
1

Vulnerability-aware Energy Optimization for
Reconfigurable Caches in Multitasking Systems

Yuanwen Huang and Prabhat Mishra
Department of Computer and Information Science and Engineering

University of Florida, Gainesville FL 32611-6120, USA

Abstract—Cache vulnerability due to soft errors is one of the
reliability concerns in embedded systems. Dynamic reconfigura-
tion techniques are widely studied for improving cache energy
without considering the implications of cache vulnerability. Main-
taining a useful data longer in the cache can be beneficial for
energy improvement due to reduction in miss rates, however,
longer data retention negatively impacts the vulnerability due to
soft errors. This paper studies the trade-off between energy effi-
ciency improvement and reduction in cache vulnerability during
cache reconfiguration. We propose a heuristic approach for both
inter-task and intra-task cache reconfiguration in multitasking
systems. Experimental results demonstrate that our proposed
approach can significantly improve both vulnerability (25% on
average) and energy efficiency (21% on average) for data cache
without violating real-time constraints.

I. INTRODUCTION

Soft errors are transient faults in CMOS circuits, which are
caused by energy carrying particles (cosmic rays or substrate
alpha particles). These transient faults flip bits in storage cells
or change the logic values in functional units. Soft error rate
per chip is expected to grow due to the growing density of
transistors on chip [2][17]. Previous studies have concluded
that unprotected memory elements are the most vulnerable
components to soft errors [3]. The cache in embedded micro-
processors is most susceptible to soft errors for several reasons:
(i) cache occupies the majority of chip area, (ii) cache has an
extremely high density of transistors, and (iii) cache cell size
scales down, which reduces the critical charge needed to flip a
bit in stored data. Due to widespread use of embedded systems
in safety-critical devices, it is necessary to protect embedded
caches from soft errors.

Dynamic Cache Reconfiguration (DCR) is a widely studied
method for optimizing energy and performance in embedded
systems [4]. The basic idea of cache reconfiguration is that
different programs have varying data and instruction access
characteristics during execution (runtime) and DCR tries to
find the optimal cache configuration for a given application
(program). For example, we can improve performance by
increasing cache size when a program needs a lot of data
accesses. Similarly, we can save energy by shutting down a
part of the cache if the program is not data-intensive. However,
cache reconfiguration will also affect the vulnerability due to
soft errors. A large cache size for a data-intensive program
might have fewer cache misses and thus improve energy and

This work was partially supported by the NSF grant CNS-1526687.
Previous conference version of the paper is in [1]. Corresponding author:
Yuanwen Huang, yuanwenhuang@ufl.edu.

performance efficiency, but it is also likely to increase the
vulnerability of cache data because of longer data retention
in the cache. This interesting trade-off between performance,
energy and vulnerability is the motivation for this work.

It is a major challenge to improve the reliability of real-
time embedded systems with special design considerations of
real-time constrains [6][13]. Hard real-time systems require
that all tasks must complete execution before their deadlines
to ensure correct execution. Due to stringent timing con-
straints, scheduling for hard real-time systems must perform
task schedulability analysis based on task attributes [5]. For
soft real-time systems, minor deadline misses may result in
temporary service degradation, but will not lead to incorrect
behavior. An efficient cache reconfiguration framework is
proposed for energy optimization in soft real-time systems in
[4]. They exploit the flexibility of soft real-time systems and
manage to achieve considerable energy savings with minor
impact on user experiences. However their method does not
consider the vulnerability of cache due to soft errors.

To the best of our knowledge, there are no prior efforts in
analyzing the cache vulnerability during cache reconfiguration.
We propose a methodology for using cache reconfiguration
in soft real-time systems. Our approach provides an efficient
cache tuning strategy based on static profiling and dynamic
scheduling of tasks. We explore Vulnerability-aware Energy
Optimization (VAEO) opportunity within each task (intra-
task VAEO) as well as across task sets (inter-task VAEO).
While traditional approaches (no DCR) uses a fixed cache for
all tasks in the system, the inter-task DCR will select (use)
the most beneficial cache configuration for each task to im-
prove both vulnerability and energy-efficiency. Intra-task DCR
will extend the optimization opportunity further by enabling
changes in cache configuration within each task. Our proposed
research is able to balance performance, energy consumption
and vulnerability, so that tasks can meet their deadlines and
produce energy savings while vulnerability reduction can also
be achieved.

The rest of the paper is organized as follows. Section II
presents related work on DCR and cache vulnerability. Sec-
tion III motivates the reader by illustrating the effect of
DCR on performance, energy consumption and vulnerability.
Section IV presents our cache reconfiguration methodology
for inter-task VAEO. Section V presents intra-task VAEO,
which includes phase identification and cache configuration
assignment for phases. Section VI presents the experimental
results. Finally, Section VII concludes the paper.

2

II. BACKGROUND AND RELATED WORK

This section surveys existing works in two related domains:
cache reconfiguration and cache vulnerability.

A. Cache Reconfiguration

Applications have varied instruction and data access pat-
terns, which means that they require different cache require-
ments in terms of cache size, line size, and associativity. If
the cache configuration is tuned according to the need of
the application, we can gain performance improvement and
energy savings. The configurable cache architecture used in
our work is similar to the one in [7]. It contains four cache
banks operating as four separate ways. The cache ways can
be configured to shut down so as to vary the cache size. The
way associativity can be changed by concatenating ways. The
line size can be adjusted by configuring the fetch unit to dif-
ferent lengths. This architecture requires very simple hardware
augmentation and minor overhead [7]. A light process can be
used as the cache tuner, which will make the reconfiguration
decision and change the configuration at runtime.

Figure 1 illustrates that inter-task and intra-task DCR can
improve overall performance by tuning cache size for a system
with three tasks. We assume that cache size is the only tunable
parameter of cache for the ease of illustration (line size and
associativity remain the same). Figure 1(a) shows a traditional
system using a fixed base cache1, whereas in Figure 1(b) each
task uses its favorable cache configuration and the overall
execution time is improved. In the traditional system with a
fixed base cache, Task 1 starts to execute at time t0, Task 2 and
Task 3 start at t1 and t2 respectively. The fixed base cache has
a 4096-byte cache size for all tasks. In inter-task (application-
based) cache reconfiguration, DCR tunes the cache when a
new task starts its execution. Assuming Task 1 is computation-
intensive, we choose a smaller (2048-byte) cache to save
energy, while the execution time will increase. Assuming Task
2 is data-intensive, we choose a larger (8192-byte) cache and
its runtime is greatly improved. Figure 1(c) shows the effect
of combining inter- and intra-task cache reconfiguration. By
introducing intra-task reconfiguration, Task 1 can improve its
performance if suitable configurations are applied to the four
phases during execution. Assuming Task 2 has three phases,
we set the cache to be large (8192-byte) for the first and
third phase for performance consideration, and set the second
phase to 4096-byte to reduce energy consumption. For Task
3, inter-task reconfiguration is not able to find a better cache
than 4096-byte, while intra-task reconfiguration can find three
phases and improve the performance and/or energy. For inter-
task reconfiguration, the performance overhead is negligible
since the processor needs to anyway switch context and start
with a fresh cache [4][7][10]. For intra-task reconfiguration,
the cache will be flushed if we decide that the configuration is
to be changed for the new phase. The overhead of intra-task
reconfiguration will be discussed further in Section V.

1Base cache refers to the cache used in typical real-time systems, which is
chosen to ensure durable task schedules. Typically, base cache is the globally
optimal cache configuration determined during design time for a set of tasks.

Fig. 1: DCR in a system with three tasks.

DCR has been extensively studied by previous works
[4][7][9][10]. The configurable cache architecture used in our
work is similar to the one in [7]. It contains four cache
banks operating as four separate ways. The cache ways can
be configured to shut down so as to vary the cache size. The
way associativity can be changed by concatenating ways. The
line size can be adjusted by configuring the fetch unit to dif-
ferent lengths. This architecture requires very simple hardware
augmentation and minor overhead [7]. A light process can be
used as the cache tuner, which will make the reconfiguration
decision and change the configuration at runtime. There are
many prior efforts in developing energy- and performance-
aware cache reconfiguration techniques. Wang et al. [7] studied
scheduling-aware cache reconfiguration for energy saving in
real-time systems. [8] combined DCR with dynamic voltage
scaling for leakage-aware energy minimization. Phase-level
DCR [26][27][28] showed that intra-task reconfiguration can
improve energy consumption along with inter-task reconfigu-
ration. Cai et al. [11] showed that cache size could impact
performance, energy and reliability. However, none of the
previous works has considered cache vulnerability improve-
ment during DCR. In this paper, we use both inter-task and
intra-task reconfiguration to improve vulnerability and energy
consumption.

B. Cache Vulnerability

In order to facilitate reliability analysis of cache, a mea-
surement method is needed for the quantification of cache
vulnerability due to soft errors [12]. Mukherjee et al. [15]
introduced the concept of Architectural Vulnerability Factor
(AVF). Vulnerability analysis divides a bit’s lifetime into

3

vulnerable and un-vulnerable intervals [15][16]. A bit is vul-
nerable for an interval, if soft errors that happen in this interval
will cause the program to get contaminated data. Similar to
[18] and [21], we measure the vulnerability of cache on a per-
byte basis. Activities during the lifetime of a byte includes
“idle”, “read”, “write” and “eviction”. Figure 2(a) shows a data
with both read and write accesses, and the vulnerable intervals
are marked by two black rectangles: the data is vulnerable
between the first write and the second read as well as between
the second write and the evict. During these two intervals, the
data needs to be read for reuse, while a flipped bit can corrupt
the data, causing the program to use the corrupted cache data.
The interval between the second read and the second write
is un-vulnerable, since the data will be updated by the write
operation even if soft errors corrupt it. Figure 2(b) shows a
data with only read accesses, and the intervals between read
accesses are vulnerable. However, the interval between the last
read and the evict is un-vulnerable, since data will not be
reused or written back to memory.

Byte Cycles is an widely used term for measuring cache
vulnerability [3], [18]. We measure the vulnerability of cache
as the summation of vulnerable intervals of all bytes. It can
be defined as follows:

Vulnerability =
∑

all bytes

vulnerable time of bytei

Fig. 2: Vulnerable intervals of two data elements in a cache
without soft-error protection (where W=Write Access, R=Read
Access, E=Evict). (a) data with both write and read accesses;
(b) data with only read accesses.

Major reliability improvement techniques include error
correction and error prevention [2][14][19]. Error correction
techniques, such as parity caching and error-correcting codes
(ECC), use spatial redundancy to detect errors. If an error
is detected in a cache block and this block is not dirty (i.e.
memory has a correct copy of this block), it is possible to
recover by reloading from memory. But if an error is detected
in a dirty block, there is no way to recover the corrupted data.
An important idea in protecting cache data from soft errors is
to ensure that there is an updated copy of all cached data in
memory (so data can be reloaded if soft error corrupts data).
Error prevention techniques [20], such as periodic flushing
and early write-back, are introduced. However, too many
memory-writes will keep the data-bus busy, which results in
longer cache-miss latency and decreased overall performance.
Particularly, write-through caches will always write data all the
way to memory, but may not be a good idea for embedded
systems. Shrivastava et al. [30] provide analysis on cache
vulnerability for programs which have a specific data access
pattern (an n-level nested loop) for a directly-mapped cache.

However, for programs with diverse data access patterns, their
approach has very limited applicability.

For caches with error detection or correction techniques,
the detection/correction process comes at a cost. It takes clock
cycles to correct the error and the CPU might get stalled to
re-fetch the data if the error cannot be successfully corrected
by ECC. In this paper, we did not assume any error correction
techniques for L1 caches in our paper. Our goal is to take
advantage of the reconfigurable cache and the data access
pattern of applications to reduce vulnerability and improve
energy efficiency while meeting task deadlines. Our approach
is orthogonal to error correction techniques. One obvious way
to combine our proposed approach (VAEO) and ECC would
be to use VAEO to reduce soft errors as much as possible and
then apply ECC to detect/correct the remaining soft errors.

III. MOTIVATION: ILLUSTRATIVE EXAMPLE

0.0E+0

1.0E+6

2.0E+6

3.0E+6

4.0E+6

5.0E+6

6.0E+6

7.0E+6

8.0E+6

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

11.0%

12.0%
Energy Miss Rate

E
n

er
g

y
(n

J)

M
is

s
R

at
e

(a) Energy and Miss Rate of pegwit

0.0E+0

5.0E+8

1.0E+9

1.5E+9

2.0E+9

2.5E+9

3.0E+9

3.5E+9

4.0E+9

4.5E+9

4.0%

5.0%

6.0%

7.0%

8.0%

9.0%

10.0%

11.0%

12.0%
Vulnerability Miss Rate

V
u

ln
er

ab
ili

ty
 (

B
yt

e
X

 C
yc

le
s)

M
is

s
R

at
e

(b) Vulnerability and Miss Rate of pegwit

Fig. 3: Energy (a) and vulnerability (b) values of pegwit
benchmark using different cache configurations. This figure
is the same as the one in our conference paper [1].

Existing techniques for cache reconfiguration do not con-
sider cache vulnerability due to soft errors. Figure 3 illus-
trates the interesting behaviors of vulnerability and energy
consumption under different cache configurations. We run the
program pegwit (a benchmark from MediaBench [22]) for 18
times, and each run uses a different configuration for L1 data
cache. Each configuration consists of three parameters: cache
size, associativity and line size. For example, 1024B 1W 64B

4

implies a cache configuration with cache size of 1024 bytes,
one way with 64 bytes line size.

Figure 3 shows that the energy consumption, vulnerability
and miss rate change drastically as we tune cache configura-
tions. Both energy and vulnerability relate to cache miss rates
and cache configurations. However, the correlation behaviors
are quite different and even conflicting in certain scenarios. In
Figure 3(a), energy consumption decreases when miss rate de-
creases (the first 9 cache configurations), but keeps increasing
for the last 9 cache configurations even though miss rates are
fairly low. The reason is that the total energy consumption
is the sum of dynamic and static energy. For the first 9
cache configurations, the total energy is dominated by dynamic
energy consumption, thus the total energy decreases when
miss rate (dynamic energy consumption) decreases. However,
for the last 9 cache configurations with large cache size,
the total energy is dominated by static energy consumption
even though miss rates are low. In Figure 3(b), the relation
between vulnerability and miss rate is a little more complex.
Cache size has a significant influence on vulnerability. Con-
figurations with cache size of 1024B is much less vulnerable
than configurations with cache size of 2048B and 4096B.
For configurations with the same cache size, vulnerability
decreases when miss rate increases and vice versa. For the
same cache size, lower miss rate means that more dirty data
is staying in cache for longer time, which contributes to
vulnerability.

There are two interesting observations here: (i) small cache
size might have high energy consumption but less vulnerable;
(ii) low miss rate might be energy friendly but leads to higher
vulnerability. These observations motivate us to investigate
the trade-off between vulnerability, energy and performance
during DCR. In this paper, we develop a cache reconfiguration
framework that considers both energy and cache vulnerabil-
ity. Since both vulnerability and energy depend on program
characteristics and cache configurations, we statically analyze
various cache configurations for each application. Such an
approach is suitable for embedded systems since applications
are known a priori. Based on static analysis, we propose inter-
task as well as intra-task dynamic cache tuning that can select
suitable configurations during runtime.

IV. INTER-TASK CACHE RECONFIGURATION

A. System Model

Let us define the reliability-aware DCR problem with con-
sideration of both energy and cache vulnerability. The system
we consider can be modeled as:
• A processor with a reconfigurable cache which supports
m possible cache configurations C = {c1, c2, c3, ..., cm}.

• A set of n independent tasks T = {t1, t2, t3, ..., tn}.
• Each task ti ∈ T has attributes including arrival time,

period and deadline. Non-preemptive execution is em-
ployed, which means, a task will continue execution until
completion once it starts to execute.

Let ecjti , pcjti and v
cj
ti denote the energy, execution time (per-

formance) and vulnerability of task ti when it is run on cache
configuration cj . The reliability-aware DCR problem is to

find a cache assignment for the task set such that energy
consumption and vulnerability are minimized with each of the
tasks satisfying its deadline. One common practice for deal-
ing with multi-objective optimization problem is to optimize
one objective at a time while transforming other objectives
into constraints. We introduce the Vulnerability-aware Energy
Optimization (VAEO) problem, which aims at minimizing the
total energy consumption, while adding vulnerability of tasks
as constraints. A heuristic algorithm based on run-time task
scheduling is proposed for solving the VAEO problem. Note
that our proposed VAEO approach can be extended to solve
the Energy-aware Vulnerability Optimization EAVO problem
with simple augmentation.

B. Vulnerability-aware Energy Optimization (VAEO)

Let n represent the total number of task arrivals within
the least common multiple (hyper-period2) of all task periods.∑n

i=1 e
cj
ti is the total energy consumption of n tasks3. The

VAEO DCR problem can be defined as the following:

minimize
n∑

i=1

e
cj
ti (1)

subject to
v
cj
ti ≤ Vti , ∀i ∈ [1, n] (2)
ati + wti + p

cj
ti ≤ Dti , ∀i ∈ [1, n] (3)

Equation 1 is the optimization objective. Equation 2 and 3
contain the vulnerability and timing constraints. Vti is the
upper bound for vulnerability of task ti. Here ati , wti , p

cj
ti ,

Dti denote the arrival time, queuing time, execution time,
and deadline of task ti. The optimization goal is to find a
set of cache configuration assignments for all tasks so that
the total energy consumption is minimized with vulnerability
and timing constraints. We choose Vti as the vulnerability of
task ti when it is executed with the base cache, the most
profitable cache configuration decided during design time. In
other words, we set the vulnerability as a constraint to ensure
that it is always at least as reliable as the base cache.

In Equation 3, arrival time ati and deadline Dti are known
upon the arrival of the task, while queuing time wti and
execution time p

cj
ti depend on the scheduling and cache

reconfiguration algorithms. Queuing time wti depends on the
scheduler and is determined by the priority of this task and
the other tasks currently in the queue. Execution time p

cj
ti

is determined by the cache configuration cj which will be
assigned to this task by the cache reconfiguration algorithm.

C. Heuristic Approach for VAEO Problem

Tasks arrive periodically and each task is inserted into
a list of ready tasks upon arrival. We propose a heuristic
approach, which employs Earliest Deadline First (EDF) as our

2A hyper-period is the Least Common Multiple (LCM) of all the periods
in the task set. The basic idea of using hyper-period is that once we find
a profitable (for energy or vulnerability) schedule for one hyper-period, the
exactly same schedule can be applied to subsequent hyper-periods.

3It will be precise to call n as the total number of “jobs” as in real-time
system terminology. However, for ease of discussion, we do not distinguish
between tasks and jobs.

5

underlying scheduling algorithm. EDF fetches the task with
the highest priority (earliest deadline) to execute. The cache
configuration selection algorithm will pick a configuration for
this task and try to satisfy Equation 2 and 3 if possible. Our
heuristic approach chooses between the VAEO cache configu-
ration and performance optimal (PO) cache configuration for
this task.
• VAEO cache configuration of a task is the configuration

which satisfies Equation 2 and consumes the least energy
among all possible configurations.

• PO cache configuration of a task is the configuration
which has the shortest execution time, but PO configura-
tion might not satisfy Equation 2.

Algorithm 1: Inter-task Cache Reconfiguration

1 Input: List of ready tasks (LRT) and task profile table.
2 Output: VAEO or PO cache configuration.
3 Step 1: Sort all tasks in LRT by priority and fetch the

task tc with highest priority.
4 Step 2: t1 to tm are tasks left in LRT, from highest to

lowest priority. τ represents the current time.
5 /** check the schedulability of each task in LRT **/
6 for j = 1 to m do
7 if τ + pPO

tc +
∑j

i=1 p
PO
ti > Dtj then

8 Discard task tj
9 end

10 end
11 Step 3: Select cache configuration for current task tc. Let

m′ be the number of tasks in LRT left after Step 2.
12 /** test the feasibility of using VAEO config for tc **/
13 if τ + pV AEO

tc > Dtc then
14 OKV AEO = false;
15 end
16 else
17 OKV AEO = true;
18 for j = 1 to m′ do
19 if τ + pV AEO

tc +
∑j

i=1 p
PO
ti > Dtj then

20 OKV AEO = false;
21 end
22 end
23 end
24 if OKV AEO == true then
25 return VAEO configuration for task tc
26 end
27 else
28 return PO configuration for task tc
29 end

The intuition behind our approach of choosing between PO
and VAEO configuration are as follows:

(1) The VAEO configuration satisfies the vulnerability con-
straint in Equation 2 and it is most beneficial for energy
savings, although it might have long execution time. We would
like to always choose the VAEO configuration for energy
optimization, as long as this choice would not cause the current
task or any of the subsequent tasks to violate their deadlines.

0.0E+00
5.0E+09
1.0E+10
1.5E+10
2.0E+10
2.5E+10
3.0E+10
3.5E+10
4.0E+10
4.5E+10

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

epic

Energy Vulnerability nJ

B
y

te
 X

 C
y

c
le

s

VAEOEO PO

Base

(a)

0.0E+00

1.0E+10

2.0E+10

3.0E+10

4.0E+10

5.0E+10

6.0E+10

7.0E+10

8.0E+10

0.0E+00

5.0E+06

1.0E+07

1.5E+07

2.0E+07

2.5E+07

qsort

Energy Vulnerability

B
y

te
 X

 C
y

c
le

s
VAEO

POBase
EO

(b)

Fig. 4: VAEO and PO configurations of benchmarks epic and
qsort.

(2) The PO configuration is aimed on Equation 3 for
satisfying timing constraints. If the VAEO configuration of
a task causes deadline violations, we would conservatively
choose the PO configuration instead. With this task running
under the PO configuration, the subsequent tasks will have
more slack time for scheduling and possibly save energy.

Figure 4 shows the VAEO and PO configurations for
benchmarks epic and qsort. The base cache configura-
tion is 4096B 2W 32B. For epic, the PO configuration
(4096B 1W 32B), determined by runtime (which is not
shown in this figure), has worse vulnerability than Base.
The VAEO configuration (4096B 2W 16B) has the minimum
energy consumption, among all candidates which has smaller
vulnerability than Base. Cache sizes of 1K and 2K (the first
nine configurations) are candidates with very small vulnera-
bility, however, they are not chosen because of large energy
consumption. The configuration with minimum energy con-
sumption (4096B 1W 16B, marked as EO in Figure 4a) is not
chosen as VAEO, because its vulnerability is higher than the
Base. For qsort, the VAEO configuration (2048B 2W 64B)
finds a sweet spot which has low vulnerability and energy foot-
print. It is not the one with the minimum energy consumption
(EO), while it has much lower vulnerability than Base and PO
configurations. VAEO configuration has cache size 2K and line
size 64B, which indicates that the data of the program can fit
into 2K cache and data is accessed in large chunks.

Algorithm 1 illustrates the runtime cache selection proce-
dure for VAEO approach. Let us assume that our system uses

6

non-preemptive EDF scheduling for the task set. Tasks arrive
periodically and currently available tasks will be put into the
list of ready tasks (LRT), which is maintained as a priority
queue based on the deadlines of tasks. Algorithm 1 is called
when the processor is ready to execute a new task. The term
pPO
ti stands for the execution time of task ti using its PO

configuration, and pV AEO
ti stands for the execution time using

its VAEO configuration.
Step 1 fetches the current task tc to be executed, which

is the highest priority task from LRT. Step 2 checks the
schedulability of the tasks left in LRT, when the current task tc
is executed with PO cache configuration. The schedulability
of each task tj left in the LRT is checked by τ + pPO

tc +∑j
i=1 p

PO
ti > Dtj , which tests whether its deadline can be

met with the assumption that all preceding tasks (and itself)
use PO cache configurations. If tj cannot satisfy its deadline
even with this conservative assumption, tj should be discarded.
The discarding process is done from highest priority to lowest
priority, so as to achieve fewest discarded tasks. This step
ensures that all tasks in LRT will satisfy their deadlines with
their PO configurations, when the current task tc is executed
with its PO configuration. This step will be skipped if LRT
is empty. In Step 3, we try to test the feasibility of using its
VAEO configuration for the current task tc, which will help
improve vulnerability and energy consumption. The appropri-
ate cache configuration for the current task tc is selected by
checking whether it is safe to use its VAEO configuration.
VAEO configuration is safe, only if no tasks in the LRT will
fail to meet their deadlines with their PO configurations. If the
VAEO configuration is not safe for tc, we will conservatively
execute the current task tc with its PO configuration, which can
ensure all tasks left in the LRT to satisfy their deadlines with
their PO configurations (otherwise they would have already
been discarded in Step 2). This algorithm has time complexity
of O(m logm) where m is the total number of tasks in LRT,
since Step 1 takes O(m logm) time, Step 2 takes O(m) time
and Step 3 takes O(1) time.

V. INTRA-TASK CACHE RECONFIGURATION

The heuristic approach described in Section IV provides
solution for the inter-task cache reconfiguration of a task set,
which will choose between the PO and VAEO configurations
for each task. In this section we find that it is even more
beneficial if we can reconfigure inside the task itself (i.e. intra-
task reconfiguration). In other words, both intra-task and inter-
task can be used simultaneously for improving vulnerability
and energy efficiency. A task can have considerably different
behaviour depending on which portion of execution is exam-
ined.

Figure 5(a) shows the data cache misses, when benchmark
qsort is executed with a fixed cache C1 (1024B 1W 32B).
We can observe three program phases based on the number
of cache misses per sampling point (100K instructions). The
first and third phases (0 ∼ 5 million and 38 ∼ 47 million)
have fewer than 3000 misses per sampling point, while the
second phase has more than 6000 misses per sampling point.
Based on this observation, a large cache C2 (4096B 2W 32B)

0 5 10 15 20 25 30 35 40 45
0

3000

6000

9000

12000

Instructions (Million)

C
ac

h
e

M
is

se
s

C1

(a) One phase for the whole task using a fixed cache.

0 5 10 15 20 25 30 35 40 45
0

3000

6000

9000

12000

Instructions (Million)

C
ac

h
e

M
is

se
s

C1C2C1

(b) Three intra-task phases using different caches

Fig. 5: Data cache misses for benchmark qsort. (a) Without
intra-task reconfiguration, using one cache for the whole task;
(b) With intra-task reconfiguration, using a different cache for
each of the three phases.

is selected for the second phase in Figure 5(b), which greatly
reduces the cache misses. This example shows that intra-task
reconfiguration can reduce cache misses. Our ultimate goal of
using intra-task reconfiguration is to further optimize energy
and/or vulnerability of the task.

A phase of task (program) can be defined as an interval of
execution during which a measured program metric is rela-
tively stable. Intra-task cache reconfiguration aims at finding
the sequence of cache assignments to different phases of the
task, so that cache misses (energy and/or vulnerability) of
this task is further optimized. In order to improve energy
consumption and vulnerability, we need to properly define the
phases and carefully select the configuration for each phase.
Our approach for intra-task reconfiguration is to switch to the
most beneficial cache configuration when the task enters a
different phase during its execution. At the beginning of a new
phase, we choose a configuration based on the characteristics
(cache requirement) of the new phase. The cache will be
flushed if we decide that the configuration is to be changed for
the new phase. The flushing of cache will result in additional
cache misses, which cause penalty in performance and energy
consumption. However, the flushing of cache is beneficial
to reduce vulnerability, because vulnerable data in cache
are prematurely written back to the memory. A beneficial
configuration would be one which can save energy and reduce
vulnerability, in spite of the additional misses at the very
beginning of the new phase.

The problem of intra-task cache reconfiguration boils down
to solving the following two problems: (1) how to monitor the
execution of the task and define phase partitions; (2) how to
decide the cache configuration for each phase. The following
sections address these challenges.

A. Phase Extraction

We introduce our approach for phase extraction in Algo-
rithm 2. We get the cache miss statistics of all intervals for a

7

fixed cache (1024B 1W 32B). We have done experiments to
choose different cache configurations to inspect the fluctuation
of cache misses during the execution of programs. We find that
the configuration (1024B 1W 32B) can reflect the program
behaviors more effectively compared with larger cache sizes
for our benchmarks.

Algorithm2 works in two steps: (1) identify potential phase
boundaries, and (2) post-process to select profitable phases.
Firstly, an interval is marked as a potential starting point of a
new phase if the change in number of cache misses exceeds
the threshold that we have set (line 5-7). Secondly, each of
the potential phases is examined and the ones which mark
a relatively stable execution (i.e. longer than the minimum
threshold) are kept (line 10-12). A phase will be merged with
the previous phase if it lasts no longer than PhaseLength. For
each benchmark, it is divided into 100 sampling intervals with
equal number of instructions. Each interval is profiled with the
number of cache misses by simulation using a configuration of
1024B 1W 32B. We used the threshold for change of cache
misses (MissFactor) as 2, and the threshold for minimum
phase length (PhaseLength) as 5 intervals.

Algorithm 2: Phase Identification

1 Input: Benchmark, threshold MissFactor (changes of
cache misses), threshold PhaseLength

2 Output: Identified phases.
3 Get the cache misses (CMi) statistics of all intervals
4 for each interval i do
5 if CMi < CMi−1/MissFactor or

CMi > CMi−1 ∗MissFactor then
6 Set interval i as a potential phase boundary
7 end
8 end
9 for each potential phase fj do

10 if length(fj) < PhaseLength then
11 Merge this phase with previous phase
12 end
13 end

Figure 6 shows the phases identified for 6 benchmarks from
the MediaBench [22] and EEMBC [23] automotive benchmark
suits. We can observe that benchmarks have very different
patterns of data cache misses during execution. We identify 3
phases in epic, 2 phases in dijkstra, 2 phases in cjpeg, 2 phases
in BITMNP01, and 4 phases in AIFFTR01, while pegwit has
no obvious phases.

B. Cache Assignment for Phases

In this section, we show the cache assignment for phases of
a task for the VAEO problem. We want to minimize the total
energy consumption of all phases, with the total vulnerability
constrained. The best VAEO cache configuration for m phases

0

10000

20000

30000

40000

epic (3 phases)

d
a

ta
 c

a
c

h
e

 m
is

s
e

s

0

10000

20000

30000

40000

50000

dijkstra (2 phases)

d
a

ta
 c

a
c

h
e

 m
is

s
e

s

0

10000

20000

30000

40000

cjpeg (2 phases)

d
a

ta
 c

a
c

h
e

 m
is

s
e

s

0

5000

10000

15000

20000

pegwit (1 phase)

d
a

ta
 c

a
c

h
e

 m
is

s
e

s

0

1000

2000

3000

AIFFTR01 (4 phases)

Intervals

d
a

ta
 c

a
c

h
e

 m
is

s
e

s

0

100

200

300

400

500

BITMNP01 (2 phases)

d
a

ta
 c

a
c

h
e

 m
is

s
e

s

Fig. 6: Phases identified for different benchmarks.

(f1 to fm) can be defined as:

minimize
m∑
i=1

e
cj
fi

(4)

subject to
m∑
i=1

v
cj
fi
≤ V (5)

e
cj
fi

and v
cj
fi

are the energy consumption and vulnerability of
phase fi using config cj . V is the threshold for vulnerability,
which is the vulnerability of the task when it is executed with
the base cache.

For each of the m phases, there are n possible configura-
tions. The time complexity for a brute-force exploration of
all possible combinations is O(nm). We observe that this
is essentially a dynamic programming problem, where each
phase is dependent on the previous phase. If the current phase

8

chooses a different configuration from the previous phase,
the cache needs to be flushed before running the current
phase. However, if the chosen configuration for the current
and previous phases are the same, the cache is not flushed
and will keep the data. We define the dynamic programming
problem as follows.

E
cj
(f1∼fi) = min

k∈(1..n)
{Eck

(f1∼fi−1)
+ e

cj
fi
} (6)

where i > 1, 1 ≤ j ≤ n,
and V ck

(f1∼fi−1)
+ v

cj
fi
≤ V(f1∼fi)

with the initial states: E
cj
(f1∼f1) =

{
e
cj
f1
, v

cj
f1
≤ Vf1

∞, otherwise
(7)

E
cj
(f1∼fi) is the minimum total energy consumption for the

first i phases (f1 ∼ fi), assuming that the current phase
fi chooses cj . Eq. (6) shows the formula to get the current
minimum energy consumption, based on the previous iteration
step. V(f1∼fi) is the threshold for vulnerability of the first i
phases, which is the vulnerability when the task is run with
base cache. Eq. (7) shows the initial states for our dynamic
programming.

Algorithm 3 is an iterative implementation of our cache
assignment approach for the phases. We use two arrays to store
the energy and vulnerability values (E[m][n] and V [m][n]),
where m is the number of phases, and n is the number of
cache configurations. In line 4-10, we initialize the states of
phase f1, as directed by Eq. (7). For each configuration cj , its
energy value will be updated only if its vulnerability is smaller
than Vf1 . In line 12-25, we evaluate the states of phase f2 to
fm, as outlined by Eq. (6). In each iteration (phase fi), we
update the optimal energy value (E[i][j], which is Ecj

(f1∼fi) in
Eq. (6)) for each configuration (cj). This is done in line 15-
23, which compares all solutions (E[i− 1][k] and V [i− 1][k])
found at the previous iteration for phases f1 ∼ fi−1. In the
process of comparing previous solutions (line 18), we also
ensure that the vulnerability constraints are not violated (line
17). In line 27-30, we iterate through feasible solutions at the
last phase fm, and find the optimal solution with the minimum
energy. The initialization process of line 4-10 is of complexity
of O(n). The dynamic programming process of line 12-25 has
complexity of O(mn2). The final iteration for output of line
27-30 has complexity of O(n). Thus, the algorithm has an
overall time complexity of O(mn2). This algorithm can be
completed in reasonable time since m is typically less than
10 and n is 18 in our framework.

C. Inter+Intra Cache Reconfiguration

Up to this point, we have introduced both inter-task DCR
and intra-task DCR. The inter-task DCR approach optimizes
at the task level, where each task is deemed as an atom since
our system is non-preemptive. The intra-task DCR approach
optimizes at the phase level (inside a task), where phases can
execute with the intra-task VAEO configuration vector (one
configuration for each phase). It is straightforward to introduce
our (inter+intra)-task DCR approach, which combines these
two levels of optimization by applying intra-task DCR on each

Algorithm 3: Cache Assignment for Intra-task Phases

1 Initialize the energy array E[m][n] = {∞, ...,∞}
2 Initialize the vulnerability array V [m][n] = {∞, ...,∞}
3 /** Phase 1 **/
4 for config cj=c1 to cn do
5 Get ecjf1 and vcjf1 by running phase f1 with config cj
6 if vcjf1 ≤ Vf1 then
7 E[1][j] = e

cj
f1

8 V [1][j] = v
cj
f1

9 end
10 end
11 /** Phase 2 to Phase m **/
12 for phase fi=f2 to fm do
13 for config cj=c1 to cn do
14 E[i][j] =∞
15 for config ck=c1 to cn do
16 Get ecjfi and vcjfi by running fi with config cj
17 if V [i− 1][k] + v

cj
fi
≤ Vfi then

18 if E[i− 1][k] + e
cj
fi
< E[i][j] then

19 E[i][j] = E[i− 1][k] + e
cj
fi

20 V [i][j] = V [i− 1][k] + v
cj
fi

21 end
22 end
23 end
24 end
25 end
26 /** Find the optimal solution with minimum energy **/
27 for config cj=c1 to cn do
28 Emin = min(E[m][j], Emin);
29 V = V [m][j];
30 end
31 The path leading to Emin is the VAEO solution
32 return the VAEO config vector for all phases

task for inter-task DCR. Algorithm 4 shows our (inter+intra)-
task DCR approach. In Step 1, we generate the profile (i.e., the
intra-task VAEO configuration vector) for each task, which can
be obtained by the phase identification and cache assignment
methods described earlier in this section. Step 2 shows the
(inter+intra)-task cache reconfiguration approach. We fetch the
task with the highest priority from the task queue as the current
task tc. The inter-task reconfiguration method (Algorithm 1)
is called to make the decision whether the intra-task VAEO
configuration is suitable for tc to satisfy deadline constraints.
If the intra-task VAEO configuration is chosen, the system will
execute the task with intra-task reconfiguration. Otherwise, the
system will execute the task with PO configuration without
intra-task reconfiguration.

Instead of using a fixed VAEO configuration for a task, our
(inter+intra)-task DCR approach can use the intra-task VAEO
configuration, which has optimal configurations for different
phases. There is no context switching or preemption during
the execution of a task, even though intra-task optimization is
applied. Compared with inter-task DCR, the inter+intra DCR
approach introduces overhead in the form of cache flushing

9

Algorithm 4: (Inter+intra)-task Cache Reconfiguration

1 Step 1: Generate profile for each task.
2 for each task ti do

// Call Algo. 2
3 phases = PhaseIdentify(ti)

// Call Algo. 3
4 Intra-task VAEO config = CacheAssign(phases)
5 end
6 Step 2: (Inter+intra)-task Cache Reconfiguration
7 while task queue is not empty do
8 Fetch the current task tc with highest priority
9 Use Algo. 1 for inter-task cache reconfiguration

10 if Intra-task VAEO config is chosen then
11 Execute tc with intra-task reconfiguration
12 end
13 else
14 Execute tc with the PO config
15 end
16 end

when cache configurations change between phases. Since the
number of phases in a task is relatively small, the overhead
caused by intra-task reconfiguration is negligible (less than 1%
penalty for performance). The overhead of cache flushing on
energy consumption and vulnerability is far outweighed by the
benefits of intra-task reconfiguration, which will be presented
in our experiments.

VI. EXPERIMENTS

A. Experimental Setup

The configurable caches used in our work are from the
cache architecture introduced in [4]. The underlying cache
architecture contains a configurable cache with a four-bank
cache with sizes of 1 KB, 2 KB and 4 KB, line sizes of 16
bytes, 32 bytes and 64 bytes, and associativity of 1-way, 2-
way and 4-way. In order to quantify reliability-aware DCR
trade-off, we selected benchmarks from MediaBench [22] and
EEMBC automotive [23] benchmark suites. Table I shows our
four task sets with three selected benchmarks in each set. All
of the tasks are executed with the default input parameters
provided with the benchmark suites. The benchmarks from
MediaBench have about 10∼200 million instructions, while
the benchmarks from EEMBC AutoBench have about 1∼10
million instructions. The rationale for us to form a task set is
that the tasks are of comparable size in terms of number of
instructions. Both task set 1 and set 2 consist of three tasks
from MediaBench. Both task set 3 and set 4 consist of three
tasks from EEMBC AutoBench. Thus, set 1 and set 2 have
more instructions and can potentially stress the cache with
more cache accesses, compared to set 3 and set 4.

Task 1 Task 2 Task 3
Task Set 1 epic dijkstra cjpeg
Task Set 2 fft pegwit qsort
Task Set 3 AIFFTR01 AIFIRF01 BITMNP01
Task Set 4 CACHEB01 CANRDR01 IIRFLT01

TABLE I: Four task sets with twelve benchmarks

We modified the SimpleScalar simulator [24] for cache
vulnerability analysis and energy consumption estimation. We
performed the vulnerability analysis during cache accesses for
each byte in instruction and data cache. The vulnerability
estimation function collects all the vulnerable intervals for
each valid byte in cache. We applied the same energy model
as in [4] to calculate both dynamic and static energy consump-
tion, and the energy consumption was estimated using CACTI
5.3 [25] with 65 nm technology. For static profiling of each
task to find the PO, VAEO, and Intra-task VAEO (with intra-
task reconfiguration) cache configurations, we developed Perl
scripts to search the design space of all possible cache con-
figurations. Since we only consider systems with one level of
reconfigurable cache architecture, the space of possible cache
configurations is small. The statistics for all possible cache
configurations for a task can be collected in a reasonable time
(a few hours). Once we have the profile tables for all the tasks,
we use an EDF scheduler to simulate the system for a hyper-
period. The cache selection algorithms are integrated in the
scheduler to make decisions to reconfigure the cache during
simulation. The optimization for instruction cache and data
cache are independent. In the following subsections, we will
first present results for optimization of individual benchmarks,
followed by the results for task sets with scheduling and cache
selection.

B. VAEO and Intra-task VAEO configurations of single tasks

In this section, we present the results to show the effective-
ness of reconfiguration for single tasks. We will compare the
energy consumption and vulnerability when a task is executed
with the Base, VAEO and Intra-task VAEO configurations.
• Base Config: the configuration of the base cache, which

is 4KB, 2-way associative with line size of 32 bytes.
• VAEO Config: the vulnerability-aware energy optimal

configuration without intra-task reconfiguration.
• Intra-task VAEO Config: the VAEO configuration when

intra-task reconfiguration is allowed.
Figure 7a and 7b show the energy and vulnerability of L1

data cache for 12 benchmarks. The VAEO configurations can
reduce energy consumption (up to 33.0%, 19.8% on average),
as well as vulnerability (up to 16.1%, 9.3% on average),
compared with Base configurations. The Intra-task VAEO
configurations can reduce energy consumption (up to 33.5%,
21.1% on average), as well as vulnerability (up to 58.4%,
30.0% on average), compared with Base configurations. Gen-
erally speaking, the VAEO configurations can greatly reduce
energy and vulnerability compared with the Base, and the
Intra-task VAEO can further improve energy and vulnerability
compared with VAEO.

We observe that the trend of energy and vulnerability
improvement in data cache (Figure 7) is similar to the trend of
instruction cache (Figure 8). Figure 8a and 8b show the energy
and vulnerability of L1 instruction cache for 12 benchmarks
with their Base, VAEO and Intra-task VAEO configurations.
The VAEO configurations can reduce energy consumption (up
to 34.3%, 20.4% on average), as well as vulnerability (up to
47.6%, 25.3% on average), compared with Base configura-
tions. The Intra-task VAEO configurations can reduce energy

10

epic dijkstra cjpeg fft pegwit qsort AIFFTR01 AIFIRF01 BITMNP01 CACHEB01CANRDR01 IIRFLT01 Average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Base Config VAEO Config Intra-task VAEO Config

Benchmarks

E
ne

rg
y

(N
or

m
al

iz
ed

)

(a) Data Cache Energy Consumption

epic dijkstra cjpeg fft pegwit qsort AIFFTR01 AIFIRF01 BITMNP01 CACHEB01CANRDR01 IIRFLT01 Average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Base Config VAEO Config Intra-task VAEO Config

Benchmarks

V
ul

ne
ra

bi
lit

y
(N

or
m

al
iz

ed
)

(b) Data Cache Vulnerability

Fig. 7: Comparison of DL1 energy consumption and vulnerability of single tasks for Base, VAEO and Intra-task VAEO
configurations.

consumption (up to 34.5%, 23.1% on average), as well as
vulnerability (up to 68.9%, 29.5% on average), compared with
Base configurations.

Compared with Figure 7 for data cache, the intra-task VAEO
configs for instruction cache (Figure 8) tend to have very
similar energy and vulnerability numbers as the inter-task
VAEO configs. There are two reasons for this: (1) Compared
with data cache, instruction cache is more sensitive to recon-
figuration. It means that the beneficial configuration points
are not that many. For example, if we change the instruction
cache size from 4KB to 2KB, it significantly impacts execution
time, which makes huge impact on energy consumption and
vulnerability. (2) Reconfiguration in the middle of execution
(intra-task reconfiguration) will flush the instruction cache
first. Starting a new phase with an empty instruction cache
will tend to significantly impact performance. This effect
will propagate and impact energy and vulnearbility. Thus, the
selected intra-task VAEO configurations tend to be very similar
to the selected VAEO configurations.

For benchmark pegwit and cjpeg, the energy and vul-
nerability numbers for VAEO Config and Intra-task VAEO
Config are exactly the same. This is because Intra-task VAEO
Config is exactly the same as VAEO Config. (1) For pegwit,
we identify the whole program as one phase (as seen in
Figure 6), because the miss rate remains almost the same.
(2) For cjpeg, we identify two phases but the reconfiguration
algorithm chooses the same configuration for the two phases.

In other words, we didn’t do intra-task reconfiguration for
these two benchmarks, thus the results remain exactly the same
for Figure 7 and 8.

C. Results for Inter-task VAEO and (Inter+Intra)-task VAEO

In this section, we present the results to show the ef-
fectiveness of reconfiguration for task sets using proposed
approaches. We profile each task with its PO, EO, VAEO,
and Intra-task VAEO configurations. The runtime algorithms
(Algorithm 1 for inter-task reconfiguration and Algorithm 4 for
(inter+intra)-task reconfiguration) will select between PO and
VAEO (or Intra-task VAEO) configurations. In the following
section, we compare our proposed VAEO approaches with the
base cache system as well as [7]:
• Base refers to the base system which uses the fixed Base

Config for all tasks.
• EO [7] refers to the Energy-Optimization approach in [7]

which chooses between PO and EO configurations.
• Inter-task VAEO is our inter-task reconfiguration ap-

proach when the runtime algorithm chooses between PO
and VAEO configurations.

• (Inter+Intra)-task VAEO is our (inter+intra)-task recon-
figuration approach when the runtime algorithm chooses
between PO and Intra-task VAEO configurations.

Figure 9a and 9b show the results of L1 data cache for
four task sets. Inter-task VAEO can improve energy by 19.6%
on average and vulnerability by 9.0% on average, compared

11

epic dijkstra cjpeg fft pegwit qsort AIFFTR01 AIFIRF01 BITMNP01 CACHEB01CANRDR01 IIRFLT01 Average

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Base Config VAEO Config Intra-task VAEO Config

Benchmarks

E
ne

rg
y

(N
or

m
al

iz
ed

)

(a) Instruction Cache Energy Consumption

epic dijkstra cjpeg fft pegwit qsort AIFFTR01 AIFIRF01 BITMNP01 CACHEB01CANRDR01 IIRFLT01 Average
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Base Config VAEO Config Intra-task VAEO Config

Benchmarks

V
ul

ne
ra

bi
lit

y
(N

or
m

al
iz

ed
)

(b) Instruction Cache Vulnerability

Fig. 8: Comparison of IL1 energy consumption and vulnerability of single tasks for Base, VAEO and Intra-task VAEO
configurations.

with Base. (Inter+Intra)-task VAEO can improve energy by
20.9% on average and vulnerability by 25.3% on average,
compared with Base. (Inter+Intra)-task VAEO, which takes
advantage of both intra-task and inter-task reconfiguration,
can further improve energy consumption compared with Inter-
task VAEO. Compared with EO [7], our VAEO approach can
reduce vulnerability by 8.7% on average, while it consumes
1.2% more energy on average. This minor energy penalty is
not surprising since EO did not consider any vulnerability
threshold during energy minimization, whereas our approach
respects the vulnerability constraint. Our (inter+inter)-task
VAEO approach reduce vulnerability by 24.9% and it saves
0.1% more energy compared with EO [7]. As shown in
Figure 9b, EO [7] produces very bad vulnerability for Task
Set 1 and Task Set 2, which is even worse than the Base
system.

Figure 10a and 10b show the results of L1 instruction cache
for four task sets. Inter-task VAEO can improve energy by
21.6% on average and vulnerability by 24.1% on average.
(Inter+Intra)-task VAEO can improve energy by 23.8% on av-
erage and vulnerability by 28.2% on average. Compared with
EO [7], our VAEO approach produces the exact same results
for four task sets. This is because the VAEO configurations
are exactly the same as EO configurations for IL1 cache. This
suggests that IL1 cache accesses has similar patterns among
benchmarks, thus the results for IL1 have fewer variations than
that of DL1 cache. Our (inter+inter)-task VAEO approach can

improve a little bit further over the VAEO approach. Compared
with EO [7], our (inter+inter)-task VAEO approach can reduce
vulnerability by 4.1% and save 2.3% more energy.

D. Hardware Overhead

Cost of implementation involves two factors: (i) the cost
of reconfiguration infrastructure; (ii) the cost of chip area for
storing profile table. As mentioned in the Section II, dynamic
cache reconfiguration (DCR) is an approach widely used in
embedded systems for performance improvement and energy
saving. This architecture requires very simple hardware aug-
mentation and minor overhead [7]. The overhead to implement
our VAEO approach is mostly the cost to store the profile table
in hardware. The cache tuner will fetch the cache configuration
information from the profile table. The size of the table de-
pends on the number of tasks in the system and the information
needed to store for each task. For the VAEO approach, we
need to store two configurations (i.e., [Config, Runtime] for
the PO and VAEO configurations) for each task. Five bits
are used to specify a configuration since the configurable
cache architecture used in this study offers 18 possible cache
configurations. Another 16 bits are used to store the expected
runtime of the task. For 12 benchmarks, the profile table
contains 24 entries each with 21 bits. For the VAEO approach
with intra-task reconfiguration, we need to store [Phase1,
Config1, ..., Phasen, Confign, Runtime] for the intra-task
VAEO configuration. We use 16 bits (Phasei) to indicate the

12

Task Set 1 Task Set 2 Task Set 3 Task Set 4 Average
0

0.2

0.4

0.6

0.8

1

1.2

Base EO [7] Inter-task VAEO [Inter+Intra]-task VAEO

E
ne

rg
y

(N
or

m
al

iz
ed

)

(a) Data Cache Energy Consumption

Task Set 1 Task Set 2 Task Set 3 Task Set 4 Average
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Base EO [7] Inter-task VAEO [Inter+Intra]-task VAEO

V
ul

ne
ra

bi
lit

y
(N

or
m

al
iz

ed
)

(b) Data Cache Vulnerability

Fig. 9: Data cache energy and vulnerability.

start instruction number of the phase, and 5 bits to store its
cache configuration. For benchmarks used in our paper, n is
at most 4. In total it takes at most 100 (=16*4+5*4+16) bits
to store the intra-task VAEO configuration for one task.

TABLE II: Overhead of Profile Table (65nm technology)
Approach Table size (bits) Area (µm2) Dynamic Power (µW) Leakage Power (µW)

VAEO 504 10641 19.26 243.37
Intra-task VAEO 1032 21788 39.44 498.33

We used Synopsis Design Compiler with TSMC library
to implement the profile table. We estimate a table lookup
frequency of once per 3 µs. It is a table lookup every one
thousand instructions using a 500 MHz CPU with an average
CPI of 1.5. It should be suffice since the benchmarks we used
have around 1 to 200 million instructions. Table II shows our
results of the area, dynamic power, and leakage power for
the profile table using 65nm technology. We observed that
on average for each task set, the energy overhead of our
approach accounts for less than 2% (0.067 mJ compared to
3.38 mJ) of the total energy savings for VAEO approach, and
less than 3% (0.14 mJ compared to 4.73 mJ) of the total energy
savings for intra-task VAEO approach. The (intra+intra)-task
VAEO approach has slightly higher overhead than VAEO and
also has higher energy savings. Therefore, we concludes that
the overhead of profile tables is negligible compared to the
energy savings for both VAEO and (inter+intra)-task VAEO
approaches.

Task Set 1 Task Set 2 Task Set 3 Task Set 4 Average
0

0.2

0.4

0.6

0.8

1

1.2

Base EO [7] Inter-task VAEO [Inter+Intra]-task VAEO

E
ne

rg
y

(N
or

m
al

iz
ed

)

(a) Instruction Cache Energy Consumption

Task Set 1 Task Set 2 Task Set 3 Task Set 4 Average
0

0.2

0.4

0.6

0.8

1

1.2

Base EO [7] Inter-task VAEO [Inter+Intra]-task VAEO

V
ul

ne
ra

bi
lit

y
(N

or
m

al
iz

ed
)

(b) Instruction Cache Vulnerability

Fig. 10: Instruction cache energy and vulnerability.

VII. CONCLUSIONS

Dynamic cache reconfiguration is widely used for improv-
ing energy and performance in embedded systems. While
cache vulnerability is a well studied area, previous research
efforts did not explore cache vulnerability in the context of
cache reconfiguration. In this paper, we developed algorithms
to reduce cache vulnerability with energy and performance
considerations. Our experimental results demonstrated that
our approach can significantly improve the reliability of both
instruction and data caches. For the data cache, the Inter+Intra
DCR approach can improve energy by 20.9% on average and
vulnerability by 25.3% on average. For the instruction cache,
the Inter+Intra DCR approach can improve energy by 23.8%
on average and vulnerability by 28.2% on average. Future
work will focus on applying our approach to more flexible
systems in broader areas. (1) Our approach can be extended
to multi-level caches in single-core systems as well as mul-
ticore systems. The only difference would be that heuristic
approaches should be used to efficiently explore beneficial
cache configurations because exhaustive exploration may not
be feasible since the number of possible configurations can
be very large. (2) Our approach can be extended to systems
allowing preemptive execution. This can be achieved by par-
titioning tasks into phases and profiling each partition, and
preemptive task can resume execution using the configuration
for the current phase.

13

REFERENCES

[1] Y. Huang and P. Mishra,“Reliability and energy-aware cache recon-
figuration for embedded systems,” In Proceedings of the International
Symposium on Quality Electronic Design (ISQED), Santa Clara, CA,
2016, pp. 313-318.

[2] V. Sridharan and D. Liberty, “A study of DRAM failures in the field,”
In Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (p. 76). IEEE Computer
Society Press, 2012.

[3] R. Jeyapaul and A. Shrivastava, “Smart cache cleaning: Energy efficient
vulnerability reduction in embedded processors,” In Proceedings of the
International Conference on Compilers, Architectures and Synthesis for
Embedded Systems (CASES), Taipei, 2011, pp. 105-114.

[4] W. Wang, S. Ranka, P. Mishra, “Dynamic Reconfiguration in Real-Time
Systems - Energy, Performance, Reliability and Thermal Perspectives,”
Springer, 2012.

[5] C. Ekelin, “Clairvoyant non-preemptive EDF scheduling,” In Proceedings
of the 18th Euromicro Conference on Real-Time Systems (ECRTS’06),
Dresden, 2006, pp. 7.

[6] X. Qin, W. Wang and P. Mishra, “TCEC: Temperature- and Energy-
Constrained Scheduling in Real-Time Multitasking Systems,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Sys-
tems (TCAD), 31(8), pages 1159-1168, August 2012.

[7] W. Wang, P. Mishra and A. Gordon-Ross, “Dynamic Cache Reconfig-
uration for Soft Real-Time Systems,” ACM Transactions on Embedded
Computing Systems (TECS), volume 11, issue 2, Article 28, 31 pages,
July 2012.

[8] W. Wang and P. Mishra, “System-Wide Leakage-Aware Energy Mini-
mization using Dynamic Voltage Scaling and Cache Reconfiguration in
Multitasking Systems,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems (TVLSI), 20(5), pages 902 - 910, 2012.

[9] W. Wang, P. Mishra and S. Ranka, “Dynamic Cache Reconfiguration and
Partitioning for Energy Optimization in Real-Time Multi-Core Systems”,
In Proceedings of the ACM/IEEE Design Automation Conference (DAC),
pp. 948-953, 2011.

[10] Y. Huang and P. Mishra, ”Vulnerability-Aware Energy Optimization
Using Reconfigurable Caches in Multicore Systems,” 2017 IEEE Interna-
tional Conference on Computer Design (ICCD), Boston, MA, 2017, pp.
241-248.

[11] Y. Cai, M. Schmitz, A. Ejlali, B. Al-Hashimi and S. Reddy, “Cache
size selection for performance, energy and reliability of time-constrained
systems,” In Proceedings of Asia and South Pacific Conference on Design
Automation (ASP-DAC), 2006, pp. 6.

[12] S. Mittal and J. S. Vetter, “A Survey of Techniques for Modeling and
Improving Reliability of Computing Systems,” in IEEE Transactions on
Parallel and Distributed Systems, 27(4), pp. 1226-1238, 2016.

[13] Y. Lyu and P. Mishra, A Survey of Side Channel Attacks on Caches and
Countermeasures, Springer Journal of Hardware and Systems Security
(HASS), 2(1), pages 33-50, 2018.

[14] Y. Ko, R. Jeyapaul, Y. Kim, K. Lee and A. Shrivastava, “Guidelines to
design parity protected write-back L1 data cache,” In Proceedings of the
ACM/IEEE Design Automation Conference (DAC), 2015, pp. 1-6.

[15] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A
Systematic Methodology to Compute the Architectural Vulnerability
Factors for a High-Performance Microprocessor.” In Proceedings of the
36th annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2003, p. 29-.

[16] W. Zhang et al. “An analysis of microarchitecture vulnerability to soft
errors on simultaneous multithreaded architectures.” IEEE International
Symposium on Performance Analysis of Systems & Software (ISPASS)
2007.

[17] V. Sridharan et al. Memory Errors in Modern Systems The Good, The
Bad, and The Ugly. ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS)
2015.

[18] J. Suh et al. Soft error benchmarking of L2 caches with PARMA. ACM
SIGMETRICS Performance Evaluation Review 2011.

[19] V. Sridharan, H. Asadi, M. B. Tahoori and D. Kaeli, “Reducing Data
Cache Susceptibility to Soft Errors,” in IEEE Transactions on Dependable
and Secure Computing, vol. 3, no. 4, pp. 353-364, Oct.-Dec. 2006.

[20] G.-H. Asadi, V. S. Mehdi, B. Tahoori, and D. Kaeli, “Balancing
Performance and Reliability in the Memory Hierarchy,” In Proceedings of
the IEEE International Symposium on Performance Analysis of Systems
and Software, 2005 (ISPASS), pp. 269-279.

[21] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S. Mukherjee, and
R. Rangan, “Computing Architectural Vulnerability Factors for Address-
Based Structures,” In Proceedings of the 32nd annual International
Symposium on Computer Architecture, 2005 (ISCA), pp. 532-543.

[22] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: a tool
for evaluating and synthesizing multimedia and communication systems,”
In Proceedings of the 30th annual ACM/IEEE international symposium
on Microarchitecture (MICRO 30). 1997, pp. 330-335.

[23] http://www.eembc.org. EEMBC, The Embedded Microprocessor Bench-
mark Consortium.

[24] http://www.simplescalar.com. The SimpleScalar Simulator.
[25] http://www.hpl.hp.com/research/cacti/. CACTI.
[26] T. Sherwood, S. Sair, and B. Calder, “Phase tracking and prediction,”

In Proceedings of the 30th annual International Symposium on Computer
Architecture (ISCA). ACM, 2003, pp. 336-349.

[27] H. Hajimiri and P. Mishra, “Intra-Task Dynamic Cache Reconfiguration,”
In Proceedings of the 25th International Conference on VLSI Design,
2012, pp. 430-435.

[28] T. Adegbija, A. Gordon-Ross and A. Munir, “Dynamic phase-based tun-
ing for embedded systems using phase distance mapping,” In Proceedings
of the IEEE 30th International Conference on Computer Design (ICCD),
2012, pp. 284-290.

[29] C. Zhang, F. Vahid, and W. Najjar, “A highly configurable cache for
low energy embedded systems,” ACM Trans. Embed. Comput. Syst. 4, 2
(May 2005), pp. 363-387.

[30] A. Shrivastava, J. Lee, and R. Jeyapaul. “Cache vulnerability equations
for protecting data in embedded processor caches from soft errors,” In
Proceedings of the ACM conference on Languages, compilers, and tools
for embedded systems (LCTES ’10), pp. 143-152, 2010.

Yuanwen Huang received the B.E. degree from
Huazhong University of Science and Technology,
China, in 2012. He received the Ph.D. degree in
Computer Engineering from University of Florida,
in 2017. He was a recipient of the Best Paper
Award from the International Symposium on Quality
Electronic Design in 2016. His research interests
include energy and reliability optimization in em-
bedded systems, hardware security and trust for
integrated circuits.

Prabhat Mishra (S00-M04-SM08) is a Professor
in the Department of Computer and Information
Science and Engineering at the University of Florida.
His research interests include embedded and cyber-
physical systems, energy-aware computing, hard-
ware security and trust, system-on-chip verification,
bioinformatics, and post-silicon debug. He received
his Ph.D. in Computer Science and Engineering
from the University of California, Irvine. He has
published six books and more than 150 research
articles in premier international journals and confer-

ences. His research has been recognized by several awards including the NSF
CAREER Award, IBM Faculty Award, three best paper awards, and EDAA
Outstanding Dissertation Award. Prof. Mishra currently serves as the Deputy
Editor-in-Chief of IET Computers & Digital Techniques, and as an Associate
Editor of ACM Transactions on Design Automation of Electronic Systems,
IEEE Transactions on VLSI Systems, and Journal of Electronic Testing. Prof.
Mishra is an ACM Distinguished Scientist and a Senior Member of IEEE.

