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Cache Reconfiguration Using Machine Learning

for Vulnerability-aware Energy Optimization

ALIF AHMED, YUANWEN HUANG, and PRABHAT MISHRA, University of Florida

Dynamic cache reconfiguration has been widely explored for energy optimization and performance improve-

ment for single-core systems. Cache partitioning techniques are introduced for the shared cache in multicore

systems to alleviate inter-core interference. While these techniques focus only on performance and energy,

they ignore vulnerability due to soft errors. In this article, we present a static profiling based algorithm to en-

able vulnerability-aware energy-optimization for real-time multicore systems. Our approach can efficiently

search the space of cache configurations and partitioning schemes for energy optimization while task dead-

lines and vulnerability constraints are satisfied. A machine learning technique has been employed to minimize

the static profiling time without sacrificing the accuracy of results. Our experimental results demonstrate that

our approach can achieve 19.2% average energy savings compared with the base configuration, while dras-

tically reducing the vulnerability (49.3% on average) compared to state-of-the-art techniques. Furthermore,

the machine learning technique enabled more than 10x speedup in static profiling time with a negligible

prediction error of 3%.
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1 INTRODUCTION

Multicore architectures consist of multiple processor cores to improve execution performance of

application programs. A multicore processor usually has on-chip caches to resolve the perfor-

mance bottleneck caused by the increasing gap between processor and memory speed. In a typ-

ical multicore system, each core maintains its private L1 caches while all cores share the same

L2 cache. There are many optimization techniques for multi-level on-chip caches to improve
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Fig. 1. Overview of the three-step optimization process.

performance and energy consumption of the overall system [11, 15, 24, 27, 28, 30, 42, 46, 48].

With the increasing demand for high reliability and availability, vulnerability of caches due to

soft errors is gaining increasing importance. Data corruption caused by soft errors can change

the behavior of applications and may eventually result in a system failure. As for performance

and energy improvement, it is beneficial to maintain a useful data longer in the cache. However,

longer data retention can negatively impact the vulnerability or probability of data corruption due

to soft errors. It is a great challenge to keep vulnerability under control while we optimize the

cache subsystem for improvement in performance and energy consumption.

Application-based techniques on cache optimization have been very effective in improving per-

formance and energy consumption. One of the most successful techniques for cache energy op-

timization is dynamic cache reconfiguration (DCR). The basic idea of DCR is to select a suitable

cache configuration to satisfy the specific data access behavior of the application. By tuning the

cache configuration (cache size, associativity, and line size) at runtime, it is possible to optimize

the energy consumption and improve performance of different applications. DCR has been well

studied for energy savings in both uniprocessor [47] and multicore systems [48]. Recent work by

Huang et al. [18] studies the impact of DCR on vulnerability in the L1 caches for a uniprocessor.

However, there are no existing efforts in vulnerability-aware cache reconfiguration for multicore

systems.

As for a shared L2 cache, it may cause performance degradation because of data contentions

among different cores. Cache partitioning (CP) techniques are introduced to alleviate this prob-

lem by judiciously dividing the shared cache and mapping a dedicated partition of the cache to

each core. CP can improve the performance of independent tasks running on different cores, by

eliminating inter-task interference on the shared cache. DCR and CP are both cache optimization

techniques to properly tune the cache subsystem based on the data access pattern of applications.

Previous work by Wang et al. [48] explores the idea of combining DCR and CP for energy opti-

mization in real-time multicore systems. However, their work does not consider vulnerability.

In this article, we propose a vulnerability-aware energy optimization technique that integrates

cache reconfiguration (DCR) of private L1 caches and cache partitioning (CP) of the shared L2

cache. It is composed of three steps as depicted in Figure 1. A profile table is built for each task

during the task profiling step. This profile table contains energy, runtime, and vulnerability mea-

surements for all configurations. A small number of table entries is used to train a model, which

then predicts the rest of the table. The second step finds the best L1 configuration on each core

for all L2 configurations using dynamic programming. The third step optimizes across cores by

finding the best L2 partition scheme. We get the optimal L1 and L2 configuration by the end of

the three-step process. Note that getting the optimal configuration is dependent on profiling the

task-sets. This is not a limiting factor for embedded systems, where, often times, the designers

have prior knowledge on what applications will run on the system.

Our article makes the following important contributions:

—We explore the inter-dependence of L1 DCR and L2 CP for performance and energy con-

sumption, as well as vulnerability.

—Our proposed algorithm is able to minimize energy consumption without violating both

vulnerability and real-time constraints.
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—Our fast and scalable static profiling algorithm can efficiently search the design space of L1

configurations and L2 partitions, making it feasible to find the optimal result using dynamic

programming.

—We proposed a machine learning based technique to further reduce the static profiling time

by more than 10 times, utilizing highly accurate models.

—Our results demonstrate that our approach can provide significant energy savings compared

with the base configuration as well as drastic reduction in vulnerability compared to the

state-of-the-art techniques.

The remainder of the article is organized as follows. Related approaches are surveyed in Sec-

tion 2. The architecture model and a motivational example are presented in Section 3. Section 4

discussed our approach for vulnerability-aware optimization in detail. Section 5 presented the ex-

perimental results, and Section 6 concludes the article.

2 BACKGROUND AND RELATED WORKS

2.1 Cache Vulnerability Mitigation and Measurement

In this article, we used the term vulnerability to denote cache vulnerability caused by soft errors.

When a charged particle hits a transistor, it will create a depletion region. A lot of electrons get

attracted to the depletion region. Because of this, being hit by a charged particle might disconnect

a conducting drain and source. If used as cache, such phenomena may lead to bit-flip of the stored

value from 1 to 0 or from 0 to 1. Caches occupy a majority of the chip area, and are made of tightly

packed transistors—making them highly vulnerable to soft errors [25]. Studies have shown that

soft errors can cause a random data failure every 3 to 30 days for a 100 megabit memory [8, 29]. To

mitigate this issue, we can either prevent soft errors, or detect and correct errors after it happens

[22, 35, 36]. Several techniques such as early write-back and periodic flashing are proposed in Ref.

[3]. These techniques work by keeping an updated copy of the cached data in the main memory and

recovering data in case of a soft error. Write-through cache can also be used for the same purpose.

However, such cache designs increase bus usage which in turn negatively impacts performance.

Parity checking, checksum, cyclic redundancy check (CRC), and error-correcting codes (ECC) are

alternatives to this approach [3, 32]. However, these approaches may not be suitable for applica-

tions with short access time constraints [3]. In this article, we made no assumption on the error

detection or correction techniques for caches. Our approach determines optimum configuration to

minimize energy and vulnerability, independent of error detection and correction methodology.

For critical applications, our technique can be used to minimize soft errors, and then ECC can be

applied on top of it to recover from the escaped errors.

Vulnerability is quantitatively measured by splitting a bit’s lifetime into vulnerable and un-

vulnerable intervals [5, 17, 18, 26, 37, 51]. The bit is vulnerable when occurrence of a soft error will

make the program to get corrupted data. On the other hand, effect of soft error can get masked by

some activity. In such cases, a program will not get corrupted data, and the bit is in an in vulnerable

state. Figure 2 shows an example [17]. The vulnerable time is indicated by a bold black line. We can

have read, write, or eviction operations during the lifetime of a bit in the cache. Suppose we write a

value X to a bit. Now, if a soft error changes the bit value to X ′, then the next read by the program

will get the corrupted value of X ′. So the write-read interval is a vulnerable interval. Similarly, a

read followed by another read is also a vulnerable interval, as the reads can get different values

because of the soft error. The bit is also vulnerable from a write to the eviction as can be seen

from Figure 2(a). A soft error during this interval can cause the corrupted data to be written to the

main memory. On the other hand, read-write and write-write intervals are not vulnerable. This is

because the last write will mask the effect of soft error. The read-evict interval in Figure 2(b) is not
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Fig. 2. Vulnerable intervals of two data elements in a cache without soft-error protection (where W=Write

Access, R=Read Access, E=Evict). (a) Data with both write and read accesses; (b) data with only read accesses

[17].

vulnerable since the data will not be written back to main memory. Cache vulnerability is simply

measured by summing up the vulnerable intervals for all bytes [17, 18, 20].

2.2 Dynamic Cache Reconfiguration and Partitioning

Reconfigurable cache architectures are extensively studied in Refs [12, 16, 38–40, 43–45, 49, 50].

Gordon-Ross et al. [9] utilized DCR to improve performance by online feedback and dynamic

self-tuning of the cache. An energy-efficient approach using DCR is proposed in Ref. [47] for soft

real-time systems by using static profiling and dynamic reconfiguration. DCR in two-level cache

hierarchy in uniprocessor is studied in Ref. [41]. DCR for multicore systems is studied in Ref. [15]

for thread-fairness and performance improvement. Wang et al. proposed an energy-efficient ap-

proach for multicore systems in Ref. [48] by using DCR on private L1 caches and CP on the shared

L2 cache. Authors in Refs [2], [13], and [34] have further divided the tasks into smaller phases.

Cache usage is almost same within a phase, but varies greatly between phases. DCR is applied on

individual phases instead of tasks.

CP is a special case of reconfiguration on the shared cache among multiple cores [24, 33]. Initial

works of CP aim at improving the performance of multicore systems [21, 33]. Liang et al. explored

cache partitioning on GPUs at task-level granularity [23]. Reddy et al. investigates energy-efficient

CP for multitasking embedded systems in Ref. [31]. Chakraborty et al. proposed working set size

based cache resizing to reduce energy consumption [7]. However, none of the above approaches

takes vulnerability into consideration.

Cai et al. [6] is the first to consider cache configuration (only cache size selection) for energy

and vulnerability in time-constrained systems. Huang et al. [18] proposes a DCR approach for

performance, energy, and vulnerability tradeoffs in uniprocessor-based systems. To the best of our

knowledge, the proposed work is the first attempt in studying vulnerability-aware optimizations

in multicore systems in the presence of reconfigurable caches.

3 MODELING SYSTEMS WITH RECONFIGURABLE CACHES

In this section, we describe the modeling of multicore systems with reconfigurable caches. First,

we describe the underlying multicore architecture. Next, we present the energy and vulnerability

models. Then, we provide an illustrative example to motivate the need for the proposed exploration

framework. Finally, we present the problem formulation.

3.1 Multicore Architecture Model

Figure 3 shows a typical multicore system with a shared on-chip L2 cache and private L1 caches

for each core. In this article, we assume that the private L1 caches (both IL1 and DL1) are re-

configurable, and the shared L2 cache is equipped with way-based partitioning. The L1 caches

can reconfigure its cache size, associativity, and line size. The reconfigurable cache architecture
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Fig. 3. A multicore system with reconfigurable L1 caches and a partition-enabled shared L2 cache.

is the same as Refs [9] and [47]. The cache size is tuned by selectively shutting down the banks

with gated-Vdd techniques. The associativity is reconfigured by logically concatenating ways. The

line size can be changed by fetching multiple unit-length blocks in one access. The reconfigurable

architecture is lightweight, which introduces negligible overhead [47].

The shared L2 cache with way-based partitioning [33] is illustrated in Figure 3. Each L2 cache

set (8-way associativity as in this example) is partitioned into four parts, each of which will be

assigned to one core. Each core will access only the assigned portion of the cache sets and enforce

the LRU replacement policy among its individual group of ways. The number of ways assigned to

a core is referred to as its partition factor. As shown in Figure 3, Core 1 has an L2 partition factor

of 2. In this article, we use dynamic reconfiguration of the L1 caches and static partitioning of the

shared L2 cache. In other words, L1 cache configurations can be tuned for each application on

each core during runtime. While L2 partition factors are pre-determined for each core and remain

unchanged during runtime, all applications running on that core have the same L2 partition factor.

3.2 Energy and Vulnerability Models

The Energy Model is adopted from the one used in Ref. [47]. The cache energy consumption consists

of static and dynamic energy: E = Esta + Edyn . The static energy dissipation Esta is computed as

Esta = Psta × t , where Psta is the static power of cache. Dynamic energy dissipation Edyn comes

from both cache accesses and cache misses.

Edyn = Accesses × Eaccess +Misses × Emiss (1)

Emiss = Eoffchip_access + Eblock_fill, (2)

where Eaccess and Emiss are the energy required per cache access and per cache miss, respectively.

Eaccess and Emiss are constant values for one specific configuration. Eoffchip_access is the energy for

accessing the lower level of the memory hierarchy, and Eblock_fill is the energy for filling the cache

block with fetched data.

The Vulnerability Model is based on per-byte analysis of the cached data as discussed in

Section 2.1. Similar to Ref. [18], the lifetime of a byte is divided into vulnerable and un-vulnerable

intervals. The measured vulnerability V is the summation of vulnerable intervals as shown in
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Fig. 4. Inter-dependence of L1 DCR and L2 CP on (a) L2 Misses, (b) IPC, (c) Runtime, (d) Energy, and

(e) Vulnerability.

Equation (3) [18].

V =
∑

all bytes

vulnerable interval o f byte (3)

3.3 Illustrative Example

Figure 4 shows the impact of L1 DCR and L2 CP for benchmark qsort from MiBench [10]. The

L2 partition factor can change from 1 to 7 in an 8-way associative L2 cache. Four pairs of cache

configurations1 for IL1 and DL1 are randomly chosen. We observe that different L1 configurations

will lead to different L2 cache misses (Figure 4(a)) and pipeline throughput (i.e., IPC in Figure 4(b)).

This is expected since L1 configurations determine the number accesses to the L2 cache, as well as

the pipeline throughput. Secondly, as L2 partition factorw increases, L2 cache misses will decrease

and eventually converge (forw ≥ 4) for different L1 configurations. However, the IPC shows great

diversity even when the L2 partition factor is large.

Figure 4(c)–(e) show the runtime, energy consumption, and cache vulnerability of the bench-

mark, respectively. It is interesting to see that they have different patterns as L2 partition factorw
increases. Runtime will decrease drastically asw increases, which is accordant with the pattern of

IPC. Energy consumption will decrease to a minimal point (for w = 3), but it will increase when

w becomes larger. This is because dynamic energy (caused by a lot of cache misses) dominates the

total energy consumption when w is small, while static energy dominates when w is too large.

However, vulnerability will increase withw . This is expected for two reasons: (1) a largew means

that L2 cache has more valid area and is holding more data, which remains vulnerable to soft errors;

(2) the decrease in cache misses (data replacement) also indicates that data are residing in the cache

for a longer time, which means data will have longer vulnerable intervals. While a large L2 partition

facilitates performance, it might jeopardize energy consumption and vulnerability. This shows that

performance, energy, and vulnerability have very different (often conflicting) cache requirements.

Given the above observations, both L1 DCR and L2 CP have a major impact on performance,

energy consumption, and vulnerability. The interesting tradeoffs between them is the motiva-

tion of this article to explore for optimization. We exploit L1 DCR and L2 CP simultaneously for

vulnerability-aware energy optimization for real-time multi-core systems.

3.4 Problem Formulation

We model our multicore system as follows:

—The multicore processor hasm cores P {p1, p2, . . . ,pm }.

—Each core has private IL1 and DL1, both of which can be reconfigured to r configurations

C {c1, c2, . . . , cr }.

1Here, c18 and c9, for example, stand for the IL1 and Dl1 using the 18th and 9th configuration, respectively.
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—The shared L2 cache is ω-way associative, which supports way-based partitioning.

—A set of n independent tasks T {τ1, τ2, . . . ,τn } with a common deadline D.

Our optimization goal is to find a reconfiguration scheme R for the private L1 caches and a

partitioning scheme P for the shared L2 cache such that the overall energy consumption E is min-

imized without violating vulnerability constraints and task deadlines. Assume that we are given

the following:

—A task mapping scheme M: T → P , which assigns tasks to each core. In this article, we

assume that the task mapper M is given, which can ensure that the total runtime on each

core is comparable. ρk is the number of tasks mapped to core k .

—A reconfiguration scheme R for L1 caches: CI ,CD → T , which assigns one IL1 and DL1

configuration to each task.

—A partitioning scheme P for L2 cache: P = {w1, w2, . . . ,wm }, which allocates wk ways to

core k .

For task τk,i ∈ T (the ith task on core k), ek,i (cI , cD ,wk ) denotes the energy consumption of

the cache subsystem when the task is executed with L1 configurations (cI , cD ) and L2 partition

factorwk . Similarly, let tk,i (cI , cD ,wk ) and vk,i (cI , cD ,wk ) denote the execution time and the total

vulnerability, respectively. Our minimization problem can be formulated as follows:

E =
m∑

k=1

ρk∑
i=1

ek,i (cI , cD ,wk ) (4)

is minimized subject to:

max
k=1..m

�
�

ρk∑
i=1

tk,i (cI , cD ,wk )�
�
≤ D (5)

ρk∑
i=1

vk,i (cI , cD ,wk ) ≤ Vk ,∀k ∈ [1,m] (6)

m∑
k=1

wk = ω;wk ≥ 1,∀k ∈ [1,m] (7)

Equation (5) guarantees that all tasks will meet the deadline D. Equation (6) guarantees that the

total vulnerability of the tasks on each core is constrained by the thresholdVk , which is chosen as

the base case vulnerability. Equation (7) verifies that the partitioning scheme is valid.

4 VULNERABILITY-AWARE DCR+CP

In this section, we present our approach, which utilizes the static profiles of tasks to efficiently

search the design space for the optimal energy solution. Our three-step optimization approach is

illustrated in Figure 5: (i) the first step profiles each task for all possible configurations; (ii) the

second step uses a dynamic programming algorithm to determine the optimal L1 cache config-

urations on each core; (iii) the third step combines the solutions from step two by evaluating all

feasible L2 partition schemes. The remainder of this section describes these steps in detail.

4.1 Task Profiling

Theoretically, we can do static profiling for all possible L1 reconfiguration schemes R and all pos-

sible L2 partition schemes P with all possible task set combinations in T . However, this exhaustive
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Fig. 5. Three-step optimization: the first step statically profiles each task, the second step optimizes for each

partition factor on each core to find the best L1 cache configurations, and the third step combines the optimal

solution on all cores to find the best L2 partition scheme.

approach requires excessive simulation time. Let’s say we have to profile n tasks, the number of

IL1/DL1 configurations is r , and the number of L2 partition factors is ω. Then the total number of

simulations with the exhaustive approach will be:

n∑
k=1

(
n

k

)
· r 2 · (ω − 1)

Here, r 2 is the number of IL1 and DL1 combinations and (ω − 1) is the number of possible L2

partition factors. Fortunately, the profiling complexity can be drastically reduced by exploiting

the independence of tasks in the system [19]. We can profile each task as if it is executed inde-

pendently on a uniprocessor with a wi -way associative L2 cache (with capacity equal to wi/ω of

the original L2). That means we need to simulate each task with all possible IL1 and DL1 cache

configurations, along with all possible L2 partition factors to build up their respective profile ta-

ble. Therefore, each task has a profile table with r 2 · (ω − 1) entries, each of which contains the

runtime, energy consumption, vulnerability for the corresponding L1 configurations, and L2 par-

tition factor. Evaluating each entry requires a simulation. Thus, the total number of simulations

required to fill up profile tables for n tasks would be r 2 · (ω − 1) · n. This is a massive improvement

over the exhaustive method, but not good enough. Consider an example system with 20 tasks, 18

IL1 and DL1 cache configurations, and an 8-way set-associative L2 cache [47]. This system requires

182 × 7 × 20 = 45,360 simulations for building profile tables. If each simulation takes 1 minute, it

will translate to 31.5 days of continuous simulation. Huang et al. [19] used this method for task

profiling. In their experiments, the static profiling finished within three days by utilizing parallel

execution on multiple cores. It is evident that the time requirement would be infeasible for practical

applications and on systems with a large number of cache configurations. This article introduces a

machine learning based technique to enable faster construction of the profile table. The basic idea

is to:

—Partially build the profile tables by running a small number of simulations.

—Train a model using these entries.

—Predict the rest of the table using the trained model.

If we only use simulations as in Ref. [19], the profile table building time is the time needed to run

r 2 · (ω − 1) · n simulations (tsim_all ). In case of the proposed machine learning based technique,

total profile table building time consists of three components: (a) simulation time for collecting

training data (tsim_tr ain ), (b) model training time (ttr ain ), and (c) prediction time (tpr ed ). In our
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Fig. 6. Overview of profile-table construction of a task using machine learning.

experiments, we found that tsim_tr ain � ttr ain � tpr ed . Consequently, the approximate speedup

of the proposed method compared to Ref. [19] is tsim_all/tsim_tr ain . For example, if we simulate

the tasks on 50% of the configurations (fill up 50% of the profile table, and use it for building the

prediction model), we will get a speedup of approximately two times. If we simulate 5%, speedup

will be nearly 20 times. However, lowering the amount of training data usually corresponds to a

higher prediction error. The objective is to attain maximum accuracy while keeping the simula-

tion time tsim_tr ain within the allowed time budget. More time budget allows for collecting more

training data, resulting in less prediction error. Figure 10 captures the training data requirement

trend as a function of obtained accuracy, which can help to provide an educated guess of the ini-

tial training time. As we are trying to predict energy, runtime, and vulnerability values, this is a

regression problem.

Figure 6 gives an overview of task profiling using machine learning, while Algorithm 1 provides

the implementation details. First, we fill up a portion of the profile table entries by simulating a

task on different configurations. Next, we train several models with the collected data and select

the model with the least error. If the error is within a selected threshold, then we predict the rest

of the profile table entries using that model. If not, then we collect more training data by running

more simulations, and repeat the procedure until the error threshold criteria is satisfied. The same

process is repeated for all tasks. Note that we are building three models per task—one for predicting

energy, one for runtime, and one for vulnerability. Details of these steps are given next.

Feature Selection: Selecting proper features is the most important part of a machine learning

problem. As we are predicting profile table entries with different cache configurations, these con-

figurations themselves are selected as the features. Let X =< x1,x2, . . . ,x7 > be the feature vector

where:

ACM Transactions on Embedded Computing Systems, Vol. 18, No. 2, Article 15. Publication date: March 2019.
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ALGORITHM 1: Profile Table Generation
/* Model building */

1 normalize(Xall )
2 foreach task do
3 Xpred = Xall

4 Xsim = ∅
5 min_error = ∞
6 while Xpred! = ∅ and min_error > ϵ do
7 Xsel = randomSample(Xpred )
8 Xpred = Xpred − Xsel

9 Xsim = Xsim + Xsel

10 Ysel = simulate(Xsel )
11 [Xtrain, Xcv, Xtest] = distribute(Xsel )
12 [Ytrain, Ycv, Ytest] = distribute(Ysel )
13 foreach regression algorithm do

/* Parameter sweep */

14 foreach param do
15 model = train(Xtrain, Ytrain, Xcv, Ycv, param)

16 Ŷtest = predict(Xtest, model)

17 error = nrmse(Ytest, Ŷtest )
18 if error < min_error then
19 min_error = error

20 sel_model = model

/* Profile table entry prediction */

21 Ŷpred = predict(Xpred, sel_model)

22 Yall = Ysim + Ŷpred

—x1 : IL1 cache size

—x2 : IL1 cache line size

—x3 : IL1 cache associativity

—x4 : DL1 cache size

—x5 : DL1 cache line size

—x6 : DL1 cache associativity

—x7 : L2 partition factor

Here, the assumption is that we are configuring using L1 cache’s size, line size, and associativity,

and L2 cache’s partition factor. If some other parameters are used for cache configuration, they

should be included into the feature vector. Note that cI =< x1,x2,x3 >, cD =< x4,x5,x6 >, and

wk =< x7 >. For each task, these configuration parameters (features) are sufficient to uniquely

identify a profile table entry. Introducing additional features will unnecessarily make the learning

model prone to over-fitting.2 In the presence of more features, the over-fitting issue can be mit-

igated by using a large amount of training data. However, this is not a viable option in our case

as we are trying to minimize the amount of training data. Adding extra features is avoided for

this reason. As feature vector X is solely composed of cache configurations, we will use the term

feature vector and configuration interchangeably to denote X .

Data Collection: Profile table entries are collected in this step by simulating the task with

different configurations. These entries are then used for model training purposes. For the ease

of explanation, assume that Y<ss> corresponds to the actual (simulated) entries and Ŷ<ss> are

the predicted entries for the configuration set X<ss> . Now, let Xall denote the set of all possible

2Over-fitting occurs when a model is too specific for the training data. It can be caused by too little data or too many

features. Over-fitting will result in low training but high testing error.
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configurations for a task. Xsim is the set of configurations on which we already simulated the task

and have the corresponding table entries Ysim . Remaining configurations are in Xpr ed . We need

to predict the profile table entries for these configurations. It is evident that Xall = Xsim + Xpr ed

and |Xall | = r 2 · (ω − 1).
Initially, all the table entries are empty. Thus,Xpr ed = Xall andXsim = ∅. In the subsequent iter-

ations, some of the configurations from Xpr ed are selected for simulation (Xsel ). After simulating

withXsel configurations,Ysel entries are put into a profile table. Consequently,Xsel configurations

are removed fromXpr ed and added toXsim . Size ofXsel determines the number of simulations car-

ried out in each iteration. We have fixed |Xsel | to 0.05 ∗ r 2 · (ω − 1) in our experiments. This effec-

tively means that 5% of the total table entries are collected in each iteration. More flexible schemes

are also possible. For example, |Xsel | can be decreased in steps, or can be made proportional to the

prediction error.

Model Selection: In this step, we train multiple models with the filled table entriesYsim and their

configurations Xsim . For model building purposes, these entries and configurations are divided

into three groups—training (Xtrain,Ytrain), cross-validation (Xcv ,Ycv ), and testing (Xtest,Ytest). This

essentially means that Xsim = Xtrain + Xcv + Xtest and Ysim = Ytrain + Ycv + Ytest. The training set

is used for training the model. Cross-validation is used for hyper-parameter tuning, like learning

rate or regularization parameter. The test set is used for determining the model with the least error.

A standard split is used in our experiments: 70% for training, 15% for cross-validation, and 15% for

testing. We have used shallow neural network for training our models. These models are further

tuned by hyper-parameter sweeping. For shallow neural network, a suitable hyper-parameter for

sweeping is the number of hidden layer nodes. If the amount of training data is very small, a lower

number of hidden layer nodes gives the best accuracy. Training with more nodes in such cases

will make the model to overfit the training data. As training data increases, a higher number of

nodes becomes necessary for greater accuracy. Thus hyper-parameter sweeping is required to get

the optimum number of nodes. After training models with different hyper-parameters, the model

that offered the lowest Mean Square Error (MSE) on the test set is finally selected. MSE is defined

in Equation (8). In the equation, Y holds the actual values from simulation (= Ytest ) and Ŷ holds

the predicted values (= Ŷtest ).

MSE =
1

n

n∑
i=i

(Yi − Ŷi )2 (8)

Error Checking and Profile Table Completion: In the previous phase, we have chosen the

model with the lowest MSE. Now we need to determine if the prediction error is within a tolerable

threshold, ϵ . Unfortunately, MSE is not a suitable measurement for prediction error. While MSE

is the standard cost function for regression problems, it varies greatly from task to task. Error

expressed as percentage is more intuitive and consistent across tasks. For this reason, we have

used Normalized Root Mean Square Error (NRMSE) as the metric for error threshold. It is also

known as the coefficient of variation of RMSE and is defined as:

NRMSE = 100% ∗
√
MSE/Ȳ (9)

Here, Ȳ is the average value. For error threshold calculation, NRMSE is measured over the test

dataset, Ytest and Ŷtest . If NRMSE is larger than the error threshold ϵ , then we collect more sim-

ulation data and repeat the model building procedure. On the other hand, if NRMSE is within ϵ ,

then the model is used for predicting the rest of the profile table. Formally, input to the model will

be the configuration set Xpr ed and output will be the predicted energy, vulnerability and runtime

values (Ŷpr ed ). Full profile table is built by combining predicted data Ŷpr ed and simulated dataYsim

as shown in Figure 7.
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Fig. 7. Profile table generation of a task. (a) Initial iteration with error > ϵ . (b) Next iteration after data

collection. Error is still > ϵ . (c) After k-th iteration, error becomes < ϵ . Remaining table entries (Ŷpr ed ) are

predicted using this model.

One concern here is how to select appropriate error threshold. A practical approach is to start

with a large error threshold (e.g., 10%), and reduce it further if the time budget permits. Simulation

data that is collected during the initial runs are used for training in subsequent runs, so no simu-

lation time is wasted. Figure 10(a) in the experimental section plots the percentage of simulation

data required vs. error threshold for 20 benchmarks with different characteristics. This graph can

be used to make a rough estimation of required simulation time during error threshold selection.

Note that the profiling can be done off-line. In this work, we profiled the tasks on the standard

set of inputs available for those tasks. We assume that the input size remains the same but con-

tent can vary. This is a reasonable assumption for real-time embedded systems. We performed

our off-line analysis by varying input patterns (data values) for all the benchmarks and observed

that it has minor impact on the footprint of data access. Since profile of vulnerability and energy

estimation for data pages depends on the data access pattern, our static profiling will remain effec-

tive for different input patterns. Our observations are consistent with the ones made by existing

literature. Weixun et al. [47] explored the impact of input size and pattern changes, and found out

that reasonable input variations have minor effect on both energy and performance optimal cache

configuration.

4.2 Optimization on Each Core

In order to find the optimal solution under deadline and vulnerability constraints, we first op-

timize on each core (find profitable L1 configurations), and then optimize across all cores (find

the best L2 partition scheme). In this section, we explain our approach for optimization on each

core. Since static partitioning of L2 is used, tasks on the same core share the same L2 partition

factor wk . This fact enables us to treat each core as a subproblem, which optimizes the energy

consumption for a given core under different L2 partition factors. In other words, we find cache

assignment R to minimize Ek (wk ) =
∑ρk

i=1 ek,i (cI , cD ,wk ) constrained by
∑ρk

i=1 tk,i (cI , cD ,wk ) ≤ D

and
∑ρk

i=1vk,i (cI , cD ,wk ) ≤ Vk , with k and wk fixed for ∀k ∈ [1,m] and ∀wk ∈ [1,ω − 1].

This subproblem is to choose L1 configurations for each task so that the total energy is optimized

with constraints. The optimization goal is to minimize energy, which can be discretized to simplify

the problem. We can use a dynamic programming algorithm to search for the optimal solution. Let

emin
k

(wk ) and emax
k

(wk ) denote the minimum possible energy (
∑ρk

i=1min{ek,i (cI , cD ,wk )}) and the

maximum possible energy (
∑ρk

i=1max {ek,i (cI , cD ,wk )}) on core k , respectively. The energy con-

sumption Ek (wk ) of core k using partition factor wk is bounded by [emin
k

(wk ), emax
k

(wk )]. Let SE
i
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Fig. 8. Recursive formula for dynamic programming.

Table 1. The Time Table T for Dynamic Programming for Per-core Optimization

emin
k

emin
k
+ 1 ... ea eb ... ec ... ed ... emax

k
− 1 emax

k

1 t1 ∞ ... t2 ∞ ... t3 ... t4 ... ∞ ∞
2 ∞ t5 ... ∞ ∞ ... t6 ... t7 ... ∞ ∞
... ∞ ∞ ... ∞ ∞ ... ∞ ... ∞ ... ∞ ∞
ρk ∞ ∞ ... ∞ ∞ ... ∞ ... ∞ ... ∞ ∞

Table 2. The Vulnerability Table V for Dynamic Programming for Per-core Optimization

emin
k

emin
k
+ 1 ... ea eb ... ec ... ed ... emax

k
− 1 emax

k

1 v1 ∞ ... v2 ∞ ... v3 ... v4 ... ∞ ∞
2 ∞ v5 ... ∞ ∞ ... v6 ... v7 ... ∞ ∞
... ∞ ∞ ... ∞ ∞ ... ∞ ... ∞ ... ∞ ∞
ρk ∞ ∞ ... ∞ ∞ ... ∞ ... ∞ ... ∞ ∞

denote the current solution found for the first i tasks. It has a cumulative energy consumption of

E while the execution time and vulnerability are minimized. The execution time T [i][E] for SE
i is

stored in a two-dimensional tableT . The vulnerability for SE
i is stored in another two-dimensional

tableV . As we try out all possible (cI , cD ) configurations, we update the solution for SE
i whenever

runtime or vulnerability can be improved. The dynamic programming process uses the recursive

formula shown in Figure 8 to update the two tables. The solutions for the first i tasks (the ith row

in the two tables) are built upon the previous step, i.e., the (i − 1)th row. All entries inT andV are

initialized to some very large value. Based on the above recursive formula, we update the tables

one row at a time for all energy values in [emin
k

(wk ), emax
k

(wk )]. When the ith row is calculated,

all previous (i − 1) rows are already computed. The final optimal energy consumption E∗
k

(wk ) can

be found by:

E∗k (wk ) = min{Ek | T [ρk ][Ek ] ≤ D && V [ρk ][Ek ] ≤ Vk } (10)

Equation (10) provides the solution for core k with partition factorwk , which has minimum energy

consumption with deadline and vulnerability constraints satisfied.

Tables 1 and 2 illustrate the dynamic programming bookkeeping tables for per-core optimiza-

tion. Table 1 is used for the total execution time and Table 2 is used for the total vulnerability of the

first i tasks assuming the total energy consumption is e . Note that we discretized the energy values

so that they are numerically small to make the dynamic programming efficient. All entries in the

two tables are initialized to ∞. We update the two tables simultaneously in a row-wise manner.

Algorithm 2 (lines 2 to 18) iterates to find the best L1 configurations for all tasks in core k with

partition factorwk . During each iteration, all discretized energy values (e) and all L1 cache configu-

rations (1 to r 2) for current task τk,i are examined. As we try out all possible (cI , cD ) configurations,

we update these two tables whenever runtime or vulnerability can be improved according to the

recursive formula shown in Figure 8. As shown in the algorithm (lines 4 to 7), the first row of the
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two tables will be filled up with (t1,v1), (t2,v2), (t3,v3), and (t4,v4) using the relation in line 7.

The dynamic programming process to fill up the rest of the rows are handled in lines 10 to 17. For

example, we update the second rows with (t5,v5), (t6,v6), and (t7,v7) according to the relation in

line 14. After we fill all rows (finish iterating all tasks), we get the optimal solution E∗
k

(wk ) from

the last rows of the two tables according to line 18.

4.3 Optimization Across All Cores

In this step, we combine the solutions found on each core and search for the minimum total energy

consumption E∗ of all cores within all L2 partition schemes P. For a given partition factor wk on

core k , the optimal energy E∗
k

(wk ) is already calculated in the first step. A valid partition scheme

{w1,w2, . . . ,wm } is one that complies with Equation (7). The final total energy E∗ can be found by:

E∗ =min
⎧⎪⎨⎪⎩

m∑
k=1

E∗k (wk )
⎫⎪⎬⎪⎭
, ∀{w1,w2, . . . ,wm } ∈ P (11)

Since the number of valid partition schemes is small (35 for 4-core processor with an 8-way asso-

ciative L2 cache), an exhaustive search on all partition schemes is feasible. In our experiment, we

assume that after the tasks on a core finish execution, the core, along with its private L1 caches

and the designated L2 partition, is turned off. Thus, E∗ will be the final energy consumption for all

cores running with the optimal configuration and partitioning scheme.

Algorithm 2 shows the major steps of our cache reconfiguration and partitioning approach. In

the first step (line 1), we use Algorithm 1 to generate the profile table. In the second step, our

algorithm iterates to find the best L1 configurations for all tasks in corek with partition factorwk . A

detailed description of this dynamic programming process is given in Section 4.2. At the end of this

ALGORITHM 2: Vulnerability-aware DCR+CP

/* 1st step: Task profiling (Section 4.1) */

1 profileTableGeneration() /* Algorithm 1 */

/* 2nd step: Optimize on each core (Section 4.2) */

2 for k = 1 to m do
3 for wk = 1 to ω − 1 do

4 for e = emin
k

(wk ) to emax
k

(wk ) do

5 for cI , cD ∈ C do
6 if ek,1 (cI , cD, wk ) == e then
7 if tk,1 (cI , cD, wk ) < T [1][e] && vk,1 (cI , cD, wk ) < V [1][e] then
8 T [1][e] = tk,1 (cI , cD, wk )
9 V [1][e] = vk,1 (cI , cD, wk )

10 for i = 2 to ρk do

11 for e = emin
k

(wk ) to emax
k

(wk ) do

12 for cI , cD ∈ C do
13 e ′ = e − ek,i (cI , cD, wk )
14 if T [i − 1][e ′] + tk,i (cI , cD, wk )<T [i][e]&&V [i − 1][e ′] + vk,i (cI , cD, wk )<V [i][e]

15 then
16 T [i][e]=T [i − 1][e ′] + tk,i (cI , cD, wk )
17 V [i][e]=V [i − 1][e ′] + vk,i (cI , cD, wk )

18 E∗
k

(wk ) = min{ek |T [ρk ][ek ] ≤ D & V [ρk ][ek ] ≤ Vk }

/* 3rd step: Optimize across cores (Section 4.3) */

19 for all Pj = {w1, w2, . . . , wm } ∈ P do
20 E∗j =

∑m
k=1

E∗
k

(wk )

21 E∗ =min (E∗, E∗j )

22 return E∗
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step (line 18), we get the optimal solution E∗
k

(wk ) for core k with partition factor wk . In the third

step (line 19 to 21), our algorithm iterates over all valid partitioning schemes to find the global

optimal energy consumption. Line 20 gets the energy consumption for partition scheme Pj , and

line 21 updates the final solution E∗ with the minimal energy consumption. The time complexity

for the first step isO (m · ρk · ω · r 2), wherem is the number of cores, ρk is the number of tasks on

each core, ω is the number of ways in L2 cache, and r 2 is the number of L1 configurations. The

time complexity for the second step is O (m · ω · ρk · r 2 · (emax − emin )), where emax − emin is the

energy range. The time complexity for the third step isO (m · |P|), wherem is the number of cores

and |P| is the number of partition schemes. In our experiments, our proposed approach can find

the optimal solution within 8 hours (for 20 benchmarks and an error threshold of 5%). Almost all

of it is spent on the profile table generation of the benchmarks. Since our approach is based on

static (offline) analysis and one-time effort, this is a reasonable time.

In our proposed approach, the optimal partition factor is calculated and assigned statically to

each core. Once the partition factor is assigned to a core, it is not changed on a per task basis.

For a new set of tasks, the algorithm must re-run to get the new optimal L1 configurations and

L2 partition factors. If a completely new task is introduced, then both the profiling and dynamic

programming steps are necessary. If a task is not new but only changed in the task set to which

it belongs, then we do not need to profile it again. Redoing only the dynamic programming step

will suffice in this case.

5 EXPERIMENTS

In order to evaluate the effectiveness of our approach, we used the architectural simulator gem5

[4] in system emulation (SE) mode to simulate the multicore system as shown in Figure 3. We

enhanced the simulator to support reconfiguration of L1 caches and way-based partitioning of the

shared L2 cache. We also embedded our measurement for vulnerability of caches in the simulator,

while the energy estimation of the cache subsystem is calculated with a script after simulation.

Training of the machine learning model for the profile table generation is done using the Statistics

and Machine Learning Toolbox of Matlab 2017b [1]. We configured our system with a four-core pro-

cessor running at 500MHz on each core with the TimingSimpleCPU model in gem5. The shared L2

cache supports 32KB, 8-way associative with 32-byte lines. There are 35 valid schemes to partition

the L2 ways among the four cores. The L1 caches have a base configuration as 4KB, 2-way asso-

ciative with 32-byte lines, which offers an effective size of 1KB, 2KB, and 4KB, and associativity

of 1-way, 2-way, and 4-way, and a line size of 16-byte, 32-byte, and 64-byte. There are 18 con-

figurations in total for the L1 caches.3 We used 20 applications from the MiBench [10] and SPEC

CPU2000 [14] benchmark suites as our tasks for evaluation. Table 3 shows the task sets used in

our experiments. We choose four task sets that contain two tasks running on each core, three task

sets that contain three tasks on each core, and two task sets that contain four tasks on each core.

The task assignment on cores is based on the rule that each core will have comparable execution

time and vulnerability.

In our experiments, we have compared the following four approaches:

—CP only: The base configuration, which has L1 in base configurations and uniform L2 cache

partitioning among cores.

—DCP+CP[48]: The energy-aware approach in Ref. [48] using DCR on L1 and CP on L2.

—Vulnerability-aware[19]: Vulnerability-aware energy optimization approach using DCR

on L1 and CP on L2.

3It is fewer than 33 since not all combinations are valid [47].
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Table 3. Task Sets from the MiBench [10] and SPEC CPU2000 [14] Benchmarks

Task set Set 1 Set 2 Set 3 Set 4 Set 5 Set 6 Set 7 Set 8 Set 9

Core 1 qsort vpr mcf sha applu lucas
mgrid
FFT

mcf toast
sha

mgrid
parser gcc

vpr sha FFT
sha mcf
untoast

toast

gcc
stringsearch

parser
dijkstra

Core 2
parser
toast

gcc
bitcount

dijkstra
swim

dijkstra
parser

gcc parser
stringsearch

toast FFT
mcf

CRC32
lucas

untoast

applu gcc
bitcount
ammp

untoast mcf
ammp

bitcount

Core 3
untoast
swim

patricia
lucas

ammp FFT
CRC32
swim

patricia
qsort vpr

bitcount
ammp
applu

mgrid
bitcount

qsort

lucas FFT
CRC32
patricia

lucas
patricia

qsort vpr

Core 4
dijkstra

sha
basicmath

swim
basicmath

stringsearch
applu

bitcount

basicmath
CRC32
ammp

qsort
dijkstra
patricia

applu
parser

stringsearch

vpr
basicmath

mgrid swim

basicmath
toast applu

CRC32

Fig. 9. Effects of deadline and vulnerability threshold on optimal energy consumption.

—This work: Replaces exhaustive simulation-based task profiling of Ref. [19] with machine

learning model.

Here, CP Only refers to the base configuration of the system, which has uniform L2 cache parti-

tioning among the four cores with all the L1 caches in base configuration. For our vulnerability-

aware approach, the vulnerability threshold on each core is set as that of the base system (CP

Only). We want to minimize the energy consumption while ensuring that the vulnerability is

comparable or better than the base system.

5.1 Deadline and Vulnerability Threshold

It is meaningful to see how deadline and vulnerability threshold affect the optimization process.

Figure 9 shows the optimal energy consumption (i.e., E∗1 (w1) as in Equation (10)) of core 1 using

partition factor (w1 = 2) for task set 9, under different deadline and vulnerability constraints. As

expected, if we reduce the deadline, the tasks need to finish faster to meet the deadline. Thus,

cache configurations with lower deadlines are then selected by our algorithm, even if these con-

figurations have high energy consumption. Therefore, the total energy consumption goes up as

the deadline decreases. Similarly, energy consumption increases for more stringent vulnerability

thresholds.
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Table 4. Effect of Error Thresholds on Required Training Data Size and Static Profiling Time

Error Average Training Test Actual Simulation Training Prediction Total Speedup

Threshold (%) Data (%) Error (%) Error (%) Time1 (s) Time (s) Time (s) Time (s) Over [19]

1 33.25 0.80 0.48 84,319 5282 <1 89,601 2.83

2 22 1.52 0.97 55,790 2384 <1 58,174 4.36

3 16 2.43 1.51 40,575 1328 <1 41,903 6.05

4 12.5 3.11 2.04 31,699 1043 <1 32,742 7.75

5 10.75 3.54 2.46 27,261 935 <1 28,196 8.99

6 9.5 4.07 3.00 24,091 853 <1 24,944 10.17

7 8.75 4.52 3.39 22,189 802 <1 22,991 11.03

8 8.25 4.92 3.54 20,921 776 <1 21,697 11.69

9 7.5 5.7 4.09 19,019 736 <1 19,755 12.84

10 7.5 5.7 4.09 19,019 736 <1 19,755 12.84

1Calculated from exhaustive simulation time and percent training data used.

Specifically, in Figure 9(a), as we gradually vary the deadline from 4,600ms to 3,600ms , the opti-

mal energy found by the dynamic programming algorithm will become worse. When the deadline

is shorter than 3,690ms , there is no feasible solution. In Figure 9(b), as we gradually reduce the vul-

nerability threshold from 8.4 × 1012 to 7.2 × 1012 bytes-cycles, the optimal energy solution will also

become worse. There is no solution when the vulnerability threshold is set smaller than 7.3 × 1012

bytes-cycles. In this example, we can get a converged optimal energy solution (2,753mJ ) with a

deadline larger than 4,300ms and a vulnerability threshold larger than 8.0 × 1012 bytes-cycles. Note

that in Figure 9(a), we removed the vulnerability constraint (i.e., set vulnerability threshold as in-

finity) to solely investigate the effect of deadline and vice versa for Figure 9(b).

This example suggests that the choice of deadline and vulnerability threshold can affect the

optimal energy solution. In our experiments, the deadline is chosen in a way so that each core

can reach the converged minimum energy under the base configuration setting. The vulnerability

threshold on each core is also the same as the base system that runs with uniform L2 partition

and the base configuration for L1s. These settings are performed under the assumption that our

approach should not be more vulnerable than the base system while improving the energy profile.

This assumes that our system should not be more vulnerable than the base system. In other words,

we want our energy optimization process to be vulnerability-aware.

5.2 Profile Table Generation

As described in Section 4.1, we have used an iterative machine learning approach for profile table

generation. Our experimental setup has 18 L1 data and instruction cache configurations and a max-

imum L2 partition factor of 8. With 20 benchmarks, the total number of profile table entries thus

becomes 18 ∗ 18 ∗ (8 − 1) ∗ 20 = 45,360. We have collected 5% data in each iteration until the test

error becomes smaller than the error threshold. Table 4 summarizes the results of task profiling.

The first column shows the error threshold. The second column gives the average training data

required to meet the error threshold. Here, training data is expressed as a percentage value. This

is the ratio of profile table entries filled using simulation and total number of profile table entries,

averaged over the 20 benchmarks. The third column gives the error on the test dataset, Ytest . This

test error is used to check if the error threshold criteria is satisfied. Consequently, this value must

be lower than the error threshold. The fourth column gives the actual error, which is calculated

on Yall . This value is essentially lower than the test error, because error for the simulated entries

(Ysim ) would be zero. All errors are given in NRMSE measurement. The fifth column gives the
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Fig. 10. (a) Required training data for different error thresholds and corresponding speedup. Here, training

data is the average across all the benchmarks. (b) Actual vs. predicted energy values for parser benchmark.

Three different configurations are shown; 10% of entries are used for training. Solid lines are actual values,

and square boxes are the prediction.

estimated simulation time, tsim_tr ain . Here, the total simulation time (tsim_all ) for the complete

profile table is known, and the estimate is derived from the percent of the training data used. The

sixth column gives the training time to build the model (ttr ain). The seventh column shows the

time required to predict values from the trained model (tpr ed ). As we can see, the experimental

results confirm our previous assumption of tsim_tr ain � ttr ain � tpr ed . The eighth column shows

the total time. The last column gives the speedup over the exhaustive simulation approach [19].

Static profiling time is not reported in Ref. [19]. We have simulated for all 45,360 configurations to

get this time, which is 253,592sec. As we can see, our approach can provide more than 10× speedup

with as little as 3% prediction error. If we allow only 1% error, then the speedup will be around

3×. This indicates that the proposed approach can provide substantial speedup even when high

accuracy is crucial.

Figure 10(a) shows the total amount of training data required and the speedup for different error

thresholds (columns 2 and 9 of Table 4). This graph can be used as a guideline to select the initial

error threshold depending on the simulation time budget. Figure 10(b) demonstrates the actual

and predicted energy values for parser benchmark with three randomly selected configurations.

The model is trained with only 10% data. In this graph, solid lines represent actual values, and

the same colored square boxes represent the predicted values. We can visualize that the predicted

values closely follow the actual values obtained from simulation.

Figure 11 provides the training data requirement for the benchmarks (15 out of the 20 bench-

marks are plotted to avoid clutter). We can see that some benchmarks require a lot of training data

for accurate predictions (e.g., CRC32, FFT, sha), while some benchmarks need much less (e.g., applu,

gcc, mcf etc.). This observation forms the basis of using error threshold instead of fixing training

data percentage. The error threshold based approach allows more simulation time to benchmarks

that require more training data to be accurate. For example, if we fixed the training data to 40%,

five of the benchmarks would have NRMSE over 1%. Using error threshold instead gives below 1%

error for all benchmarks using a little over 33% training data.

Shallow neural network is used for training the models. Shallow neural network is a variant of

neural network with a small number of hidden layers, usually only one. We also used one hidden

layer in our models. In each iteration, hyper-parameter sweep is done to tune the number of nodes

in that layer. During the sweep, node number is increased from 10 to 100 in a step size of 10, and
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Fig. 11. Training data required with varying error threshold for different benchmarks. This graph is a more

detailed view of Figure 10(a) for 1% to 5% error threshold.

Table 5. Hyper-parameter Tuning of Shallow Neural Network for Energy,

Runtime, and Vulnerability Prediction

Benchmark

1% error threshold 5% error threshold 10% error threshold

Training # of hidden nodes Training # of hidden nodes Training # of hidden nodes

data (%) Energy Time Vul data (%) Energy Time Vul data (%) Energy Time Vul

CRC32 50 40 40 50 20 20 30 20 15 20 20 20

FFT 45 50 50 40 10 10 10 30 5 20 20 20

ammp 25 30 50 30 5 10 40 20 5 10 40 20

applu 20 20 30 20 10 10 10 10 5 10 20 30

basicmath 35 30 20 30 5 20 30 20 5 20 30 20

bitcount 40 30 10 40 5 20 10 20 5 20 10 20

dijkstra 30 30 30 30 10 10 10 10 5 20 50 30

gcc 15 20 30 20 5 30 10 10 5 30 10 10

lucas 30 50 40 20 15 20 20 20 10 10 30 10

mcf 10 10 30 10 5 20 10 20 5 20 10 20

the model with least error is selected. As explained in Section 4.1, we have three models for each

task—for predicting energy, runtime, and vulnerability. Table 5 shows the number of hidden layer

nodes after hyper-parameter tuning. The first column is the name of the benchmark. Ten out of the

twenty benchmarks are shown here. The second column shows the amount of data used for train-

ing the models. The third, fourth, and fifth columns give the number of hidden nodes for energy,

runtime, and vulnerability prediction models, respectively. These values are shown for 1% error

threshold. Columns 6–13 use similar notation for 5% and 10% error thresholds. As expected, the

amount of required training data decreases for increasing error threshold. The number of hidden

nodes for least error usually decreases with lower training data. This is because more nodes make

the model prone to over-fitting. However, this tread does not always hold, making the parameter

sweeping an effective way to find the most suitable number of nodes.

5.3 Vulnerability-aware Energy Reduction

Figure 12 illustrates the comparison of vulnerability and energy consumption of the nine task sets

in Table 3. Here, the vulnerability is the maximum vulnerability among four cores while energy
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Fig. 12. Comparison of vulnerability and energy consumption for the cache hierarchy.

consumption is the total energy consumption of all L1 caches and L2 partitions. The maximum

vulnerability provides an indication of the overall reliability of the cache subsystem since all the

cores are independent with its private L1 caches and designated L2 partition.

Figure 12(a) shows the results for vulnerability reduction. Here, the yellow column is the nor-

malized vulnerability with exhaustive task profiling [19]. The green column is our proposed ap-

proach with machine learning prediction based task profiling. We have used 5% error threshold for

the machine learning models. As we can see, the prediction follows the actual optimal solution of

Ref. [19] very closely, with maximum error of 1.78% for task set 6. On average, the error is less than

0.1% for vulnerability prediction. Even less deviation is achievable by setting tighter error thresh-

olds, with the downside of more profiling time. Compared with CP Only, our approach reduces

vulnerability by up to 25.2% and on average 8.8%. Compared with Ref. [48], our approach achieves

up to 73.9% reduction in vulnerability and 49.3% on average.

Figure 12(b) shows the energy savings. Like vulnerability, our approach matches closely with

energy consumption figures of the optimal exhaustive method of Ref. [19]. The maximum error

is 2.69% for set 4, with average error of 0.56%. As we are using an error threshold of 5%, overall

profiling time speedup over Ref. [19] is 9× (from Table 4). Compared with CP Only, our approach

reduces energy consumption by up to 22.2% and 19.2% on average. Compared with Ref. [48], our

approach consumes on average 5.6% and up to 9.5% more energy. In summary, our vulnerability-

aware energy optimization can significantly reduce energy (on average 19.2%) compared with the

base system. Compared with the state-of-the-art approach for energy optimization, we gain sig-

nificant vulnerability reduction (on average 49.3%) with minor energy overhead (on average 5.6%).
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Table 6. Task Set 1: Cache Config. ([cI , cD ,wk ])

Set 1
Core 1

w1 = 2

Core 2

w2 = 2

Core 3

w3 = 1

Core 4

w4 = 3

Task 1

[4KB_4W_16B,

2KB_2W_32B]

qsort

[2KB_2W_64B,

4KB_4W_16B]

parser

[2KB_2W_32B,

2KB_2W_16B]

untoast

[2KB_2W_64B,

2KB_2W_16B]

dijkstra

Task 2

[1KB_1W_64B,

4KB_4W_16B]

vpr

[4KB_1W_64B,

1KB_1W_16B]

toast

[4KB_4W_32B,

2KB_2W_32B]

swim

[1KB_1W_64B,

1KB_1W_32B]

sha

Table 7. Task Set 9: Cache Config ([cI , cD ,wk ])

Set 9
Core 1

w1 = 2

Core 2

w2 = 2

Core 3

w3 = 2

Core 4

w4 = 2

Task 1

[1KB_1W_64B,

2KB_2W_16B]

gcc

[1KB_1W_64B,

1KB_1W_16B]

untoast

[4KB_4W_16B,

2KB_2W_32B]

lucas

[1KB_1W_64B,

4KB_4W_16B]

basicmath

Task 2

[4KB_1W_32B,

4KB_4W_16B]

stringsearch

[1KB_1W_32B,

1KB_1W_16B]

mcf

[1KB_1W_64B,

1KB_1W_16B]

patricia

[4KB_1W_64B,

1KB_1W_16B]

toast

Task 3

[2KB_2W_64B,

4KB_4W_16B]

parser

[1KB_1W_64B,

1KB_1W_16B]

ammp

[4KB_4W_16B,

2KB_2W_32B]

qsort

[1KB_1W_64B,

1KB_1W_16B]

applu

Task 4

[2KB_2W_64B,

2KB_2W_16B]

dijkstra

[1KB_1W_32B,

1KB_1W_32B]

bitcount

[1KB_1W_64B,

4KB_4W_16B]

vpr

[2KB_1W_32B,

2KB_2W_16B]

CRC32

In order to understand the rationale for the above improvement, we would like to analyze the

optimal solutions returned by Algorithm 1 for two different tasks sets. Tables 6 and 7 show the

results of L2 partition factors and [IL1, DL1] cache configurations found by our approach for task

set 1 and task set 9, respectively. Task set 1 has two tasks on each core, with a partition scheme

of [2, 2, 1, 3] ways dedicated for each core. Task set 9 has four tasks on each core, with a partition

scheme of [2, 2, 2, 2]. We can see that different tasks have very different L1 configurations, which

shows the necessity of DCR to suit the unique needs of a task. For a certain task, the best [IL1,

DL1] configurations depend not only on the task itself (i.e., its data access patterns), but also the L2

partition factor as well as the deadline and vulnerability threshold. There are a few tasks appearing

in both Set 1 and Set 9. For benchmarks qsort , vpr , parser , and toast , they have the exact same L2

partition factor and L1 configurations for the two sets. For benchmarkuntoast , Set 1 and Set 9 have

chosen different L1 configurations when Set 1 (Core 3) uses a partition factor of 1 and Set 9 (Core 2)

uses a partition factor of 2. Because Set 9 assigns a larger partition factor, untoast can execute

with smaller L1 cache sizes ([1KB, 1KB]) for reducing energy under the deadline and vulnerability

constraints.

Vulnerability-constrained systems can tolerate up to certain vulnerability level due to its

implemented mitigation solution. Therefore, existing energy-optimization techniques (such as

Ref. [48]) are not applicable on them. For example, if a system can tolerate up to 20% more vul-

nerability compared to the base configuration, most of the energy savings (except for Set 1 and
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Set 7) are meaningless since they crossed the vulnerability threshold. In other words, the appar-

ent energy benefit of Ref. [48] is not useful in practice. Therefore, our vulnerability-aware energy

optimization approach is vital for multicore systems with vulnerability constraints.

6 CONCLUSION

Cache vulnerability is a major concern in embedded systems design due to increasing cache size

and soft errors. While both vulnerability and energy optimization have received considerable at-

tention in recent years, there are no existing works on vulnerability-aware energy optimization for

multicore systems. In this article, we presented a vulnerability-aware energy optimization tech-

nique for real-time multicore systems. Our approach integrates DCR of private L1 caches and CP

of the shared L2 cache. L2 CP is effective in reducing inter-core interference, while applying L1

DCR can further reduce the energy consumption under the performance and vulnerability con-

straints. Our task profiling technique based on machine learning can reduce the exploration time

by an order-of-magnitude. Our proposed algorithm uses dynamic programming by discretizing

the energy values, which can efficiently search the space to find optimal L1 cache configurations

for each task and L2 cache partition factors for each core. Experimental results demonstrated that

we can achieve 19.2% average energy savings compared with the base system, while drastically

reducing the vulnerability (49.3% on average) compared to the existing approaches.
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