
1

Dynamic Cache Reconfiguration for Soft Real-Time Systems

WEIXUN WANG, University of Florida
PRABHAT MISHRA, University of Florida
ANN GORDON-ROSS, University of Florida

In recent years, efficient dynamic reconfiguration techniques have been widely employed for system optimization. Dynamic
cache reconfiguration is a promising approach for reducing energy consumption as well as for improving overall system
performance. It is a major challenge to introduce cache reconfiguration into real-time multitasking systems since dynamic
analysis may adversely affect tasks with timing constraints. This article presents a novel approach for implementing cache
reconfiguration in soft real-time systems by efficiently leveraging static analysis during runtime to minimize energy while
maintain the same service level. To the best of our knowledge, this is the first attempt to integrate dynamic cache reconfig-
uration in real-time scheduling techniques. Our experimental results using a wide variety of applications have demonstrated
that our approach can significantly (up to 74%) reduce the cache energy consumption in soft real-time systems.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles—Cache memories; C.3 [Special-purpose
and application-based systems]: Real-time and embedded systems

General Terms: Design, Performance

Additional Key Words and Phrases: Real-time systems, low-power, embedded systems, cache

ACM Reference Format:
Wang, W., Mishra, P., and Gordon-Ross, A. 2011. Dynamic Cache Reconfiguration for Soft Real-Time Systems. ACM Trans.
Embedd. Comput. Syst. 0, 1, Article 1 (2011), 28 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Various research efforts in recent years have focused on design and optimization of real-time sys-
tems. These systems require unique design considerations due to timing constraints placed on the
tasks. Tasks in hard real-time systems must complete execution by their deadlines in order to ensure
correct system behavior. Due to these stringent constraints, real-time scheduling algorithms must
perform task schedulability analysis based on task attributes such as priorities, periods, and dead-
lines [Buttazzo 1995][Liu 2000]. A task set is considered schedulable if there exists a schedule that
satisfies all timing constraints. As embedded systems become ubiquitous, real-time systems with
soft timing constraints (missing certain deadlines are acceptable) are gaining widespread accep-
tance. Soft real-time systems can be found everywhere including gaming, housekeeping as well as
multimedia applications and devices. Tasks in these systems remain effective even if their deadlines
are not guaranteed to be met. Minor deadline misses may result in temporary service or quality
degradation, but will not lead to incorrect behavior. For example, users of video-streaming on mo-
bile devices can tolerate occasional jitters caused by frame droppings, which does not affect the
quality of service.

One of the most important optimizations in real-time embedded systems is energy consumption
reduction since most of these systems are battery-operated devices. Processor idle time (also known

This work was partially supported by NSF grant CCF-0903430 and SRC grant 2009-HJ-1979.
Author’s addresses: W. Wang and P. Mishra, Department of Computer and Information Science and Engineering, University
of Florida; A. Gordon-Ross, Department of Electrical and Computer Engineering, University of Florida.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies show this notice on the
first page or initial screen of a display along with the full citation. Copyrights for components of this work owned by others
than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to
redistribute to lists, or to use any component of this work in other works requires prior specific permission and/or a fee.
Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701
USA, fax +1 (212) 869-0481, or permissions@acm.org.
c© 2011 ACM 1539-9087/2011/-ART1 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

1:2 W. Wang et al.

as slack time) provides a unique opportunity to reduce the overall energy consumption by putting
the system into sleep mode using Dynamic Power Management (DPM) techniques [Benini et al.
2000]. Alternatively, Dynamic Voltage Scaling (DVS) [Hong et al. 1999] methods can be used to
achieve the same goal by reducing the clock frequency such that the tasks execute slowly but do not
violate their deadlines [Jejurikar and Gupta 2006][Quan and Hu 2007].

Reconfigurable computing provides the unique ability to tune the system during runtime (dy-
namically reconfigure) to meet optimization goals by changing tunable system parameters. The
primary aspect of reconfigurable computing research emphasizes tuning algorithms, which deter-
mine how and when to dynamically reconfigure tunable parameters to achieve higher performance,
lower energy consumption, and balance overall system behavior. One such tunable component is
the cache hierarchy. Research has shown that cache subsystem has become comparable to other
components in the processor with respect to the contribution in overall energy consumption [Malik
et al. 2000][Segars 2001]. Therefore, since different programs have distinct requirements on cache
configuration during execution, we can achieve significant energy efficiency as well as performance
improvements by employing dynamic cache reconfiguration in the system.

Although reconfigurable caches are highly beneficial in desktop and embedded systems, cur-
rently, reconfigurable caches have not been considered in real-time systems due to several funda-
mental challenges. For example, how to employ and make efficient use of reconfigurable caches
in real-time systems remains unsolved. Determining the appropriate cache configuration typically
requires some amount of runtime evaluation of different candidates. Furthermore, any change in
cache configuration on-the-fly may arbitrarily alter task execution time. In hard real-time systems,
the benefit of reconfiguration is limited since both of these facts can make scheduling decisions
difficult and eventually may lead to unpredictable system behavior. However, on the other hand,
soft real-time systems offer much more flexibility, which can be exploited to achieve considerable
energy savings at the cost of minor impacts to user experiences. Our proposed research focuses on
real-time systems with soft real-time constraints.

This article presents a novel methodology for using reconfigurable caches in real-time systems
with preemptive task scheduling. Our proposed methodology provides an efficient scheduling-aware
cache tuning strategy based on static profiling for both statically and dynamically scheduled real-
time systems. Generally speaking, our technique is useful in any multitasking systems. The goal is
to optimize energy consumption with performance considerations via reconfigurable cache tuning
while ensuring that the majority of the task deadlines are met. In this paper, we consider L1 cache
reconfiguration only. As shown in [Varma et al. 2005], L1 cache energy consumption can be a
significant part in overall energy optimization. In fact, small embedded systems executing light-
weight kernels are very likely to not even have L2 cache. While the L1 caches we are looking
at are small, given that the entire system is small, L1 caches can still be a significant contributor
to overall power consumption. For example, in [Gordon-Ross et al. 2007], 25% overall system
power reduction is reported by considering L1 cache reconfiguration only. Also, our approach is
independent of the actual cache sizes and is applicable as well as beneficial for both larger systems
with large L1 caches and smaller systems with small L1 caches. Our follow-up research on dynamic
cache reconfiguration for two-level cache hierarchy in soft real-time systems [Wang and Mishra
2009] considered L2 cache together with L1 caches to achieve overall energy reduction. In that
paper, we investigated the interaction between reconfiguration of L1 and L2 caches. The approaches
proposed in this article are valid in the context of multi-level cache hierarchy as shown in [Wang
and Mishra 2009].

The rest of the article is organized as follows. Section 2 surveys the background literature ad-
dressing both dynamic cache reconfiguration and real-time scheduling techniques. Section 3 de-
scribes our proposed research on scheduling-aware cache reconfiguration in soft real-time systems.
Section 4 presents our experimental results. Finally, Section 5 concludes the article.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 1:3

2. RELATED WORK
Nacul et al. [Nacul and Givargis 2004] proposed an initial work on combining dynamic voltage
scheduling and cache reconfiguration on workloads with time constraints. However, their work is
applicable in a very restricted scenario where systems does not support task preemption. There are
no prior work on dynamic cache reconfiguration in real-time systems which support task preemp-
tion. Our proposed research is the first attempt in this direction. This section surveys the background
literature in the following three related domains.

2.1. Real-Time Scheduling Techniques
Based on task properties and associated systems, scheduling algorithms can be classified into vari-
ous types [Liu 2000]. Earliest Deadline First (EDF) scheduling [Buttazzo 1995] and Rate Monotonic
(RM) scheduling [Liu 2000] are the most frequently referenced fundamental scheduling algorithms
in the real-time systems community. Periodic tasks, which usually have known worst case execution
time (WCET), period, and deadline are scheduled using such methods. Sporadic tasks are accepted
into the system only if the task passes acceptance tests when it arrives. Since sporadic tasks normally
have hard time constraints, all accepted tasks are guaranteed to meet their deadlines, and are thus
treated as periodic tasks. Aperiodic tasks are scheduled whenever enough slack time is available.
Hence, aperiodic tasks normally have soft deadlines and can only be scheduled as soon as possible.
Scheduling algorithms for tasks with unknown properties, like aperiodic and sporadic tasks, can be
found in [Liu 2000][Sprunt 1990][Andersson et al. 2008].

Derived from RM and EDF are energy-aware task scheduling algorithms using energy-
optimization techniques and aiming at various objectives, although optimal scheduling has been
proved to be a NP-hard problem [Zhang et al. 2007]. DVS and DPM are the most prominent tech-
niques, which exploit variable voltages and power supplies at runtime to reduce energy consump-
tion. Jejurikar et al. [Jejurikar and Gupta 2006] address the problem in the presence of task mutual
controls based on both EDF and RM scheduling. They also proposed in [Jejurikar et al. 2004] a
DVS enabled scheduling algorithm that is aware of leakage power. Leung et al. [Leung et al. 2005]
introduce a novel static voltage scheduling algorithm which can result in an energy-optimized slack
distribution by relaxing the WCET constraints. Their algorithm compromises average and worst
case execution times of a task to achieve greater energy savings. Quan et al. [Quan and Hu 2007]
present a low-complexity voltage scheduling method with fixed priority assignment systems. Since
creating additional slack is essential for revealing larger energy savings, Jejurikar et al. [Jejurikar
and Gupta 2005] defer task execution in the interest of slack reclamation, further extending low-
voltage intervals. Our approach can be used in tandem with any of these state-of-the-art scheduling
techniques. In other words, energy-aware scheduling can freely incorporate reconfigurable cache
tuning using our methodology to further minimize energy consumption in real-time systems.

2.2. Caches in Real-Time Systems
Cache systems are included in nearly all computing systems to temporarily store frequently accessed
instructions and data. Since caches have a much faster access time compared to main memory,
caches effectively alleviate the increasing performance disparity between the processor and mem-
ory by exploiting the temporal and spatial locality properties of programs. However, historically,
incorporating caches into real-time embedded system faces serious difficulties due to the unpre-
dictability imposed on the system. Cache affects data access pattern and hence creates variations in
data access time. For example, in a preemptive system, since a task may be interrupted by a higher-
priority task and resumed again at a later time, the data of preempted tasks may be evicted from
the cache. This may result in a period of cold-start compulsory cache misses, many of which may
have been cache hits if the task had not been preempted. This makes it difficult to calculate task’s
worst-case execution time (WCET), knowing which is a prerequisite of most traditional scheduling
algorithms.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

1:4 W. Wang et al.

Since caches introduce intra-task interference so that a specific task’s execution time becomes
variable at runtime, a great deal of research efforts are directed at employing caches in real-time
systems either by proving schedulability through WCET analysis or avoiding hazardous compulsory
miss uncertainty altogether. Cache-aware WCET analysis is a static, design time analysis of tasks in
the presence of caches to predict cache impact on task execution times [Puant 2002]. Cache locking
[Puant and Decotigny 2002] is a technique in which useful cache lines are “locked” in the cache
when a task is preempted so that these blocks will not be evicted to accommodate the new incoming
task. Through cache line locking, the WCET and cache behavior becomes more predictable since
the major delay from data replacement and access is avoided. Cache partitioning [Wolfe 1993] is
a similar but more aggressive approach where the cache is partitioned into reserved regions, each
of which can only cache data associated with a dedicated task. However, a potential drawback to
both cache locking and cache partitioning is per-task reduction of cache resources. To alleviate this
limitation, cache-related preemption delay analysis [Tan and Mooney 2007][Staschulat et al. 2005]
features tight delay estimation so that prediction accuracy is higher than traditional WCET analysis.
This improved accuracy can in turn result in a durable task schedule. Scratch-pad memories, like
caches, are also on-chip RAMs but mapped onto the address space of the processor at a specified
range. Puant et al. [Puant and Pais 2007] proposed an off-line content-selection algorithm for both
scratch-pad memory and cache with line locking ability to improve both predicability and WCET
estimation. Our approach is applicable to real-time systems that employ caches.

2.3. Reconfigurable Cache Architectures
As mentioned in Section 1, in power constrained embedded systems, nearly half of the overall power
consumption is attributed to the cache subsystem [Malik et al. 2000][Segars 2001]. Fortunately,
since applications require vastly different cache requirements in terms of cache size, line size, and
associativity [Zhang et al. 2004], research shows that specializing the cache to an application’s needs
can reduce energy consumption by 62% on average [Gordon-Ross and Vahid 2004].

There are many existing general or application specific reconfigurable cache architectures. Mo-
torola M*CORE processor [Malik et al. 2000] provides way shut-down and way management,
which has the ability to specify the content of each specific way (instruction, data, or unified way).
Kim et al. [2000] presented a FPGA-based configurable cache architecture where part of the cache
can serve as a computing unit. Modarresssi et al. [2006] developed a cache architecture which can be
dynamically partitioned and resized to improve the performance of object-oriented embedded sys-
tems. Settle et al. [2006] proposed a dynamically reconfigurable cache specifically designed for chip
multi-processors. The reconfigurable cache architecture proposed by Zhang et al. [2005] imposes no
overhead to the critical path, thus cache access time does not increase. Furthermore, the cache tuner
consists of a small custom hardware or a lightweight process running on a co-processor, which can
alter the cache configuration via hardware or software configuration registers. The underlying cache
architecture consists of four separate banks as shown in Figure 1 (a), each of which acts as a separate
way. Way concatenation shown in Figure 1 (b), which logically concatenates ways together, enables
configurable associativity. Way shutdown shown in Figure 1 (c) effectively shuts down ways to vary
cache size. Configurable line size in Figure 1 (d) is achieved by setting a unit-length base line size
and then fetching subsequent lines if the line size increases.

Given a runtime reconfigurable cache, determining the best cache configuration is a difficult pro-
cess. Dynamic and static analysis are two possible techniques. With dynamic analysis, cache config-
urations are evaluated in system during runtime to determine the best configuration. Two methods
are possible for runtime cache analysis. The first method is intrusive and physically changes the
cache to each configuration in the design space, examines the effects of each configuration, and
chooses the best cache configuration. This method is inappropriate for real-time systems since it
imposes unpredictable performance overhead during exploration. To eliminate this performance
overhead, a second method employs an N-experts based analysis [Gordon-Ross et al. 2007]. In this
technique, an auxiliary structure evaluates all cache configurations simultaneously. The best cache
configuration is determined by inspecting this auxiliary structure, allowing the cache to change to

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 1:5

(b)

2kB 2kB

4kB 2-way

Physical

line size

Fetch

subsequent

blocks to

increase

line size
1kB

16B

16B

b
an

k

1kB

4kB 4-way

b
an

k

1kB

b
an

k

1kB

b
an

k

1kB

1
k

B

1
k

B

1
k

B

1
k

B

4kB 1-way

1
k

B

1
k

B

1
k

B

1
k

B

2kB 2-way

1
k

B

1
k

B

2
k

B

2
k

B

2kB 2-way

1
k

B

1
k

B

2
k

B

2
k

B

(a)

(c) (d)

Fig. 1. Cache configurability: (a) base cache bank layout, (b) way concatenation, (c) way shutdown, and (d) configurable
line size.

the best configuration in one-shot, without incurring any performance overhead. Even though this
method is non-intrusive, the auxiliary data structure is too power hungry to continuously evaluate
the system, and thus can only operate periodically.

With static analysis, various cache alternatives are explored and the best cache configuration is
selected for each application in its entirety [Gordon-Ross et al. 2005] – application-based tuning,
or for each phase of execution within an application [Sherwood et al. 2003] – phase-based tuning.
Since applications tend to exhibit varying execution behavior throughout its execution, phase-based
tuning allows for the cache configuration to be specialized to each particular period, resulting in
greater energy savings than application-based tuning. Regardless of the tuning method, the pre-
determined best cache configuration (based on design requirements) could be stored in a look-up
table or encoded into specialized instructions. The static analysis approach is most appropriate for
real-time systems due to its non-intrusive nature. Previous methods focus solely on energy savings
or Pareto-optimal points trading off energy consumption and performance. However, none of these
methods consider task deadlines, which are imperative in real-time systems. In other words, the ex-
isting approaches were designed for desktop applications but not applicable for real-time systems.

3. SCHEDULING-AWARE CACHE RECONFIGURATION
A major challenge for cache reconfiguration in real-time systems is that tasks are constrained by
their deadlines. Even in soft real-time systems, task execution time cannot be unpredictable or pro-
longed arbitrarily. Our goal is to realize maximum energy savings while ensuring the system only
faces an innocuous amount of deadline violations (if any). Our proposed methodology – scheduling-
aware cache reconfiguration – provides an efficient and near optimal strategy for cache tuning based
on static program profiling for both statically and dynamically scheduled systems. Our approach
statically executes, profiles, and analyzes each task intended to run in the system. The information
obtained in the profiling process is fully utilized to make reconfiguration decisions dynamically.
The remainder of this section is organized as follows. First, we present an overview of our approach
using simple illustrative examples. Next, we present our static analysis technique for cache config-

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

1:6 W. Wang et al.

uration selection. Finally, we describe how the static analysis results are used during runtime for
statically- and dynamically-scheduled real-time systems.

3.1. Overview
This section presents a simple illustrative example to show how reconfigurable caches benefit real-
time systems. This example assumes a system with two tasks, T1 and T2. Traditionally if a recon-
figurable cache technique is not applied, the system will use a base cache configuration Cachebase,
which is defined in Definition 3.1.

Definition 3.1. The term Base cache refers to the configuration selected as the optimal one for
tasks in the target system with respect to energy as well as performance based on static analysis.
Caches in such systems are chosen to ensure durable task schedules and their configurations are
fixed throughout all task executions.

In the presence of a reconfigurable cache, as shown in Figure 2, different optimal cache configu-
rations are determined for every “phase” of each task. For ease of illustration, we divide each task
into two phases: phase1 starts from the beginning to the end, and phase2 starts from the half posi-
tion of the dynamic instruction flow (midpoint) to the end. The terms Cache1

T 1, Cache2
T 1, Cache1

T 2,
and Cache2

T 2 represent the optimal cache configurations for phase1 and phase2 of task T1 and T2,
respectively. These configurations are chosen statically to be more energy efficient (with same or
better performance), in their specific phases, than the global base cache, Cachebase.

CacheT1

1 CacheT2
1

CacheT1
2

T1 T2

CacheT2
2

Fig. 2. Cache configurations selected based on task phases

Figure 3 illustrates how energy consumption can be reduced by using our approach in real-time
systems. Figure 3 (a) depicts a traditional system and Figure 3 (b) depicts a system with a recon-
figurable cache (our approach). In this example, T2 arrives (at time P1) and preempts T1. In a
traditional approach, the system executes using Cachebase exclusively. With a reconfigurable cache,
the first part of T1 executes using Cache1

T 1. Similarly, Cache1
T 2 is used for execution of T2. Note

that the actual preemption point of T1 is not exactly at the same place where we pre-computed the
optimal cache configuration (midpoint) since tasks may arrive at any time. When T1 resumes at time
point P2, the cache is tuned to Cache2

T 1 since the actual preemption point is closer to the midpoint
compared to the starting point. The overall energy consumed using a reconfigurable cache results
in the energy savings due to use of different energy optimal caches for each phase of task execution
compared to using one global base cache in the traditional system. Our experimental results suggest
that the proposed approach can significantly reduce energy consumption of the memory subsystem
with only very little performance penalty.

3.2. Phase-based Optimal Cache Selection
This section describes our static analysis approach to determine the optimal cache configurations
for various task phases. In a preemptive system, tasks may be interrupted and resumed at any point
of time. Each time a task resumes, cache performance for the remainder of task execution will differ
from the cache performance for the entire application due to its own distinguishing behaviors as well
as cold-start compulsory cache misses. Therefore, the optimal cache configuration for the remainder
of the task execution may be different.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 1:7

Cachebase Cachebase

Cachebase

CacheT1
1 CacheT2

1

CacheT1

2

(a) Traditional system

(b) Our approach

P2

P1 P2

T2 T1

P1

Fig. 3. Dynamic cache reconfigurations for tasks T1 and T2

Definition 3.2. Phase is defined as the execution period between one potential preemption point
(also called partition points) and task completion. The phase that starts at ith partition point is
denoted as phase pi

n, where n is the total number of phases of that task.

Figure 4 depicts the general case where a task is divided by n-1 predefined potential preemption
points (P1, P2 ... Pn−1). P0 and Pn are used to refer to the start and end point of the task, respectively.
Here, C0, C1 ... Cn−1 represent the optimal cache configuration (either energy or performance) for
each phase, respectively. To observe the variation in cache requirements for each phase, Table I
shows variation in energy-optimal and performance-optimal instruction and data caches for each
phase. For example, the energy-optimal cache configuration for the phase starting from the half
point to the completion (C2) of benchmark cjpeg has 2048-byte capacity, 16-byte block and 2-way
associativity.

……

P1 P2 Pn-1

Task Execution Time

phase 𝑝𝑛
0

C0

C1

phase 𝑝𝑛
1

phase 𝑝𝑛
2

C2

Cn-1

phase 𝑝𝑛
𝑛−1

P0

Pn

Fig. 4. Task partitioning at n potential preemption points (Pi) resulting in n phases. Each phase comprises execution from
the invocation/resumption point to task completion. Ci denotes the cache configuration used in each phase.

During static profiling, a partition factor is chosen that determines the number of potential pre-
emption points and resulting phases. Partition granularity is defined as the number of dynamic
instructions between two partition points and is determined by dividing the total number of dy-
namically executed instructions by the partition factor. Intuitively, the optimal partition granularity
should be a single instruction, potentially leading to the largest amount of energy savings. However,
such a tiny granularity would result in a prohibitively large look-up table, which is not feasible due
to area as well as searching time constraints. Due to cache locality over time, the optimal perfor-
mance cache is tend to be the largest cache [Hennessy and Patterson 2003] and the optimal energy
cache is not necessarily the smallest dynamic energy cache [Gordon-Ross and Vahid 2004]. Thus,
a trade-off should be made to determine a reasonable partition factor based on energy-savings po-
tential and acceptable overheads. An important question one can raise is whether a larger partition

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

1:8 W. Wang et al.

Table I. Optimal cache configurations for task phases. Each configuration is
denoted by the total cache size in kilobytes (kb), followed by the associativity in
number of ways (w), followed by the line size in bytes (b).

CJPEG
I-Cache D-Cache

Energy
Optimal

Performance
Optimal

Energy
Optimal

Performance
Optimal

C0 4KB 2W 16B 4KB 4W 16B 4KB 4W 16B 4KB 4W 16B
C1 4KB 2W 16B 4KB 4W 32B 4KB 4W 16B 4KB 4W 16B
C2 2KB 2W 16B 4KB 4W 16B 2KB 2W 32B 4KB 4W 16B
C3 2KB 2W 16B 4KB 4W 16B 2KB 2W 32B 4KB 4W 16B

RAWCAUDIO
I-Cache D-Cache

Energy
Optimal

Performance
Optimal

Energy
Optimal

Performance
Optimal

C0 1KB 1W 16B 4KB 2W 64B 2KB 2W 16B 2KB 2W 16B
C1 1KB 1W 16B 2KB 2W 16B 2KB 2W 16B 4KB 4W 16B
C2 1KB 1W 16B 4KB 4W 16B 2KB 2W 16B 4KB 4W 16B
C3 1KB 1W 16B 4KB 2W 16b 2KB 2W 32B 4KB 4W 16B

A2TIME01
I-Cache D-Cache

Energy
Optimal

Performance
Optimal

Energy
Optimal

Performance
Optimal

C0 4KB 4W 16B 4KB 4W 16B 4KB 2W 32B 4KB 4W 16B
C1 4KB 4W 16B 4KB 4W 16B 2KB 2W 32B 4KB 4W 16B
C2 4KB 4W 16B 4KB 4W 16B 2KB 2W 16B 4KB 4W 16B
C3 4KB 4W 16B 4KB 4W 16B 2KB 2W 16B 2KB 2W 16B

factor (finer granularity) always reveals more energy savings. However, to answer this question, we
need to address the following two issues.

The first issue is how the optimal cache configuration for each phase varies when the partition
factor increases. We noticed that, for each task, once the partition factor is larger than a certain
threshold, more and more neighboring partitions share the same optimal cache configuration. We
explored how partition factor can affect the variation of optimal (both energy and performance)
cache configurations for each benchmark in MediaBench [Lee et al. 1997] and EEMBC [EEMBC
2000] – the two benchmark suites we use in Section 4. Figure 5 shows the results for some of them
(cjpeg, epic and rawdaudio) using partition factor 6, 12 and 18. For the same benchmark, the optimal
cache configuration for each phase varies in a consistent pattern across different partition factors.
For example, the energy-optimal instruction cache configuration for benchmark cjpeg (cjpeg I$ E)
is 4096B 2W 16B1 for the first several phases and then changes to 2048B 2W 16B starting from
about one third of the program: phase p2

6, phase p4
12 and phase p6

18 when partition factor is 6, 12 and
18, respectively. In other words, larger partition factor makes more and more phases share the same
optimal cache configuration with their neighboring phases. Exception can happen when partition
factor increases, different optimal cache configuration from lower partition factor case is found. For
example, the performance-optimal instruction cache configuration of benchmark cjpeg (cjpeg I$ P
in Figure 5 (b)) with partition factor 12 differs at phase p3

12 compared to the similar position when
partition factor is 6 (Figure 5 (a)). Our experimental result shows that though discrepancies do
happen, their impact on energy savings is normally negligible because the energy/performance dif-
ference between the newly picked cache configuration and the original one is usually very small.
From this observation, one can derive the fact that application behavior can sufficiently be captured
by a certain partition factor. This is evident due to the well-established 90/10 law of execution –
90% of the execution time is spent in only 10% of the code – in which the 90% of the time is typ-

1It means a cache configuration with 4096-byte capacity, 16-byte line size and 2-way associativity.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 1:9

ically spent executing loops. For each loop iteration, except the first and last iterations, execution
behavior is typically similar, thus resulting in the same optimal cache configuration for all other
iterations. For a loop with N iterations, the partition factor only need to be large enough to capture
all dynamic instructions of iterations 2 through (N - 1), as any smaller granularity would capture
a subset of iterations, each of which may have the same optimal configuration. Thus, we define a
stage of execution as a range of consecutive dynamic instructions in which a common optimal cache
configuration exists.

The second issue is whether finer partition granularity always brings more energy savings than a
coarser one. With finer granularity, if there is no extra variation in the optimal cache configuration
across phases, there will be no additional energy savings since the same cache configurations are
being used. If variations can be observed, according to our experiments, they only happen at stage
boundaries, which is a very limited portion in the entire program. Figure 6 gives an example explain-
ing why this is the case. Suppose there are two tasks: T1 and T2 in the system and partition factor
(p) can be chosen as 4 or 8. A valid schedule of them is shown in Figure 6. Since T2 is executed as a
whole, the cache configuration used is the optimal one for the entire task, which are the same using
both partition factors. T1 is preempted by T2. So when T1 resumes, a different cache configuration
should be picked based on the preemption point as well as the partition factor. As discussed in the
first issue, higher partition factor shows consistent variation pattern of optimal cache configuration
with only minor exceptions. Suppose when partition factor is 4, for task T1, the cache configuration
picked for phase p0

4, phase p1
4, phase p2

4 and phase p3
4 are CA, CA, CB and CB, respectively. And

when partition factor is 8, they are CA, CA, CA, CC, CB, CB, CB and CB for phase p0
8 to phase p7

8,
respectively. Using the nearest-neighbor technique as discussed in Section 3.4.1, the advantage of
using partition factor 8 over 4 become effective only when the preemption happens within the range
from 5/16 to 7/16 of T1 (effective area) since CC will be chosen instead of CA or CB. Note that CC
may be more energy/performance efficient for the rest part of T1 than CA and CB. From the entire
system’s point of view, higher partition factor (8) does not help for T2 as well as T1 if them never
get preempted or the preemption does not happen in the effective area. Based on our experiments,
merely 3 - 8% additional energy saving (for that one task) is possible only if the preemption occurs
within the effective area of the dynamic instruction flow. Empirically, the effective area is usually 5
- 8% of the task. Due to these two small probabilities multiplied together, merely 0.4% on average,
finer granularity partition can bring only minor benefit.

Thus, the goal of a system designer is to find a partition factor which leads to maximized energy
reduction and minimizes the number of partition points that need to be stored. The rule of thumb
is to find a partition factor minimizing the number of neighboring partitions that share the same
optimal cache configuration. It could be a local optimal factor for each task if varying number of
table entries for different tasks is allowed or it could be a global optimal factor for the task set.
Based on our experience, a partition factor ranging from 4 to 7 is sufficient to make our technique
working efficiently.

Static profiling generates a profile table that stores the potential preemption points and the cor-
responding optimal cache configurations for each task. Section 3.3 and 3.4 describe how this profile
table is used during runtime in statically and dynamically scheduled systems.

3.3. Statically Scheduled Systems
With static scheduling, arrival times, execution times, and deadlines are known a priori for each
task and this information serves as scheduler input. The scheduler then provides a schedule detail-
ing all actions taken during system execution. According to this schedule, we can statically execute
and record the energy-optimal cache configurations that do not violate any task’s deadline for every
execution period of each task. For soft real-time systems, global (system-wide) energy-optimal con-
figurations can be selected as long as the configuration performance does not severely affect system
behavior. After this profiling step, the profile table is integrated with the scheduler so that the cache
reconfiguration hardware (cache tuner) can tune the cache for each scheduling decision.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

1:10 W. Wang et al.

1024B_1W_16B
1024B_1W_32B
1024B_1W_64B
2048B_1W_16B
2048B_1W_32B
2048B_1W_64B
2048B_2W_16B
2048B_2W_32B
2048B_2W_64B
4096B_1W_16B
4096B_1W_32B
4096B_1W_64B
4096B_2W_16B
4096B_2W_32B
4096B_2W_64B
4096B_4W_16B
4096B_4W_32B
4096B_4W_64B

0 1 2 3 4 5 6

Partition factor (p) = 6

cjpeg_I$_E

cjpeg_I$_P

epic_I$_E

epic_I$_P

rawdaudio_I$_E

rawdaudio_I$_P

phase pi

(a)

1024B_1W_16B
1024B_1W_32B
1024B_1W_64B
2048B_1W_16B
2048B_1W_32B
2048B_1W_64B
2048B_2W_16B
2048B_2W_32B
2048B_2W_64B
4096B_1W_16B
4096B_1W_32B
4096B_1W_64B
4096B_2W_16B
4096B_2W_32B
4096B_2W_64B
4096B_4W_16B
4096B_4W_32B
4096B_4W_64B

0 1 2 3 4 5 6 7 8 9 10 11 12

Partition factor (p) = 12

cjpeg_I$_E

cjpeg_I$_P

epic_I$_E

epic_I$_P

rawdaudio_I$_E

rawdaudio_I$_P

phase pi

(b)

1024B_1W_16B
1024B_1W_32B
1024B_1W_64B
2048B_1W_16B
2048B_1W_32B
2048B_1W_64B
2048B_2W_16B
2048B_2W_32B
2048B_2W_64B
4096B_1W_16B
4096B_1W_32B
4096B_1W_64B
4096B_2W_16B
4096B_2W_32B
4096B_2W_64B
4096B_4W_16B
4096B_4W_32B
4096B_4W_64B

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Partition factor (p) = 18

cjpeg_I$_E

cjpeg_I$_P

epic_I$_E

epic_I$_P

rawdaudio_I$_E

rawdaudio_I$_P

phase pi

(c)

Fig. 5. Optimal cache configuration variation under different partition factors (a) Partition factor = 6, (b) Partition fac-
tor = 12, (c) Partition factor = 18 (Here I$ represents instruction cache. ‘E’ stands for energy-optimal and ‘P’ stands for
performance-optimal)

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 1:11

T1

T2

Task

Time

Preemption point

p = 4

p = 8

Effective area

1

4

2

4

3

4

1

8

2

8

3

8

4

8

5

8

6

8

7

8

7

16

5

16

Fig. 6. Effective range where a higher partition factor makes a difference

3.4. Dynamically Scheduled Systems
With dynamic scheduling (online scheduling), scheduling decisions are made during runtime. In
this scenario, task preemption points are unknown since new tasks may enter the system at any time
with any time constraint. In this section, we present two versions of our technique based on the
nature of the target system.

3.4.1. Conservative Approach. In some soft real-time systems where high service quality is re-
quired thus time constraints are pressing, only an extremely small number of violations are tolerable.
The conservative approach could ensure that given a carefully chosen partition factor, almost every
task could meet their deadlines with only few exceptions. To ensure the largest task schedulability,
any reconfiguration decision will only change the cache into a lowest energy configuration whose
execution time is not longer than that of the base cache. In other words, to maintain a high quality of
service, only cache configurations with equal or higher performance than the base cache are chosen
for each task phase. Note that the chosen energy-optimal configuration may not be the global lowest
energy configuration but is the one with lowest energy consumption given a specific time constraint.
We denote them as deadline-aware energy-optimal cache configurations.

The scheduler chooses the appropriate cache configuration from the generated profile table that
contains the energy-optimal cache configurations for each task phase. Table IIa shows the profile
table for task i with a partition factor p. EOi(n/p) represents the energy-optimal cache configura-
tion for phase pn

p of task i. Here, n/p represents the nth phase out of p phases. The total dynamic
instruction count (TIN) refers to the number of dynamic instructions executed in a single run of that
task.

During system execution, the scheduler maintains a task list keeping track of all existing tasks
as shown in Table IIb. In addition to the static profile table Table IIa, runtime information such as
arrival time (Ai), deadline (Di), and number of already executed dynamic instructions (EIN) are also
recorded. This information is stored not only for the scheduler, but also for the cache tuner. When
a newly arrived task2 begins execution for the first time, the deadline-aware energy-optimal cache
configuration EOi(0/p) is obtained from the task list entry, and the cache tuner adjusts the cache

2To be more specific, we actually mean “jobs” (execution instance of tasks). For simplicity, a more general term “task” is
used in this article.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

1:12 W. Wang et al.

Table IIa. Static profile table for con-
servative approach

Task ID: i Partition Factor: p
Total Instruction Number (TIN)

EOi(0/p)
EOi(1/p)
EOi(2/p)

......
EOi(p-1/p)

Table IIb. Task list entry for task i for conservative approach

Task ID: i Partition Factor: p
Arrival time (Ai) Deadline (Di)

Total Instruction Number
(TIN)

Executed Instruction
Number (EIN)

EOi(0/p)
EOi(1/p)
EOi(2/p)

......
EOi(p-1/p)

appropriately. If preemption happens, the number of the preempted task’s executed instructions
(EIN) is calculated and stored in its task list entry.

As indicated in Section 3.2, potential preemption points are pre-decided during the profile ta-
ble generation process. However, it is highly unlikely that the actual preemptions will occur pre-
cisely on these potential preemption points. Hence, a nearest-neighbor method is used to determine
which cache configuration should be used. Essentially, if the preemption point falls between parti-
tion points n/p and (n+1)/p, the nearest point will be referred to select the current cache configura-
tion. Algorithm 1 illustrates cache tuning algorithm for our conservative approach. This algorithm
is called when a previously preempted task resumes its execution. It runs in a time complexity of
O(p), where p is the partition factor. Note that the returned cache configuration information is sent
to the cache tuner.

ALGORITHM 1: Selection of cache configuration for resumed preempted task in conservative approach
Input: Task list entry
Output: A deadline-aware cache configuration for the resumed task Tc.
for i = 0 to p−2 do

if T INT c×i/p≤ EINT c< T INT c×(i+1)/p then
if (EINT c−T INT c×i/p)< (T INT c×(i+1)/p−EINT c) then

PHASET c= i/p;
else

PHASET c= (i+1)/p;
end if

end if
end for
if EINT c≥ T INT c×(p−1)/p then

PHASET c= (p−1)/p;
end if
CacheT c= EOi(PHASET c);
Return: CacheT c

As our experimental result shows, conservative approach obtains significant energy savings with
little or no impact on quality of service. Minor number of time constraint violations are caused
by cache behaviors in which optimal cache configuration for the period from the one preemption

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 1:13

Table IIIa. Static profile table for aggressive approach

Task ID: i Partition Factor: p
Total Instruction Number (TIN)

EOi(0/p) EOTi(0/p) POi(0/p) POTi(0/p)
EOi(1/p) EOTi(1/p) POi(1/p) POTi(1/p)
EOi(2/p) EOTi(2/p) POi(2/p) POTi(2/p)

......
EOi(p-1/p) EOTi(p-1/p) POi(p-1/p) POTi(p-1/p)

Table IIIb. (Task list entry for task i for aggressive approach

Task ID: i Partition Factor: p
Arrival time (Ai) Deadline (Di)

Total Instruction Number
(TIN)

Executed Instruction
Number (EIN)

Current Phase (CP)
EOi(0/p) EOTi(0/p) POi(0/p) POTi(0/p)
EOi(1/p) EOTi(1/p) POi(1/p) POTi(1/p)
EOi(2/p) EOTi(2/p) POi(2/p) POTi(2/p)

......
EOi(p-1/p) EOTi(p-1/p) POi(p-1/p) POTi(p-1/p)

point to another preemption point and that for the pre-decided phase differ greatly. In other words,
the chosen cache configuration may happen to be inefficient for the execution period between two
actual preemption points such that the lost time is not reparable by the subsequent selected cache
configurations in that task. Fortunately, this kind of behavior is relatively rare.

3.4.2. Aggressive Approach. For soft real-time systems in which only moderate service quality is
needed, a more aggressive version of our approach can reveal additional energy savings at the cost
of possibly violating several future task deadlines, but remain in an acceptable range.

Similar to the conservative approach, a profile table is associated with every task in the system;
however this profile table contains the performance-optimal cache configuration (whose execution
time is the shortest) in addition to the energy-optimal configuration (the one with lowest energy
consumption among all candidates) for every task phase. In order to assist dynamic scheduling, the
profile table also includes the corresponding phase’s execution time (in cycles) for each configura-
tion. Table IIIa shows the profile table for task i with a partition factor of p. The terms EO, EOT, PO,
and POT stand for the energy-optimal cache configuration, the energy-optimal cache configuration’s
execution time, the performance-optimal cache configuration, and the performance-optimal cache
configuration’s execution time, respectively. Notice that, the performance and energy efficiency of a
cache configuration is not in inverse proportion. The energy-optimal one does not necessarily have
the worst performance. Compared to the base cache, it could have both better energy efficiency and
performance.

Table IIIb shows the task list entry for the aggressive approach. The difference from the conser-
vative approach (shown in Table IIb) is that every task list entry also holds a Current Phase (CPi)
identifier. CPi denotes the partition point that this task’s execution just passed and is useful for cache
reconfiguration upon task resumption. Note that newly inserted task’s CP is initialized to 0. In ad-
dition to the task list, the scheduler also maintains another runtime data structure called the Ready
Task List (RTL), which contains an identifier of each existing task currently ready to execute in the
system.

To explain the aggressive approach, we use an illustrative example in which there are three tasks
(jobs), T1, T2, and T3, with absolute deadlines DT 1, DT 2, and DT 3, where DT 2 < DT 1 < DT 3.
According to EDF, the priority sequence is simply the opposite of the deadlines, which is Pri2 >
Pri1 > Pri3. Figure 7 shows a schedule for these tasks. Note that P0, P1, P2, and P3 represent the
time instances when any event (arrival, completion, etc.) occurs. At time point P0, T1 arrives and the
scheduler generates the task list entry for T1 and adds T1 to the RTL. Since T1 is currently the only
task in the system, the scheduler instructs the cache tuner to configure the cache to EOT 1(0/p) if and

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

1:14 W. Wang et al.

only if P0 + EOT 1(0/p) < DT 1, otherwise the cache will be tuned to POT 1(0/p), which ensures that
T1’s deadline will be met. At time point P1, T2 arrives with priority higher than the currently active
task T1. The scheduler calculates T1’s current phase CPT 1 and updates T1’s task list entry. Note that
T1’s deadline may be violated if the following inequality holds:

P1 + POTT 1((CPT 1 + 1) / p) + POTT 2(0 / p) > DT 1 (1)

This is obviously an underestimation of the execution time that the remaining portion of T1 will
take, thus more aggressive, but it favors tasks with higher priority (T2). However, if we use
POTT 1(CPT 1/p) in Equation 1, T2 may have a lower chance of being accepted, but the lower priority
task T1 would more likely meet its deadline.

If Equation 1 does not hold, the scheduler determines T2’s cache configuration CT 2 as follows
(assuming Pi + POTi(0/p) < Di for all tasks i otherwise task i is not schedulable in any situation):

if (P1 + EOTT 2(0/p) > DT 2) then
CT 2 = POT 2(0/p)

else if (P1 + EOTT 2(0/p) + POTT 1((CPT 1 + 1)/p) < DT 1) then
CT 2 = EOT 2(0/p)

else if (P1 + EOTT 2(0/p) + POTT 1((CPT 1 + 1)/p) > DT 1) then
CT 2 = POT 2(0/p)

At time point P2, T2 completes and T1 resumes since it is the only ready task. The scheduler
utilizes CPT 1 to determine the appropriate partition to choose a cache configuration. This technique
is similar in principle to the nearest neighbor method used in Section 3.4.1, except that a decision
should be made whether to use the energy-optimal or performance-optimal configuration based on
the remaining time budget. At some point during T1’s execution, T3 arrives but since T3 has a lower
priority than T1, T3 begins execution after T1 completes execution. By this time, T3 is the only task
and its cache configuration decision is made using the same method as task T1 at time P0.

T1

P0 P1 P2 P3

T2 T1 T3

T1 arrives T2 arrives,

preempts T1
T2 completes,

T1 resumes
T3 arrives T1 completes,

T3 begins

Fig. 7. Task set and sample scheduling

Algorithm 2 illustrates the general cache configuration selection algorithm for preempted tasks of
our aggressive approach. This algorithm is called either when a new task with a higher priority than
the current executing task arrives or when the current task finishes execution. In the former case, Step
1 uses the executed instruction number (EIN) to calculate the Current Phase (CP) for the preempted
task. While in the latter case, this step should be omitted. Step 2 picks the highest priority3 task Tc
from RTL. In the former case, the newly arrived task in inserted into RTL and, obviously, Tc refers
to that task. Step 3 checks the schedulability of all the tasks in RTL by iteratively checking whether
each task can meet its deadline if all the preceding tasks, including itself, use performance-optimal
cache configurations. This process is done in the order of tasks’ priority (from highest to lowest)
to achieve least discarded tasks. In Step 4, the appropriate cache configuration for Tc is selected
based on whether it is safe to use energy-optimal cache configuration. This algorithm runs in time
of O(max(p,m)) where p is the partition factor and m is the total number of tasks in RTL.

3Here the priority means the dynamic scheduling priority decided by EDF.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 1:15

ALGORITHM 2: Selection of cache configuration for aggressive approach
Input: Task list entry, ready task list and preemption point
Output: A appropriate cache configuration
Step 1: Calculate CP for the preempted task Tp. Insert Tp to RTL.
for i = 0 to p−1 do

if T INT p×i/p≤ EINT p< T INT p×(i+1)/p then
CPT p= i/p;

end if
end for
Step 2: Remove the task with maximum priority Tc from RTL.
Step 3: Sort all tasks in RTL by priority, T1 to Tm, from highest to lowest. C represents the current time
instant.
for j = 1 to m do

if C+POT T c(CPT c/p)+
j

∑
i=1

POT Ti((CPTi+1)/p)>DT j then

Task DT j is subject to be discarded;
end if

end for
Step 4: Select cache configuration for Tc. Let m′ be the number of tasks in RTL left after Step 3.
if C+EOT T c(CPT c/p)>DT c then

CacheT c= POT c;
else

EO OK = true;
for j = 1 to m′ do

if C+EOT T c(CPT c/p)+
j

∑
i=1

POT Ti((CPTi+1)/p)>DT j then

EO OK = f alse;
end if

end for
end if
if EO OK == true then

CacheT c= EOT c;
else

CacheT c= POT c;
end if
Return: CacheT c

3.5. Impact of Storing Multiple Cache Configurations
This section investigates the extent at which individual cache configuration candidates are required
during scheduling. In the approaches proposed in Section 3.4.1 and 3.4.2, the scheduler only consid-
ers either the energy-optimal cache in the conservative approach, or the energy- and performance-
optimal caches in the aggressive approach, for each task phase. As justified by our experiments, we
can achieve considerable amount of energy savings at the cost of very low system overheads by just
storing these cache configurations in the static profile table. However, there exists other configura-
tions which offer Pareto-optimal tradeoff points. Simply because the energy-optimal cache cannot
satisfy a particular task’s deadline, it does not mean that there is no cache configuration of that task
which can meet the deadline and consume less energy than the performance-optimal cache. For
example, as described in Algorithm 2, when the scheduler finds that using energy-optimal cache
for a task is unsafe, it has no choice but to pick the performance-optimal cache. But if the sec-
ond energy-optimal cache is also available to the scheduler and is able to meet the time constraint
(has higher performance), the scheduler can pick that cache configuration to potentially save more
energy. Figure 8 (a) illustrates this extension of the profile table.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

1:16 W. Wang et al.

Original Profile Table

(Each task phase)

Energy-optimal cache

Performance-optimal cache

Extended Profile Table

(Each task phase)

Energy-optimal cache

Performance-optimal cache

Second beneficial energy-optimal cache

Second beneficial performance-optimal

cache

……

……

(a)

P
er

fo
rm

an
ce

Energy efficiency

Performance optimal

Second beneficial performance-optimal

Energy optimal

Second beneficial energy-optimal

Pareto-optimal configurations

(b)

Fig. 8. (a) Storing multiple optimal cache configurations for each task phase, (b) Second beneficial optimal cache selection
on the Pareto-optimal curve

Note that we use the phrase second beneficial energy-optimal cache and second beneficial
performance-optimal cache in Figure 8 (a). Figure 8 (b) shows how we choose them. We only
consider those cache configurations on the Pareto-optimal curve which have either better energy ef-
ficiency or higher performance than other ones. In the extreme case, if we can store all these cache
configurations for every task phase in the profile table, the scheduler will be capable of choosing
the lowest energy cache configuration that is capable of meeting time constraints of all the existing
task in the system. Thus this is a tradeoff between potential energy savings and system overhead
in the form of table storage and scheduler complexity. Note that storing information for one more
cache configuration in the table will potentially double the area overhead as well as increase power
consumption and access time. Section 4.4 provides experimental results of this approach.

4. EXPERIMENTS
4.1. Experiments Setup
To quantify energy savings using our approach, we examined selected benchmarks from the Medi-
aBench [Lee et al. 1997] – mostly multimedia applications – and EEMBC Automotive [EEMBC
2000] benchmark suites, representing typical tasks that might be present in a soft real-time system.
All applications were executed with the default input sets provided with the benchmarks suites.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 1:17

We utilized the configurable cache architecture for L1 cache developed by Zhang et al [Zhang
et al. 2005] with a four-bank cache of base size 4 KB, which offers sizes of 1 KB, 2 KB, and 4
KB, line sizes ranging from 16 bytes to 64 bytes, and associativity of 1-way, 2-way, and 4-way. For
comparison purposes, we define the base cache configuration to be a 4 KB, 2-way set associative
cache with a 32-byte line size, a reasonably common configuration that meets the needs of the
benchmarks studied. The L2 cache is set to a 64K unified cache with 4-way associativity and 32B
line size. Our energy model, adopted from the one used in [Zhang et al. 2005], calculates both
dynamic and static energy consumption, memory latency, CPU stall energy, and main memory fetch
energy. Let Edyn and Esta denote the dynamic energy and static energy of the cache subsystem,
respectively. The total cache energy consumption hence is Ecache = Edyn +Esta. Specifically, we
have:

Edyn = num accesses ·Eaccess +num misses ·Emiss (2)

Emiss = Eo f f chip access +EµP stall +Eblock f ill (3)

Esta = Psta ·CC · tcycle (4)

where Eaccess, Emiss and Pstatic are the energy required per cache access, per cache miss and static
power consumption, respectively. Eaccess and Pstatic are collected from CACTI 4.2 [HP 2008] with
0.18 µm technology for all cache configurations. Following [Zhang et al. 2005], we represent Emiss
as the sum of the energy consumptions for fetching data from off-chip memory Eo f f chip access, pro-
cessor stall due to cache miss EµP stall and cache block refilling after a miss Eblock f ill . CC denotes
the number of clock cycles that is required to execute the task and tcycle is the length of each clock
cycle. The access latency (e.g., in ns) to read particular data from the cache remains the same
when we reconfigure the cache because the clock frequency is fixed determined by the base cache
size. The data transfer time during a cache miss is determined by the cache line size as well as
the bandwidth between memory levels. In general, larger line sizes will lead to more data transfer
cycles thus higher access latencies. This variance, for both L1 and L2 caches, are incorporated in
our model considering different miss cycles for cache configurations with various line sizes. We
adopt these values from the study in [Zhang et al. 2005]. To obtain cache hit and miss statistics,
we used the SimpleScalar toolset [Burger et al. 1996] to simulate the applications. We assume an
in-order issue core with a four-stage pipeline. It supports out-of-order completion but the pipeline
is stalled whenever a data hazard is detected. It also supports speculation and a branch predictor
with 2-bit saturating counter. We use PISA architecture in our experiments and the compiler is the
default little-endian PISA compiler (sslittle-na-sstrix-gcc) which comes with SimpleScalar 3.0, with
cc options CFLAGS= -O -I$(srcdir). To populate the static profile tables for each task, we utilize
SimpleScalar’s external I/O trace files (eio file), checkpointing, and fastforwarding capabilities. This
method allows for every benchmark phase to be individually profiled via fastforwarding execution
to each potential preemption point. In our experiments, we used partition factors ranging from 4
to 7. Driven by Perl scripts, the design space of 18 cache configurations is exhaustively explored
during static analysis to determine the energy-, performance-, and deadline-aware energy-optimal
cache configurations for each phase of each benchmark.

Table IV. Benchmark task sets

Task 1 Task 2 Task 3
Task Set 1 epic* pegwit* rawcaudio*
Task Set 2 cjpeg* toast* mpeg2*
Task Set 3 A2TIME01** AIFFTR01** AIFIRF01**
Task Set 4 BITMNP01** IDCTRN01** RSPEED01**
Task Set 5 djpeg* rawdaudio* untoast*
Task Set 6 BaseFP01** CACHEB01** IIRFLT01**
Task Set 7 TBLOOK01** TTSPRK01** PUWMOD01**

*MediaBench **EEBMC

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

1:18 W. Wang et al.

4.2. Results
To model sample real-time embedded systems with multiple executing tasks, we created seven dif-
ferent task sets as shown in Table IV. In each task set, the three selected benchmarks have compa-
rable dynamic instruction sizes in order to avoid behavioral domination by one relatively large task.
For system simulation, task arrival times and deadlines are randomly generated. To achieve effective
and fair comparison, we make the system utilization ratio close to the schedulability condition [Liu
2000]. We examine varying preempting points and average these values so that our results represent
a generic degree of scheduling decisions.

We compare the energy consumption for each task set using different schemes: a fixed base cache
configuration, the conservative approach, and the aggressive approach. Energy consumption is nor-
malized to the fixed base cache configuration such that value of 1 represents our baseline. Figure 9
presents energy savings for the instruction and data cache subsystems. Energy savings in the in-
struction cache subsystem ranges from 22% to 54% for the conservative approach, while it reaches
as high as 74% for the aggressive approach. Energy savings average 33% and 52% for the conserva-
tive and aggressive approaches, respectively. In the data cache subsystem, energy saving is generally
less than that of the instruction cache subsystem due to less variation in cache configuration require-
ments. In the data cache subsystem, energy savings range from 15% to 47% for the conservative
approach, while it reaches as high as 64% for the aggressive approach, and the average are 16% and
22% for the conservative and aggressive approaches, respectively.

It is worth investigating the insights behind the experimental results: why instruction cache and
data cache reveal such different energy savings when executing tasks from different benchmark
suites (MediaBench and EEMBC)? Note that we use benchmarks from MediaBench in task sets 1
and 2 while benchmarks from EEMBC in task sets 3 and 4. As shown in Figure 9, task set 1, for ex-
ample, has more energy savings in data cache than in instruction cache using aggressive approach.
By looking at the properties of each benchmark in that task set, we found that they have common
characteristics in their energy-optimal and performance-optimal cache configurations stored in the
profile table. To illustrate this, we sort each task’s all cache configurations by their energy con-
sumption as well as performance. Figure 10 depicts the layout of each configuration ranking by its
energy and performance for benchmark epic4. We can see that in data cache, the chosen energy-
optimal cache’s performance and performance-optimal cache’s energy consumption are relatively
much better than in instruction cache. The higher the performance an energy-optimal cache con-
figuration has, the higher the chance that it will be chosen by the scheduler. On the other side, the
less energy an performance-optimal cache configuration consumes, the less penalty (extra energy
consumption) it has to pay when the scheduler has to choose the performance-optimal one due to
tight timing constraints. These two factors explain why for test case 1, data cache reveals more
energy savings than instruction cache. For those task sets containing benchmarks from EEBMC,
the situation is just the opposite. Task sets 3 and 4 do very well in instruction cache but show
very little energy saving in data cache. Figure 11 illustrates the reason for this observation. Again,
though only A2TIME01 is shown, we found almost all the benchmarks in EEMBC have the same
property. In instruction cache, the performance of the energy-optimal cache is very close to that
of the performance-optimal one. Similarly, the energy consumption of the performance-optimal
cache is very close to that of the energy-optimal one. Interestingly, in many cases they are the same
cache configuration, for example, A2TIME01 in Figure 11 (a). However, in data cache, the energy-
favored caches and performance-favored caches differ tremendously. For this reason, benchmarks
from EEMBC are doing extremely bad in data cache.

It is also helpful to discuss how miss rate plays its role in the cache model and thus affects the
optimal cache configuration variations. Figure 12 shows the miss rates for epic, which explains the
insights behind Figure 10 showing each data cache configuration behaving similarly in terms of both
performance and energy efficiency (e.g. Figure 10 (b)) while the instruction caches behaves just the

4Due to space limit, results for one task in test set 1 is shown here. But other tasks in that set also have the similar pattern.
For the same reason, though only results for the entire benchmark is shown there, other phases also show the same property.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 1:19

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Average

Base Cache SACR Conservative SACR Aggressive

En
er

gy
 c

o
n

su
m

p
ti

o
n

 n
o

rm
al

iz
ed

 t
o

th

e
b

as
e

ca
ch

e
co

n
fi

gu
ra

ti
o

n

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Average

Base Cache SACR Conservative SACR Aggressive

En
er

gy
 c

o
n

su
m

p
ti

o
n

 n
o

rm
al

iz
ed

 t
o

th

e
b

as
e

ca
ch

e
co

n
fi

gu
ra

ti
o

n

(b)

Fig. 9. Cache subsystem energy consumption normalized to the base cache configuration for each task set (a) Instruction
cache (b) Data cache

opposite. The reason for 4K 4W 16B and 4K 4W 32B being superior in both energy and perfor-
mance is the following. On one hand, the benchmark’s data region in the footprint is relatively large
and thus the capacity of the data cache is critical. In other words, configurations with smaller sizes
cannot satisfy the benchmark’s footprint and thus suffer from high miss rates. Therefore, with same
associativity, configurations with larger capacity always win over those with smaller size in both
performance and energy. On the other hand, as shown in Figure 12, 1K configurations with 2-way
associativity5 have similar miss rates as 2K direct-mapped caches while 2K and 2-way associativity
configurations have lower miss rates than 4K direct-mapped caches. Therefore, temporal locality of
the benchmark which reflects in the number of conflict misses (which further reflect in the desired
cache associativity) also play an important role in deciding optimal cache configurations. The code
region in the footprint is relatively small and thus can be easily satisfied, each configuration will

5Although 1K cache with 2-way associativity is not valid in our reconfigurable cache architecture, we include here for
illustration purpose only.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

1:20 W. Wang et al.

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

epic_I$

energy_rank performance_rank

Best

Worst

EO

PO

(a)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

epic_D$

energy_rank performance_rank

Best

Worst

EOPO

Best

Worst

(b)Fig. 10. Cache configuration candidate’s energy and performance rank layout (a) Instruction Cache (epic), (b) Data Cache
(epic)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

A2TIME01_I$

energy_rank performance_rank

Best

Worst

EO & PO

(a)

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

A2TIME01_D$

energy_rank performance_rank

Best

Worst

EO
PO

(b)Fig. 11. Cache configuration candidate’s energy and performance rank layout (a) Instruction Cache (A2TIME01), (b) Data
Cache (A2TIME01)

show similar low miss rates thus smaller configurations could win in energy efficiency due to its
low power dissipation.

To illustrate the effect from leakage power on the optimal cache preference, Figure 13 (a) and (b)
show both dynamic and static energy consumption of various cache configurations for benchmark
dijkstra and A2TIME01, respectively. For dijkstra, the smallest cache configuration overall wins
since larger-size configurations do not show much efficiency in dynamic energy while result in larger
static energy. However, for A2TIME01, larger cache configurations outperform smaller ones due to
significant reductions in dynamic energy consumption. This also explains why different programs
favor different cache configurations.

4.3. Suitability of Statically Determined Configurations
System’s performance variations when using our approaches are shown in Table V and Table VI.
We keep tracking of each task’s performance during the system execution and find the percentage
of those jobs of that task whose performance are higher (and lower but deadlines are met) using the
selected cache configuration compared to the base cache. As discussed in Section 3.4.1, the cache
configuration selected by our approach (nearest-neighbor nature) may possibly be inefficient in per-
formance for the execution period between the actual preemption points. The percentage deadline
misses are also provided for each task to evaluate the system service level. Though lower perfor-

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 1:21

0.00%
2.00%
4.00%
6.00%
8.00%

10.00%
12.00%
14.00%
16.00%
18.00%
20.00%
22.00%
24.00%
26.00%

1
0

2
4

B
_1

W
_1

6
B

1
0

2
4

B
_1

W
_3

2
B

1
0

2
4

B
_1

W
_6

4
B

1
0

2
4

B
_2

W
_1

6
B

1
0

2
4

B
_2

W
_3

2
B

1
0

2
4

B
_2

W
_6

4
B

2
0

4
8

B
_1

W
_1

6
B

2
0

4
8

B
_1

W
_3

2
B

2
0

4
8

B
_1

W
_6

4
B

2
0

4
8

B
_2

W
_1

6
B

2
0

4
8

B
_2

W
_3

2
B

2
0

4
8

B
_2

W
_6

4
B

4
0

9
6

B
_1

W
_1

6
B

4
0

9
6

B
_1

W
_3

2
B

4
0

9
6

B
_1

W
_6

4
B

4
0

9
6

B
_2

W
_1

6
B

4
0

9
6

B
_2

W
_3

2
B

4
0

9
6

B
_2

W
_6

4
B

4
0

9
6

B
_4

W
_1

6
B

4
0

9
6

B
_4

W
_3

2
B

4
0

9
6

B
_4

W
_6

4
B

IL1 DL1

Fig. 12. Miss rate for epic.

0
2000000
4000000
6000000
8000000

10000000
12000000
14000000
16000000
18000000
20000000
22000000
24000000
26000000
28000000

Dynamic Energy Static Energy

(a)

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000

10000000

11000000

12000000

Dynamic Energy Static Energy

(b)
Fig. 13. Cache energy consumption decomposition for (a) dijkstra, (b) A2TIME01

mance jobs do potentially have impact on the system performance, they are not harmful since no
task deadline is missed. As the results show, our approach achieves significant energy savings at a
very low cost of small amount of task deadline misses which are acceptable in soft real-time sys-
tems. For example, among epic’s all executions (jobs), 75% of them took shorter time using the
cache configurations selected by conservative approach than using base cache while 21% of them
took longer time but still met the time constraints. Only 4% of all its jobs actually miss their dead-
lines. As Table V demonstrates, our conservative approach leads to very minor deadline misses (0
- 4%). Our aggressive approach can generate drastic reduction in energy requirements with slight
higher deadlines misses (1% - 18%).

To show how early/late in the execution the deadlines are missed, for each low-priority job that is
discarded, we collected its current phase (CP) as defined in Section 3.4.2, as shown in Table VII. In
other words, among all the jobs that missed their deadlines (e.g. 4% of all jobs), different jobs are
dropped at different stages of execution (CP). For example, in case of epic, among the 8% of jobs
that are dropped, 23% of them have executed over one-fourth (CP = 1), 54% of them have executed
over half (CP = 2) and 23% of them are over three-fourth (CP = 3).

4.4. Impact of Storing Multiple Cache Configurations
As discussed in Section 3.5, storing multiple beneficial cache configurations may lead to more
energy savings. We explore the effect of using extended profile table by running task set 1 4
in Table IV. The profile table size is doubled to accommodate the second beneficial energy- and
performance-optimal cache configuration. Algorithm 2 is modified to be aware of this extension.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

1:22 W. Wang et al.

Table V. Task performance variations for conservative approach

Task Sets Tasks

Higher
perfor-
mance
jobs

Lower
perfor-
mance
jobs

Deadline
misses

1
epic 75% 21% 4%

pegwit 99% 1% 0%
rawcaudio 94% 3% 3%

2
cjpeg 94% 5% 1%
toast 89% 4% 7%

mpeg2 94% 2% 4%

3
A2TIME01 98% 2% 0%
AIFFTR01 82% 15% 3%
AIFIRF01 99% 1% 0%

4
BITMNP01 100% 0% 0%
IDCTRN01 96% 2% 2%
RSPEED01 99% 1% 0%

Table VI. Task performance variations for aggressive approach

Task Sets Tasks

Higher
perfor-
mance
jobs

Lower
perfor-
mance
jobs

Deadline
misses

1
epic 63% 29% 8%

pegwit 89% 10% 1%
rawcaudio 76% 12% 12%

2
cjpeg 90% 6% 4%
toast 72% 16% 12%

mpeg2 75% 17% 8%

3
A2TIME01 94% 2% 3%
AIFFTR01 52% 30% 18%
AIFIRF01 97% 2% 1%

4
BITMNP01 62% 27% 11%
IDCTRN01 94% 3% 3%
RSPEED01 91% 2% 7%

Table VII. Current phases of deadline violated tasks when they are dis-
carded.

Task Sets Tasks CP = 1 CP = 2 CP = 3

1
epic 23% 54% 23%

pegwit 0% 0% 100%
rawcaudio 33% 34% 33%

2
cjpeg 14% 34% 52%
toast 10% 25% 65%

mpeg2 18% 32% 50%

We call this method Extended approach and Figure 14 shows its energy consumption compared to
the conservative and aggressive approaches. On average, the extended approach achieves 4.6% more
energy savings than aggressive approach in instruction caches while 5.9% more in data caches. In
some cases, like set 3 in instruction cache and set 1 in data cache, no extra energy saving is observed
due to lack of beneficial cache configurations.

As already discussed in Section 3.5, extended profile table will cause exponential increase in sys-
tem overheads. Energy overhead of the profile table can be safely ignored because it only accounts
for a very less proportion of the gained energy savings. However, increase in area and access time
of the table affect the feasibility of applying this extended approach. When the number of different
tasks is relatively small such that system overhead is not serious, extended approach is favorable
than other two approaches. Since it is common to have large number of tasks in the system, apply-
ing extended approach may not be a good idea in these cases because the profile table’s area could

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 1:23

exceed the chip area constraints and increased access time may impact the system’s critical path. In
extreme cases, it may lead to longer clock cycle length and lower system frequency, which should
obviously be avoided.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set 1 Set 2 Set 3 Set 4 Average

SACR Conservative SACR Aggressive SACR Extended

En
er

gy
 c

o
n

su
m

p
ti

o
n

 n
o

rm
al

iz
ed

to

 S
A

C
R

 C
o

n
se

rv
at

iv
e

ap
p

ro
ac

h

(a)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Set 1 Set 2 Set 3 Set 4 Average

SACR Conservative SACR Aggressive SACR Extended

En
er

gy
 c

o
n

su
m

p
ti

o
n

 n
o

rm
al

iz
ed

to

 S
A

C
R

 C
o

n
se

rv
at

iv
e

ap
p

ro
ac

h

(b)

Fig. 14. The effect of using extended profile table: cache subsystem energy consumption normalized to conservative ap-
proach for each task set (a) Instruction cache (b) Data cache

4.5. Analysis of Input Variations
Program’s cache behavior, especially the data cache, can vary when being fed with different inputs.
Essentially, input varies in its size, structure, and its contents. For example, different inputs may
drastically affect the program’s dynamic execution path (such as number of loop iterations), thus
both energy- and performance-optimal caches may differ from what are stored in the profile table.

Obviously, it is impossible to exhaustively explore all possible inputs. Energy-aware task schedul-
ing techniques face the same problem. In real-time systems, as discussed in Section 2.1, scheduler
should be fed with the task set information which includes task’s execution time (in cycles). The
potential solutions include use of i) fixed input set (execution time is known beforehand) [Hu and
Marculescu 2004][Rong and Pedram 2008], ii) Worst Case Execution Time (WCET) [Zhang et al.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

1:24 W. Wang et al.

2007][Jejurikar et al. 2004][Seo et al. 2004][Shin et al. 2001] and iii) probabilistic execution time
distribution [Oh et al. 2008][Zhong and Xu 2005][Hong et al. 2006].

It is worth exploring how varying input would impact each task’s cache behavior. In our exper-
iments, we examine inputs with different sizes and observe the variation of optimal cache config-
urations. For the instruction cache, the energy optimal cache configuration parameters (cache size,
line size and set associativity) reduce as the input size decreases. Results are similar for the data
cache. The performance optimal instruction cache configuration’s line size reduces as input size
decreases, but cache size and associativity remain the same. However, in this case, the data cache
shows non-deterministic behavior. The reason for such kind of variations in instruction cache is the
size of critical data processing code sections which accounts for 90% of the time (loops etc.) may
be a comparatively small segment of the entire program due to the 90/10 law. Since critical data
processing code sections (instruction cache working set) remains in the cache, the line size tends
to be smaller in order to reduce the time spent on cache misses, and thus static energy consumed.
For the data cache, as the input size increases, spatial locality is more critical than temporal locality,
thus, the cache size nearly remains the same, or even decreases, but line size increases. It is im-
portant to note that drastic changes in input size is not usual in real-time systems. We also studied
the impact of changing input pattern on our approach. We observed that a change in input pattern
(data structure and the absolute values change but not the size) shows a minor impact on the cache
behavior. Both energy and performance optimal cache configurations show very little variation.

Here are the experimental results that support our arguments. We examined cjpeg benchmark
from MediaBench. In the first set of experiments, we selected six differently sized input image
files (a.ppm, b.ppm, c.ppm, d.ppm, e.ppm, f.ppm) and found that the energy/performance optimal
cache configurations for both instruction and data caches, with partition factor of 4, as shown in
Table VIII. In the second experiment, we selected two similarly sized images files (man.ppm and
woman.ppm) with different content and exploited the cache behavior under partition factor of 4, 5
and 6. As shown in Table IX, there is very little variation in terms of the optimal cache configuration
selection for the two inputs. Therefore, our approach is applicable when the input for each task is
known during design time so that it can be statically profiled. Our approach is also applicable when
there are changes in input pattern. This is a realistic assumption for real-time systems.

4.6. Hardware Overhead
This section describes the overhead of implementing the profile table in hardware. The profile table
is stored in SRAM and accessed by the cache tuner to fetch the cache configuration information.
The size of the table depends on the number of tasks in the system and the partition factor used. For
conservative approach, each table entry consists of five bits since the configurable cache architecture
used in this study offers 18 possible cache configurations. We have implemented the profile table
using Verilog HDL and synthesized using Synopsis Design Compiler with TSMC 0.18 cell library.
We estimate a table lookup frequency of once per three million nanoseconds during dynamic power
computation, which means that there is a table lookup every one million instructions using a 500
MHz CPU with an average CPI of 1.5. It is clearly an overestimation (which is safe) since the bench-
marks we used have around 10 to 200 million dynamic instructions. Table X illustrates our results.
Each row in the table indicates the area, dynamic power, leakage power, and critical path length for
profile table with different sizes. We also calculate overhead using 65nm technology as shown in
Table XI. We observed that on average for each task set, the energy overhead of our approach only
account for less than 0.02% (450 nJ compared to 2825563 nJ) of the total energy savings. Admit-
tedly, aggressive approach requires more bits per lookup table entry (74 bits6). However, Table X
and XI illustrate that the power dissipation is about linearly proportional to the table size. Therefore,
even if the table entry size is increased by 15 times (5 bits to 74 bits), the total energy overhead is

674 bits are needed to store both energy- and performance-optimal cache configurations (5 + 5 bits) as well as the corre-
sponding execution times (32 + 32 bits).

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 1:25

Table VIII. Input variation exploration.

a.ppm: Size of input: 8431 bytes
EO icache PO icache EO dcache PO dcache

4096B 2W 16B 4096B 4W 16B 4096B 2W 16B 4096B 4W 16B
4096B 2W 16B 4096B 4W 16B 4096B 2W 16B 4096B 4W 16B
4096B 2W 16B 4096B 4W 16B 4096B 2W 16B 4096B 4W 16B

b.ppm: Size of input: 101484 bytes
EO icache PO icache EO dcache PO dcache

4096B 2W 16B 4096B 4W 16B 4096B 4W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B

c.ppm: Size of input: 306915 bytes
EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 4W 32B 4096B 4W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 32B 4096B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B

d.ppm: Size of input: 530895 bytes
EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 4W 32B 4096B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B

e.ppm: Size of input: 1476015 bytes
EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 4W 16B 4096B 2W 16B 4096B 4W 16B
2048B 2W 16B 4096B 2W 64B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 2W 64B 2048B 2W 32B 4096B 4W 16B

f.ppm: Size of input: 3832336 bytes
EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 2W 64B 4096B 2W 16B 4096B 4W 16B
2048B 2W 16B 2048B 2W 64B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 2048B 2W 64B 2048B 2W 32B 4096B 4W 16B

no more than 0.3% of the total energy savings. Therefore, we can safely conclude that the overhead
for profile tables are negligible compared to the energy saving for both conservative and aggressive
approaches.

5. CONCLUSIONS
Dynamic reconfiguration techniques are widely used in designing efficient embedded systems. Dy-
namic cache reconfiguration is a promising approach to improve both energy consumption and
overall performance. The contribution of this article is a novel scheduling aware dynamic cache
reconfiguration technique for soft real-time systems. To the best of our knowledge, this is the first
approach integrating dynamic cache reconfigurations into real-time systems. Our methodology em-
ploys an ideal combination of static analysis and dynamic tuning of cache parameters with minor or
no impact on timing constraints. Our experiments demonstrated a 50% reduction on average in the
overall energy consumption of the cache subsystem in soft real-time embedded systems. Our future
work includes application of our approach in hard real-time systems.

REFERENCES
ANDERSSON, B., BLETSAS, K., AND BARUAH, S. 2008. Scheduling arbitrary-deadline sporadic task systems on multipro-

cessors. In Proceedings of Real-Time Systems Symposium. 385–394.
BENINI, L., BOGLIOLO, R., AND MICHELI, G. D. 2000. A survey of design techniques for system-level dynamic power

management. IEEE Transactions on VLSI Systems 8, 299–316.
BURGER, D., AUSTIN, T. M., AND BENNETT, S. 1996. Evaluating future microprocessors: The simplescalar tool set. Tech.

rep., University of Wisconsin-Madison.
BUTTAZZO, G. 1995. Hard Real-Time Computing Systems. Kluwer.
EEMBC. 2000. EEMBC, The Embedded Microprocessor Benchmark Consortium.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

1:26 W. Wang et al.

Table IX. Input pattern changes.

man.ppm: Size of input: 336165 bytes
Partition factor p = 4

EO icache PO icache EO dcache PO dcache
2048B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 32B 4096B 4W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B

Partition factor p = 5
EO icache PO icache EO dcache PO dcache

4096B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 32B 4096B 4W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B

Partition factor p = 6
EO icache PO icache EO dcache PO dcache

4096B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 4096B 4W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 32B 4096B 2W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B

woman.ppm: Size of input: 312999 bytes
Partition factor p = 4

EO icache PO icache EO dcache PO dcache
2048B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 32B 4096B 4W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B

Partition factor p = 5
EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 32B 4096B 4W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B

Partition factor p = 6
EO icache PO icache EO dcache PO dcache

2048B 2W 16B 4096B 4W 32B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 4096B 4W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 32B 4096B 2W 16B 4096B 4W 16B
2048B 2W 16B 4096B 4W 64B 2048B 2W 32B 4096B 4W 16B
2048B 2W 16B 4096B 4W 16B 2048B 2W 32B 4096B 4W 16B

Table X. Overhead of different lookup tables (180nm technology)

Table size
(# of

entries)

Area
(µm2)

Dynamic
Power
(µW)

Leakage
Power
(µW)

Critical
Path

Length
64 61416 38.13 114.37 0.91

128 121200 84.25 224.90 0.91
256 244520 187.68 461.30 1.08
512 483416 327.90 904.70 1.20

Table XI. Overhead of different lookup tables (65nm tech-
nology)

Table size
(# of

entries)

Area
(µm2)

Dynamic
Power
(µW)

Leakage
Power
(µW)

64 6756 12.23 154.52
128 13332 27.02 303.86
256 26897 60.19 623.25
512 53176 105.16 1222.32

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

Dynamic Cache Reconfiguration for Soft Real-Time Systems 1:27

GORDON-ROSS, A. AND VAHID, F. 2004. Automatic tuning of two-level caches to embedded applications. In Proceedings
of Design, Automation and Test Conference in Europe. 208–213.

GORDON-ROSS, A., VAHID, F., AND DUTT, N. 2005. Fast configurable-cache tuning with a unified second-level cache. In
Proc. International Symposium on Low Power Electronics and Design ISLPED ’05. 323–326.

GORDON-ROSS, A., VIANA, P., VAHID, F., NAJJAR, W., AND BARROS, E. 2007. A one-shot configurable-cache tuner for
improved energy and performance. In Proceedings of Design, Automation and Test Conference in Europe. 755–760.

HENNESSY, J. AND PATTERSON, D. 2003. Computer Architecture: A Quantitative Approach. Morgan Kaufmann Publishers.
HONG, I., KIROVSKI, D., QU, G., POTKONJAK, M., AND SRIVASTAVA, M. B. 1999. Power optimization of variable-

voltage core-based systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 18,
1702–1714.

HONG, S., YOO, S., JIN, H., CHOI, K., KONG, J., AND EO, S. 2006. Runtime distribution-aware dynamic voltage scaling.
In Proceedings of International Conference on Computer-Aided Design. 587–594.

HP. 2008. CACTI, HP Laboratories Palo Alto, CACTI 5.3. http://www.hpl.hp.com/.
HU, J. AND MARCULESCU, R. 2004. Energy-aware communication and task scheduling for network-on-chip architectures

under real-time constraints. In Proceedings of Design, Automation and Test Conference in Europe. 234–239.
JEJURIKAR, R. AND GUPTA, R. 2005. Dynamic slack reclamation with procrastination scheduling in real-time embedded

systems. In Proceedings of Design Automation Conference. 111–116.
JEJURIKAR, R. AND GUPTA, R. 2006. Energy-aware task scheduling with task synchronization for embedded real-time

systems. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25, 1024–1037.
JEJURIKAR, R., PEREIRA, C., AND GUPTA, R. K. 2004. Leakage aware dynamic voltage scaling for real-time embedded

systems. In Proceedings of Design Automation Conference. 275–280.
KIM, H., SOMANI, A. K., AND TYAGI, A. 2000. A reconfigurable multi-function computing cache architecture. In Pro-

ceedings of International Symposium on Field Programmable Gate Arrays. 85–94.
LEE, C., POTKONJAK, M., AND MANGIONE-SMITH, W. H. 1997. Mediabench: A tool for evaluating and synthesizing

multimedia and communications systems. In Proceedings of International Symposium on Microarchitecture. 330–335.
LEUNG, L., TSUI, C., AND HU, X. S. 2005. Exploiting dynamic workload variation in low energy preemptive task schedul-

ing. In Proceedings of Design, Automation and Test Conference in Europe. 634–639.
LIU, J. 2000. Real-Time Systems. Prentice Hall.
MALIK, A., MOYER, B., AND CERMAK, D. 2000. A low power unified cache architecture providing power and performance

flexibility. In Proceedings of International Symposium on Low Power Electronics and Design. 241–243.
MODARRESSI, M., HESSABI, S., AND GOUDARZI, M. 2006. A reconfigurable cache architecture for object-oriented em-

bedded systems. In Proceedings of Canadian Conference on Electrical and Computer Engineering. 959–962.
NACUL, A. C. AND GIVARGIS, T. 2004. Dynamic voltage and cache reconfiguration for low power. In Proceedings of

Design, Automation and Test Conference in Europe. 21376.
OH, S., KIM, J., KIM, S., AND KYUNG, C. 2008. Task partitioning algorithm for intra-task dynamic voltage scaling. In

Proceedings of International Symposium on Circuits and Systems. 1228–1231.
PUANT, I. 2002. Cache analysis vs static cache locking for schedulability analysis in multitasking real-time systems. In

Proceedings of International Workshop on worst-case execution time analysis.
PUANT, I. AND DECOTIGNY, D. 2002. Low-complexity algorithms for static cache locking in multitasking hard real-time

systems. In Proceedings of IEEE Real-Time Systems Symposium. 114–125.
PUANT, I. AND PAIS, C. 2007. Scratchpad memories vs locked caches in hard real-time systems: a quantitative comparison.

In Proceedings of the conference on Design, automation and test in Europe. 1484–1489.
QUAN, G. AND HU, X. S. 2007. Energy efficient dvs schedule for fixed-priority real-time systems. ACM Transactions on

Design Automation of Electronic Systems 6, 1–30.
RONG, P. AND PEDRAM, M. 2008. Energy-aware task scheduling and dynamic voltage scaling in a real-time system. Journal

of Low Power Electronics 4, 1–10.
SEGARS, S. 2001. Low power design techniques for microprocessors. In Proceedings of International Solid State Circuit

Conference.
SEO, J., KIM, T., AND CHUNG, K. 2004. Profile-based optimal intra-task voltage scheduling for hard real-time applications.

In Proceedings of Design Automation Conference. 87–92.
SETTLE, A., CONNORS, D., AND GIBERT, E. 2006. A dynamically reconfigurable cache for multithreaded processors.

Journal of Embedded Computing 2, 221–233.
SHERWOOD, T., PERELMAN, E., HAMERLY, G., SAIR, S., AND CALDER, B. 2003. Discovering and exploiting program

phases. In Proceedings of International Symposium on Microarchitecture. 84–93.
SHIN, D., KIM, J., AND LEE, S. 2001. Low-energy intra-task voltage scheduling using static timing analysis. In Proceedings

of Design Automation Conference. 438–443.
SPRUNT, B. 1990. Aperiodic task scheduling for real-time systems. Ph.D. thesis, Carnegie Mellon University.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

1:28 W. Wang et al.

STASCHULAT, J., SCHLIECKER, S., AND ERNST, R. 2005. Scheduling analysis of real-time systems with precise modeling
of cache related preemption delay. In Proceedings of Euromicro Conference on Real-Time Systems. 41–48.

TAN, Y. AND MOONEY, V. J. 2007. Timing analysis for preemptive multitasking real-time systems with caches. ACM
Transactions on Embedded Computing Systems 6, 7.

VARMA, A., DEBES, E., KOZINTSEV, I., AND JACOB, B. 2005. Instruction-level power dissipation in the intel xscale
embedded microprocessor. In In SPIEs 17th Annual Symposium on Electronic Imaging Science & Technology.

WANG, W. AND MISHRA, P. 2009. Dynamic reconfiguration of two-level caches in soft real-time embedded systems. In
Proceedings of IEEE Computer Society Annual Symposium on VLSI. 145–150.

WOLFE, A. 1993. Software-based cache partitioning for real-time applications. In Proceedings of International Workshop
on Responsive Computer Systems.

ZHANG, C., VAHID, F., AND LYSECKY, R. 2004. A self-tuning cache architecture for embedded systems. In Proceedings
of Design, Automation and Test Conference in Europe. 10142.

ZHANG, C., VAHID, F., AND NAJJAR, W. 2005. A highly configurable cache for low energy embedded systems. ACM
Transactions on Embedded Computing Systems 6, 362–387.

ZHANG, S., CHATHA, K., AND KONJEVOD, G. 2007. Approximation algorithms for power minimization of earliest deadline
first and rate monotonic schedules. In Proceedings of International Symposium on Low Power Electronics and Design.
225–230.

ZHONG, X. AND XU, C. 2005. Energy-aware modeling and scheduling of real-time tasks for dynamic voltage scaling. In
Proceedings of International Real-Time Systems Symposium. 366–375.

ACM Transactions on Embedded Computing Systems, Vol. 0, No. 1, Article 1, Publication date: 2011.

