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Modern multiprocessor systems-on-chip (MpSoCs) offer tremendous power and performance optimization
opportunities by tuning thousands of potential voltage, frequency and core configurations. As the workload
phases change at runtime, different configurations may become optimal with respect to power, performance
or other metrics. Identifying the optimal configuration at runtime is infeasible due to the large number of
workloads and configurations. This paper proposes a novel methodology that can find the Pareto-optimal
configurations at runtime as a function of the workload. To achieve this, we perform an extensive offline
characterization to find classifiers that map performance counters to optimal configurations. Then, we use
these classifiers and performance counters at runtime to choose Pareto-optimal configurations. We evaluate the
proposed methodology by maximizing the performance per watt for 18 single- and multi-threaded applications.
Our experiments demonstrate an average increase of 93%, 81% and 6% in performance per watt compared to
the interactive, ondemand and powersave governors, respectively.
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1 INTRODUCTION
State-of-the-art smartphones and tablets have to satisfy the performance requirements of a diverse
range of applications under tight power and thermal budget [8, 34]. The number of power man-
agement configurations offered by MpSoCs, such as the number of voltage-frequency levels and
active cores, have been increasing steadily to adapt to these dynamically varying requirements.
For example, octa-core big.LITTLE architectures have 20 different CPU core configurations that
can be selected at runtime. Combined with the voltage and frequency levels, this leads to more
than 4000 dynamic configurations to consider during optimization. This huge collection results
in more than one order of magnitude variation in both power consumption and performance, as
shown in Figure 1(a). Moreover, the definition of the optimality can change depending on the
context. For instance, users prefer to maximize the responsiveness (i.e., performance) for interactive
applications, while minimizing the energy becomes the priority when the platform is running out
of power. Therefore, it is crucial to identify the optimal configuration at runtime.

Dynamically selecting the optimal configuration is a challenging task aggravated by two major
factors. First, the design space is large for a runtime evaluation and exploration. Therefore, an
exhaustive search is prohibitive due to significant overhead associated with exploration. Second,
and more importantly, the optimal choice is a strong function of the workload, which itself varies
dynamically [4]. For example, bringing the data frommemory faster is important upon launching the
application, but processing time starts dominating later on. Similarly, the applicationmay go through
CPU- and memory-bound phases during its lifetime. Consequently, the optimal configuration
changes as the composition of the active applications and their phases vary.

Chip designers and power management architects spend significant effort to attain the optimal
power-performance trade-off. For example, Figure 1(a) plots power consumption and execution
time of a multi-threaded application for 128 different core and operating frequency configurations.
We clearly see that many configurations are close to the Pareto-optimal curve. Frequency governors
integrated in the OS-stack leverage this fact effectively to deliver the desired trade-off. For instance,
the interactive and on-demand governors increase the frequency whenever core utilizations exceed
a threshold to maximize the performance, while the powersave governor chooses the minimum op-
erating frequency to minimize power consumption [31]. Similarly, the dynamic power management
algorithms, such as cpuidle, increase (decrease) the number of active cores when the core utilizations
are above (below) tunable thresholds [2, 32]. Hence, these highly optimized governors can dynami-
cally scale the number of active cores and frequency to optimize the power-performance trade-off.
However, none of these approaches can guarantee optimality with respect to other metrics, such as

1 2 3 4
Execution Time (s)

0

1

2

3

4

P
o

w
er

 (
W

)

(a) 

1 2 3 4
Execution Time (s)

1

2

3

4

E
n

er
g

y 
(J

)

(b) 

All Configurations Pareto-Power Pareto-Energy

Fig. 1. 128 different frequency and core configurations of the Blackscholes application showing the trade-off
between (a) power consumption and execution time, (b) energy consumption and execution time.
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energy consumption. For instance, Figure 1(b) shows that many Pareto-optimal configurations in
the power-performance plane are far away from the Pareto curve in the energy-performance plane.
Moreover, a governor that chooses the lowest power configuration results in 39% more energy
consumption and 126% slower execution with respect to the minimum energy configuration. Our
experimental results reveal similar trends for default governors for many other metrics, such as
performance per watt and instructions per second. Therefore, there is a strong need for runtime
algorithms that can choose the optimal configuration with respect to a given metric as a function
of the workload.
This paper presents a comprehensive methodology to choose optimal core and frequency con-

figuration at runtime as a function of workload characteristics. Existing approaches rely on core
utilizations to make decisions in single steps [31]. In strong contrast, we employ a classifier that
chooses the optimal configuration for a given workload phase characterized with a diverse set of
performance counters available on the target platform.

Our major contributions towards enabling and validating the proposed methodology are as follows:
- Instrumentation (Section 3.2): Finding the optimal configuration as a function of workload
is difficult (even offline), since it requires running precisely the same workload at each possible
configuration. One could run a given application at each possible configuration and collect statistics
at uniform time intervals. However, the workload in each time interval would be different for each
configuration, since the instructions are processed at different speeds. Therefore, the first step
of the proposed methodology is instrumenting the applications using the LLVM [22] compiler
infrastructure and PAPI calls [25]. This instrumentation, which has less than 1% overhead, enables
us to collect a vast amount of characterization data for each workload snippet1.
- Characterization (Section 3.3 & 3.4): The second step is to collect characterization data using
the instrumented applications. In this work, we collected power consumption, processing time
and six performance counters for a total of 4,467 workload snippet using 18 different applications.
In the third step, we use the power consumption and processing time information to identify the
optimal configuration for each of the 4,467 workload snippet with respect to any metric, such as
energy, which can be expressed in terms of this information. Finally, the characterization data is
used to find classifiers that map each workload snippet to its optimal configuration.
- Runtime selection (Section 3.5): Our final step is to develop a new governor that implements
the classifier for each metric of interest. The user can easily choose any of the classifiers in this
unified governor at runtime by setting a variable at user space. The same features (i.e., performance
counters and core utilizations) used for characterization are collected at runtime. Then, the features
are fed to the classifier to find the optimal configuration.
- Experimental validation (Section 4): We present an extensive set of evaluations using 18 single-
and multi-threaded applications running on Odroid XU3. We obtain on average 49%, 45% and 6%
lower energy consumption compared to the interactive, ondemand, and powersave governors,
respectively. Our approach also outperforms the powersave governor by achieving lower execution
time, but has longer execution time than interactive and ondemand governors, as explained in
Section 4.

The rest of the paper is organized as follows: Section 2 presents the related work. Section 3 lays
out the groundwork required for collecting meaningful experimental data and the framework for
the proposed technique for optimization. Section 4 discusses the experimental results, and Section 5
presents the conclusion.

1 In this paper, a workload snippet is a sequence of basic blocks with sizes varying from 5k to 100M instructions, as explained
in Section 3.2. A group of consecutive snippets make up a workload phase. Each snippet is similar to a micro-benchmark.
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2 RELATED RESEARCH
Widespread use of mobile platforms in the last decade is enabled by advanced power management
techniques, including dynamic core and uncore scaling [5, 20, 28], cache reconfiguration, task
partitioning, task scheduling, and power budgeting [14, 16, 37, 38]. Significant number of these
power management techniques focus on power and performance optimization through dynamic
power management (DPM) and dynamic voltage, frequency scaling (DVFS). DPM consists of a
set of algorithms that selectively turns off system components that are idle, such as controlling
the number of active cores in the system depending on their utilization [2]. Similarly, DVFS-
based schemes control the operating frequency of a core based on the utilization [17, 26, 31]. For
example, millions of commercial mobile platforms run the ondemand and interactive governors [31].
However, these techniques do not guarantee optimality with respect to a givenmetric such as energy
consumption. These approaches typically perturb the configuration by a single predetermined step.
For example, interactive and ondemand governors increase (decrease) the frequency of the processor
if the utilization is above (below) a certain threshold [31]. The work presented in [39] proposes a
technique to maximize the performance within a given power budget by estimating Pareto-optimal
solutions dynamically. This approach relies on analytical power consumption and instructions per
second model to find the Pareto-optimal frequency configurations of homogenous architectures. In
contrast, our approach finds the Pareto-optimal core and frequency configuration in heterogeneous
architectures using an extensive set of hardware measurements and multinomial logistic regression.
Hence, our approach combines DVFS and DPM by setting the operating frequency/voltage and the
type and number of active cores simultaneously.

Recently, a number of studies have focused on workload-aware DPM and DVFS together [1, 6, 10–
12, 23, 42]. These techniques choose the best or a mixture of the two strategies to optimize the mobile
platform. For instance, the technique proposed in [1] first derives the power and performancemodels
using multivariate linear regression for each different frequency and application. Then, these models
are used to determine an optimal performance per watt configuration for an application at runtime.
Similarly, the work in [11] proposes an online learning method to select the best-performing
DPM policy together with DVFS settings called experts, for a single CPU core. At runtime, the
controller characterizes the workload based on energy and cycles-per-instruction models to choose
the best-performing expert. The work in [10] proposes a new Linux scheduler to optimize the
power consumption under a throughput constraint. Their approach is specifically designed for
parallel applications with computation intensive loops. Similarly, the approach proposed in [42]
focuses on a group of applications related to web browsing for heterogeneous platforms. They build
linear regression models for performance and energy consumption, and then use them to schedule
webpages for minimizing the energy consumption of the system. Several recent techniques have
also considered applying classification-based methods for the frequency and core selection. For
example, the work in [6] proposes a technique for homogeneous server systems, which uses logistic
regression to find thread packing and frequency such that the system remains within a power
budget. Similarly, the work in [12] uses binning-based classification for identifying the degree of
memory- and compute-boundedness of the tasks. Then, these tasks are allocated based on the
predicted power and performance to the CPU cores for minimizing the power consumption under
a throughput constraint. However, none of the above methods use phase-level instrumentation,
which is necessary to identify the optimal configurations for a given workload.

Phase-level performance and power analysis provide a fine grained and reliable information
about the workload, as we describe in Section 3.2. This information enables accurate power and per-
formance models across different platforms [41] and practical power management algorithms [18].
For example, using the phase-level analysis one can collect statistics on one platform and use it to
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predict the power and performance on another platform [41]. This leads to significant improvements
in the accuracy of the models by using this insight compared to an approach that uses aggregate
application statistics. Therefore, in contrast to the other DVFS and DPM approaches, our work
leverages the use of phase-level offline characterization for a number of benchmarks to find the
Pareto-optimal configurations for each phase. Then, we build classifiers that map the characterized
feature data to the Pareto-optimal configurations. Finally, the classifier is used at runtime to select
the optimal configuration for a new application phase. In our experimental evaluations, we observe
substantial numerical gains in performance per watt compared to a recently proposed algorithm [1]
and the default governors.

3 DYPO CONFIGURATION SELECTION
3.1 Motivation and Overview
Modern MpSoCs offer a staggering number of configuration knobs. For example, the recently
introduced Samsung Exynos 5422 MpSoC based on ARM big.LITTLE architecture offers four little
(A7) and four big (A15) cores that can operate at 13 and 19 different frequencies, respectively [27].
Furthermore, the voltage of each of the core clusters scales with frequency. Since at least one
little core has to remain active at all times, this leads to a total of (4×13×4×19) + (4×13) = 4004
different frequency and core configurations. Different configurations lead to a huge variation in
power consumption and performance, as shown in Figure 1. Moreover, any given application
workload consists of multiple workload phases [33]. For example, lower CPU frequencies may
save power during a memory-intensive phase. In contrast, CPU-intensive phases with many active
threads are likely to benefit more from higher frequencies and number of cores. Therefore, different
configurations may become optimal with respect to a given metric as the workload varies at
runtime [4].
We denote the set of all possible configurations by C, and the configuration at time k with

ck ∈ C. Each feasible configuration can be represented by ck = {nL,k , fL,k ,nB,k , fB,k }, where the
elements represent the number of active little cores, the frequency of little cores, the number of
active big cores, and the frequency of big cores, respectively. Similarly, we denote the set of phases
encountered during the lifetime of an application by P, and the phase at time k with pk ∈ P. Our
optimization goal can be expressed as:

Find f : P ∋ pk 7→ c∗k ∈ C (1)
where c∗k ∈ C is the optimal configuration
for workload phase pk ∈ P

Identifying the optimal configuration c∗k at runtime for each phase pk is a daunting task due to the
large number of workloads and configurations. For example, the Basicmath application has three
phases, and identifying the optimal configuration of each phase would mean searching through
40043 (≈ 6 × 1010) different possibilities for the entire application. Clearly, searching through this
combinatorial space is intractable at runtime. Furthermore, the definition of the optimality may
change over time depending on the application scenario. For example, minimizing the energy
consumption becomes a priority when the battery is running low. Hence, there is a strong need to
dynamically identify the optimal configuration c∗k for a given optimization objective at any point
in time.
Overview and illustrative example: We start with an overview and illustrative example, before
detailing the proposed approach. First, we instrument the target application to divide the workload
into groups of basic blocks called snippets. This step enables us to collect power and performance
statistics of each snippet at runtime, as illustrated in Figure 2. For example, consider an application
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Fig. 2. The outline of the proposed approach with an illustrative example. A block of instructions, such as a
function call, makes up basic blocks. Our instrumentation groups a sequence of basic blocks into distinct
snippets. Finally, each snippet or a sequence of snippets may form workload phases.

code with 100 million basic blocks (BB1 to BB100M) where each basic block is a sequence of
instructions. The instrumentation in this example inserts special BB_PAPI_read() basic blocks that
call the PAPI APIs for reading hardware counters and system statistics every 1million basic blocks. A
pair of BB_PAPI_read() basic blocks create a boundary for different snippets of an application. Each
snippet or a sequence of snippets may form distinct phases. Offline instrumentation is followed by
the characterization step, where we collect extensive power consumption and performance data for
a large variety of single- and multi-threaded applications (Section 3.3). More specifically, we collect
the data listed in Table 1 while repeatedly running each application using different configurations
supported by the platform. Then, this data is used to identify the optimal configuration for each
workload snippet. The third step is to design a classifier using this characterization data (Section 3.4).
For example, consider two different snippets, the first with 10K LLC-misses (high) and the second
with 1K LLC-misses (low). Suppose that the characterization step reveals the optimal configurations
as {2L, 1 GHz, 3B, 1 GHz } and {4L, 2 GHz, 4B, 2 GHz }, respectively. The classification step uses these
data points to design a classifier f : P ∋ pk 7→ c∗k ∈ C that maps different snippets to the optimal
configurations at runtime. The plot in the lower right corner of Figure 2 illustrates a potential
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Table 1. System and application level parameters used in this work.

Application Level Parameters System Level Parameters

Instructions Retired Per Core CPU Frequency
CPU Cycles Per Core CPU Utilization
Branch Miss Prediction little, big, GPU and DRAM Power Consumption
Level 2 Cache Misses Number of Active Cores
Data Memory Access Execution Time
Noncache External Memory Request

classifier that can clearly separate these two snippets. The final step is using the classifier online to
determine the optimal configuration for any workload encountered at runtime (Section 3.5). As an
example, assume that the system encounters Phase-3, which has 9K LLC-misses and similar number
of instruction-retired with Phase 1 and Phase 2. Since Phase-3 is closer to Phase-1 characterized
offline, the classifier will assign it the same optimal configuration of {2L, 1 GHz, 3B, 1 GHz }. While
our illustrative example is simple, the real problem is multidimensional and far more challenging
than creating simple visual boundaries between phases. The rest of this section detail these four
steps employed in the proposed methodology.

3.2 Phase-Level Application Instrumentation
Platform designers provide a rich set of hardware and software counters that can be accessed at
runtime to identify different workload phases. The PAPI infrastructure provides user level APIs
that can be inserted within the application to capture these counters at runtime [25]. In addition
to the performance counter information provided by PAPI, it is also important to capture system
behavior during the same interval. Therefore, we also log important features, such as the total CPU
power consumption, core frequencies, core utilizations, and execution time, by modifying the PAPI
API. The system and application level parameters employed in this work are listed in Table 1.

To accurately instrument applications with PAPI APIs, we use the LLVM compiler infrastructure,
which has the functionality to analyze any given source code at different granularities, such as
module level, function level, and basic block level [22]. LLVM treats any input source as a single
block of module that can be broken down into functions. Each of these functions contains different
basic blocks that subsequently contain assembly instructions. Instrumenting at the function level is
too coarse, while instrumentation at the instruction level is too fine-grained. Therefore, we utilize
LLVM with clang compiler [21] to analyze and instrument PAPI calls at critical basic blocks within
an application to collect the hardware counters at runtime.
Figure 3 illustrates the process of instrumenting any benchmark with PAPI calls using LLVM

and clang compiler. The first step is an instrumentation pass source file in LLVM that can identify
existing functions and basic blocks, and add new functions (PAPI APIs) for any application. Then,
we use Cmake/Make utilities to compile the LLVM instrumentation pass to get a custom library
object file. Finally, we use the clang compiler to compile the benchmark with the custom library
as an additional input. This generates an output object file that has PAPI APIs instrumented at
different basic blocks. Note that our instrumentation process is independent of how the application
code is written, as it relies specifically on analyzing the basic blocks, which are the building blocks
of any application and a widely used syntax analysis terminology in the compiler domain.

Instrumenting single-threaded workloads requires identifying the critical basic blocks and then
adding simple PAPI calls. While instrumenting the multi-threaded benchmarks, we tie each thread
to its own performance counter values. We achieve this with the help of PAPI APIs, which provide
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Fig. 3. PAPI API instrumentation overview.

specific calls to register threads that can maintain their own counter data. Since multi-threaded
workloads also have phases that only have single threads, we ensure that our instrumentation can
capture such phases as well. At the time of logging the hardware counter values along with system
performance, we also capture the thread IDs and time-stamp of data collection. This methodology
ensures that we are able to analyze both single- and multi-threaded phases of any workload. In
practice, inserting PAPI APIs are expected to introduce extra instructions as overhead. Therefore,
we ensure that the overhead introduced with these API calls is negligible, as detailed in Section 4.1.
Overall, the process of instrumentation enables us to capture the critical regions that provide useful
information regarding different phases of an application running on any platform.

3.3 Data Characterization Methodology
Once the benchmarks are instrumented with the PAPI APIs, we collect data for different frequency
and core configurations. We first set the highest frequency and core configuration, i.e., 2 GHz for
the big cores with all eight cores active. Then, we run three iterations of each benchmark at this
frequency and core configuration. Next, we step down the frequency of the big core cluster while
maintaining the number of active cores. We repeat this process for each benchmark included in the
study. After this, we reduce the frequency level by one, and repeat this process for all supported
frequency levels and core configurations. Since the number of total configurations is large even
for offline analysis, we use a representative data set obtained by running each benchmark three
times with 4×4×8=128 different core and frequency configurations2. This selection includes all core
configurations (4×4) from 1L+1B to 4L+4B. We include at least one little and one big core, since we
are interested in maintaining the heterogeneity of the system. We sweep the frequency uniformly
from 0.6 GHz to 2 GHz in steps of 0.2 GHz for all 16 core configurations. Frequencies lower than
600 MHz are not included, since they are rarely energy optimal. Indeed, default Android governors
also do not utilize lower frequencies. That is, the lowest power configuration in our experimental
setup is {1L, 0.6 GHz, 1B, 0.6 GHz} and the highest performance configuration is {4L, 1.4 GHz, 4B,
2 GHz}. We run the entire application from start to end for all the selected configurations. Therefore,
all the relevant phases are considered irrespective of the application. In this work, our specific
knowledge about the target platform is used to choose the frequency configurations. In general,
one can also apply formal approaches to select a representative set of configurations [29, 30]. On
profiling three iterations of 18 benchmarks for 128 different configurations lead to a total of 6,912
different benchmark runs. We always re-boot the system before starting the data collection process

2 Time spent for collecting data for 128 configurations on Odroid XU3 is typically about 1-2 hours per benchmark.
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Table 2. Data format for each phase.

Time-
stamp

Power
Consumption

# Active
Cores

CPU
Frequency

Perf. 
Cntr 1

Perf. 
Cntr N

Core 
Utilizations

…

One row for each workload snippet, frequency, little core and big core configuration
Total number of rows per phase of a benchmark= ���� � ������� � ����	 � ���
���

for each benchmark to ensure consistency of the platform environment. Finally, we collect the
characterization data for each workload snippet following the format shown in Table 2.

3.4 Optimal Configuration Classification
After the characterization is complete, we first find the Pareto-optimal configurations for each char-
acterized workload snipped with respect to a given optimization goal. Then, this data combination,
i.e., (snippet, optimal configuration) is used to design a classifier. Finally, this classifier is stored on
the platform and used at runtime to select the optimal configuration, as detailed in Section 3.5.

3.4.1 Optimization Goal. Energy consumption and responsiveness are of primary importance
in mobile systems [37]. Furthermore, optimizing them also improves performance per watt (PPW).
Therefore, we consider a bi-objective optimization problem of minimizing the energy consumption
E (ck ,pk ) and execution time texe (ck ,pk ) for program snippet pk and configuration ck . The optimal
cost J (pk ) for this bi-objective problem can be written as follows:

J (pk ) = min
ck

[E (ck ,pk ) + µtexe (ck ,pk )] (2)

where µ ≥ 0 is a weight between the energy and execution time that determines the relative
importance of the two objectives. For example, when µ is small, the optimization problem essen-
tially turns into minimization of energy (DyPO-Energy), and when µ is large, the optimization
problem minimizes the execution time (DyPO-Performance). Any µ value in between will lead to
minimizing the energy consumption with some other execution time constraint. More importantly,
our classification does not depend on the structure of Equation 2, as described next. Therefore, we
can compute the Pareto-optimal configurations c∗k for each snippet pk for an arbitrary optimization
objective that combines energy, execution time, instructions per cycle and power consumption.

3.4.2 Design of the Classifier. Once the Pareto-optimal configuration c∗k for each snippetpk is
identified using Equation 2, the next task is to map different snippets to their optimal configurations
using the function f : P ∋ pk 7→ c∗k ∈ C. We utilize multinomial logistic regression classification
technique for this purpose due to its simple implementation in the kernel. However, any other
supervised machine learning classification technique can be used to the same effect.
To train the logistic regression classifier, we need to use input features and associated output

labels, as shown on the upper left corner of Figure 4. The inputs to the classifier are five hardware
counters, shown in Table 1 normalized with instructions-retired, the sum of the utilizations of
the little cores, sorted utilizations of the big cores, and one bias term. The output labels are the
optimal configurations found with respect to the criterion in Equation 2. Note that two different
snippets can map to the same optimal configuration. Hence, an approach that arbitrarily assigns a
supervisory response (optimal configuration) to the features would fail to create a good mapping
function f. To avoid this, we first employ k-means clustering to find natural clustering in the data
set [13]. Then, we assign the most frequently occurring optimal configuration in each of the clusters
as their output labels. This can also be performed hierarchically with multiple levels of k-means
clustering and classification. For example, we use two highly accurate classifiers with three classes
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Fig. 4. Training and runtime use of the DyPO classifier.

each in our experiments, as explained in Section 4.2. After the input features and output labels are
determined, we design the classifier, as described next.

The conditional probability of the occurrence of a Pareto-optimal configuration c∗k ∈ C given an
input xk = [x1,x2,x3, ...,xN ], can be represented as Pr(C = c∗k |x = xk ). We express the conditional
probability for each Pareto-optimal configuration using a logistic function as follows [13]:

Pr(C = c∗k |x = xk ) =
eβxk

1 + eβxk
(3)

where β = [β0, β1, ..., βN ] are the regression coefficients learned offline using the characterized data
for each workload snippet. The regression coefficients are estimated by maximum likelihood, using
the known conditional likelihoods for a class C given features x (training data). When the total
number of data points (i.e., number of workload snippets × number of configurations) is M , the
likelihood function can be written as:

ℓ(β ) =
M∏
k=1

Pr(C = c∗k |X = xk ) (4)

Since the maximum likelihood function in Equation 4 is non-linear, we use the mnrfit function in
Matlab to solve for the β values offline. Then, we store the β values as look-up tables in the platform,
and use them for selecting the optimal configurations at runtime, as illustrated in Figure 4.

3.5 Online Optimal Configuration Selection
To implement the classifier at the target platform, we need to do only the following:

(1) Store the classifier parameters β = [β0, β1, ..., βN ], where N is the number of input features
(N = 11 in this work)

(2) Implement Equation 3
At runtime, we read the input features using the PAPI calls for each workload snippet. Then, we
plug these features and the β values to Equation 3, as shown in Figure 4. This gives the conditional
probability of the occurrence of a Pareto-optimal configuration c∗k given the input features xk . Then,
the Pareto-optimal configuration c∗k with the maximum conditional probability is selected as the
output of the controller.

The proposed approach is highly scalable as it requires only a look-up table for a small number
model coefficients β stored in the platform. This occupies very small storage space of only 282
bytes in the Odroid XU3 platform for the 11 features used in our work. Even if we store classifiers
for multiple objective functions, such as energy, energy-delay product and performance, the file
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size does not exceed 2 kB. In general, the number of inputs to the classifier are always much smaller
than the number of applications, phases and configurations. For example, if the system that needs
to be optimized has hundreds of CPU cores, the proposed technique will still require to store only
tens of model coefficients for any optimization objective. Note that when the number of features N
becomes too large, the cost of computing the logistic function in Equation 3 can increase. In such
cases, it is desirable to reduce and select the appropriate number of features using subset selection
or Lasso regression [19]. Our approach is also general enough to consider more than two core
types. In this case, the characterization data has to include new types of cores. When the number
of configurations grow, a subset can be characterized, as detailed in Section 3.3. Since the optimal
classifier is designed offline, current offline computing power and existing classification algorithms
can easily support solving iterative optimization techniques with tens of types of classes. Finally,
the computation complexity of Equation 3 will not increase, making our approach scalable.

4 EXPERIMENTAL RESULTS
This section first describes the experimental setup, including the details of the platform, benchmarks,
baseline algorithms and the overhead of our approach. Then, we demonstrate the usefulness of
the proposed dynamic Pareto-optimal configuration selection technique by comparing the results
of the DyPO-Energy classifier with baseline algorithms and a recently proposed algorithm [1]
running on the platform.

4.1 Experimental Setup
We present the experimental results performed on the Odroid XU3 platform running Ubuntu OS
with kernel version 3.10 [27]. The platform is equipped with Exynos 5422 chip, which has four
little (A7) cores and four big (A15) cores. The little core frequency can vary from 0.2 GHz to 1.4
GHz and big core frequency can change from 0.2 GHz to 2 GHz in steps of 0.1 GHz. The platform
supports per cluster DVFS, i.e., the cores within the same cluster have to run at the same frequency
and voltage. Changing the CPU cluster frequencies and setting of the core online and offline are
supported in the platform using the cpu-freq driver. The platform also provides INA231 current
monitoring sensors [36] that report the power consumptions for each CPU cluster, memory and
GPU using the I2C driver. We set the sampling frequency of the current sensors to 5 ms to capture
small transients in power consumption.

Integration of the DyPO framework with the existing software infrastructure is shown in Figure 5.
Our implementation is divided into the kernel space and user space. The kernel space contains the
Perf driver and the CPU governors with a sysfs interface [24]. The Perf driver is mainly responsible
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for communicating with the ARM’s performance monitoring unit (PMU) [7], which keeps track of
different hardware and software counters. We enable the PMU to capture the performance counters
listed in Table 1. We also utilize a custom CPU governor to capture per-core utilization through
the sysfs interface. The user space contains the instrumented benchmarks with PAPI APIs that
query the perf driver for performance counters [25]. At runtime, the hardware counters and CPU
utilizations at each snippet of the application are used as inputs to the DyPO classifier. The classifier
first finds the optimal frequency and core configuration, and then assigns them to the cores using
the sysfs interface. We also export time stamps, classifier output and input features to a log file for
debugging and offline analysis purposes.
Benchmarks: To validate our implementation, we use eighteen single- and multi-threaded bench-
marks from MI-Bench [15], Cortex [35], and PARSEC [3] suites.
Default Governors: The Linux kernel implements a number of frequency governors that allow
developers to optimize for a certain parameter. The powersave governor runs the application at the
lowest frequency such that the power consumption is minimized. The ondemand governor is used
to meet a user defined utilization threshold by changing frequency [31]. The interactive governor is
similar to the ondemand governor, except that it holds the frequency at a certain level for a fixed
interval before making any changes. We compare our approach to these three governors3 because
they offer a wide variety of optimization goals and are implemented on millions of smartphones,
making them competitive baselines [40].
Overhead Analysis: The DyPO framework induces instrumentation and algorithm runtime over-
heads. The instrumentation overhead can be measured in terms of the percentage of the extra
instructions added to the benchmarks to log the performance counter data using the PAPI APIs. The
baseline is the case when no APIs are inserted within the benchmark. As opposed to the baseline,
the APIs in our approach have to be added in the source code to form different workload snippets,
as explained in Section 3.2. We observe a very low mean and median overheads of 1.0% and 0.2%
across all the 18 different benchmarks used in this paper. The overhead of our runtime selection
algorithm is 20µs, whereas the minimum and mean execution time of the workload snippets are 2.1
ms and 22.6 ms, respectively. That is, the runtime overhead of our approach is less than 1% of the
smallest snippet and less than 0.1% of the mean value of the execution time of all the snippets. Our
algorithm is called in the same way as the default frequency governor. As shown in Figure 5, the
DyPO approach is implemented within the application to enable phase-level analysis. Therefore,
during the decision process of the classifier, a single-threaded application pauses for 20µs. For
multi-threaded applications, only one thread has to be paused for 20µs, other threads are not paused
and continue to run normally.

4.2 Classifier Accuracy
We use two classifiers in a hierarchical fashion, as explained in Section 3.5. The first classifier
is a Level-1 classifier that outputs three probabilities. The highest probability class is chosen
as the output of the classifier. Out of the three classes, two lead to specific frequency and core
configurations. The third class fires another classifier, which we call the Level-2 classifier. The
Level-2 classifier also outputs three classes that lead to specific frequency and core configurations.
The entire data set is divided into 60% training-validation set and 40% for test set on the actual

platform. We train the classifiers using the training-validation set. Then, we use the classifiers at
runtime for the entire data set (see Section 4.3 for results). Figure 6 shows the accuracy of both
classifiers for the training-validation set. The accuracy for the Level-1 classifier across all the
benchmarks is very high, with an average of 99.9%. The average accuracy of the Level-2 classifier

3We kept the default cpuidle [32] governor active for the frequency governors to enable changes in the core configuration.
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Fig. 6. Accuracy of the two classifiers used on the Odroid platform. In multi-threaded benchmarks, -2T and
-4T represents two and four threads, respectively.

for the benchmarks is 92.7%. The Blowfish benchmark never uses the Level-2 classifier, i.e., all of
its snippets map to the Level-1 classifier only. Single-threaded applications achieve close to 100%
accuracy for Level-2 classifier. However, the multi-threaded applications do not perform as well as
the single-threaded benchmarks across all the three classes in the Level-2 classifier. For example,
Blackscholes-4T shows 71% accuracy as opposed to 100% accuracy of the Basicmath application.
This is because all the features of Blackscholes-4T are close to each other and harder to separate
into different classes at the second level. We also assess the robustness of the classifiers to unknown
data inputs by applying 5-fold cross-validation on the training-validation set. Our results for the
5-fold cross-validation show high average accuracy of 99.9% and 80.5% for the Level-1 and Level-2
classifiers, respectively.

4.3 Runtime Validation of DyPO
In this section, we present the validation of the proposed dynamic Pareto-optimal configuration
selection approach by using the DyPO classifier at runtime. We use DyPO-Energy for illustration,
since energy minimization is one of the main objectives in mobile platforms. At runtime, DyPO
reads the hardware counters and utilization during each workload snippet as inputs to the classifier.
Then, the classifier computes the probabilities of the optimal configurations using Equation 2.
Finally, the configuration with the highest probability is assigned to the system for the next.

Figure 7 shows the comparison between offline characterized data for the entire application run
at different frequency and core configurations (◦), the Pareto-optimal points for power-execution
time trade-off (♦), the Pareto-optimal frontier for energy-execution time trade-off (—), powersave
governor (+), interactive governor (∗), ondemand governor (×), and the proposed DyPO-Energy
approach (△). Since these plots show energy and execution time trade-off, the operating points
closer to the Pareto-optimal frontier and low ordinate are desirable. The data points plotted using
the green markers (◦) show the relative locations of the Pareto frontiers and the configuration space.
This is useful in debugging and analyzing how different governor results get placed relative to
these points. Figure 7(a) shows the results for the Basicmath application. The powersave governor
lies to the extreme right of the plot at about 20 seconds execution time and consuming about 10 J of
energy; this is expected as the goal of the powersave governor is to minimize power consumption.
However, it does not minimize the energy consumption. In contrast, the DyPO-Energy approach
runs the application at the lowest energy point of the Pareto frontier at about 14 seconds execution
time and 8.7 J of energy consumption. It successfully achieves the energy minimization goal while
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also improving the execution time. Similarly, the DyPO-Energy approach leads to much lower
energy consumption when compared with the interactive and ondemand governors. More precisely,
the energy consumption is reduced by 42% (15 J to 8.7 J) and 46% (16 J to 8.7 J), respectively. This
demonstrates the effectiveness of the DyPO technique in optimizing energy consumption. More
importantly, none of the three default governors in the system lie on the Pareto-optimal point. In
particular, the powersave and interactive governor are significantly off the Pareto curve. This is
not desirable because there are clearly other configurations in the system that could have achieved
lower energy consumption for the same execution time. The rest of the plots in Figure 7(b-n)
show the energy consumption and performance trade-off for 13 more single-threaded applications.
As expected, the interactive and ondemand governors consume significantly more energy, since
they are optimizing the system to meet a utilization target. The powersave governor, on the other
hand, does a good job in reducing the power consumption. However, it comes at the expense of
performance and energy. In contrast, the results achieved by the proposed technique are always
closest to the lowest point of the Pareto frontier for all applications.
Multi-threaded Applications: As the complexity of mobile apps increases, it is also important to
analyze the behavior when running multi-threaded applications. Therefore, we analyze their energy
consumption and performance trade-off in Figure 7(o-r). In particular, Figure 7(q) shows the results
obtained for the Fluidanimate application running with two threads. The DyPO-Energy approach
lies below the Pareto-optimal curve, which means that our approach even outperformed the best
case scenario of the characterization data, with a low energy consumption of 0.87 J and 1 second
execution time. We observe that the lowest power configuration on the power and execution time
Pareto curve (♦) leads to 2 seconds execution time. Moreover, it has substantially higher energy
consumption compared to DyPO-Energy. This happens since the lowest power configuration
utilizes fewer number of cores, which has a very large penalty when there are more than one
active threads. Similarly, the Blackscholes application running with two and four threads and
Fluidanimate application with four threads show that our technique achieves lower energy than the
default governors, as illustrated in Figures 7(o)(p)(r). In these workloads, the DyPO-Energy moves
up on the Pareto-optimal curve towards higher performance. This happens since the active threads
increase the utilization, which demands a larger frequency. However, the proposed technique still
stays at the Pareto frontier unlike the powersave, interactive and ondemand governors.
ConcurrentApplications:The proposed runtime approach alsoworkswhenmultiple applications
are running concurrently.More specifically, the instrumentation is specific to a particular foreground
application. However, the classifiers operate on the performance counters, such as cache misses,
non-cache external memory request, and number of active cores listed in Table 1. Therefore,
when other background applications are running, the load perceived by the governor changes.
For example, the background applications can increase the CPU utilizations, as well as hardware
counters, such as LLC misses. Since the CPU utilization and hardware counters are inputs of
the DyPO classifier, the proposed approach works with any number of applications and tasks
running simultaneously with the foreground application. In fact, there were always hundreds
of Linux OS background applications when we performed our experiments. To demonstrate the
operation with multiple applications more explicitly, we simultaneously executed two applications,
Basicmath (in foreground), and Patricia (in background). Figure 7(s) shows the results with this
multiple application scenario. The proposed DyPO-Energy approach successfully minimizes the
energy consumption compared to the default governors. More precisely, DyPO-Energy achieves
9% lower energy consumption, and at the same time, 27% faster execution time compared to the
powersave governor. We also observe 52% lower energy consumption than the ondemand and
interactive governors, albeit with a significant increase in execution time. This is expected since
DyPO-Energy minimizes the energy consumption, while ondemand and interactive governors aim
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Fig. 7. DyPO-Energy approach compared with the default governors running on the platform. In multi-
threaded benchmarks, -2T and -4T represents two and four threads, respectively.

for performance. Most importantly, the optimal energy consumption of BML and Patricia running
together is 12 J. This is almost the same as the sum of the individual optimal energy consumptions
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of BML and Patricia from Figure 7(a) and (d) equal to 11.7 J (sum of 8.7 J and 3 J). This further
corroborates our claim that multiple applications can be optimized by using the DyPO-Energy
approach effectively.

Note that we can choose any optimization objective in the DyPO technique, such as maximizing
performance, minimizing energy with execution time constraint, minimizing the energy-delay
product, as mentioned in Section 3.4. For example, we also experimented on performance (DyPO-
Performance), in which case our framework always chose the highest points on the Pareto frontier
(lowest execution time). This matches closely with the performance governor in the platform that
is designed to achieve maximum performance. Also, the DyPO-PPW (maximizing performance per
watt) results are similar to DyPO-Energy in our setup, since the number of instructions are almost
same for a given application run due to phase-level instrumentation.

4.4 Improvements in Energy and PPW
This section summarizes the advantages of the proposed methodology with respect to the default
governors for each benchmark. To this end, we normalize the energy consumption, power con-
sumption, execution time and PPW obtained for each governor with DyPO-Energy results. For
example, Figure 8 shows the normalized energy consumption of all the benchmarks compared
with the interactive, ondemand and powersave governors. We observe that the energy consump-
tion reduces by 49% and 45% compared to the interactive and ondemand governor, respectively.
For the interactive governor, even the smallest energy savings obtained by DyPO-Energy for the
Basicmath application is 41%. The energy consumption achieved by the powersave governor is
slightly more than 6% of the energy consumed by DyPO-Energy. Furthermore, this comes at the
expense of almost 24% increase in execution time, as shown in Figure 9. The power consumed
by the interactive and ondemand governors is about 3.5× that of the DyPO-Energy, as shown in
Figure 10, while the power consumed by the powersave governor is about 23% lower. We also
observe that the DyPO-Energy provides 93%, 81%, 6% more PPW than interactive, ondemand, and
powersave governors, respectively (shown in Figure 11). Note that compared to the powersave
governor, DyPO-Energy provides both energy savings and higher performance. When compared to
the ondemand and interactive governors DyPO-Energy obtains substantial reductions in energy
consumption albeit with lower performance, as shown in Figure 9. This is expected because the
ondemand and interactive governors are designed for performance, not energy efficiency.
Comparison with Aalsaud et al. [1]: This section presents comparison of DyPO-Energy against
a state-of-the-art approach proposed by Aalsaud et al. [1]. They use power and performance (IPC:
Instructions/Cycle) models that are linear functions of the number of little cores, big cores and one
bias term. Each model is unique for an application and frequency level. That is, there are as many
power and performance models as the number of supported frequencies in the platform for each
application. These models are used for computing the PPW for all the supported frequencies and
core configurations for a given application. There are two methods to their operation to maximize
PPW at runtime. The first is offline (Aalsaud-offline) where the power consumption and performance
models associated with an application are pre-characterized. The optimal configuration is found
at runtime by a simple linear search through all possible frequency and core configurations. The
second method is adaptive (Aalsaud-ADA) that works for an uncharacterized application. That
is, an application for which the models are not known. Therefore, they determine the power and
performance models at runtime for the adaptive method. To achieve this, they first sweep the
frequency every 200 ms. In each 200 ms interval, they measure power and IPC data for at least three
different core configurations. Then, they apply linear regression on this data to find the models.
Clearly, this is an overhead, since the system runs at non-optimal configuration for 200 ms times the
number of frequency levels. However, this happens only one time, once the application is learned,
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time.

the model is saved in a file for future use. Unlike the proposed approach, Aalsaud et al. [1] profiles
the system at fixed time intervals. Since the PAPI APIs are not built to sample an application based
on time, we used the perf utility [9] in the Odroid XU3 board to profile the applications every 50ms.
Figure 12 shows the PPW obtained by the DyPO-Energy, Aalsaud-offline and Aalsaud-ADA

approaches normalized to the PPW obtained by running the ondemand governor. On average, the
DyPO-Energy, Aalsaud-offline and Aalsaud-ADA provide 81%, 46% and 18% gain in PPW compared
to the ondemand governor. Therefore, the DyPO-Energy approach shows 55% and 25% improvement
in PPW compared to the Aalsaud-offline and Aalsaud-ADA approaches, respectively. Note that for
applications Blackscholes-2T and String-Search, both Aalsaud-ADA and Aalsaud-offline perform
worse than the ondemand governor. This is because for the String-Search application, the Aalsaud-
offline approach used the configuration with a frequency of 1.2 GHz, and four little and big cores.
This wastes the extra energy headroom, whereas the ondemand governor utilizes it by keeping the
frequency below 1 GHz. We see similar behavior for the Blackscholes-2T application. In contrast,
DyPO-Energy provides substantial gains in PPW compared to the approaches in Aalsaud et al. [1]
and to the ondemand governor for all the benchmarks.
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5 CONCLUSION
Continued demand for performance led to powerful mobile platforms with heterogeneous multi-
processor system on chips. These platforms provide many voltage-frequency levels and active core
configurations that can be chosen at runtime. This paper presented a novel methodology that finds
the Pareto-optimal configurations at runtime as a function of the workload. The methodology con-
sists of a combination of offline characterization and runtime classification. First, phase-level offline
characterization for a number of benchmarks is performed to find the Pareto-optimal configurations
for each workload snippet. Then, classifiers that map the characterized data to the Pareto-optimal
configuration are learned offline using multinomial logistic regression. Finally, the classifiers are
used at runtime to select the optimal configuration with respect to a specific metric, such as energy
consumption. Our experiments show an average increase of 93%, 81% and 6% in performance per
watt compared to the interactive, ondemand and powersave governors, respectively.
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