistently performs comparable or
better compared to existing approaches. The improvement in
restoration performance is up to 135.4% in s38584 and 8.8%
on average. Compared to Chatterjee et al. [6], we run the
elimination-based technique on training circuits without any
pruning which reduces the chance of removing effective
flip-flops prior to selection itself. Similarly, Li et al. [7]
incorporated simulations for only top 5% of the candidate
flip-flops, which sacrifices the precision of the selection
process. In addition, building the selection model using small
training circuits, allows us to run both elimination-based and
augmentation-based techniques at the same time and pick
the best one for each circuit. Compared to Rahmani et al. [1],
we train the selection model based on the training circuits
structure and the best result of simulation-based techniques,
whereas they use machine-learning to just reduce the number

7

cubist treebag guassprLinear

svmLinearglm svmPoly

Fig. 4. Real versus estimated values of selection rank in S38584 benchmark using training circuits set of s1494, s1488, s713, s1238, s1196, and
s838.

of mock simulation on the circuit under test. In addition, our
model is trained using the best result of simulation-based
techniques on a set of training circuits (instead of just one),
which provides a more globally optimized selection model.
Finally, although our model is trained using small circuits
in ISCAS’89 benchmarks, it still outperforms [1] in ITC’99
benchmarks (b15 and b17). This shows that the proposed
feature vector and selection model is generic enough that can
be applied to the designs from same domain with similar
characteristic and standard cell library. This enables training
the model with a small set of related circuit with same coding
guideline or sub-components of SoCs and use it for signal
selection in the larger industrial circuits.

4.4 Selection Time and Scalability
To compare the runtime of different approaches, we used
an Octa-Core AMD Opteron 6378 (1400 MHz) machine with
188GB of memory for all the experiments. The runtime for
our approach is calculated as the summation of required
time for generating training vectors on the training circuits,
modeling, generating the feature vectors for the circuit under
test, and the signal selection process itself. The total time
to generate the vectors on the small training circuits and
train the model on the machine we used was six seconds.
Table 3 presents the runtime of our approach compared with
the previous techniques [1], [6], [7] using different ISCAS’89
and ITC’99 benchmarks. The reported runtime format is
‘hour:minute:second’. The ones shown as ‘N/A’ for [6] and
[1] means that their technique was not able to finish within
24 hour of runtime. In addition, unfortunately we were not
able to get the result of [7] for ITC’99 benchmarks as their

binary failed to parse the benchmarks. As expected, our
approach is significantly faster than the existing approaches.
The speed-up is up to 37X in s38417 and b17 for buffer width
of 32 and 17.6X on average. This is because in our approach
we need mock simulations only on a set of small training
circuits. Once the model is created, there is no need for any
simulations on the circuit under test as the selection process
just uses fast predictions instead of actual simulations. This
makes our approach significantly more scalable and practical
compared to the existing ones. In summary, our approach
not only produces comparable or better restoration quality,
but it is also significantly faster than the existing approaches.

5 RELATED WORK

Limited observability of the internal signals is the primary
challenge in post-silicon validation debug process. Once the
values of internal signals are identified, they can be analyzed
using various proposed algorithms. Caty et al. [10] proposed
failure propagation tracing technique to locate the errors in
the circuit. De Paula et al. [11] proposed a formal method
for post-silicon debug. However, as in pre-silicon phase,
formal methods are not scalable for industry-scale circuit
with millions/billions of gates. Nataraj et al. [12] proposed
physical probing techniques for post-silicon debug. Design
for debug techniques have been widely used to enhance
the observability of internal signals in post-silicon debug.
In these techniques, data are sampled and stored in on-
chip trace buffers. Several design for debug techniques like
embedded logic analyzer [13] and shadow flip-flops [14]
have been proposed over the years.

8

TABLE 3
Runtime comparison of our approach compared with existing selection approaches.

Circuit Buffer
Width

Simulation-
based

[6]
Hybrid [7]

Learning-
based

[1]

Our
Approach Speedup

s5378
8 00:01:53 00:00:08 00:01:46 00:00:11 0.7X
16 00:01:52 00:00:10 00:01:52 00:00:11 0.9X
32 00:01:48 00:00:16 00:02:09 00:00:11 1.5X

s9234
8 00:08:52 00:00:32 00:00:10 00:00:11 1.0X
16 00:08:43 00:00:40 00:00:10 00:00:11 1.0X
32 00:08:10 00:00:50 00:00:10 00:00:11 1.0X

s15850
8 03:44:12 00:05:20 00:04:20 00:00:13 20.1X
16 03:44:04 00:06:00 00:04:35 00:00:13 21.2X
32 03:43:39 00:06:36 00:05:04 00:00:13 23.4X

s13207
8 01:21:41 00:01:36 00:03:45 00:00:13 7.4X
16 01:21:35 00:02:00 00:04:01 00:00:13 9.2X
32 01:21:13 00:02:40 00:04:12 00:00:13 12.3X

s38584
8 N/A 00:05:28 00:16:52 00:00:36 9.1X
16 N/A 00:06:06 00:17:09 00:00:36 10.2X
32 N/A 00:09:02 00:17:35 00:00:36 15.1X

s38417
8 N/A 00:22:42 00:20:23 00:00:39 31.4X
16 N/A 00:33:04 00:21:07 00:00:39 32.5X
32 N/A 00:34:28 00:23:55 00:00:39 36.8X

s35932
8 11:39:36 00:04:28 00:16:49 00:00:37 7.2X
16 11:39:09 00:05:56 00:17:33 00:00:37 9.6X
32 11:38:01 00:08:38 00:18:21 00:00:37 14.0X

b15
8 06:12:09 N/A 00:06:49 00:00:12 34.1X
16 06:09:55 N/A 00:07:03 00:00:12 35.3X
32 06:06:40 N/A 00:07:11 00:00:12 35.9X

b17
8 N/A N/A 00:19:10 00:00:35 32.9X
16 N/A N/A 00:20:30 00:00:35 35.1X
32 N/A N/A 00:21:40 00:00:35 37.1X

b18
8 N/A N/A N/A 00:06:11 N/A
16 N/A N/A N/A 00:06:11 N/A
32 N/A N/A N/A 00:06:11 N/A

b19
8 N/A N/A N/A 00:21:09 N/A
16 N/A N/A N/A 00:21:09 N/A
32 N/A N/A N/A 00:21:09 N/A

Trace buffers provide one of the most common form of
on-chip instrumentations. The primary challenge with trace
buffers is to compute a priori a small set of signals that can
be traced in order to maximize reconstruction of internal
states. Ko et al. [5] and Liu et al. [3] have proposed efficient
signal selection algorithms based on partial restorability. Basu
et al. [4] improved their methods by proposing an efficient
algorithm that selects signals based on their total restorability.
Prabhakar et al. [15] proposed a logic implication based trace
signals selection method. In addition, the use of scan chains
in post-silicon debug has been extensively studied in [16],
[17].

Existing signal selection approaches can be classified
in two categories, structural-based and simulation-based. Ap-
proaches in the first category, use some sort of greedy
heuristic algorithms to iteratively select signals to optimize
a metric based on the circuit structure [3], [4], [5]. They
are relatively efficient in computation speed, but have poor
restoration quality compared to simulation-based algorithms.
Simulation-based algorithms are based on the intuition that
if a set of signals works well for some random input vectors
then it is also likely to provide high state reconstruction
on other inputs and therefore a high restorability ratio.
Chatterjee et al. [6] demonstrated that simulation-based

signal selection is a promising approach. However, their
approach requires O(N2) simulations where N is the num-
ber of flip-flops in the circuit. This makes their approach
computationally expensive for large circuits. Li et al. [7]
proposed a hybrid (metric-based and simulation-based)
signal selection technique. However, to save selection time,
[7] uses simulation for a small fraction of the signals and
thereby sacrifices restoration performance. A learning-based
approach [1] has been proposed, where it applies a learning
technique to the circuit under test to reduce the simulations
overhead. However, it still needs O(N) simulations on the
actual circuit under test to train the model which can be
a limiting factor in large industry scale chips. Our work is
the first attempt that utilizes machine learning techniques to
learn selection criteria from a set of small circuits and apply
it on the bigger circuit under test without any expensive
simulation involved.

6 CONCLUSIONS

Post-silicon validation and debug is an expensive and
important phase in integrated circuit design flow. The success
for post-silicon debug depends on the quality of trace signals
that can maximize the effective use of limited observability
in trace buffer. Therefore, it is crucial to develop effective

9

signal selection techniques that can provide high restoration
performance and can be applied on large industrial designs.
Existing state-of-the-art signal selection techniques yield
signals with good restorability, but are computationally
prohibitive for industrial designs. We presented a learning-
based signal selection approach which provides comparable
or better restorability while providing an order-of-magnitude
reduction in signal selection time, making it applicable for
industry-scale circuits.

7 ACKNOWLEDGMENTS

This work was supported in part by National Science Founda-
tion under Grant CNS-1441667 and Grant CCF-1218629 and
in part by the Semiconductor Research Corporation under
Grant 2014-TS-2554.

REFERENCES

[1] K. Rahmani, S. Ray, and P. Mishra, “Postsilicon trace signal selection
using machine learning techniques,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. PP, no. 99, pp. 1–11, 2016.

[2] A. Nahir, A. Ziv, R. Galivanche, A. J. Hu, M. Abramovici, A. Camil-
leri, B. Bentley, H. Foster, V. Bertacco, and S. Kapoor, “Bridging
pre-silicon verification and post-silicon validation,” in DAC, 2010,
pp. 94–95.

[3] X. Liu and Q. Xu, “Trace signal selection for visibility enhancement
in post-silicon validation,” in Design, Automation Test in Europe
Conference Exhibition, 2009. DATE ’09., april 2009, pp. 1338 –1343.

[4] K. Basu and P. Mishra, “Rats: Restoration-aware trace signal
selection for post-silicon validation,” IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 21, no. 4, pp. 605–613,
April 2013.

[5] H. F. Ko and N. Nicolici, “Algorithms for state restoration and trace-
signal selection for data acquisition in silicon debug,” Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
vol. 28, no. 2, pp. 285 –297, feb. 2009.

[6] D. Chatterjee, C. McCarter, and V. Bertacco, “Simulation-based
signal selection for state restoration in silicon debug,” in Computer-
Aided Design (ICCAD), 2011 IEEE/ACM International Conference on,
nov. 2011, pp. 595 –601.

[7] M. Li and A. Davoodi, “A hybrid approach for fast and accurate
trace signal selection for post-silicon debug,” in Design, Automation,
and Test (DATE), 2013, pp. 485–490.

[8] Stephen Williams, “Icarus Verilog,” http://iverilog.icarus.com/.
[9] Max Kuhn, “The caret Package,”

http://topepo.github.io/caret/index.html.
[10] O. Caty, P. Dahlgren, and I. Bayraktaroglu, “Microprocessor silicon

debug based on failure propagation tracing,” in IEEE International
Test Conference (ITC), nov. 2005, pp. 10 pp. –293.

[11] F. De Paula, M. Gort, A. Hu, S. Wilton, and J. Yang, “Backspace:
Formal analysis for post-silicon debug,” in Formal Methods in
Computer-Aided Design, 2008. FMCAD ’08, nov. 2008, pp. 1 –10.

[12] N. Nataraj, T. Lundquist, and K. Shah, “Fault localization using time
resolved photon emission and stil waveforms,” in Test Conference,
2003. Proceedings. ITC 2003. International, vol. 1, 30-oct. 2, 2003, pp.
254 – 263.

[13] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi,
and D. Miller, “A reconfigurable design-for-debug infrastructure
for socs,” in Design Automation Conference, 2006 43rd ACM/IEEE, 0-0
2006, pp. 7 –12.

[14] D. Josephson and B. Gottlieb, “The crazy mixed up world of silicon
debug [ic validation],” in Custom Integrated Circuits Conference, 2004.
Proceedings of the IEEE 2004, oct. 2004, pp. 665 – 670.

[15] S. Prabhakar and M. Hsiao, “Using non-trivial logic implications
for trace buffer-based silicon debug,” in Asian Test Symposium, 2009.
ATS ’09., nov. 2009, pp. 131 –136.

[16] G. Van Rootselaar and B. Vermeulen, “Silicon debug: scan chains
alone are not enough,” in Test Conference, 1999. Proceedings. Interna-
tional, 1999, pp. 892 –902.

[17] R. Datta, A. Sebastine, and J. Abraham, “Delay fault testing and
silicon debug using scan chains,” in Test Symposium, 2004. ETS 2004.
Proceedings. Ninth IEEE European, may 2004, pp. 46 – 51.

Kamran Rahmani received the B.Sc. degree
from the Department of Computer Engineering,
Sharif University of Technology in Tehran, Iran
and his M.S. and Ph.D. degrees from the Com-
puter and Information Science and Engineering
(CISE) Department, University of Florida. He is
currently working as a Staff Software Engineer at
Box Inc. in Redwood City, California. His research
interests include post-silicon validation and debug
and reliable embedded systems.

Prabhat Mishra is a Professor in the Department
of Computer and Information Science and Engi-
neering at the University of Florida. His research
interests include design automation of embedded
systems, energy-aware computing, hardware se-
curity and trust, system-on-chip verification, and
post-silicon validation and debug. He received
his Ph.D. in Computer Science and Engineering
from the University of California, Irvine. He has
published six books and more than 150 research
articles in premier international journals and con-

ferences. His research has been recognized by several awards including
the NSF CAREER Award, IBM Faculty Award, three best paper awards,
and EDAA Outstanding Dissertation Award. Prof. Mishra currently serves
as the Deputy Editor-in-Chief of IET Computers and Digital Techniques,
and as an Associate Editor of ACM Transactions on Design Automation
of Electronic Systems, IEEE Transactions on VLSI Systems, and Journal
of Electronic Testing. He has served on many conference organizing
committees and technical program committees of premier ACM and
IEEE conferences. He is currently serving as an ACM Distinguished
Speaker. Prof. Mishra is an ACM Distinguished Scientist and a Senior
Member of IEEE.

	Introduction
	Background and Motivation
	Feature-based Signal Selection
	Problem Formulation
	Elimination-based Signal Selection
	Augmentation-based Signal Selection
	Selection Model Generation
	Feature Selection
	Model Selection

	Signal Selection Process

	Experiments
	Experimental Setup
	Model Selection
	Restoration Quality
	Selection Time and Scalability

	Related Work
	Conclusions
	Acknowledgments
	References
	Biographies
	Kamran Rahmani
	Prabhat Mishra

