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Abstract—Hardware Trojans are serious threat to security
and reliability of computing systems. It is hard to detect these
malicious implants using traditional validation methods since an
adversary is likely to hide them under rare trigger conditions.
While existing statistical test generation methods are promising
for Trojan detection, they are not suitable for activating extremely
rare trigger conditions in stealthy Trojans. To address the
fundamental challenge of activating rare triggers, we propose a
new test generation paradigm for Trigger Activation by Repeated
Maximal Clique sampling (TARMAC). The basic idea is to utilize
a satisfiability modulo theories (SMT) solver to construct a
test corresponding to each maximal clique. This paper makes
three fundamental contributions: (1) it proves that the trigger
activation problem can be mapped to clique cover problem,
and the test vectors generated by covering maximal cliques are
complete and compact, (2) it proposes efficient test generation
algorithms to activate trigger conditions by repeated maximal
clique sampling, and (3) it outlines an efficient mechanism to
run the clique sampling in parallel to significantly improve
the scalability of our test generation framework. Experimental
results demonstrate that our proposed approach is scalable and
it outperforms state-of-the-art approaches by several orders-of-
magnitude in detecting stealthy Trojans.

Index Terms—Trigger activation, clique cover, random sam-
pling, test generation, Trojan detection.

I. INTRODUCTION

Due to increasing complexity and stringent time-to-market
constraints, SoC supply chain involves multiple third par-
ties. Reusable Intellectual Property (IP) based SoC design
methodology is cost effective, but it introduces trust and
security concerns. A malicious third-party can insert hardware
Trojans during any stages in the development cycle starting
from design implementation to fabrication. These malicious
modifications may alter the original functionality or leak secret
information. To remain covert under in-field testing, a hard-
ware Trojan is carefully designed to be triggered by extremely
rare circuit input events. An example hardware Trojan is shown
in Figure 1 with corresponding trigger and payload. The
trigger condition is usually constructed by a few signals that
can be activated under rare conditions. Figure 1 illustrates a
beneficial way to assemble the rare signals (A, B and C) to
form a rare input event. If the selected signals are independent,
the probability of triggering this condition is multiplication
of all the probabilities of these signals. Due to the stealthy
nature of these Trojans, the trigger condition may not be
activated during traditional validation and regression testing.
Once the trigger condition is activated, the effects of the
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Fig. 1: An example hardware Trojan with a trigger condition
constructed by three rare signals (A,B,C). An attacker can
construct a valid trigger condition with (A == 0 ∧ B ==
1 ∧ C == 1). When this rare condition is satisfied, the value
of payload is changed. The alteration of payload can introduce
malfunction or information leakage.

hardware Trojan can flip the value of the payload, which could
be a signal to control the privilege, alter an important function
or send secret information to the outside [1]. Therefore, it
is paramount to have efficient validation approaches that can
activate rare trigger conditions to enable Trojan detection.

To detect hardware Trojans, various approaches have been
proposed including logic testing [2]–[7] and side-channel
analysis [8]–[13]. However, existing approaches are neither
effective nor scalable to large designs with extremely rare
trigger conditions. Logic testing requires test vectors to fully
activate trigger condition and also propagate the effects to
observable outputs. In contrast, side-channel analysis detects
hardware Trojans by observing the side effects of inserted
gates. Since the Trojans are very small (a few gates in
a million-gate design), their side-channel footprint can eas-
ily hide within process variation and environmental noise
margins [14], [15]. Although side-channel analysis does not
require activation of trigger conditions, the activation is likely
to improve the sensitivity for several types of side-channel
analysis, such as current switch-based [10], electromagnetic
radiation based [16] and delay-based [8] side-channel analysis.
Let us use the design in Figure 1 as an example to show
the benefit of trigger activation in side-channel analysis based
on dynamic current. When the trigger is not activated, the
difference between the current switches from the golden design
and the Trojan-inserted design is at most 5, which is the
number of extra signals inserted by the Trojans. It is due to
the fact that the only difference between the golden design
and the Trojan-inserted design is the shaded area in Figure 1.
However, when the trigger is activated, there would be more
switching difference from the signals that are affected by the
payload, which improves the side-channel sensitivity beyond
the process variations and environmental noise. Therefore,
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trigger activation is a fundamental problem in both logic
testing and side-channel analysis based Trojan detection.

Trigger activation is a major challenge due to the exponen-
tially large space that an adversary can exploit to construct trig-
ger conditions. Conventional validation approaches simulate
the design using millions or billions of random/constrained-
random test vectors, and hope that one of these tests will acti-
vate the trigger condition. MERO [3] is one of the constrained-
random test generation approaches that is similar to N−detect
stuck-at ATPG [17], [18]. However, it is not effective in large
designs with extremely rare trigger conditions as demonstrated
in Section III. Existing directed test generation techniques
are beneficial for known targets, but not useful for unknown
targets (trigger conditions) since it leads to exponential com-
plexity as discussed in Section II.

A. Threat Model

An attacker may insert hardware Trojans during any design
stages, and use any signals as trigger points, including primary
inputs and internal signals. In this paper, we generate tests
by analyzing the gate-level design (netlist), which may or
may not contain hardware Trojans. If the netlist that we
analyze contains hardware Trojans, our goal is to activate these
Trojans, which is similar to VeriTrust [5]. On the other hand,
when the netlist is a golden design, our goal is to generate tests
that will maximize the probability of activating the hardware
Trojans that may be inserted in the future, which is similar
to MERO [3]. Since the latter is a much harder problem, this
paper will focus on unknown future Trojans except for the
experiments in Section V-G. In the remainder of this paper,
we will use design (netlist) to represent the golden netlist
for test generation, and Design-Under-Test (DUT) to represent
the Trojan-inserted design for evaluation. DUT can be a pre-
silicon netlist or post-silicon integrated circuit.

B. Contributions

In this paper, we solve the trigger activation problem by
mapping it to the problem of covering maximal cliques in a
graph. Our goal is to activate extremely rare trigger conditions
that can be covert during traditional validation. The major
contributions of this paper are as follows:

1) To the best of our knowledge, our approach is the first
attempt to map trigger activation problem to maximal
clique cover problem. We prove that the test vectors
generated by covering maximal cliques are complete and
compact considering trigger coverage and test length.

2) We propose an efficient test generation algorithm for
Trigger Activation by Repeated MAximal Clique sam-
pling (TARMAC).

3) We outline an algorithm to support concurrent execution
of time-consuming computations to improve the scalabil-
ity of TARMAC.

4) Experimental results demonstrate that TARMAC outper-
forms the state-of-the-art test generation techniques by
several orders-of-magnitude for extremely rare-to-activate
trigger conditions in large designs.

The rest of this paper is organized as follows. Section II
surveys prior efforts in trigger activation. In Section III, we
motivate the need for this work by highlighting the drawbacks
of N−detect paradigm as well as the limitations of the state-
of-the-art test generation approaches. Section IV describes our
proposed test generation framework. Section V presents the
experimental results. Finally, Section VI concludes this paper.

II. BACKGROUND AND RELATED WORK

In this section, we outline the related efforts in test gener-
ation and provide background on maximal clique problem.

A. Directed Test Generation

Random and constrained-random tests are widely used in
traditional functional validation methodology. Unfortunately,
even billions or trillions of constrained-random tests cannot
cover many complex and corner-case scenarios in today’s
industrial designs. Directed tests are promising in such cases
to activate the specific targets that were not covered by random
or constrained-random tests. There are a wide variety of
directed test generation techniques [5], [19]–[26] for functional
validation. It is a major challenge to directly activate unknown
Trojans due to exponential complexity. For example, even for
a small ISCAS benchmark (c880 with only 451 gates) [27],
there are approximately 1011 triggers possible with only four
trigger points. The number would be exponentially higher if
we consider triggers with different number of trigger points.
Clearly, it is infeasible to generate and apply so many directed
tests to activate Trojan triggers even for a tiny benchmark.
Kitsos et al. [19] proposed a promising test generation ap-
proach to detect hardware Trojans based on combinatorial
testing to significantly reduce the test sizes while providing
mathematical guarantees for search space coverage. There
are some recent efforts in Trojan detection using concolic
testing [28], [29]. Unfortunately, these techniques are not
beneficial for extremely rare trigger conditions since it leads to
exponential complexity. Therefore, directed test generation is
not useful for activating rare (and unknown) trigger conditions
in large designs.

B. Statistical Test Generation

Statistical test generation is a promising alternative to di-
rected tests. The basic idea is to activate the rare signals as
much as possible (one or more at a time) to increase the
likelihood of activating the actual (unknown) trigger consisting
of rare signals. Extensive research has been done on statistical
test generation combining ATPG and N−detect paradigm [3].
In [3], the authors proposed a tool named MERO to generate
N−detect test for logic testing. Algorithm 1 shows the main
steps of MERO. The goal of N−detect is to generate test
vectors to activate each rare signal N times. MERO achieves
N−detect criteria by constrained random approach. It starts
with a large number of random test vectors, and flips each
bit of random vectors to increase N−detect criteria. If a flip
can increase the activation of rare signals which have not
been activated by N times, the algorithm keeps the flipped
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pattern (reverses the flipping otherwise). MERO is shown to be
effective in small designs (e.g., ISCAS benchmarks [27], [30])
with relatively easy-to-activate trigger conditions (with four
rare signals, and larger than 0.1 rareness threshold). However,
MERO is unsuitable for large designs (scalability problem) as
well as hard-to-detect triggers [7] as demonstrated in Section
III.

Algorithm 1 MERO [3]
1: procedure MERO(R,N )
2: Tests = {}
3: simulate design with R random vectors
4: sort random vectors by the number of rare signal hits
5: for each vector u in random vectors do
6: for each bit ui in u do
7: Flip ui and simulate the design
8: if N−detect criteria does not improve then
9: reverse flipping

10: end if
11: end for
12: Tests = Tests ∪ u, if u improves N -detect criteria
13: end for
14: end procedure

C. Maximal Clique Problem

Clique decision problem is listed as one of Karp’s 21
NP-complete problems [31]. Maximal clique problem [32]
is the problem that given a set of vertices and their con-
nectivity, find the maximal clique that no other vertex can
be added. As proved by Moon and Moser [33], the number
of maximal cliques is O(3n/3) for n vertices in the worst
case. Therefore, the effort of listing all maximal cliques is
exponential to the number of vertices. Many efficient and
parallel approaches [34], [35] exist in practice. BronKerbosch
algorithm [34] is a widely used approach to list all maximal
cliques in a graph. It is a recursive procedure that keeps track
of three disjoint sets R, P and X , representing constructed
clique, candidate vertices and excluded vertices, respectively.
The existence of X ensures that maximal cliques are not
repeated. Each recursive call adds one vertex from P to R
and reports maximal clique when P and X are both empty.
In this paper, we utilize maximal clique to solve the trigger
activation problem as described in Section IV.

III. MOTIVATION

N−detect paradigm has been successful in both logic
testing [3], [18] and side-channel analysis [36]. N−detect
paradigm requires the test set to activate each rare signal
N times and is statistically effective for trigger activation
given “sufficiently” large N [3]. The probability of activating
trigger conditions will significantly decrease when the trigger
condition is composed of very rare signals. It is expected
that increasing N can increase the chances of hitting trigger
conditions. However, larger N will significantly deteriorate
the test generation performance and increase the required
test length. MERO incorporated N−detect idea [3] with
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Fig. 2: The number of times each rare signal is activated by the
test vectors generated by MERO for ISCAS benchmarks [27],
[30] and MIPS processor [37]. The number of initial random
vectors is 100K for ISCAS benchmarks and one million for
MIPS processor. N is fixed to be 1000 for N−detect criteria
(green line). Extremely rare signals are almost never activated
while not-so-rare signals are activated more than N times.

deterministic flipping method as shown in Algorithm 1, and
the quality of generated test vectors is highly dependent on the
quality of the initial random vectors. MERO has the following
two major problems that make it ineffective for activating
hard-to-detect trigger conditions in large designs.

Scalability Problem: Although MERO claimed to imple-
ment N−detect, the generated test vectors cannot guarantee
that each rare signal is activated at least N times. With the
same configuration (R = 100K,N = 1000) for the same
ISCAS benchmarks [3] and (R = 1M,N = 1000) for MIPS
processor from [37], we examined the number of times each
rare signal is activated by MERO as shown in Figure 2. There
are some extremely rare signals (outliers below the green line)
that are almost never activated in most benchmarks, while
some signals (outliers above the green line) are activated more
than N times. To ensure N−detect for all rare signals, the
number of initial random vectors should be extremely large
even for small benchmarks. To show how the number of
random vectors affects N−detect in MERO, we set N = 1000
and vary the number of random vectors. The percentage of
rare signals that are activated more than 1000 times is shown
in Figure 3. As expected, the percentage of N−detect rare
signals grows rapidly when the number of random vectors is
small, but very slowly beyond a specific number. It is expected
that for large designs, billions of random vectors are required
to satisfy N = 1000. MERO requires one simulation per bit
flipping, the total number of simulations would be in the order
of billions or trillions, which makes this approach impractical
for large designs.

Poor Trigger Coverage: MERO uses a vague notion of
N being “sufficiently” large to ensure high trigger coverage.
In fact, MERO simply selected N = 1000 in [3] for all
benchmarks. Despite the fact that all rare signals are activated
at least 1000 times in the small benchmark, such as c5315,
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Fig. 3: The percentage of rare signals that are activated at least
N times by MERO with the same configurations as Figure 2.
The percentage of N−detect rare signals grows rapidly when
the number of random vectors is small, but very slowly beyond
a specific number of random vectors.

(see Figure 2), the trigger coverage is only 50.6% (see Sec-
tion V-C). In other words, N = 1000 is not “sufficiently”
large for such a small benchmark. For larger designs with
more trigger points and lower rareness threshold, larger N is
required to reach even a reasonable coverage by MERO, which
needs drastically larger number of initial random vectors as
discussed above, making scalability issue even worse.

Given the poor trigger coverage and scalability issue of
MERO and N−detect, new paradigms are need to solve trigger
activation problem. In this paper, we address the fundamental
challenge of trigger activation by mapping it to clique cover
problem and finding the test patterns to cover maximal cliques,
as outlined in the next section.

IV. SCALABLE ACTIVATION OF RARE TRIGGERS

In this section, we propose a new test generation paradigm
(TARMAC) to solve trigger activation problem by mapping
it to maximal clique cover problem, as shown in Figure 4.
Our approach first constructs a satisfiability graph based on
the design (e.g., gate-level netlist). Next, it finds maximal
satisfiable cliques (MSCs) in the satisfiability graph. Finally,
it utilizes a SAT solver [38] to generate one test for each
maximal satisfiable clique. This section is organized as fol-
lows. We first define a few terms that are used in the paper.
Next, we describe the mapping of trigger activation to clique
cover problem and prove that the generated test set is com-
plete and compact. Finally, we describe three test generation
algorithms to find and cover maximal satisfiable cliques using
directed clique enumeration (Algorithm 2), random sampling
and lazy construction of satisfiability graph (Algorithm 3), and
scalable TARMAC with multi-threaded execution (Algorithm
4), respectively.

A. Definition and Notations

Without any loss of generality, in this paper, we consider
gate-level implementation of designs. We call the graph level
representation of the design a Design Graph (DG), where
each vertex represents a signal and each edge represents the

Design (netlist)

Satisfiability Graph (SG)

Maximal Satisfiable Cliques

MSC1 MSC2
. . . MSCm

Tests
t1 t2 . . . tm

Fig. 4: Overview of our proposed (TARMAC) paradigm.

connectivity (via a gate). For each signal, we compute its
logic expression (le) from its corresponding logic cone. For
example, the logical expression of vertex A in Figure 1 is
A.le = x1∨x4. For sequential circuits, we assume that design-
for-debug architecture (e.g., scan chain) exists and the logic
expression can be formulated using any register values.

We assume that a subset of signals and their rare values
rv are given, from which the trigger conditions will be
constructed. We refer to them as potential trigger signals
(PTS). PTS could be any subset of signals, selected through
static analysis or random simulation. Their rare values can be
arbitrarily chosen by the designers. For example, [3] assumed
that Trojans can only be constructed from rare signals with
their less satisfied values which are identified using random
simulation. A trigger signal is activated if it satisfies its rare
value. We define satisfiability graph as follows.

Definition 1. A Satisfiability Graph (SG) consists of vertices
representing PTS and their satisfiability connections, SG =
{V, E} where V == PTS. If (u.le == u.rv) ∧ (v.le ==
v.rv) is satisfiable, then there exists an edge between u and
v, i.e., u ∈ E(v) and v ∈ E(u).

Let us consider the example in Figure 1 with four PTS (A,
B, C, D) and their corresponding rare values (0, 1, 1, 0). To
construct the satisfiability graph for this example, we need to
use their logical expressions described above and determine
their connectivity. To find out if there is an edge between any
two vertices, we check if any input (test) pattern exists that
satisfies both rare values. For example, the edge between A
and B exists since input pattern 01000 satisfies the condition
(x1∨x4 == 0)∧(x2∧¬x3 == 1). In other words, 01000 can
activate both A and B at the same time with their respective
rare values. On the other hand, there is no input pattern that
satisfies (¬(x3∨x4) == 1)∧(¬(x3⊕x4)∨x5 == 0), i.e., there
is no edge between C and D. The constructed satisfiability
graph is shown in Figure 5 (logic expressions and rare values
are shown inside parentheses). It is easy to see that SG is an
undirected graph.

B. Mapping Trigger Activation to Clique Cover Problem

A fundamental contribution of this paper is to show that
trigger activation problem can be mapped to clique cover
problem. First, we show that any valid trigger condition forms
a clique in satisfiability graph SG.
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Lemma 1. For any valid trigger condition with k rare signals
{v1, v2, ..., vk}, the vertices {v1, v2, ..., vk} form a k−clique
in the satisfiability graph SG.

Proof. We prove Lemma 1 by contradiction. Assume that
there is no edge between vi and vj . By definition, condition
(vi.le == vi.rv) ∧ (vj .le == vj .rv) is not satisfiable.
Therefore, there will be no test that can activate vi and vj
together, invalidating the trigger condition. Since there is an
edge between any pair of vertices, {v1, v2, ..., vk} form a
k−clique in the satisfiability graph SG.

Note that it is possible to have a clique in the satisfiability
graph that does not represent a valid trigger condition. For
example, consider the clique ABD in Figure 5. There is
no input pattern that satisfies the condition (x1 ∨ x4 ==
0) ∧ (x2 ∧ ¬x3 == 1) ∧ (¬(x3 ⊕ x4) ∨ x5 == 0), although
there are edges between any two of the three vertices. In other
words, ABD forms a clique in SG, but it does not represent
a valid trigger condition. Clearly, an adversary will not use
it as a Trojan trigger since it cannot be triggered. For the
ease of illustration, we define satisfiable clique in Definition 2.
The relationship between satisfiable cliques and valid trigger
conditions is shown in Lemma 2 and Lemma 3.

Definition 2. A satisfiable clique SC is a clique in a satisfia-
bility graph SG, where all the vertices of SC can be activated
by the same input vector.

Lemma 2. Any valid trigger condition can be represented as
a satisfiable clique SC in satisfiability graph SG.

Proof. Lemma 1 proves that any valid trigger condition forms
a clique in SG. Validity of this trigger condition ensures that
all vertices can be activated by the same input vector. By
Definition 2, this clique is a satisfiable clique.

Lemma 3. Any satisfiable clique SC in satisfiability graph
SG represents a valid trigger condition.

Proof. For any satisfiable clique, all its vertices can be acti-
vated by a test vector by Definition 2. Thus, these vertices
represent a valid trigger condition.

Finally, we explore the mapping from the set of valid trigger
conditions to the set of satisfiable cliques in Theorem 1. It
points out a new way to solve trigger activation problem, i.e.,
finding test vectors to cover satisfiable cliques in a satisfiability
graph.

Theorem 1. The mapping between the set of valid trigger
conditions and the set of satisfiable cliques is a bijection.

A(x1 ∨ x4, 0)

B(x2 ∧ ¬x3, 1)
C(¬(x3 ∨ x4), 1)

D(¬(x3 ⊕ x4) ∨ x5, 0)

Fig. 5: Satisfiability graph with 4 PTS (A,B,C,D) from
Figure 1, with logic expressions and rare values in parentheses.

Proof. As different trigger conditions consist of at least one
different rare signal, the corresponding satisfiable cliques have
at least one different vertex. Hence, no two valid trigger
conditions map to the same satisfiable clique, i.e., the mapping
from the set of valid trigger conditions to the set of satisfiable
cliques is an injection from Lemma 2. Similarly, we can prove
that the mapping from the set of satisfiable cliques to the set
of valid trigger conditions is also an injection from Lemma 3.
Therefore, we have a one-to-one mapping between these two
sets.

C. Directed Test Generation Scheme

Lemma 4. If one test vector can satisfy a satisfiable clique,
all its subgraphs can be satisfied by the same test vector.

Proof. Let R be a subgraph of a satisfiable clique SC. By
Definition 2, all vertices in SC can be satisfied by the same
test vector t. All vertices of R are inherently satisfiable by t
since the vertices of R is a subset of the vertices of SC.

Lemma 5. A subgraph of a satisfiable clique is also a
satisfiable clique.

Proof. For any satisfiable clique SC, its subgraphR is a clique
as SC is a clique. By Lemma 4, R is satisfiable. By definition,
R is a satisfiable clique.

Therefore, if we are able to find a test vector that can satisfy
a clique, it is not necessary to generate any more test for all
the trigger conditions represented by its subgraphs. Clearly,
the most profitable test vector is the one that can satisfy the
largest clique. Similar to cliques in graph theory, we define a
maximal satisfiable clique in Definition 3.

Definition 3. A maximal satisfiable clique (MSC) is a satis-
fiable clique to which no more vertices can be added.

Let {MSC1,MSC2, . . . ,MSCn} represents the complete
set of maximal satisfiable cliques, where n is the total number
of maximal satisfiable cliques. For example, {MSC1 = ABC,
MSC2 = AD, MSC3 = BD} represents the complete set of
maximal satisfiable cliques in Figure 5. Next, we prove that
the set of test vectors that activate all elements in {MSCi}
is optimal in activating all possible trigger conditions in the
design.

Theorem 2. Let ti be an input pattern that activates the
corresponding maximal satisfiable clique MSCi. Then, the
test set T = {ti} is complete and compact, i.e., it is the
shortest test set that can activate all valid trigger conditions.

Proof. We first prove the completeness of our test set. For
any valid trigger condition, it forms a satisfiable clique SC
by Theorem 1. By definition of maximal satisfiable cliques,
there exists some maximal satisfiable clique MSCi such that
SC ⊂ MSCi. As ti ∈ T satisfies MSCi, it inherently
satisfies satisfiable clique SC by Lemma 4. As T can satisfy all
elements in {MSCi}, it can satisfy any valid trigger condition.

Now, we prove that the test set is compact. It is easy to
see that any two maximal satisfiable cliques can never be
activated by the same test vector, otherwise, they form a larger
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satisfiable clique which contradicts the definition of maximal
satisfiable clique in Definition 3. As any maximal satisfiable
clique represents a valid trigger condition by Lemma 3, a test
set that can activate all these trigger conditions need at least
|{MSCi}|(= |T |) test vectors. Hence, no test set that satisfies
all trigger conditions can be shorter than T .

As a result, the problem of test generation for trigger
activation can be reduced and mapped to the problem of
finding maximal satisfiable cliques and generate directed test
for them. Based on Theorem 2, the generated test vectors are
the optimal solution considering both trigger coverage and test
length. For the example in Figure 5, we need exactly three tests
- t1 (01000), t2 (01100) and t3 (11010) to activate maximal
satisfiability cliques ABC, AD, and BD, respectively.

D. Test Generation Algorithms

In this section, we present two test generation algorithms
to generate test patterns by covering maximal satisfiability
cliques. Algorithm 2 (Section IV-D1) is guaranteed to generate
the complete test set (covers all the trigger conditions) but is
not scalable since it requires enumeration of potentially expo-
nential number of MSCs. In addition, it has the bottleneck
of construction of the full satisfiability graph. This algorithm
is suitable when only a small number of rare signals are in
a design. To address the scalability issue, Algorithm 3 (Sec-
tion IV-D2) replaces the enumeration problem by randomly
sampling MSCs, and it performs lazy construction of the
satisfiability graph. It is significantly faster and effective, but
cannot guarantee completeness. The reminder of this section
describes these algorithms.

1) Test Generation using Clique Enumeration: Based on
Theorem 2, we propose our first straightforward test generation
algorithm based on clique enumeration. The main steps of
this approach are shown in Algorithm 2. The procedure
of TestGeneration first parses and constructs the design
graph (DG) from the gate-level netlist, and computes all
the logic expressions. Then, the vertices of satisifiability
graph (SG) are initialized from PTS and the edges are
constructed after testing satisfiability of any two vertices
(ConstructSatisfiabilityGraph). Next, Bron-Kerbosch al-
gorithm [34] is applied to find all maximal cliques in SG. For
every clique C found in line 6, we need to find all maximal
satisfiable cliques inside C. Finally, test vectors are generated
for each maximal satisfiable clique.

Next, we prove that the generated test vectors are complete.
For any maximal satisfiable clique, it must be a subgraph of
some maximal clique C enumerated by Bron-Kerbisch [34].
Line 7 ensures that all maximal satisfiable cliques are found
when we visit C. By Theorem 2, the generated test vectors are
complete.

This approach is effective in small designs, but it lacks the
scalability due to the following three major bottlenecks:

• The computational problem of finding all maximal
cliques is NP-hard. Although BronKerbosch algo-
rithm [34] is practical in finding all maximal cliques, it
suffers from deep recursive function calls for large graphs

Algorithm 2 Test Generation by Clique Enumeration
1: procedure TestGeneration(circuit netlist CN, potential

trigger signals PTS)
2: DG = ConstructDesignGraph (CN)
3: Compute logic expressions for PTS in DG
4: SG = ConstructSatisfiabilityGraph(DG, PTS)
5: Clique set CS = Bron-Kerbosch(SG)
6: for each clique C in CS do
7: for each maximal satisfiable clique in C do
8: Use SMT solver to generate a test vector ti for

it
9: end for

10: end for
11: return Tests = {t1, t2, . . . , tn}
12: end procedure

13: procedure ConstructSatisfiabilityGraph(DG, PTS)
14: SG.V = PTS, SG.E(u) = {}
15: for u, v ∈ SG.V do
16: SAT expression S = (u.le == u.rv) ∧ (v.le ==

v.rv)
17: if satisfiabile(S) then
18: SG.E(v) = SG.E(v) ∪ {u}
19: SG.E(u) = SG.E(u) ∪ {v}
20: end if
21: end for
22: return SG
23: end procedure

with the worst running time O(3n/3), where n is the
number of vertices.

• Finding all maximal satisfiable cliques inside a large
clique (e.g., more than 20 vertices) is difficult. A brute-
force approach need to check the satisfiability of all
possible combinations. The running time is exponential
to the size of the clique.

• Algorithm 2 also has the bottleneck of constructing the
full satisfiability graph. When the number of vertices
|SG.V| is extremely large, checking if an edge exists
between two vertices requires approximately |SG.V|2/2
calls of the SMT solver, which can be prohibitive in terms
of debug time.

2) Efficient Test Generation using Clique Sampling and
Lazy Construction: To address both clique enumeration and
satisfiability graph construction issues in Algorithm 2, we
propose an on-the-fly technique (TARMAC) in Algorithm 3
that utilizes lazy construction of the satisfiability graph and
random sampling of maximal satisfiable cliques. The random
sampling makes TARMAC scalable to large designs with the
cost of completeness. For each sampled maximal satisfiable
clique, TARMAC generates one test vector for it.

Clique sampling is done by maintaining two sets of vari-
ables: cns to keep track of constraints that are satisfiable (rep-
resents vertices that are already found in a satisfiable clique),
and P to represent candidate vertices that may potentially be
added to the clique. Initially, cns is true and P contains all the
vertices. We first randomly select and remove a vertex v from



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL.40, NO.7, JULY 2021 7

candidate set P . If cns can be augmented by v.le == v.rv,
we put it into cns and remove all vertices in P that are not
connected to v (line 16). It is easy to verify that cns represents
a maximal satisfiable clique when P is empty. Parameter VN
is used to control how many times we should sample maximal
satisfiable cliques, i.e., the number of generated test vectors.

The complexity of full satisfiability graph construction is
eliminated by lazy construction. As shown in Algorithm 3,
initially every vertex is connected to every other vertices
in line 3. Whenever we find two vertices unsatisfiable (line
17), we remove the edge between these two vertices. Lazy
construction benefits large designs by generating test vectors
as soon as possible, with the cost of wasted SMT solver
calls. If we look at the example in Figure 5, Algorithm 2
disconnects C and D before searching for cliques, while
Algorithm 3 constructs a fully connected graph initially, which
may introduce multiple wasted SMT solver calls in the clique
sampling process involving C and D. These two vertices will
be disconnected in line 17-19 only when they are selected as
the first two vertices from P in line 13, with the probability
of approximately 2/|SG.V|2. Statistically, the full graph will
be constructed after |SG.V|2/2 sampling.

Algorithm 3 Test Generation using Random Sampling and
Lazy Construction (TARMAC)

1: procedure TARMAC (circuit netlist CN , potential trigger
signals PTS, maxVectorNumber VN )

2: DG = ConstructDesignGraph (CN )
3: Compute logic expressions for PTS in DG
4: SG.V = PTS, SG.E(u) = SG.V \ {u}
5: for i = 1 to V N do
6: ti = CliqueSampling(SG)
7: end for
8: return Tests = {t1, t2, . . . , tV N}
9: end procedure

10: procedure CliqueSampling(SG)
11: constraints cns = true, P = SG.V
12: while P is not empty do
13: randomly pick and remove a vertex v from P
14: if satisfiabile(cns ∧ (v.le == v.rv)) then
15: cns = cns ∧ (v.le == v.rv)
16: P = P ∩ SG.E(v)
17: else if cns has one constraint u.le == u.rv then
18: SG.E(v) = SG.E(v)\{u}
19: SG.E(u) = SG.E(u)\{v}
20: end if
21: end while
22: Use SMT solver to solve cns and return the test
23: end procedure

E. Scalable TRAMAC by Parallelization of Clique Sampling

By inspecting the process of clique sampling, we can see
that this process is highly parallelizable. To further increase
the efficiency of Algorithm 3, we add parallelism to clique
sampling, i.e., TARMAC p, as shown in Algorithm 4. Instead

of generating all VN test vectors in one thread, TARMAC p

evenly splits the task into NT threads, where each thread
generates a batch of VN p = VN /NT test vectors. In order
to minimize the overlapped efforts of covering the same
cliques by different threads, we feed a different random
seed to each batch sampling (line 7 and 8). Then, each
thread runs batchSampling independently. It sets the random
seed, and calling the modified version of clique sampling to
generate VN p test vectors. After a thread completes its job,
the generated test vectors are appended to the list of final
tests. Comparing the clique sampling in Algorithm 4 and
Algorithm 3, the only differences are line 28 and 31, where
mutex is used to safely update the edges of shared satisfiability
graph SG.E . Except for this block, the data structures are
either copied, e.g. SG.V in line 21, or are only for reading,
e.g., SG.E in line 26. For efficiency consideration, a simple
mutex is used to prevent multiple writing to SG.E , instead of
a readers-writer lock. In other words, this simple mechanism
allows multiple threads to read SG.E (line 26) while one thread
is writing to it. The only difference compared to a readers-
writer lock is that simple mutex mechanism will read old
version of SG.E in line 26, which makes P to contain one
redundant vertex. It is not critical since the redundant vertex
will be removed in a future iteration anyway. When multi-core
infrastructures are provided, TARMAC p can achieve high
efficiency improvement over TARMAC due to the parallelism
of constraints solving.

F. Effectiveness of Random Clique Sampling
In Section IV-D, we introduced two algorithms, i.e., clique

enumeration (Algorithm 2), and random clique sampling with
lazy construction (TARMAC, Algorithm 3). As expected, ran-
dom sampling cannot guarantee to find all maximal satisfiable
cliques as clique enumeration. In this section, we show why
random sampling is still effective.

Let us consider two scenarios shown in Figure 6, where the
circles of C1, C2, C3 represent maximal SAT cliques, and the
octagon represents the 8-trigger condition. The only difference
between Figure 6(a) and Figure 6(b) is the size of maximal
SAT cliques. In the large clique scenario (Figure 6(a)), the
average size of maximal SAT cliques is 200, while the average
size is 20 in the small clique scenario (Figure 6(b)). In the large
clique scenario, the 8-trigger condition is more likely to be in
the overlap areas of many maximal satisfiable cliques as shown
in Figure 6(a). In this case, random sampling (Algorithm 3)
can easily activate the trigger condition by generating a test
vector to cover any of the maximal satisfiable cliques that
are a super set of the trigger condition. On the other hand,
the size of the 8-trigger condition is close to the average
maximal clique size in the small clique scenario. As a result,
it is less likely to be activated by random sampling since it is
covered by a small number of maximal satisfiable cliques. In
the extreme case, e.g., the size of trigger condition is the same
as the size of maximal SAT cliques, we need to enumerate
all maximal SAT cliques as Algorithm 2. In fact, it is the
best any test generation approach for this case. In most of the
benchmarks, we observe a relatively large maximal satisfiable
cliques compared to trigger points, as shown in Section V-F.
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Algorithm 4 Parallelization of TARMAC
1: procedure TARMAC p(circuit netlist CN , potential trig-

ger signals PTS, maxVectorNumber VN , number of
threads NT )

2: DG = ConstructDesignGraph (VN )
3: Compute logic expressions for PTS in DG
4: SG.V = PTS, SG.E(u) = SG.V \ {u}
5: The number of vectors per thread VN p = VN /NT
6: for td = 1 to NT do // NT threads
7: seed = random()
8: Create a new thread to execute batchSampling

(SG,VN p, seed)
9: Append the generated tests to Tests

10: end for
11: return Tests = {t1, t2, . . . , tV N}
12: end procedure

13: procedure batchSampling(SG, V Np, seed)
14: random.seed(seed)
15: for i = 1 to VN p do
16: ti = CliqueSampling(SG)
17: end for
18: return batchTests = {t1, t2, . . . , tVNp

}
19: end procedure

20: procedure CliqueSampling(SG)
21: constraints cns = true, P = SG.V
22: while P is not empty do
23: randomly pick and remove a vertex v from P
24: if satisfiabile(cns ∧ (v.le == v.rv)) then
25: cns = cns ∧ (v.le == v.rv)
26: P = P ∩ SG.E(v)
27: else if cns has one constraint u.le == u.rv then
28: mutex.lock() // Protect shared graphs
29: SG.E(v) = SG.E(v)\{u}
30: SG.E(u) = SG.E(u)\{v}
31: mutex.unlock()
32: end if
33: end while
34: Use SMT solver to solve cns and return the test
35: end procedure

In summary, our paradigm reduced and mapped the problem
of trigger activation to the problem of covering maximal
satisfiable cliques. The choice between clique enumeration and
random sampling is based on the relative size of maximal
satisfiable cliques and the trigger points. When an adversary
is allowed to construct any size of trigger condition, e.g., a
size close to the maximal SAT cliques, Algorithm 2 is the
optimum way to generate tests. However, it is not realistic
in practice. An adversary tends to select a small number of
trigger points considering area and power constraints in the
design and to bypass side-channel analysis. In this scenario,
random sampling (Algorithm 3) further reduces the problem
size by selecting the representative maximal satisfiable cliques.
As shown in the above example, each 8-trigger condition could
possibly be covered by a large number of maximal satisfiable

C1 C1

C C
2

3C C2 3

(a) Large clique scenario (b) Small clique scenario

Fig. 6: The relative size of trigger conditions compared to
maximal SAT cliques. (a) The average size of maximal SAT
cliques is 200, and 8-trigger condition is relatively small which
could possibly be covered by a large number of cliques. (b)
The average size of maximal SAT cliques is 20, and 8-trigger
condition is relatively large which is less likely to be covered
by multiple cliques.

cliques of average size 200. If one of them is sampled by
our algorithm, the trigger activation problem is solved. It
also points out an interesting direction to improve TARMAC.
Instead of randomly sampling each time, a biased sampling
technique could be beneficial to instruct the sampling process
to cover cliques that have less overlap with already covered
ones. In order to improve the performance further, we have
modified TARMAC such that multiple threads can perform
clique sampling in parallel. This will enable an efficient and
scalable test generation framework for activating rare triggers.

V. EXPERIMENTS

A. Experimental Setup

The TARMAC framework is implemented in C++ with
Z3 [38] as our SMT solver. This framework first parses
gate-level Verilog files into design graphs (DG). Then, for
each signal in PTS, we utilizes Z3 C++ API to compute
its logic expression. For sequential circuits, all registers are
treated as free variables with the assumption of full scan
mode. Next, this framework constructs a satisfiability graph
(SG) and continuously samples maximal satisfiability cliques
(MSC) as shown in Algorithm 3. For each sampled MSC,
function call to Z3 is used to produce a test. For multithreading
(TARMACp) in Algorithm 4, C++ pthread library is used to
create different threads.

We conducted a wide variety of experiments on a server
with Intel Xeon E5-2698 CPU @2.20GHz and 528GB RAM
to evaluate the performance of TARMAC compared to random
test vectors and N−detect approach (MERO [3]). In this paper,
we used the same benchmarks (ISCAS-85 [27] and ISCAS-89
[30]) from [3] to enable a fair comparison with MERO. We
have also used two large designs (memory controller from
TrustHub [39] and MIPS processor from OpenCores [37],
MEM and MIPS for short) to demonstrate the scalability of
our approach. The experimental setup is shown in Figure 7. We
first ran a number of random simulations (100K for ISCAS and
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Fig. 7: Experimental setup for evaluation of TARMAC com-
pared to N−detect approach. Trigger conditions are randomly
sampled and validated by ATPG tools. Each DUT contains
only one trigger condition. Test vectors from N−detect and
TARMAC are applied to each DUT individually to collect
trigger condition coverage information.

one million for MEM and MIPS) on the golden design1 and
computed the probability of each signal. Rareness threshold
is set to 0.1 for ISCAS benchmarks and 0.005 for the other
designs. We chose these rare signals as potential trigger signals
(PTS). The rareness threshold is set in a way such that
the constructed Trojans are likely to stay stealthy under both
random/constrained random simulation and directed test gen-
eration. On one hand, the rareness threshold should be as small
as possible, such that random/constrained random simulation
is almost impossible to activate the constructed Trojans. On
the other hand, the rareness threshold should also be large
enough to allow as many choices of Trojans as possible, such
that it is impossible to use directed test generation to cover
all possibilities. We set the rareness threshold to be less than
0.1, and try to have around 1000 rare signals if possible, as
shown in Table I. Theoretically, directed test generation need
to try

(
1000
8

)
∼ 2.4× 1019 times to cover all possible choices

of 8-trigger Trojans with 1000 PTS.
For each benchmark, 1000 trigger conditions were randomly

sampled and validated using ATPG. After sampling 1000 valid
trigger conditions, each of them was individually integrated
into the original design to construct a design under test (DUT).
In other words, there are 1000 DUTs from each bench-
mark with one trigger condition for evaluation. We applied
N−detect approach (MERO [3]), TARMAC (Algorithm 3)
and TARMACp (Algorithm 4) to generate the test sets. Fi-
nally, we applied test sets to each DUT and collected trigger
condition coverage. For all experiments, we fixed N = 1000
for N−detect approaches.

1Except that we applied TARMAC directly on Trojan-inserted netlists in
the DUT-known scenario in Section V-G, i.e., random simulation and rare
signals computation are performed directly on Trojan-inserted netlists.

B. The Effects of Trigger Points

In the first experiment, we wanted to explore the effects of
trigger points on the trigger coverage of MERO and TARMAC.
When a trigger condition has less trigger points (e.g., 4), it
has higher probability to be activated by random simulation.
One the other hand, a trigger condition with more rare signals
is much harder to activate. For example, the probability of
activating a 16-trigger condition is less than 10−16 when these
signals are independent and rareness threshold is 0.1.

We evaluated both MERO and TARMAC on c2670 and
MIPS, with various number of trigger points between 4
and 16. The results of TARMAC and MERO are shown in
Figure 8. Each line represents trigger condition coverage with
respect to the number of test vectors applied to DUTs with
a fixed number of trigger points. As the results suggest, the
performance of MERO deteriorated sharply with increasing
trigger points, while TARMAC maintained high coverage for
both benchmarks. For small number of trigger points (e.g.,
4), MERO can achieve good coverage in c2670. However,
its coverage for large number of trigger points (e.g., 16) is
extremely poor with less than 5% coverage. On the other
hand, TARMAC can achieve 100% coverage with less than
100 test vectors even for 16-trigger conditions. As 16-trigger
condition is more rare than 4-trigger ones, TARMAC took
more test vectors to achieve the same coverage in MIPS as
shown in Figure 8(b). Therefore, TARMAC is more resilient to
the increasing number of trigger points and good at activating
extremely rare-to-activate trigger conditions. In the remaining
experiments, we fix the number of trigger points to be 8 since
it is a common number of trigger points in TrustHub [39]
and it allows MERO to achieve a reasonable trigger condition
coverage for comparison.

C. Performance Evaluation

In this experiment, we compared the trigger condition
coverage of TARMAC to random approach and MERO over
all benchmarks. To get a fair comparison of trigger coverage,
we evaluated the trigger coverage with the same number of
test vectors. Note that the length of MERO test vectors cannot
be controlled arbitrarily since it depends on the N−detect
criteria and the number of initial random vectors R. Hence, we
first ran MERO with (R = 100, 000, N = 1000) for ISCAS
benchmarks as suggested in [3] and (R = 100, 000, N =
1000) for two large benchmarks. After MERO finished, we
ran TARMAC to generate the same number of test vectors as
MERO for each benchmark. The trigger coverage comparison
of TARMAC with random and MERO test vectors is shown
in Table I.

From Table I, we can see that TARMAC can achieve sev-
eral orders-of-magnitude trigger coverage improvement over
random test vectors in ISCAS benchmarks. TARMAC can
provide and up to 49 times improvement in trigger coverage
over MERO with four times reduction for generation of the
same number of test vectors in the ISCAS benchmarks. For
most benchmarks, TARMAC covered over 90% of the trigger
conditions, while random and MERO test vectors missed
most of them. In small benchmarks, such as c2670, c5315
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TABLE I: Comparison of TARMAC with random simulation and MERO for trigger activation coverage over 1000 randomly
sampled 8-trigger conditions. The test length of TARMAC is the same as MERO.

Number Random MERO [3] TARMAC TARMACp (64 cores)
Bench of rare Test Cov. Test Cov. Time Test Cov. Impro. / Impro. / Time Time Impro. / Impro. /

signals Length (%) Length (%) (s) Length (%) Random MERO (s) (s) MERO TARMAC
c2670 43 100K 0.3 6820 38.2 1268 6820 100 333x 2.6x 257 4.3 295x 59.7x
c5315 164 100K 1.1 9232 50.6 4396 9232 98.8 89.8x 1.9x 682 13.3 330x 51.3x
c6288 169 100K 18.9 5044 76.6 596 5044 95.0 5.0x 1.2x 638 10.0 60x 63.8x
c7552 278 100K 0 14914 5.6 7871 14914 66.5 ∞ 11.9x 2185 41.6 189x 52.5x
s13207 604 100K 0 44534 1.9 15047 44534 94.4 ∞ 49.7x 5417 105.3 143x 51.4x
s15850 649 100K 0 39101 3 17000 39101 88.7 ∞ 29.6x 11337 205.4 83x 55.2x
s35932 1152 100K 100 4047 100 49616 4047 100 1x 1x 1947 38.9 1275x 50.1x
MEM 1306 1M 0 28542 0 89747 28542 98.6 ∞ ∞ 15753 330.5 271x 47.7x
MIPS 906 1M 0 25042 0.2 273807 25042 95.6 ∞ 472x 19458 391.9 699x 49.7x
avg. 586 300K 13.4 19697 30.7 51039 19697 93.1 > 107x >71x 6408 126.8 402x 50.5x

TABLE II: Comparison of TARMAC with random simulation and MERO for trigger activation coverage over 1000 randomly
sampled 8-trigger conditions. TARMAC is terminated when it just surpassed the same trigger coverage as MERO.

MERO TARMAC
Bench Test Cov. Time Test Reduction Cov. Time Improvement

Length (%) (s) Length (%) (s)
c2670 6820 38.2 1268 1 6820x 51.4 0.05 25360x
c5315 9232 50.6 4396 217 42.5x 50.6 19.1 230x
c6288 5044 76.6 596 284 17.8x 76.6 34.8 17x
c7552 14914 5.6 7871 175 85.2x 5.6 31.2 252x
s13207 44534 1.9 15047 5 8907x 2.6 0.8 18809x
s15850 39101 3 17000 13 3008x 3.3 4.3 3953x
MEM 28542 0 89747 1 28542x 1.9 1.1 81588x
MIPS 25042 0.2 273807 1 25042x 0.8 1.8 152115x
avg. 21653 22.0 51216 87 249x 24.1 11.6 4415x

and c6288, MERO outperformed random test vectors and
achieved reasonable trigger condition coverage. However, in
large benchmarks such as c7552, s13207 and s15850, the
performance of MERO is very poor, with less than 6% trigger
coverage. TARMAC, on the other hand, outperformed MERO
in all ISCAS benchmarks with 91.9% trigger coverage on
average. With the same number of test vectors, TARMAC can
cover the extremely hard-to-activate trigger conditions that are
left after applying both random test vectors and MERO with
significantly less effort.

It is interesting to find that all three approaches did a great
job in covering all trigger conditions in s35932. One of the
reasons is that a lot of rare signals in s35932 can be satisfied
together as shown in Section V-F. Another observation is
that the quality of MERO is partially dependent on the
quality of random test vectors. For example, with 18.9% and
100% trigger activation coverage from random test vectors
for c6288 and s35932, respectively, test vectors from MERO
can cover 76.6% and 100%. However, for benchmarks such
as c7552 and s31207, test vectors of MERO can only achieve
trigger coverage of 5.6% and 1.9%, respectively, since random
test vectors cannot cover any trigger conditions. The limited
improvement from random test vectors to MERO is due to the
simple bit flipping to search for good vectors in MERO.

For the two large benchmark, MEM and MIPS, the number
of rare signals are in the order of 1000. Since each trigger
condition contains 8 rare signals with rareness threshold of
0.005, the probability of trigger conditions is less than 10−18.
It is expected that one million random simulations could not
achieve good coverage. The test vectors generated by MERO
also achieved poor coverage, 0% in memory controller, and

0.2% in MIPS. On the other hand, TARMAC is able to cover
majority of the trigger conditions efficiently. For example,
TARMAC covered 95.6% of trigger conditions in MIPS using
the same amount of test vectors as MERO, but finished
generation in 6 hours. Note that the average test generation
of TARMAC for one test vector is less than one second.
This demonstrates that TARMAC is scalable for large designs,
while MERO is not suitable for large designs.

Overall, TARMAC provides drastic improvement in both
trigger coverage (more than 107x and 71x over random test
vectors and MERO, respectively) and test generation time (8x).

D. Parallelism Evaluation

In this experiment, we run Algorithm 4 with 64 threads in
parallel to generate the same amount of test vectors as MERO.
The results are shown in the last two columns of Table I. Since
the overall coverage of TARMAC and TARMACp are similar,
the coverage of TARMACp is omitted.2 Overall, TARMACp

with 64 threads can achieve up to 1275x (402x on average)
improvement over MERO, and up to 63.8x (50.5x on average)
improvement over TARMAC.

To evaluate the utilization of multi-core architectures, we
applied Algorithm 4 with different number of threads in MIPS.
The result is shown in Figure 9. As we can see, the utilization
of multiple cores is very high. Compared to the single thread
scenario, 64 threads in parallel can achieve 49.7 times speedup.
In other words, the overhead of protecting shared satisfiability
graph using mutex in Algorithm 4 is negligible. As we can

2The coverage difference of TARMAC and TARMACp is from the ran-
domization of sampling. When the random seeds are carefully selected, the
coverage can be exactly the same.
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Fig. 8: Trigger condition coverage of TARMAC and MERO
on c2670 and MIPS with respect to the number of test vectors
given a number of trigger points. The dark red solid line
represents TARMAC and the blue dash line represents MERO.
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Fig. 9: The test generation time of Algorithm 4 applied in
MIPS with different number of threads running in parallel.

see, Algorithm 4 can generate 25042 test vectors for MIPS in
approximately 6.5 minutes.

E. Compactness and Efficiency

To compare the compactness and efficiency of TARMAC
with MERO, we terminated TARMAC when it just surpassed
the same trigger coverage as MERO. In this experiment, we
omit the benchmarks s35932 that MERO achieved full cover-
age, because 100% coverage can be achieved with much fewer

test vectors but test length is not a configurable parameter in
MERO. It would be an unfair comparison if we compare the
test length of TARMAC to the number of s35932 in Table I.
The results of the remaining benchmarks are shown in Table II.
Note that one test vector in TARMAC can outperform the
trigger coverage of MERO for c2670, MEM and MIPS. In all
the other benchmarks, the difference of corresponding trigger
coverage is minimal.

Table II suggests that test vectors generated by TARMAC
are several orders-of-magnitude more compact than MERO.
For ISCAS benchmarks, the average reduction of test vectors
is in the order of hundreds to achieve the same coverage.
The compactness gap becomes larger and larger when the size
of design grows. For example, while most of the reductions
in small benchmarks (combinational circuits) are within 100
times, the reductions in sequential benchmarks grows to the
order of thousands. In MEM and MIPS, the reduction even
goes beyond 25 thousands.

The improvement in test generation time follows the same
trend as test length reduction. For example, while most of
the time improvements in small benchmarks are within the
order of hundreds, the improvements in sequential benchmarks
grows to the order of thousands even ten thousands. Finally,
the improvement in MIPS processor even goes beyond 152
thousands.

From the perspective of debug engineer, efficiency of a
test generation approach consists of two aspects. The first
one is test generation time. From Table II, we can see that
the improvements of test generation time over MERO are
several orders of magnitude. The other one is test length as
it decides how many simulations or emulations are needed,
which dominates debug time. As a result, a compact test
set can lead to significant reduction in overall validation
effort. Combining both improvements of test generation and
reduction of test length as shown in Table II, the efficiency of
TARMAC is several orders of magnitude better than MERO.

F. Trigger Coverage

For better illustration of trigger coverage, we ran all bench-
marks long enough and plotted the trigger coverage with
respect to the number of test vectors in Figure 10. The x-axis
represents the number of tests applied to DUTs, and the y-
axis represents the percentage of activated trigger conditions.
The efficiency in trigger coverage is the gradient of trigger
coverage curves. In most of the figures, TARMAC has much
steeper slopes than MERO and the curves of random approach
are almost flat. The results demonstrated that TARMAC can
cover more trigger conditions faster (with significantly less test
vectors) than MERO for most of the benchmarks. For example,
with 200 test vectors in c2670, TARMAC already activated
all the trigger conditions, while MERO only achieved 20%
coverage.

These figures reveal that each vector in TARMAC is able
to activate more potential trigger conditions than MERO. As
stated in Lemma 4, each test vector can cover all the subgraphs
of a satisfiable clique. Hence, if one test vector can activate
more rare signals, it covers a larger clique and likely to



IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL.40, NO.7, JULY 2021 12

0%

20%

40%

60%

80%

100%

0 40 80 120 160 200

(a) c2670

0 600 1200 1800 2400 3000

(b) c5315

0 600 1200 1800 2400 3000

(c) c6288

0%

20%

40%

60%

80%

100%

0 3000 6000 9000 12000 15000

(d) c7552

0 2000 4000 6000 8000 10000

(e) s13207

0 2000 4000 6000 8000 10000

(f) s15850

0%

20%

40%

60%

80%

100%

0 40 80 120 160 200

(g) s35932

0 400 800 1200 1600 2000

(h) MEM

0 400 800 1200 1600 2000

(i) MIPS

Tr
ig

ge
r

co
ve

ra
ge

Number of test vectors

TARMAC MERO RANDOM

Number of test vectors Number of test vectors

Tr
ig

ge
r

co
ve

ra
ge

Number of test vectors Number of test vectors Number of test vectors

Tr
ig

ge
r

co
ve

ra
ge

Number of test vectors Number of test vectors Number of test vectors

Fig. 10: Trigger coverage with respect to the number of test vectors. TARMAC can achieve full coverage using a small number
of test vectors in majority of benchmarks, while MERO and random test vectors can cover only a small fraction of trigger
conditions with the same number of test vectors.

activate more potential trigger conditions. Therefore, we define
the quality of a test vector as the number of rare signals
that it can cover (activate). To validate whether the quality
of a test vector is the reason for different trigger coverage
efficiency, we counted the number of rare signals satisfying
their rare values (rare signal hits, for short) for each test
vector. Figure 11 shows the distribution of rare signal hits
by each test vector. The results show that the numbers of
rare signal hits are significantly larger in TARMAC (except
for the comparable numbers in c6288 and s35932), which
is consistent with observations in Figure 10 considering the
coverage of trigger conditions. From Algorithm 3, the number
of rare signal hits is the same as the size of each sampled
maximal satisfiable clique in TARMAC. While in MERO, the
number of rare signal hits is the best number of hits after
one round of bit flipping from a random test vector. Clearly,
the rare signal hits from MERO should be statistically always
lower than TARMAC as the rare signal hits in TARMAC are
optimal. Moreover, the quality of test vectors in MERO is not
guaranteed, since it partially depends on the initial random
vectors. As a result, MERO has low rare signal hits (normally
less than 50), which is significantly smaller than rare signal

hits in TARMAC.

G. Evaluation on TrustHub Benchmarks

To show the performance of the generated tests on detecting
hardware Trojans from TrustHub [39], we selected nine gate-
level Trojans from three benchmarks (the three largest ISCAS
benchmarks from Table I whose Trojan-inserted versions are
available in TrustHub), as shown in Table III. The second
column shows the performance of the tests generated by only
analyzing the golden designs (same as the Section V-C), with
no prior knowledge of the design under test (DUTs) with
inserted Trojans (referred as “DUT unknown”). As we can
see, TARMAC can detect all hardware Trojans except one
in s13207. It is expected since we are not able to activate all
potential hardware Trojans unless we are able to enumerate all
satisfiable cliques. Let us consider the following two scenarios
based on when a Trojan gets inserted in the design flow.

1) Pre-silicon (DUT-known): In this scenario, we assume
that the Trojan gets inserted during the design phase, and
therefore, we have access to the Trojan-inserted implemen-
tation (referred as “DUT known”). To compare with existing
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Fig. 11: The distribution of rare signal hits by generated test
set in all benchmarks.

methods that detect hardware Trojans by analyzing Trojan-
infected designs, such as VeriTrust [5], we applied TARMAC
on the Trojan-infected designs and evaluated the performance,
as shown in the third and fourth columns of Table III. Since
only the last three benchmarks are reported in [5], we mark the
others with dash lines for VeriTrust. As we can see from the
table, our approach is comparable to VeriTrust in the scenarios
when the source code of the Trojan-inserted design is known.

2) Post-silicon (DUT-unknown): In this scenario, we as-
sume that the Trojan gets inserted during the manufacturing
phase, and therefore, we do not have access to the Trojan-
inserted implementation (referred as “DUT unknown”) during
test generation. We applied the same set of tests generated
in Section V-C, which are generated by analyzing the golden
models, to the nine benchmarks from TrustHub. Our approach
detected eight out of the nine benchmarks. The detection rate
is very promising considering that we only sampled a small
subset of the all possible cliques (future unknown Trojans).
Note that VeriTrust [5] is not applicable in this scenario since
it requires the availability of a Trojan-inserted netlist for Trojan
detection.

Another interesting observation is that even though some
trigger points of a hardware Trojan are outside of our PTS,
our approach can still activate them. For example, in s15850-
T001, there are five signals that are not rare out of 14 trigger

TABLE III: Comparison using TrustHub benchmarks

DUT unknown DUT known
Bench TARMAC TARMAC VeriTrust [5]

s13207-T000∗ X X -
s13207-T001∗ X X -
s13207-T002∗ × X -
s15850-T000∗ X X -
s15850-T001∗ X X -
s15850-T002∗ X X -
s35932-T100 X X X
s35932-T200 X X X
s35932-T300 X X X
∗These benchmarks are from TRIT-TC [40] in TrustHub.

points in total. Our approach can activate the Trojan (DUT
unknown). The reason is that the probability of the tests
(which activate all the rare signals) activating the Trojans is the
same as the probability of random tests satisfying all non-rare
signals. Therefore, as long as the number of signals outside
of PTS is relatively small, our generated tests are likely to
activate the Trojans.

VI. CONCLUSION

Trigger activation is a fundamental challenge in detection
of hardware Trojans. While prior efforts using statistical
test generation are promising, they are neither scalable for
large designs nor suitable for activating extremely rare trigger
conditions in stealthy Trojans. In this paper, we introduced a
new paradigm to solve trigger activation problem. This paper
made the following important contributions. 1) Our approach
is the first attempt in mapping the problem of test generation
for trigger activation to the problem of covering maximal
satisfiability cliques. 2) We proved that valid trigger conditions
and satisfiability cliques are one-to-one mapping. We also
proved that the test vectors generated by our paradigm are
both complete and compact. 3) We presented efficient test
generation algorithms to repeatedly sample maximal satisfi-
ability cliques and generate a test vector for each of them. We
explored the effectiveness of random sampling, lazy construc-
tion as well as multi-threading to improve the test generation
efficiency. Our experimental results demonstrated that our
approach is both scalable and effective in generating efficient
test vectors for a wide variety of trigger conditions. Our
approach outperforms the state-of-the-art techniques by several
orders-of-magnitude in terms of trigger coverage, test length as
well as test generation time. Our test generation algorithms can
be utilized for activating extremely rare trigger conditions to
fulfill diverse requirements such as improvement of functional
(trigger) coverage as well as side-channel sensitivity.
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