
1

TD-Zero: Automatic Golden-Free Hardware Trojan
Detection using Zero-Shot Learning

Zhixin Pan, Member, IEEE, and Prabhat Mishra, Fellow, IEEE

Abstract—Supply chain vulnerability provides the opportunity
for the attackers to implant hardware Trojans in System-on-
Chip (SoC) designs. While machine learning (ML) based Trojan
detection is promising, it suffers from three practical limitations:
(i) golden model may not be available, (ii) lack of human
expertise for Trojan feature selection, and (iii) limited learning
transferability can lead to unacceptable performance in new
benchmarks with unseen Trojans. While recent approach based
on transfer learning addresses some of these concerns, it still
requires re-training for fine-tuning the model using domain-
specific (e.g., hardware Trojan features) knowledge. In this
paper, we propose a Trojan detection framework utilizing zero-
shot learning to address the above challenges. The proposed
framework adopts the idea of self-supervised learning, where
a pre-trained graph convolutional network (GCN) is utilized to
extract underlined common sense about hardware Trojans, and a
metric learning task is used to measure the similarity between test
inputs and malicious samples to make classification. Extensive
experimental evaluation demonstrates that our approach has
four major advantages compared to state-of-the-art techniques:
(i) does not require any golden model during Trojan detection,
(ii) can handle both unknown Trojans and unseen benchmarks
without any changes to the network, (iii) drastic reduction in
training time, and (iv) significant improvement in detection
efficiency (10.5% on average) .

I. INTRODUCTION

The demand for System-on-Chip (SoC) designs has in-
creased in recent years due to the growing popularity of Inter-
net of Things (IoT). A vast majority of semiconductor com-
panies rely on global supply chain to reduce design cost and
meet time-to-market deadlines. The benefit of globalization
comes with the cost of security concerns as elaborated in [1].
Due to the fact that an SoC may include few components from
potentially untrusted third-party vendors, the risk of exposing
SoC designs to hardware Trojans is also increased.

A. Threat Model

An attacker may insert hardware Trojans (HT) during any
stages of the design flow, including specification, implemen-
tation, validation, synthesis, layout, fabrication, testing, and
deployment. In this paper, we primarily focus on detecting
Trojans during pre-silicon stages of the design (prior to
fabrication). Specifically, our objective is to detect HTs in gate-
level implementation without requiring any golden reference
model.

HT is a malicious modification of hardware designs that
consists of two critical parts, trigger and payload. The trigger
is typically created using a combination of rare events (such as
rare signals or rare transitions) to stay hidden during normal

Z. Pan and P. Mishra are with the Department of Computer & Information
Science & Engineering, University of Florida. e-mail: panzhixin@ufl.edu.

execution. Due to stealthy nature of these Trojans, it may
not be feasible to detect HTs during traditional functional
validation [2], since low overhead safety checks are preferred
[3]. When the trigger is activated, the payload enables the
malicious activity resulting in information leakage, erroneous
execution, performance degradation, or denial-of-service. In
this paper, we focus on hardware Trojans that alters the
functionality under diverse trigger conditions.

Fig. 1: The illustration of fundamental differences between
three hardware Trojan detection approaches using (a) super-
vised learning, (b) unsupervised learning (clustering), and (c)
proposed approach using zero-shot learning.

B. State-of-the-Art

Recent research turns interest into machine learning (ML)
based approaches for Trojan detection. ML, as a data-driven
scheme, focuses on building computational models that learn
from features of training samples to produce acceptable predic-
tions. While machine learning (ML) algorithms have received
considerable attention for security tasks in recent years [4]–
[8], they faces three major challenges. (1) Most of the prior
efforts focus on supervised learning scheme which requires a
golden model. (2) While there are golden-free approaches, the
inherent clustering algorithm relies on the expertise of the de-
signers for feature selection and distance metric, which are not
guaranteed for all scenarios as demonstrated in Section II-C.
(3) The lack of transferability limits their usage in familiar
environments (e.g., known benchmarks and known Trojan
types). To accommodate unfamiliar scenarios, they usually
require large number of updates or unacceptable overhead to
re-train the model. Most importantly, these approaches are not
suitable for detecting any minor changes (known unknowns)
or major variations (unknown unknowns) in hardware Trojans.
Figure 1 shows the fundamental differences between existing



2

ML-based Trojan detection and our approach. Figure 1(a)
shows that supervised learning works as a separator in hy-
perspace to classify the target as benign based on features,
while unsupervised learning (clustering) in Figure 1(b) works
by encompassing the cluster of benign samples to make
classification. As a result, it is often unacceptable for industries
to afford certain training cost.

C. Research Contributions

In this paper, we demonstrate that by adopting the idea of
zero-shot learning, our framework is able to detect unseen HTs
in unfamiliar environments without any need for golden model
or re-training (Figure 1(c)). It effectively combines the advan-
tages of supervised and unsupervised learning. Specifically,
it uses an ML model pre-trained with supervised learning of
known scenarios (e.g., simple benchmarks with known HTs),
and perform Trojan detection using unsupervised learning
in unknown scenarios (e.g., new and complex benchmarks
with unknown HTs). The proposed method utilizes matching
network that consists of two major components. The first
component is a Graph Convolution Network (GCN) to extract
general knowledge about HTs. Specifically, it utilizes GCN to
convert circuit netlists into graph model, and further process
it with the help of LSTM scheme. The second component
measures the similarity between test inputs and malicious
samples to make accurate classification. Instead of specifying
the metric by human expert knowledge, we utilize a metric
learning network to automatically adjust the measurement.
Specifically, this work provides the following advantages com-
pared with existing efforts.

1) It is a golden-free solution because the training (super-
vised learning) can be performed using simple bench-
marks (golden models) while the HT detection (unsu-
pervised learning) can be applied on real-life examples
without golden models.

2) It does not need any human expert knowledge for select-
ing beneficial HT features.

3) It can be utilized to detect unknown Trojans in unseen
benchmarks without any change to the network.

4) It outperforms state-of-the-art HT detection methods in
terms of prediction accuracy.

The remainder of this paper is organized as follows. Sec-
tion II provides relevant background and surveys related
efforts. Section III describes our proposed Trojan detection
framework using zero-shot learning. Section IV presents ex-
perimental results. Finally, Section V concludes the paper.

II. RELATED WORK AND MOTIVATION

We first review related efforts in golden-free hardware
Trojan detection. Next, we survey existing works on HT
detection using supervised learning as well as unsupervised
learning. Finally, we motivate the advantages of using Zero-
shot learning for HT detection.

A. Golden-Free Trojan Detection

Most of the Trojan detection approaches assume the avail-
ability of a golden model. In reality, a designer may not have

access to the golden model. There are various avenues for
golden-free Trojan detection including self-similarity, struc-
tural analysis, and machine learning. The first avenue is to
enable test generation for golden-free Trojan detection that
consists of two parts. The first part is the test generation,
and the second part is the comparison of functional values.
Since the golden model is not available, existing efforts utilize
self-similar components [9], [10]. There are two fundamen-
tal challenges: (i) how to automatically identify self-similar
components, and (ii) how to generate tests to activate these
self-similar components. In other words, the existing solutions
are applicable only on very customized and simple designs.
The second avenue for golden-free Trojan detection is based
on structural feature as well as fingerprinting analysis [11]–
[17]. However, the effectiveness of these approaches depend
on the availability of the golden features without the golden
reference model. The next two sections describe ML-based HT
detection using supervised as well as unsupervised (golden-
free) learning.

B. ML-based HT Detection using Supervised Learning

Existing ML-based HT detection methods rely on either
supervised or unsupervised learning. Supervised learning aims
at learning a function mapping from input to output, where
training data always comes with labels. The label serves as
the desired output, and the goal of training is to minimize
the difference between model outputs and labels. In this
scenario, both benign (golden) and malicious benchmarks
are required. First, relevant features are selected by either
expert knowledge or observation from simulation. Intuitively,
assume n features are selected, this step maps each sample
into a point in n-dimensional hyperspace. Afterwards, samples
with these features are extracted from raw data and fed into
ML model during training phase. The well-trained model
serves as a separator in the n-dimensional hyperspace to
make bi-classification, which is illustrated in Figure 1(a). A
vast majority of ML-based HT detection approaches utilize
supervised learning. In [18], a general framework for Trojan
detection has been proposed. Chen et al. [19] extracted circuit
features including switching activity and net structure from
the gate-level netlists. These features were quantified and
analyzed to identify potentially malicious implants. Features
including leakage current [20], power consumption [21] and
performance counter streams [22] are also exploited in re-
cent years. Zhou et al. [23] presented a pattern matching
algorithm to detect HTs by analyzing the distribution of rare
signals inside IP cores. Kasegawa et al. [24] proposed five
important features from gate-level netlists and built a classifier
using Deep Neural Networks (DNNs), which improves the
true positive rate (TPR). However, there are deficiencies in
terms of the true negative rate (TNR). They also explored
various features and applied different ML algorithms (DNNS,
SVM) [25] to provide state-of-the-art performance in terms of
average accuracy and running efficiency.

C. ML-based HT Detection using Unsupervised Learning

Supervised learning-based approaches are promising but
they require golden models. To achieve golden-free detection,



3

unsupervised learning is utilized. In this case, training data
comes without labels. The essence of unsupervised learning
algorithm is to describe the distribution of data and mine
potentially useful information behind, where it groups unla-
beled data into different clusters based on a distance metric,
as shown in Figure 1(b). First, a distance metric is defined
to measure the similarity between samples. Then, clustering
process happens where samples with high similarities are
grouped together, so that samples outside the cluster can be
distinguished. This process is illustrated in Figure 1(b). While
clustering has shown promising results for HT detection [15],
[26], unsupervised learning methods has two practical lim-
itations: feature selection and distance metric. The features
are commonly selected by either expert knowledge [15] or
millions of simulations [26], which may not be feasible in
many scenarios. Moreover, the selection of proper distance
metric is also tricky, existing works utilize Minkowski distance
as the similarity metric, which may not be suitable for HT
detection. For example, Figure 2 illustrates that clustering
algorithms provide unstable performance, detection accuracy
varies based on the distance metric. This instability severely
affects the performance of existing works. Furthermore, there
are no automated methods to select a beneficial metric for a set
of benchmark/HTs. Also, as we can see, the performance of
clustering algorithm varies from benchmark to benchmark, and
measurement to measurement. To overcome these weaknesses,
we propose a novel detection scheme based on Zero-shot
Learning (Figure 1(c)), which is discussed in the next section.

Fig. 2: The detection accuracy using clustering algorithm
for several benchmark with four different distance metrics,
p = 1 Minkowski (Manhattan), p = 2 Minkowski (Euclidean),
Chebyshev and Cosine similarity.

HTNet [27] provides a promising alternative to distance-
based clustering by utilizing transfer learning to detect Trojans
in unseen chips. However, it requires the re-training of the
model with the domain-specific knowledge of the unseen
chips. In other words, models trained by certain types of
dataset cannot be directly applied to other tasks, and huge
amount of samples are needed for accommodating models to
new scenarios. Moreover, the authors assume that the trigger
condition is always-on when performing side-channel signals,
which may not be true in many scenarios for two reasons:
(i) the difficulty associated with activating a stealthy trigger
condition, and (ii) side-channel Trojan footprint of a tiny
trigger (of few gates) can easily hide in process variation and
environmental noise margins in multi-million gate designs. In
contrast, our proposed approach utilizes zero-shot learning that
neither assumes always-on Trojan nor require re-training for
detecting unknown Trojans in unseen benchmarks.

D. Background: Zero Shot Learning

The demand of Zero-Shot Learning (ZSL) arises from
crucial limitations of previous ML approaches. ZSL is an
extreme variant of transfer learning, which relies on zero
training samples to handle unseen categories. The key idea of
ZSL is to focus on learning the ‘general knowledge’ of given
data, and unlike the commonly-known learning approaches,
it is closer to human brain when making judgements. For
example, assume that a child has never see a tiger before, and
only pictures of cats and dogs are shown to the child. The child
is likely to identify the tiger as a cat. The reason is that, even
though ‘tiger’ category is never seen before, the brain is able
to extract information from the picture and make comparison
with known species based on similarity. Similarly, the goal
of ZSL is to train the model with clever adjustments during
the training stage, so that the model is capable of exploiting
information to understand unseen data.

Fig. 3: ZSL utilizing matching networks as proposed in [28].

A typical implementation of ZSL is a matching network
structure as shown in Figure 3, which consists of two major
components, an extractor gθ and a comparator fθ. Extractor is
responsible for recognizing and extracting general knowledge
from training set, while compactor works by comparing the
similarity of test input and known genre to assign label to it
based on similarity score. In this scenario, the task is to classify
the genre of dog, where the model is not trained to merely
remember human-defined features from known samples, but
trained to be sophisticated in mining underlying features by
themselves, and make reasoning by comparing afterwards. By
extracting general knowledge from the entire sample set S,
four different type of general knowledge were extracted by gθ
in the model. Then fθ works by comparing the given sample’s
feature with pre-stored ones and computing similarity scores.
The one with the highest score became the classified label.
ZSL requires no samples of unseen benchmarks, which make
golden-free chip examination possible. We show how to utilize
ZSL for HT detection to address all the above-mentioned
challenges in the next section.

III. TROJAN DETECTION USING ZERO-SHOT LEARNING

Zero-Shot Learning (ZSL) has shown promising perfor-
mance in computer vision domain. However, there are three
major challenges in applying ZSL for Trojan detection. (1)



4

The concept of “general knowledge” of circuit benchmarks
is undefined. In [28], the author primarily focus on image
datasets, where the general knowledge can be information
about shapes, edges and texture, which are not applicable
for circuit netlists.(2) The boundary for “seen” and “un-
seen” categories in terms of netlists benchmarks are unclear.
In [28], unseen image datasets refer to images containing
different objects or handwritten-digits with different values.
(3) In computer vision domain, a lot of well-defined distance
metrics can be applied for similarity comparison. However,
none of them are feasible for hardware Trojan detection, as
demonstrated in Figure 2. We address these challenges using
a combination of “general knowledge” extraction and metric
learning algorithms.

Figure 4 shows an overview of our proposed HT detection
approach using zero-shot learning (ZSL). The key idea is to
focus on learning the ‘general knowledge’ of seen bench-
marks, so that the model stores the impression and necessary
underlying properties of both benign and malicious circuit
benchmarks. In this way, when unseen benchmark is provided,
the model utilize the pre-stored knowledge to understand them
based on the similarity scores. Intuitively, in detection phase,
the model simply works as an inspector to check if the target
benchmark is closer to Trojan-inserted designs or the clean
golden ones. The first task is to transform the given design
(e.g., gate-level netlist) into a graph-based representation.
The second task performs automatic information extraction
for each input sample through graph convolution network
(GCN). Specifically, the general knowledge of both benign and
malicious netlists are stored. The third task enables automatic
HT detection for a given unseen (target) benchmark. The
trained GCN extract information about the target benchmark.
The extracted information is compared with the pre-stored
knowledge to compute similarity score through metric learn-
ing. For example, if the similarity score is higher for the mali-
cious category, the given input is classified as malicious (HT-
implanted). We manage to apply a metric learning algorithm
based on Mahalanobis distance [29]. It aims at constructing
task-specific distance metrics from the given data, which
automatically searches for a customized distance metric by
solving an optimization problem, which will be demonstrated
in Sec III-C.

Fig. 4: Overview of our proposed framework. It consists of
three major tasks: graph-based representation of hardware
models, general knowledge extraction utilizing zero-shot learn-
ing, and detection of Trojans using metric learning.

Although benign benchmarks (golden models) are required
during the training phase, these benign samples can be simple
designs. In other words, the golden model of the target

benchmark is not required during the HT detection phase. For
example, the model trained with ISCAS benchmarks can be
utilized to detect Trojans in Trust-Hub benchmarks without
any need for re-training the model. We will describe the three
major tasks outlined in Figure 4: graph-based representation,
general knowledge extraction, and hardware Trojan detection.

A. Graph-based Representation of Hardware Designs

A major limitation of existing HT detection approaches
is that the feature selection is typically guided by expert
knowledge instead of an automatic method. Although few
methods extract features based on observations from simu-
lations, this process introduces training cost. Since features
collected from training set are specific to training benchmarks,
ML models trained by these features are not guaranteed
to perform well against unseen benchmarks. Therefore, the
ideal way of feature extraction should be collecting ‘general
knowledge’, instead of benchmark/domain-specific features.
Also, to enable transferability, the ML model should be trained
to perform automatic knowledge extraction, rather than relying
on manually collected knowledge from users. Such a model
would be able to make correct predictions without any changes
even for unseen benchmarks.

The idea of extracting general knowledge is widely adopted
in ML applications. For instance, in computer vision domain,
image data only serves to provide fundamental information
like pixel values, while the task of knowledge learning de-
pends on effective utilization of Convolution Neural Networks
(CNN). Convolution layers filter the fundamental information
to forge features and store them in hidden layers. Similar
process can be implemented for circuit netlists, we can prepro-
cess input circuit netlists into graph representation, and utilize
Graph Convolution Network (GCN) for knowledge extraction.

In general, a circuit netlist can be represented by a directed
graph structure G = (V,E), where V is a set of vertices
and E is a set of edges. Signals possess fundamental value
information, while each logic gate works by combining the
signals through logic computation to produce new signals.
Therefore, it is natural to treat wires as nodes for storing
values, and transfer gates into directed edges to represent
relationship between nodes and the flow of information.

Figure 5 shows a simple example of graph representation.
Notice that two important categories of knowledge are fully
preserved by graph representation which are critical for effec-
tive hardware Trojan detection. First, the testability measure-
ments (SCOAP parameters) [15] are recorded as node values,
which will be discussed in the next section. Secondly, the
structural details of the netlists are also conserved. In addition
to node values, the interconnections, graph dimensions, and
node depths are relevant for machine learning, closely tied to
the structural attributes of the circuit netlist. Table I provides
the graph attributes and their corresponding structural features.

B. General Knowledge Extraction using GCN

Figure 6 represents the structure of proposed neural net-
work with fine-tuned hyperparameters. The process starts by
transforming given circuit netlists into graph representation as
described in Sec III-A. Next, the transformed graph passes



5

Circuit Fan-ins Fan-outs Logic
depth

Information
Flow

Circuit
Size

Graph In-degrees Out-degrees Node
depth

Edge
Direction

Graph
Size

TABLE I: Comparison between graph attributes and corre-
sponding structural features.

Fig. 5: Illustrative example of transforming a gate-level netlist
into a graph representation. Data format of nodes and edges
are discussed in Section III-B.

through the network consisting of three consecutive graph
convolutional layers (GCLs), each followed by a dropout and
max-pooling layer to avoid overfitting problem. GCLs are
specifically designed structure to extract general knowledge of
graph-structure data, which is similar to traditional convolution
layers for 2D structural (image) data, as shown in Figure 7. In
fact, graph convolution can be considered as a generalization
of 2D convolution as shown in Figure 7. Analogous to a
graph, each pixel in an image can be taken as a node, and
the 2D convolution works by taking the weighted average of
the centre(red) node along with its neighbors at each step. In
this way, the pixel value is shared along with its surrounding
neighbors to help the model extracting general knowledge
about the image.

1) Motivation: To motivate the utilization of graph convolu-
tion network, the following example clearly demonstrates why
information sharing by computing weighted average can make
2D convolution effective for image processing. As shown in
Figure 8(a), the image is provided as a 2-D matrix with pixel
values, and the task is to detect a specific shape curve from
the image. In Figure 8(b), the convolution works by sliding
the convolution kernel along the image, where the weighted
average is computed at each position. The results are presented
in Figure 8(c).

It can be observed that the output of the convolution kernel
in this example is relative to the position of the detected shape.
The closer kernel to the location of desired shape, the greater
the corresponding output. Additionally, in general convolution
neural networks, the convolution layers are commonly fol-
lowed by a max-pooling and RELU layer. The functionality of
these two layers are to filter out the highest value from input.
In this way, the most important ‘knowledge’ from the raw
features are extracted. For example in this image, the centre
of the detected shape will be filter out as the final result. As we
can see, this “convolution-pooling-activation” structure serves
as a ‘filter’ to extract key information from input data. Notice
in this example we pre-fixed the values of the kernel, while in
reality they are obtained through model training. So literally
speaking, the training process of convolution is to find out
proper filters which can help extracting essential features.

Another important observation of 2D convolution is linear
shift invariant. If we shift the target image by any amount
of displacement, then the output is shifted by the same
amount. This property guarantees that convolution is resistant
to position obfuscation, which coincidentally fits the task of
HT detection. A well-trained convolution kernel is expected
to encompass the ‘Trigger-Payload’ structure regardless of
its location. Inspired by the motivation, we can immediately
derive the prototype of HT detection model after obtaining the
graph representation of circuits. In Figure 9, by following the
similar idea above we define the task of HT detection to be
training a proper graph convolution kernel, which sweeps the
entire graph to produce corresponding outputs, and it reacts to
the suspicious Trojan-injected region the most. To implement
our model, there are three more essential inspirations from the
general 2D convolution. 1) The example in Figure 8 requires
only one shaped curve. While in reality, due to complexity
of HT detection, we tend to extract features from input as
comprehensively as possible. Therefore, multiple kernels are
necessary in the network structure. 2) Multiple layers are
important since each node can only get the information from
its neighbors with one layer. When stacking another layer on
top of the first one, the neighbors already have information
about their own neighbors and advanced features can be further
crafted by combining initial features from the previous step.
3) The goal of our proposed method is to achieve golden-free
detection, so we need to have an extra component serves as
inventory. In this way golden-designs are unnecessary since
the model already contains pre-learnt knowledge.

Based on the above discussion, we setup the model structure
as shown in Figure 4, where multiple blocks of “convolution-
pooling-activation” are deployed, an extra LSTM model is
applied as storage. At each step of graph convolution, the
goal is to achieve information sharing for each node with its
neighbors.

However, the information sharing in transferred circuit
graph remains unclear and it is not a trivial task. For example,
inspired by Figure 8, one simple solution is to take the
weighted average value of the node along with its neighbors
as shown in Figure 9. This naive approach cannot work in our
case due to the following three challenges.

• We cannot define the value of each node based on signal
values since they change based on input patterns.

• Graph transformed from netlists are directed graph, each
edge possesses attributes including direction and logical
relationship. Information carried by edges will be lost if
we compute weighted average of nodes.

• For image data, the neighbors of a node are ordered and
have a fixed size. But for graph data, they are commonly
unordered and variable in size. Therefore it is difficult to
define the convolution of graph.

The following subsections address the above challenges.
2) Computation of Graph Node Values: To tackle the first

problem, we utilize Sandia Controllability/Observability Anal-
ysis Program (SCOAP) parameters as the value to be stored in
each node, which takes both controllability and observability
attributes of signals into consideration. In essence, control-
lability indicates the amount of effort required for setting a



6

Fig. 6: The model structure of proposed work based on graph convolution network and LSTM.

Fig. 7: The comparison between convolution and graph con-
volution from [30].

Fig. 8: The intuition on how CNN works for image processing.
In this example, the task is to detect a specific shape from
the image. (a) The original image with pixel values and the
3*3 convolution kernel. (b) The convolution works by sliding
the convolution kernel along the image. The weighted average
is computed at each position. (c) The grid with the highest
computed convolution result is predicted as the centre of the
desired shape.

Fig. 9: The prototype process on using graph convolution to
perform HT Detection. (a) The transferred graph representa-
tion of hardware circuits. (b) The graph convolution happens
by moving the convolution kernel around the graph to achieve
information sharing through and generate corresponding re-
sults. (c) The node with highest output value is the most
suspicious region where Trojan might be injected.

signal to a specific value, while observability weighs up the
difficulty of propagating the target signal towards observation
points. Formally, SCOAP quantifies the controllability and
observability of each signal with three numerical values.

• CC0: Combinational 0-controllability, the number of sig-
nals must be manipulated to set ‘0’ value for target.

• CC1: Combinational 1-controllability, the number of sig-
nals must be manipulated to set ‘1’ value for target.

• CO: Combinational observability, the number of signals
must be manipulated to observe target value.

Computing SCOAP parameters of each node serves to
provide fundamental information of the graph data, and it
addresses many of the previously mentioned challenges. First,
it is based on static analysis, which avoids tedious pattern
generation for activation. Second, edge information is inherited
by SCOAP parameters, since the SCOAP values of one
logic gate’s inputs and outputs are closely related as shown
in Figure 10. For each gate, the output controllability is
determined by controllability of its inputs, while the input
observability is determined by observability of output and
all the other input signals. Figure 10 shows the computation
formula for three fundamental logic gates. Consider the CC1
measurement of AND gate as an example, in order to control
the output signal c as ‘1’, both of its input signals a and b
should be maintained as ‘1’ at the same time. Therefore, we
have CC1(c) = CC1(a) + CC1(b) + 1, where the ‘+1’ is
for counting the level depth. Finally, the SCOAP testability
measurement naturally fits the demand of HT detection from
a security perspective.

Fig. 10: SCOAP testability measurement for three logic gates.

Clearly, signals with high controllability are more likely



7

to be chosen as trigger signals because high controllability
guarantees the difficulty of switching these signals with a
limited number of test patterns. Similarly, targeting signals
with high observability as payload are favorable for attackers,
since it avoids them from frequently generating observable im-
pact on design outputs. The algorithm for computing SCOAP
values can be easily obtained through a topological sort as
shown in Algorithm 1. First, we perform topological sort of
the entire circuit graph. Next, the starting point are primary
inputs/outputs since their SCOAP parameters are straightfor-
ward. For primary input, users may manipulate its values
by one signal (itself), i.e., CC0(PI) = CC1(PI) = 1.
For primary outputs, there is no other signals involved to
get observed, which gives CO(PO) = 0. Then by utilizing
formula in Figure 10 we can get all the CC0, CC1 values by
following the topological order, and all values of CO by a
reversed topological order.

Algorithm 1: Testability Analysis (getSCOAP)
Input : Design(D)
Output: SCOAP Parameters of all nodes in D

1 Transfer design into graph representation:
G = DAG(D)

2 Topological Sort: G∗ = topo(G,PI → PO)
3 CC0(PI) = CC1(PI) = 1, CO(PO) = 0
4 for each gate g ∈ G∗ do
5 g.out.SCOAP =

computeCC(g.in.SCOAP, type(g))

6 G∗ = reverse(G∗)
7 for each gate g ∈ G∗ do
8 g.in.SCOAP =

computeCO(g.out.SCOAP, type(g))

3) Graph Convolution: To address the third challenge men-
tioned above, we select graph convolution as the solution. On
Euclidean domains, convolution can be easily defined, but
such structural property is undefined on irregular structure
like graphs, so we need to look at this concept from a
different perspective. The key idea is to use Fourier transform
inspired by convolution theorem, where the convolution of
two signals is the component-wise product of their Fourier
transforms. Therefore, the task boils down to defining the
Fourier transforms of graph data. For any function f(t), the
traditional Fourier transform is defined as:

F (ω) = F [f(t)] =

∫
f(t)e−iωtdt (1)

It can be viewed as the projection of a given function on
basis functions e−iωt , which are the eigenfunctions of the
Laplacian operator since

∆e−iωt =
∂2

∂t2
= −ω2e−iωt (2)

Now the task is further reduced to find the Laplacian operator
in the domain of graphs. It turns out the discrete Laplacian
operator exists, which is the Laplacian matrix L = D − A,
where D is the degree matrix (a diagonal matrix containing

the number of edges attached to each vertex), and A is the
adjacency matrix of the graph vertices. Therefore, we can
compute the convolution of graph data in the following steps.
Assume that there are n vertices in the graph. First, we
compute the Laplacian matrix L = D−A. Next, we compute
the eigendecomposition of L as

L = U

(
λ1

...
λn

)
U

−1

where U = (u1, u2, ..., un) is a matrix with column vectors
as unit eigenfunctions, and λis are eigenvalues of L. Next, we
use Equation (1) to define the Fourier transform of graph as

F (λl) =

n∑
i=1

g(i)ul(i) (3)

where g is a graph function and g(i) corresponds to the value
of the i-th vertex of the graph, ul is the l-th eigenfunction.
Finally, the graph convolution can be obtained by utilizing
convolution theorem. After simplification, the convolution
between two graph function g and h can be computed by

(g ∗ h)G = U((UT g)⊙ (UTh)) (4)

where ⊙ is the Hadamard product. The training algorithm of
the entire network is presented in Algorithm 2.

4) Knowledge Compression and Storage: When GCLs fin-
ished work, the resulting channels are mapped into a fixed-
size vector using a global pooling layer. The outputs at this
stage represents the coarse collection of knowledge from the
inputs. To further purify the extracted knowledge, an additional
fully-connected dense layer is appended to achieve knowledge
compression. Furthermore, we utilize LSTM for storing the
extracted knowledge (the rightmost component in Figure 6).

C. Trojan Detection using Metric Learning

The third (final) task in our proposed approach is to perform
HT detection for a given (unseen) benchmark. As shown
in Figure 4, After obtaining general knowledge from both
benign and malicious benchmarks, our ML model accepts
the target (unseen benchmark) as input, utilizes the GCN to
extract its information, then computes the similarity scores
between the extracted information (green rectangle) and pre-
stored knowledge (blue and red rectangles) to make prediction.
As discussed in Section II-C, the computation of similarity is
dependent of efficient selection of the distance metric (Fig-
ure 2). Previous clustering algorithms also require a measure
of distance between data points. Practitioners in these works
commonly choose a standard distance metric (Euclidean, City-
Block, Cosine, etc.), which relies on prior knowledge of the
domain. However, it is often difficult to design metrics that
are well-suited to the particular data and task of interest, as
demonstrated by the unstable performance in Figure 2. Instead
of blindly selecting a specific distance metric, our focus is that
the ML model should learn to adjust its distance metric on-
the-fly. To achieve this, we adopt the idea of distance metric
learning (or simply, metric learning). It aims at automatically
constructing task-specific distance metrics from the given
data. Here, the distance metric is defined as the Mahalanobis
distances:



8

Algorithm 2: Training Process of TD-Zero
Input : Malicious and Benign Dataset ((SM ),SB),

learning rate (α), number of epochs (k),
number of iterations (n), Test Dataset (ST )

Output: Optimal extractor gθ1 , comparator fθ2
1 Initialize θ1, θ2
2 i = j = 0, n = size(T )
3 repeat
4 Reset Status
5 repeat
6 for each D ∈ SM do
7 Compute SCOAP parameters

(CC0, CC1, CO) = getSCOAP (D)
8 Graph Representation G = DAG(D)
9 Malicious Knowledge Extraction

kM = LSTM(gθ1(G))

10 for each D ∈ SB do
11 Compute SCOAP parameters

(CC0, CC1, CO) = getSCOAP (D)
12 Graph Representation G = DAG(D)
13 Benign Knowledge Extraction

kB = LSTM(gθ1(G))

14 for each D ∈ ST do
15 kT = LSTM(gθ2(G))
16 Similarity score (s1, s2) = fθ2(kM , kB , kT )
17 loss+ = cross-entropy(s1, s2, label(ST ))

18 Update parameter :
19 θ1 = θ1 + α∇θ1 loss
20 θ2 = θ2 + α∇θ2 loss
21 until j ≥ n;
22 until i ≥ k;
23 Return θ

DM (x, x′) =
√
(x− x′)TM(x− x′) (5)

where M is a positive semi-definite (PSD) matrix, i.e.
M ∈ Sd(R)+0 . Strictly speaking, Mahalanobis distances are
“pseudo-metrics”, it is not a fixed distance metric since M is
flexible. The idea is to train for the most feasible parameters
of M to adjust its ability for measuring similarity between
samples (Notice if we set M to be the identity matrix, it
recovers the standard Euclidean distance). Formally, given
malicious set A and benign samples set B, the distance metric
learning aims to find M for a common convex optimization
objective which can be solved efficiently:

argmin
M∈Sd(R)+0

∑
xi,xj∈A

DM (xi, xj) +
∑

xi,xj∈B

DM (xi, xj)∑
xi∈A,xj∈B

DM (xi, xj)
(6)

IV. EXPERIMENTS

We perform a comprehensive experimental evaluation to
demonstrate the effectiveness of our proposed HT detection
scheme. First, we describe the experimental setup including
platform and evaluation methods. Next, we provide perfor-
mance measurements and the comparison between proposed

approach and state-of-the-art methods. Finally, we present the
overhead and robustness analysis of proposed method.

A. Experimental Setup

The experimental evaluation is performed on a host machine
with Intel i7 3.70GHz CPU, 32 GB RAM and RTX 2080 256-
bit GPU. We developed code using Python for model training.
We used PyTorch as the machine learning library. We evaluate
our framework using diverse benchmarks from Trust-Hub [31],
ISCAS (both ISCAS’85 and ISCAS’89), which are widely
used by state-of-art approaches [15], [27], [32]. Specifically,
the statistics about the benchmark circuits including sizes and
lines of codes (LOC) are shown in Table II.

TABLE II: Sizes of benchmarks from ISCAS [33], [34] and
Trust-Hub [31].

Benchmarks Inputs Outputs # of Signals LOC
AES-T1100 128 128 284 92
AES-T1200 128 128 289 96
AES-T1600 128 128 292 92
AES-T1700 128 128 295 104
c2670 233 140 1193 1482
c3540 50 22 1669 1877
c5315 178 123 2406 2615
c6288 32 32 2406 2685
c7552 207 108 3512 3944
s13207 31 121 7951 3681
s15850 14 87 9772 4010
s35932 35 320 16065 39484

To enable comprehensive evaluation, we also utilize syn-
thetic benchmarks, as discussed in Section IV-B. The circuit-
graph [35] library is utilized to translate hardware designs into
desired graph structures and craft synthetic designs. Knowl-
edge extracted from benchmarks and hidden layer outputs are
formatted into PyTorch tensors to make it compatible with ML
models requiring tensor inputs.

We explored a wide range of Trojan types with combina-
tional, sequential, as well as hybrid triggers. Specifically, the
triggers are constructed using one or more of the following
attributes:

• Rare signals
• Non-rare signals
• Rare branches
• Rare FSM states
• Rare FSM transitions
• Synchronous counter (incremented by clock)
• Asynchronous counter (increment by events)
• Both synchronous and asynchronous counters
• Sequences of rare events (e.g., nested rare branches)
Figure 11 shows an example Trojan with a hybrid trigger,

which consists of both combinational (rare and non-rare sig-
nals) and sequential (synchronous and asynchronous counters)
events.

B. Evaluation Method

To construct the benign and malicious sample dataset,
traditional approaches randomly sample rare trigger conditions



9

Fig. 11: A sample Trojan from our experiment, it uses hybrid
trigger with rare signal (r1), non-rare signal (r2), synchronous
counter (Counter 1) and asynchronous counter (Counter 2). A
specific value of Counter 2 is the trigger for this Trojan.

of each benchmark using ATPG, and individually integrate
these conditions into the original design to construct a design
under test (DUT). However, such an imbalanced dataset can
lead to data bias problems. For example, if we generate 1000
DUTs with one trigger condition for each benchmark, even a
naive ML model (always-true prediction) can reach > 99.99%
accuracy, since most of the inputs are designs with implants.
It indicates that accuracy is not sufficient to demonstrate
the effectiveness. To overcome this problem, we employ the
following two strategies. First, rather than relying on accuracy
as the metric, we consider the following four metrics:

• Recall: tp
tp+fn

• Accuracy: tp+tn
tp+tn+fp+fn

• Precision: tp
tp+fp

• F1 Score: tp
tp+ 1

2 (fp+fn)

where tp, tn, fp and fn are the number of true positive,
true negative, false positive and false negative accordingly.
Intuitively, recall is a measure of a classifier’s exactness,
while precision is a measure of a classifiers completeness,
and F1 score is the harmonic mean of recall and precision.
Our second strategy is to generate synthetic samples. We use
circuitgraph [35] to automatically synthesize benign circuit
netlists. In order to ensure that the dataset has fifty-fifty distri-
bution of benign and malicious samples, we randomly sample
designs from both standard and synthesized benchmarks to
integrate trigger conditions to construct DUTs. Although the
nodes of Trojans are significantly smaller than the golden
circuits, the extracted features from golden and malicious
benchmarks are significantly different. This is due to the fact
that when Trojans are injected into circuits, the connectivity
and the testability of all reachable nodes are changed. In
summary, our proposed framework mitigates the data bias by
maintaining balanced distributions over feature, category, as
well as evaluation metrics.

Given the above configurations, we evaluate the perfor-
mance of the following four ML-based HT detection schemes:

• SVM [24]: Supervised learning based HT detection
utilizing support vector machine (SVM).

• RF [25]: Supervised learning based HT detection utiliz-
ing random forest (RF).

• HTNet [27]: State-of-the-art approach based on trans-
fer learning that uses unsupervised learning (KNN) to
achieve golden-free detection .

• COTD [15]: Unsupervised learning based HT detection
utilizing SCOAP parameters and k-means clustering.

• TD-Zero: Our proposed HT detection technique.
We also compare with the following three Trojan detection

approaches that do not use machine learning.
• VeriTrust [36]: A hardware Trust verification framework

based on examining verification corners.
• ICAS [37]: An extensible framework for estimating the

susceptibility of IC layouts to additive Trojans
• FANCI [38]: An algorithm for identifying malicious

logic using Boolean functional analysis
Since our proposed method relies on structural features of

the circuits, we also compare with the following state-of-the-
art structural HT detection methods:

• SFHC [39]: A HT detection method based on structural
features and host circuits.

• RF [40]: A HT detection method based on the structural
features using random forests.

• LGB [41]: HT detection using Light Gradient Boosting
based on structural features and SCOAP values.

C. Comparison of Detection Performance

Fig. 12: Comparison of HT detection performance by applying
various methods on both (a) seen and (b) unseen benchmarks.

Table III compares the performance of various detection
schemes using accuracy (ACC), false positive rate (FPR), and
false negative rate (FNR). Figure 12 presents the bar plots
to record the accuracy, recall, precision and F1 scores of each
method. To better evaluate the transferability of each approach,
two different test datasets are provided. One is composed of
known (seen) benchmarks during training phase, while another
consists of unseen (unknown) benchmarks.

By “unseen”, we refer to benchmarks with different sources
as well as functionalities. For example, we trained our model
using s13207 from ISCAS89 [34] dataset with injected Trojan
that causes functional corruption, and tested it using AES-
T1100 benchmark from Trust-Hub [31] implanted with Trojan
that causes information leakage. This strategy can remove bias
from our model. It also tests the speculation capacity of the
proposed zero-shot learning method.

As we can see from Table III, the SVM model achieves 75%
accuracy for known samples, and RF model achieves 70%.
Their performances falls behind HTNet and proposed method.
This observation is supported by the intrinsics of RF. RF’s
worst performance is expected since it makes decisions based



10

TABLE III: Comparison of HT detection accuracy (ACC), false positive rate (FPR), and false negative rate (FNR). While SVM
and RF require golden models, HTNet, COTD and TD-Zero are golden-free HT detection methods.

SVM [24] RF [25] HTNet [27] COTD [15] TD-Zero
Methods ACC FPR FNR ACC FPR FNR ACC FPR FNR ACC FPR FNR ACC FPR FNR improv
Known 0.75 0.13 0.12 0.70 0.25 0.05 0.90 0.07 0.03 1.00 0.0 0.0 0.97 0.02 0.01 -0.03%

Unknown 0.59 0.27 0.14 0.32 0.33 0.035 0.82 0.07 0.11 0.61 0.23 0.16 0.93 0.05 0.02 13.4%
Average 0.67 0.20 0.13 0.51 0.29 0.20 0.86 0.07 0.07 0.80 0.12 0.08 0.95 0.35 0.15 10.5%

on a sequence of logical selections which is unreliable for
HT detection and vulnerable to obfuscation. Their problems
are revealed by their relatively low recall scores, which are
< 70%. Intuitively, a low recall score inflicts high proportion
of false negative which demonstrates a high chance to bypass
HT detection. This limitation comes from their poor expressive
ability compared to HTNet and proposed method. When it
comes to unknown benchmarks, these problems are further
aggravated and their performance declines (even below 60%).
This is expected as both SVM and RF rely on local knowledge
from training samples to make decisions. When it comes to
unknown benchmarks, any new features will appear ambigu-
ous to them. Both SVM and RF possess a very low precision
for unseen samples. It represents the problem that they tend
to predict benign inputs as malicious. Features from unseen
benchmarks are highly-likely to be classified as malicious
since they are different from those of known samples.

A limiting factor for SVM and RF based Trojan detection is
that they require golden reference models. Specifically, these
two supervised ML methods requires Trojan-free (golden) de-
signs during the training phase. This is unrealistic in IP-based
SoC design framework since the SoC design house has only
one version of each IP, which may or may not have Trojan. Our
golden-free solution using zero-shot learning addresses this
fundamental challenge. Although golden designs are necessary
during the training phase, our zero-shot learning framework
does not require any golden model during the testing phase.
As discussed in Section II-D, any structural alternation or
unnatural testability changes due to malicious implants are
extracted as general knowledge in zero-shot learning. So when
a new class that was not present in the training data needs to
be recognized, the model uses its understanding of the general
knowledge to make predictions. By comparing the attributes
of the new class to those of the known classes, the model can
infer which category the new class is closer to.

HTNet address the challenge of golden-free in a different
way. HTNet applies transfer-learning, where lightweight re-
training is performed for each unseen benchmark, so that they
can maintain a decent 87% accuracy. However, it still suffers
from relatively low 0.75 recall score for unknown samples.
In contract, the proposed method applies zero-shot learning,
which requires no re-training to obtain an accuracy as high as
93%, with recall of 0.92 and precision of 0.93, respectively.

COTD is another golden-free detetcion framework, which
applies k-means clustering algorithm for classification based
on Euclidean distance. As discussed in Section II-C, Euclidean
distance is not beneficial for Trojan detection. Though COTD
achieves 100% accuracy for known benchmark circuits, how-
ever, it fails miserably (61% accuracy) for unseen/unknown
benchmarks. This is primarily due to the fact that COTD
directly applies the tuple of SCOAP parameters for detection

without prepossessing.

TABLE IV: Accuracy comparison between TD-Zero and non-
ML methods.

Methods Acc (Seen) Acc (Unseen) Time (s) Golden-Chips

VeriTrust 0.96 0.93 128.8 Yes
ICAS 0.92 0.47 13.2 Yes

FANCI 0.99 0.28 327.6 No
TD-Zero 0.97 0.93 44.6 No
Table IV compares the detection accuracy of our approach

(TD-Zero) with the three non ML-based methods on seen and
unseen benchmarks. The table also shows the requirement
of golden reference model (chip) as well as the detection
time (seconds). As we can see from the results, our proposed
method achieves the overall best performance. VeriTrust also
has good performance on unseen benchmarks since it is insen-
sitive to the implementation style of HTs, but it requires the
golden-reference model. ICAS is the fastest algorithm but is
fragile on unseen benchmarks. This is due to the fact that ICAS
is only designed and evaluated with three representative attacks
from the literature as described in [37]. FANCI possesses the
best accuracy for seen benchmarks but also lags behind on
unseen benchmarks. The Boolean functional analysis restricts
its applicability for Trojans with functional payload. Moreover,
it identifies many normal signals as potentially suspicious
signals. It is also most expensive in terms of detection time.

We have also performed evaluation for Trojan detection with
structural feature-based approaches, including both normal and
adversarial conditions. For normal detection, we composed our
test set containing 1000 benchmarks as a hybrid of evenly
distributed golden circuits and Trojan-implanted ones. For
adversarial detection, we generated adversarial samples, i.e.,
Trojans with obfuscation, and we follow the routine in [42] by
mixing 35% of adversarial samples into the test set to evaluate
the robustness of all methods against HT with obfuscations.
Table V shows that with respect to normal detection, our
approach and the LGB model yield comparable results, both
achieving an accuracy of 99%. However, the scenario takes
a distinctive turn when exposed to adversarial samples, as
a noticeable decline in performance becomes evident for the
remaining three methods. Notably, the accuracy of both SHFC
and RF plummets to levels lower than 60%, reminiscent of
random guess. SHFC is a signature-based detection method
relying on a pre-established library of templates, and the
RF-based technique is a pattern recognition framework, they
similarly struggle to distinguish between obfuscated patterns
and authentic golden samples, incurring a substantial false
negative rate in their evaluation results. Even the LGB model
with ensemble learning strategy, the overall accuracy reduces
to 64% , reflecting a notable drop in performance when
grappling with the complexities introduced by adversarial
patterns. In contrast, our proposed method retains acceptable
accuracy (85%).



11

TABLE V: Detection performance for hardware Trojans with Structural Feature based Methods

Evaluation
Measures

Normal Detection Adversarial Detection
SFHC [39] RF [40] LGB [41] Proposed SFHC RF LGB Proposed

Accuracy 0.79 0.85 0.93 0.93 0.55 0.58 0.64 0.85
Precision 0.82 0.87 0.94 0.90 0.60 0.77 0.75 0.88
Recall 0.78 0.84 0.92 0.97 0.54 0.56 0.62 0.83
F-Score 0.80 0.86 0.93 0.99 0.57 0.64 0.67 0.85
TPR 0.82 0.87 0.94 0.90 0.61 0.77 0.75 0.88
TNR 0.77 0.84 0.92 0.96 0.51 0.40 0.54 0.83
FPR 0.18 0.13 0.06 0.10 0.39 0.23 0.25 0.12
FNR 0.23 0.16 0.08 0.04 0.49 0.60 046 0.17

Fig. 13: The performance of our proposed method when dealing with non-malicious modifications. (a) The false positive
rates when facing non-malicious modifications, and (b) the detection accuracy of proposed method against adversarial attacks
including non-functional obfuscation modifications.

D. False Positive Evaluation

The false positive rates (FPRs) should be taken into consid-
eration when dealing with non-malicious (non-Trojan) modifi-
cations. To evaluate this, we have injected extra gates to craft
non-malicious samples. We also adopted the idea from [43] to
craft adversarial samples, which can be considered as a com-
bination of malicious implants and non-malicious modification
for obfuscation purposes. We repeat the testing process for 10
trails to obtain comprehensive evaluation. The false positive
rate is presented in Figure 13(a). For adversarial samples, the
detection rate is presented in Figure 13(b).

As shown in the figure, the FPRs of our proposed method is
constantly below 5%. This behavior highlights our method’s
ability to accurately discriminate between malicious and non-
malicious modifications. In terms of adversarial samples,
our evaluation demonstrates the remarkable resilience of our
model against the adversarial Trojans proposed in [43]. The
attack works by introducing non-Trojan modification to mess
up the feature patterns to confuse ML algorithms. However,
the figure demonstrates that the performance of our model
(detection accuracy) remains high even under various obfus-
cation related modifications. The success of our framework
comes from the fact that it does directly compare the circuit
structures, instead it extracts general knowledge of numerous
malicious and benign benchmarks to grasp the key differences
between them. In fact, the information of circuits are carried
out and processed through the forward pass (FP) of graph con-
volutional network (GCN). For non-malicious modifications,

they cause little contribution to the feature map in hidden
layers, therefore doesn’t significantly affect the final outputs.

To illustrate the impact of malicious as well as non-
malicious modifications, we show the feature map spectrum of
four circuits: the original circuit, the one with non-malicious
modification, the one with malicious modification, and an-
other malicious modification with obfuscation patterns. We
also compute the similarity distance between each benchmark
and the original one based on the Mahalanobis distance as
described in Section III-C. For non-malicious changes (Fig-
ure 14(b)), the result circuit is much closer to the original one
compared with Trojan implanted one (Figure 14(c)). In terms
of adversarial samples (Figure 14(d)), since the malicious
modification has major impact over the circuit, the similarity
distance (Mahalanobis distance) from it to the original circuit
is still far.

E. Knowledge Extraction Evaluation

The effectiveness of TD-Zero is also demonstrated by
exploring its ability to extract general knowledge from bench-
marks. We categorize data samples into four types, benign
and malicious benchmarks that are already-seen during the
training phase as well as the same distribution of those unseen
benchmarks. Next, we gather the extracted knowledge for each
of them. Figure 6 shows the extracted knowledge from our
GCN flow is converted to a compact form of 32 features by
dense layers. To better visualize the features, we first compute



12

Fig. 14: The inner feature map of four different benchmark
circuits. (a) The original benign benchmark, (b) benchmark
with non-malicious modification, (c) benchmark with mali-
cious modification (Trojan implanted), and (d) benchmark with
Trojan implanted and non-Trojan obfuscation. The similarity
distances are computed based on the Mahalanobis distance as
outlined in Section III-C.

a real-valued parameter matrix L based on our learned metric
M so that M = LTL. Then notice:√

(x− x′)TM(x− x′) =
√
(Lx− Lx′)T (Lx− Lx′)

It indicates that, the Euclidean distance between Lx,Lx′, is
equivalent to the Mahalanobis distance between x and x′.
Therefore, the clusters and boundaries of knowledge can be
intuitively visualized by plotting Lx values. Next, we apply
Principal component analysis (PCA) to further reduce feature
number to 3. PCA is a common data analysis method used
for dimension reduction of high-dimensional data, and can be
used to extract the main features for better illustration.

The visualization of features are presented in Figure 15.
There is a clear separation for benign and malicious samples.
Even for unseen benchmarks, our scheme remains functional.
The extracted features from unseen malicious samples are
much closer to seen malicious ones, and the same for benign
benchmarks. This proves that TD-Zero can indeed extract
general knowledge rather than individually-specific features,
which explains the promising performance of TD-Zero for
unseen benchmarks as shown in Table III.

F. Metric Learning Evaluation

With general knowledge obtained in previous steps, we
evaluate the effectiveness of our metric learning scheme by
comparing the HT detection performance with different met-
rics. In our evaluation, we take p = 1 Minkowski (Manhat-
tan), p = 2 Minkowski (Euclidean), Chebyshev and Cosine

Fig. 15: The distribution of ternary features for four different
class of samples, generated by performing dimension reduction
(PCA ) on extracted knowledge.

Fig. 16: Comparison of HT detection accuracy by applying
various metrics on GCN’s extracted knowledge from several
all involved benchmarks. Our proposed detection framework
with metric learning provides averagely more than 90% accu-
racy for all tested benchmarks, including large scale circuits
such as s15850 and s35932.

similarity. Results are presented in Figure 16. Even with
extracted knowledge from GCN, the performance of the first
four approaches suffer from instability. Instead, our proposed
detection framework with metric learning scheme provides
more than 90% accuracy for all tested benchmarks, including
large scale circuits such as s15850 and s35932..

G. ML Overhead Analysis

Table VI compares the average overhead of various detec-
tion schemes. We present the required time, memory resources
and CPU efficiency during training phase, along with the
necessity for golden-chips during testing phase. The SVM
approach is the most economic in terms of training cost. It



13

can be trained within 2 hours and only requires 17.55 W of
power consumption. In contrast, HTNet is very costly, it needs
more than 6 hours to complete training phase and it introduces
highest power consumption. Our proposed method (TD-Zero)
requires more memory space during training phase since it
builds complicated structure than the others. However, TD-
Zero performs better than HTNet in terms of training time as
well as power consumption.
TABLE VI: Comparison of Training Cost and Data Resources.

Models Time(s) Memory(MB) Power(W) Golden-Chips

SVM 6133.1 67.8 17.55 Yes
RF 8074.2 299.9 32.55 Yes

COTD 9986.7 128.5 28.96 No
HTNET 44215.0 1024.0 54.16 No
TD-Zero 11377.6 1377.2 23.16 No

H. Scalability Evaluation

Scalability is another important aspect of performance eval-
uation, as scalability closely affects the usability of proposed
method. Consequently, designers must ensure their HT de-
tection scheme provides acceptable accuracy when deployed
on large-scale of benchmarks. Figure 17 shows the variation
of 4 different HT detection over each testing benchmarks.
The number of signals of each benchmark is provided in
Section IV-A for reference. To better evaluate the effect of
scales, both small-scale designs (e.g., c2670) and large-scale
designs (e.g., S38417) are considered.

Fig. 17: Relative performance of RF (blue), SVM (orange),
COTD (yellow), HTnet (purple), and TD-Zero (green) over
different benchmarks.

As we can see from the histogram, model performance
varies across designs. There are two major trends we can
observe from the statistics. The first one is the inevitable
decrease of model accuracy of light-weight models (SVM,
RF). The simple structure of these two models is the bottleneck
for feature extraction and expression. Both SVM and RF are
based on sequential space separation, so only limited pattern of
features can be recognized. When dealing with large bench-
marks with overwhelming knowledge space, the complexity
and amount of features exceed their capacity. The second
observation is the relative stable performance of HTnet and
TD-Zero. For HTnet, the transfer learning process guarantees
the ML model always gets familiar with new features from
unseen benchmarks. While for TD-Zero, we consider the idea

of extracting general knowledge as the essential advantage. In
this way, ML models are always looking for key information
from input, regardless of the unrelated parts of the design.
Also, TD-Zero provides better overall performance compared
to HTnet. Moreover, TD-Zero shows a reverse trend over
SVM and RF, where its performance goes up when dealing
with some of the large designs. We consider the common
knowledge as the critical reason for this scenario.

V. CONCLUSION

While machine learning (ML) techniques are widely applied
in hardware Trojan (HT) detection, they suffer from challenges
such as requirement of golden chips, expert knowledge based
feature selection, and unreliable distance metric. In this paper,
we propose a novel hardware Trojan (HT) detection scheme
using zero-shot learning, which requires no golden reference
during testing (detection) phase. The trained model can be
utilized for unseen benchmarks without any further re-training.
Moreover, it provides stable accuracy for diverse benchmarks,
and is able to adjust its distance measure through metric
learning for improved performance. Extensive experimental
evaluation using a wide variety of benchmarks demonstrated
that our approach can achieve high detection accuracy while
maintaining reliable recall and precision score. Our studies
also reveal that our proposed framework outperforms state-of-
the-art approaches in terms of detection accuracy (10.5% on
average), stability as well as transferability, making it suitable
for detecting unknown HTs in unseen benchmarks.

ACKNOWLEDGMENTS

This work was partially supported by the National Science
Foundation (NSF) grant CCF-1908131.

REFERENCES

[1] J. Lowdermilk et al., “Towards zero trust: An experience report,” in
2021 IEEE Secure Development Conference (SecDev), 2021, pp. 79–85.

[2] Ma et al., “Test generation for sequential circuits,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 7,
no. 10, pp. 1081–1093, 1988.

[3] M. T. Ibn Ziad, M. A. Arroyo, E. Manzhosov, R. Piersma, and
S. Sethumadhavan, “No-fat: Architectural support for low overhead
memory safety checks,” in 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA), 2021, pp. 916–929.

[4] M. Ozsoy, K. N. Khasawneh, C. Donovick, I. Gorelik, N. Abu-Ghazaleh,
and D. Ponomarev, “Hardware-based malware detection using low-level
architectural features,” IEEE Transactions on Computers, vol. 65, no. 11,
pp. 3332–3344, 2016.

[5] K. N. Khasawneh, M. Ozsoy, C. Donovick, N. Abu-Ghazaleh, and
D. Ponomarev, “Ensemble learning for low-level hardware-supported
malware detection,” in International Symposium on Recent Advances in
Intrusion Detection. Springer, 2015, pp. 3–25.

[6] Z. Pan, J. Sheldon, and P. Mishra, “Test generation using reinforcement
learning for delay-based side-channel analysis,” in ICCAD, 2020.

[7] Z. Pan and P. Mishra, “Automated test generation for hardware trojan
detection using reinforcement learning,” in Proceedings of the 26th Asia
and South Pacific Design Automation Conference, 2021, pp. 408–413.

[8] Z. Pan, J. Sheldon, C. Sudusinghe, S. Charles, and P. Mishra, “Hardware-
assisted malware detection using machine learning,” in 2021 Design,
Automation & Test in Europe Conference & Exhibition (DATE). IEEE,
2021, pp. 1775–1780.

[9] S. Narasimhan, X. Wang, D. Du, R. S. Chakraborty, and S. Bhunia,
“Tesr: A robust temporal self-referencing approach for hardware tro-
jan detection,” in 2011 IEEE International Symposium on Hardware-
Oriented Security and Trust, 2011, pp. 71–74.



14

[10] Y. Zheng, S. Yang, and S. Bhunia, “Semia: Self-similarity-based ic
integrity analysis,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, pp. 37–48, 2016.

[11] Y. Liu, K. Huang, and Y. Makris, “Hardware trojan detection through
golden chip-free statistical side-channel fingerprinting,” in Proceedings
of the 51st Annual Design Automation Conference, 2014, pp. 1–6.

[12] T. Hoque, S. Narasimhan, X. Wang, S. Mal-Sarkar, and S. Bhunia,
“Golden-free hardware trojan detection with high sensitivity under
process noise,” Journal of Electronic Testing, vol. 33, no. 1, pp. 107–
124, 2017.

[13] A. Vakil, “Golden-chip free side channel delay analysis test for hardware
trojan and recycled ic detection,” Ph.D. dissertation, George Mason
University, 2021.

[14] A. Waksman, M. Suozzo, and S. Sethumadhavan, “Fanci: Identification
of stealthy malicious logic using boolean functional analysis,” in Pro-
ceedings of ACM SIGSAC Conference on Computer Communications
Security. New York, NY, USA: ACM, 2013, pp. 697–708.

[15] H. Salmani, “Cotd: Reference-free hardware trojan detection and recov-
ery based on controllability and observability in gate-level netlist,” IEEE
Transactions on Information Forensics and Security, vol. 12, no. 2, pp.
338–350, 2016.

[16] B. Cakır and S. Malik, “Hardware trojan detection for gate-level ics
using signal correlation based clustering,” in 2015 Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2015, pp. 471–476.

[17] Chen et al., “Hardware trojan detection in third-party digital intellectual
property cores by multilevel feature analysis,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 7, pp. 1370–1383, 2018.

[18] Y. Jin, D. Maliuk, and Y. Makris, “Post-deployment trust evaluation
in wireless cryptographic ics,” in 2012 Design, Automation & Test in
Europe Conference & Exhibition (DATE). IEEE, 2012, pp. 965–970.

[19] X. Chen et al., “Hardware trojan detection in third-party digital intellec-
tual property cores by multilevel feature analysis,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 7, pp. 1370–1383, 2017.

[20] X. Chen, L. Wang, Y. Wang, Y. Liu, and H. Yang, “A general framework
for hardware trojan detection in digital circuits by statistical learning
algorithms,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 36, no. 10, pp. 1633–1646, 2016.

[21] T. Iwase, Y. Nozaki, M. Yoshikawa, and T. Kumaki, “Detection tech-
nique for hardware trojans using machine learning in frequency domain,”
in 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE).
IEEE, 2015, pp. 185–186.

[22] R. Elnaggar, K. Chakrabarty, and M. B. Tahoori, “Run-time hardware
trojan detection using performance counters,” in 2017 IEEE Interna-
tional Test Conference (ITC). IEEE, 2017, pp. 1–10.

[23] E.-R. Zhou, S.-Q. Li, J.-H. Chen, L. Ni, Z.-X. Zhao, and J. Li, “A
novel detection method for hardware trojan in third party ip cores,”
in 2016 International Conference on Information System and Artificial
Intelligence (ISAI). IEEE, 2016, pp. 528–532.

[24] K. Hasegawa, M. Yanagisawa, and N. Togawa, “A hardware-trojan
classification method using machine learning at gate-level netlists based
on trojan features,” IEICE, vol. 100, no. 7, pp. 1427–1438, 2017.

[25] ——, “Trojan-feature extraction at gate-level netlists and its application
to hardware-trojan detection using random forest classifier,” in ISCAS.
IEEE, 2017, pp. 1–4.

[26] A. Kulkarni, Y. Pino, M. French, and T. Mohsenin, “Real-time anomaly
detection framework for many-core router through machine-learning
techniques,” ACM Journal on Emerging Technologies in Computing
Systems (JETC), vol. 13, no. 1, pp. 1–22, 2016.

[27] S. Faezi, R. Yasaei, and M. A. Al Faruque, “Htnet: Transfer learning for
golden chip-free hardware trojan detection,” in 2021 Design, Automation
& Test in Europe Conference & Exhibition (DATE). IEEE, 2021, pp.
1484–1489.

[28] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching net-
works for one shot learning,” Advances in neural information processing
systems, vol. 29, 2016.

[29] G. J. McLachlan, “Mahalanobis distance,” Resonance, vol. 4, no. 6, pp.
20–26, 1999.

[30] Z. Wu, S. Pan, F. Chen, G. Long, C. Zhang, and S. Y. Philip, “A
comprehensive survey on graph neural networks,” IEEE transactions on
neural networks and learning systems, vol. 32, no. 1, pp. 4–24, 2020.

[31] “TrustHub.org: Trust-HUB,,” http://trust-hub.org/ benchmarks/trojan.
[32] Y. Lyu and P. Mishra, “Scalable activation of rare triggers in hardware

trojans by repeated maximal clique sampling,” TCAD, 2021.
[33] “ISCAS85 benchmarks,” https://filebox.ece.vt.edu/˜mhsiao/iscas85.html.
[34] “ISCAS benchmarks,” https://filebox.ece.vt.edu/˜mhsiao/iscas89.html.
[35] Sweeney et al., “Circuitgraph: A python package for boolean circuits,”

Journal of Open Source Software, 2020.
[36] J. Zhang, F. Yuan, L. Wei, Z. Sun, and Q. Xu, “Veritrust: Verification for

hardware trust,” in Proceedings of the 50th Annual Design Automation
Conference, 2013, pp. 1–8.

[37] T. Trippel, K. G. Shin, K. B. Bush, and M. Hicks, “Icas: an extensible
framework for estimating the susceptibility of ic layouts to additive
trojans,” in 2020 IEEE Symposium on Security and Privacy (SP). IEEE,
2020, pp. 1742–1759.

[38] A. Waksman, M. Suozzo, and S. Sethumadhavan, “Fanci: identifica-
tion of stealthy malicious logic using boolean functional analysis,” in
Proceedings of the 2013 ACM SIGSAC conference on Computer &
communications security, 2013, pp. 697–708.

[39] Q. Liu, P. Zhao, and F. Chen, “A hardware trojan detection method based
on structural features of trojan and host circuits,” IEEE Access, vol. 7,
pp. 44 632–44 644, 2019.

[40] T. Kurihara and N. Togawa, “Hardware-trojan detection based on the
structural features of trojan circuits using random forests,” IEICE Trans-
actions on Fundamentals of Electronics, Communications and Computer
Sciences, vol. 105, no. 7, pp. 1049–1060, 2022.

[41] R. Sharma, G. Sharma, M. Pattanaik, and V. Prashant, “Structural and
scoap features based approach for hardware trojan detection using shap
and light gradient boosting model,” 2023.

[42] S. Zhou, C. Liu, D. Ye, T. Zhu, W. Zhou, and P. S. Yu, “Adversarial
attacks and defenses in deep learning: From a perspective of cyberse-
curity,” ACM Computing Surveys, vol. 55, no. 8, pp. 1–39, 2022.

[43] Nozawa et al., “Generating adversarial examples for hardware-trojan
detection at gate-level netlists,” Journal of Information Processing,
vol. 29, pp. 236–246, 2021.

Zhixin Pan is a Ph.D student in the Department
of Computer & Information Science & Engineering
at the University of Florida. He received his B.E.
in the Department of Software Engineering from
Huazhong University of Science & Technology,
Wuhan, China in 2015. His area of research includes
Cyber & Hardware Security, post-silicon debug, data
mining and machine learning.

Prabhat Mishra is a Professor in the Department of
Computer and Information Science and Engineering
at the University of Florida. He received his Ph.D. in
Computer Science from the University of California
at Irvine in 2004. His research interests include
embedded and cyber-physical systems, hardware se-
curity and trust, and energy-aware computing. He
currently serves as an Associate Editor of IEEE
Transactions on VLSI Systems and ACM Transac-
tions on Embedded Computing Systems. He is an
IEEE Fellow and an ACM Distinguished Scientist.


