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Abstract—Computing systems utilize multi-core processors
with complex cache coherence protocols to meet the increasing
need for performance and energy improvement. It is a major
challenge to verify the correctness of a cache coherence protocol
since the number of reachable states grows exponentially with
the number of cores. In this paper, we propose an efficient test
generation technique, which can be used to achieve full state
and transition coverage in simulation based verification for a
wide variety of cache coherence protocols. Based on effective
analysis of the state space structure, our method can generate
more efficient test sequences (50% shorter) on-the-fly compared
with tests generated by breadth-first search. While our on-the-
fly method can reduce the numbers of required tests by half, it
can still be impractical to verify all possible transitions in the
presence of large number of cores. We propose scalable on-the-
fly test generation techniques using quotient state space. The
proposed approach guarantees selection of important transitions
by utilizing equivalence classes, and omits only similar transi-
tions. Our experimental results demonstrate that our proposed
approaches can efficiently trade-off between transition coverage
and validation effort.

Index Terms—Cache coherence, quotient space, test genera-
tion, verification.

I. INTRODUCTION

SYSTEM designers incorporate multi-core processors to
meet the increasing performance requirements. To address

the memory bottleneck, caching has been the most effec-
tive approach to reduce the memory access time for several
decades. When the same data is cached by different processors,
cache coherence protocols are employed to guarantee that a
read always returns most recently written data. Due to the
power wall encountered by single core architectures, more
and more cores are integrated into the same chip to boost
the performance. As a result, the modern cache coherence
protocols, like MOESI in AMD [1], are becoming quite
complex. Unfortunately, since the reachable protocol state
space grows exponentially with the number of processing units
(cores) and states, the verification teams are facing significant
challenges to achieve the required coverage within tight time-
to-market window.
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Since all possible behaviors of the cache blocks in a system
with n cores can be defined by a global finite state machine
(FSM), the entire state space is the product of n cache block
level FSMs. Although the FSM of each cache controller is
easy to understand, the structure of the product FSM for
modern cache coherence protocols usually have quite obscure
structures that are hard to analyze. Clearly, it is inefficient to
use breadth-first search (BFS) on this product FSM to achieve
full state or transition coverage, because a large number of
transitions may be unnecessarily repeated, if they are on the
shortest path to many other states.

Simulation using random and constrained-random tests is
widely used in industry because of its good scalability. How-
ever, the random nature of test sequences also introduces
unacceptable time requirement to cover all possible state
transitions in modern cache coherence protocols with many
cores. Directed tests, on the other hand, are promising to
achieve high coverage with a drastically small number of tests
[2]. Therefore, they can be applied in addition to random tests
to further improve the chances of capturing potential bugs.
However, directed test generation is not practical in this case
since the time and memory requirements can be prohibitive.
Therefore, it is desirable to have an on-the-fly test generator
with a space- and time-efficient test generation algorithm.

In this paper, we propose an on-the-fly test generation
technique for cache coherence protocols by analyzing the state
space structure of their corresponding global FSMs. Instead
of using structure-independent BFS to obtain directed tests,
we show that complex state space can be decomposed into
several components with simple structures. Since the activation
of states and transitions can be viewed as a path searching
problem in the state space, these decomposed components with
known structures can be exploited for efficient test generation.
Our contributions in this paper are:

1) We develop a graphical state space description of several
commonly used cache coherence protocols, which can
be viewed as a composition of simple structures [3], and
present an on-the-fly directed test generation algorithm
based on Euler tour [4].

2) We propose an efficient quotient space based test gen-
eration approach to address the scalability concerns in
existing test generation techniques. The proposed ap-
proach utilizes the symmetric structure of protocol state
space, which enables designers to cover important state
transitions within limited verification budget.

The rest of the paper is organized as follows. Section II
introduces related works. Section III provides background on



2 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. XX, NO. NN, MMM YYYY

cache coherence protocols. Section IV presents our on-the-fly
test generation algorithms. Section V proposes scalable on-the-
fly test generation using quotient space. Experimental results
are presented in Section VI. Finally, Section VII concludes the
paper.

II. RELATED WORK

Researchers have designed many cache coherence proto-
cols for different platforms and architectures, such as MSI,
MESI, MOSI, MOESI, MESIF [5], MEUSI [6] and many
other variations. As these protocols are becoming more and
more complex, validating the correctness of these protocols
also becomes challenging. Existing cache coherence protocol
validation techniques can be broadly classified into two cat-
egories: formal verification and simulation based validation.
Formal methods using model checking can prove mathemat-
ically whether the description of certain protocol violates
the required property. For example, Murϕ [7] was used to
verify various cache coherence protocols based on explicit
model checking. Symbolic model checking tools are also
developed for coherence verification. For example, the veri-
fication problem with parameterized cache coherence protocol
is investigated by Emerson et al. [8] and Li et al. [9]. Fractal
coherence [10] [11] and PVCoherence [12] enable the scalable
verification of a family of properly designed coherence proto-
cols. Deadlock detection techniques [13] [14] are designed to
automatically detect deadlock in cache coherence protocols.
Although formal methods can guarantee the correctness of a
design, they usually require that the design should be described
in certain input languages. As a result, it is usually difficult
to apply model checking on implementations directly. More-
over, manual translation (implementation to formal language)
associated abstractions may introduce errors.

Simulation based approaches, on the other hand, are able
to handle designs at different abstraction levels and therefore
widely used in practice. For example, Wood et al. [15] used
random tests to verify the memory subsystem of SPUR ma-
chine. Genesys Pro test generator [16] from IBM extended this
direction with complex and sophisticated test templates. To
reduce the search space, Abts et al. [17] introduced space prun-
ing technique during their verification of the Cray processor.
Wagner et al. [18] designed the MCjammer tool which can get
higher state coverage than normal constrained random tests.
Since an uncovered transition can only be visited by taking a
unique action at a particular state, it may not be feasible for
a random test generator to eventually cover all possible states
and transitions. To address this problem, some random testers
are equipped with small amount of memory, so that the future
search can be guided to the uncovered regions. Unfortunately,
unless the memory is large enough to hold the entire state
space, it is still hard to achieve full coverage by such guided
random testing. Rather than generating test sequences to verify
cache coherence, Cunha et al. [19] proposed a technique to
detect violation by analyzing the traces of executing some
benchmarks.

Quotient space is one of the symmetry reduction techniques.
Through defining equivalence classes of states and restricting

state space to representatives, verification techniques can be
used to deal with large number of states. Clarke et al. [20]
and Emerson [21] exploited symmetry reduction techniques
in model checking. Kamkin [22] address state exploration
problem by projecting state space to a number of subspace.
However, to the best of our knowledge, quotient space was
never utilized to improve test generation and validation of
cache coherence protocols.

III. BACKGROUND AND MOTIVATION

In modern computer systems, each processing unit usually
maintains its local copy of the main memory, or cache for
fast access. One major problem of caching is that when the
same data, memory block, is cached in two or more different
places, any modification should be propagated to all the cached
copies. Cache coherence protocols are used to define the
correct behavior of each cache controller.
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Fig. 1. State transitions for a cache block in MSI protocol.

One of the simplest cache coherence protocol is the MSI
snoopy protocol [23]. The behavior of the cache controller in a
processing unit is modeled as an FSM (Figure 1). The state of
a cache block (line) can be either “Invalid”(I), “Modified”(M),
or “Shared”(S). At the beginning, all cache blocks are in
the invalid state. When a load request (Self LD) arrives, the
cache controller requests the data from the main memory and
switches to shared state. When the core issues a store request
(Self ST), the cache controller first broadcasts an invalidate
request on the bus and then changes to modified state. Such
an invalidate request will inform all the other cache controllers
that are in shared or modified states to change to invalid state.
A cache block may also change to invalid state, when it is
evicted by another cache block, which is mapped to the same
location in the cache, or when other cores issue store requests
(Other ST).

Although MSI protocol can guarantee the coherence of the
cache system, it causes some unnecessary delay and traffic
on the communication channels. Many variants of the MSI
protocols are invented to further improve its performance.
For example, “Exclusive” (E) state is introduced in MESI
protocol to avoid the traffic when a cache block is only used
by one core. “Owned” (O) state is used in MOSI and MOESI
protocol to reduce the delay when a modified block is loaded
by other cores. As cache coherence protocols are becoming
more and more complex, it is getting harder to verify their
implementations. From the validation perspective, it is always
desirable to activate all possible state transitions of the entire
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multicore cache system. However, as outlined in the next sec-
tion, traditional breadth-first search would lead to exponential
memory and time requirements. Section IV describes our on-
the-fly test generation algorithms to drastically reduce the test
generation time and memory requirements. Section V intro-
duces the concept of quotient space to develop scalable test
generation techniques for complex cache coherence protocols.

IV. ON-THE-FLY TEST GENERATION

Our approach is motivated by breadth-first search in the
state space of a global FSM. Given the FSM description of
any cache coherence protocol, it is possible to compose a test
suite which can activate all states and transitions using two
steps: 1) for each state, we determine the instruction sequence
to reach it by performing a BFS on the global FSM; 2) for
each transition, we create the test by appending the required
instructions after the instruction sequence to reach the initial
state of this transition. However, such a naive approach has two
problems. 1) Transitions close to the initial state are visited
many times. Thus, a large portion of the overall test time is
wasted. 2) Since we have to remember all visited states in BFS,
its runtime memory requirement also grows exponentially.

To address these challenges, our approach needs to satisfy
two requirements: 1) we should reduce the number of tran-
sitions as much as possible without sacrificing the coverage
goal; and 2) the space requirement for the test generation
algorithm should be small. Fortunately, we can exploit the
highly symmetric and regular structure of the state space and
design a deterministic test generation algorithm, which can
efficiently activate all states and transitions of cache coherence
protocols. The basic idea is to divide the complex state space
into several components with regular structure. Structures like
hypercubes and cliques can be traversed by visiting each
transition exactly once.

This section is organized as follows. For the ease of il-
lustration, we first describe how to generate tests to activate
all transitions of a simplified protocol: SI protocol. Next, we
discuss our test generation techniques for a wide variety of
popular protocols including MSI, MESI, MOSI, and MOESI
protocols. In this paper, we focus on the transitions between
two stable states. We assume that the transitions between stable
states and transient states are correct.

A. SI Protocol

SI protocol is a trimmed version of MSI protocol, in which
we do not allow cores to issue store operation. For a system
with n cores, a valid global state of the system allows the
cache blocks in any m cores in I state and cache blocks in
the other n − m cores in S state. Thus, there are 2n valid
global states. Since any core in I (or S) state can be converted
to S (or I) state within one transition, there are n outgoing
and n incoming edges for each global state. It is easy to
see that the entire state space of SI protocol with n cores

is an n dimensional hypercube1. Figure 2a shows such a state
space with three cores. Figure 2b shows the representation of
Figure 2a as a composition of three isomorphic trees (T1, T2,
and T3). Since all edges are bidirectional for state transitions,
we do not show transition directions explicitly. For example,
state III can be transformed to IIS when core 0 loads the cache
block. Similarly, state IIS can also be transformed to III, when
core 0 evicts this cache block.
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Fig. 2. (a) State space of SI protocol with 3 cores. Each global state is
presented with 3 letters, e.g., IIS means core 2, core 1, and core 0 are in
states I, I, and S, respectively. (b) Viewed as a composition of 3 isomorphic
trees.

To achieve full state and transition coverage of the state
space, we need to traverse each edge of the hypercube at least
once in both directions. Since each global state has the same
number of incoming and outgoing edges, it is possible to form
an Euler tour [4] of the state space, which visits each edge
exactly once in both directions.

Algorithm 1 Test generation for SI protocol with n cores
CreateTestsSI (n)

1: for r = 0 to n− 1 do
2: VisitHypercube(n, r)

VisitHypercube(m, r)
3: p = (m+ r) mod n
4: Output “load(p)”
5: for i = 1 to m− 1 do
6: VisitHypercube(i, r)
7: Output “evict(p)”
8: return

Algorithm 1 outlines our test generation procedure for SI
protocol, which performs an Euler tour on an n dimensional
hypercube. Here, load(p)/evict(p) means that the pth core
performs a load/evict operation in a particular cycle, while
all other cores remain idle.

Example 1: We use the state space in Figure 2 to show
the execution of Algorithm 1. The algorithm starts by calling
CreateTestsSI (n). All cores are in I state at the beginning. In
the first round of the for loop in line 2, VisitHypercube(n, 0)

1There are many transitions that start and end in the same state. For
example, the global state will not change if a core in S state issues a load
operation. These transitions are easier to cover, because they can be activated
by appending one more operation at the end of existing tests, which are used
to activate corresponding initial states. As a result, we omit them in the state
space structure description in this section. However, all possible transitions
are considered in our implementation to produce experimental results.
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is called. The system performs the transition III-IIS by
executing load(0) followed by two recursively call with
i = 1 and i = 2. When VisitHypercube(1, 0) is called,
the transitions IIS-ISS and ISS-IIS are visited by executing
load(1) and evict(1) without any further recursion. When
VisitHypercube(2, 0) is called, IIS-SIS is visited by load(2),
then VisitHypercube(1, 0) is invoked to activate two transi-
tions SIS-SSS and SSS-SIS, and at last SIS-IIS is covered by
executing evict(2). Finally, the global state goes back to III
via the transition IIS-III after evict(0) in line 7. The detailed
steps and corresponding test sequence are shown in Figure 3,
which forms an Euler tour on T1 in Figure 2b. In the next
two rounds of the for loop in CreateTestsSI , we essentially
perform a “rotated” version of the previous traversal, which
covers all transitions in paths III-ISI-SSI-ISI-ISS-SSS-ISS-
ISI-III and III-SII-SIS-SII-SSI-SSS-SSI-SII-III (T2 and T3 in
Figure 2b). Once the algorithm terminates, all transitions in
the hypercube are covered by the generated test sequences.
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Fig. 3. (a) VisitHypercube(n, 0) (1st iteration of CreateTestsSI (n),
line 2 in Algorithm 1) visits the upper right part of the hypercube (T1 in
Figure 2b). The arrows are the steps to traverse the transitions with numbers
to indicate the sequence. (b) The test sequence generated by the first iteration
of VisitHypercube(n, 0).

Although the execution of Algorithm 1 seems to be compli-
cated for larger n, the basic idea of this algorithm is quite easy:
the hypercube is partitioned into n isomorphic trees with no
overlapping edges. Once the hypercube is correctly partitioned,
an Euler tour is performed on trees, because all edges are
bidirectional. To show the correctness of our algorithm, we
are going to prove 1) There are n ∗ 2n transitions within the
state space of SI protocol with n cores; 2) The transition
sequence produced by Algorithm 1 has a length of n ∗ 2n;
3) No transition is visited more than once while we apply the
transition sequence produced by Algorithm 1 on SI protocol.
Clearly, Algorithm 1 does perform an Euler tour when these
three statements hold. We prove these statements as follows.

Definition 1: A global state in the state space of SI protocol
with n cores, is an n-dimensional vector s = [s0, s1, ..., sn−1],
where sk ∈ {S, I} indicates that the kth core is in shared or
invalid state.

Definition 2: An operation op is a function, which takes a
global state in the protocol state space with n cores as input,
and returns another global state in the same state space. We
denote the application of an operation on state s, as op ◦ s.
Let s1 = load(p) ◦ s. The pth component of s1 must be
S. Similarly, the pth component of evict(p) ◦ s must be I.
When a sequence of operations OP = op1, op2, ..., opk are

applied on a state, the resultant state is defined as OP ◦ s =
opk ◦ · · · ◦ op2 ◦ op1 ◦ s.

For the ease of presentation, we also denote V H(m, r)
as the operation sequence produced by invocation of
VisitHypercube(m, r).

Lemma 4.1: There are n ∗ 2n transitions within the state
space of SI protocol with n cores.

Proof: Notice that an n dimensional hypercube has n ∗
2n−1 edges. Since each edge corresponds to two transitions,
the total number of transitions becomes n ∗ 2n.

Lemma 4.2: The test sequence generated by Algorithm 1
contains n ∗ 2n operations.

Proof: We show the number of load/evict operations
performed by CreateTestsSI (n) is n ∗ 2n. Since r does not
affect the number of operations in each VisitHypercube(m, r),
we denote the length of V H(m, r) as l(m) . We have

l(1) = 2, l(m) = 2 +

m−1∑
i=1

l(i) (1)

because the for loop in line 5 is repeated for m − 1 times.
Two operations are performed in line 4 and line 7. It is trivial
to verify that l(m) = 2m.

We invoke VisitHypercube(n, r) in CreateTestsSI for n
times. The total number of load/evict operations performed
by CreateTestsSI (n) is n ∗ 2n.

For the ease of illustration, we define a predicate
RI(s,m, r) on a global state s which is true iff ∀sj is I where
j = (i+ r) mod n, where 0 ≤ i ≤ m.

Lemma 4.3: For any state s, RI(s,m, r) implies
V H(m, r) ◦ s = s.

Proof: We prove this lemma by induction. For the base
case m = 1, let p = (1 + r) mod n. We have

V H(1, r) ◦ s = evict(p) ◦ load(p) ◦ s = s

because RI(s, 1, r) implies the pth core in s is in I state.
Suppose RI(s,m, r) =⇒ V H(m, r) ◦ s = s for all m <

m0. For m = m0, the operations in V H(m0, r) are
load(p) V H(1, r) V H(2, r) ... V H(m0 − 1) evict(p)
where p = (m0 + r) mod n.
Let s′ = load(p) ◦ s. If RI(s,m0, r) is true, we have

RI(s′,m0 − 1, r) is also true. Notice that RI(s′,m0 − 1, r)
implies RI(s′,m, r) for all m ≤ m0 − 1. We have

V H(i, r) ◦ s′ = s′, i ≤ m0 − 1

Therefore, V H(m0, r) ◦ s = evict(p) ◦ load(p) ◦ s = s.
RI(s,m0, r) =⇒ V H(m0, r) ◦ s = s, which proves the
lemma.

We define the global invalid state as a global state within
which all cores are in the invalid state (e.g., the state III in
Figure 2).

Lemma 4.4: If s is the global invalid state, every operation
in V H(n, r) covers an uncovered transition.
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Proof: First, let’s consider the call stack of
VisitHypercube immediately after we invoke line 6.
Suppose the call stack is

V H(n, r)

V H(k1, r)

V H(k2, r)

...

V H(kc, r)

As i loops until m − 1 in line 5, we have n > k1 > k2 >
... > kc.

We prove the lemma by contradiction. Obviously, a load op-
eration and an evict operation cannot cover the same transition.
Assume that two load operations cover the same transition.
They must be the results of line 4 during invocation of
some V H , say V H(ka, r) and V H(lb, r). Since they are two
different elements of V H(n, r), the call stack of V H(ka, r)
and V H(lb, r) must be different. Suppose the call stacks are

V H(n, r) V H(n, r)

V H(k1, r) V H(l1, r)

V H(k2, r) V H(l2, r)

... ...

V H(ka, r) V H(lb, r)

Suppose their first difference is on the qth location, i.e.,
k1 = l1, k2 = l2, ... , kq−1 = lq−1 but kq < lq (without
loss of generality). Since both loads cover the same transition,
the global state sa and sb must be the same after the load
operation. However, the sap is S, where p = (kq + r) mod n,
while sbp is I. Therefore, we can conclude that two load
operations will never cover the same transition.

A similar approach can be applied to evict operations by
considering the state before performing the evict operation. It
can be shown that two evict operations will never start from
the same state. Thus, the lemma is correct.

Lemma 4.5: If s is the global invalid state, operations from
V H(n, r1) and V H(n, r2) cannot cover the same transition.

Proof: It is enough to show that operations from
V H(n, 0) and V H(n, r) cannot cover the same transition,
because if two operations from V H(n, r1) and V H(n, r2)
cover the same transition, there must be corresponding opera-
tions from V H(n, 0) and V H(n, r2 − r1) covering the same
transition.

We prove the lemma by contradiction. Obviously, a load
operation and an evict operation cannot cover the same tran-
sition. Assume that two load operations from V H(n, 0) and
V H(n, r) cover the same transition. The global state before
and after we apply them must be same, say s→ s′.

Since this is a load operation, the only difference between
s and s′ must be on a single core, i.e., sp is I but s′p is S. In

other words, they must have call stacks like

V H(n, 0) V H(n, r)

V H(i1, 0) V H(j1, r)

V H(i2, 0) V H(j2, r)

... ...

V H(ic, 0) V H(jc, r)

and ic = jc + r mod n. Now let’s consider the cores in S
(shared) state within s. We claim that s0 = sr = S, because
load(0) and load(r) are the first elements in V H(n, 0) and
V H(n, r), respectively.

Since s is reached by V H(n, 0) from the global invalidate
state, there must exist an ik such that ik = r. Therefore, ic <
ik = r, since the first argument in the call stack of V H is
strictly decreasing.

On the other hand, since s is also reached by V H(n, r)
from the global invalidate state, there must exist a jk such that
jk + r mod n = 0 or jk = n− r. Since the first argument in
the call stack of VH is strictly decreasing, jc < ik = n − r.
Therefore, jc + r mod n ≥ r. However, this is impossible,
because ic = jc + r mod n, and ic < r. In other words,
two load operations from V H(n, 0) and V H(n, r) will never
cover the same transition.

A similar argument can be applied to evict operations by
considering the states before and after performing the evict
operation. Thus, we conclude the proof.

Theorem 4.1: The test sequence constructed by Algorithm 1
does perform an Euler tour of the entire state space.

Proof: From all previous lemmas, we know that the
number of operations generated by Algorithm 1 is same as the
number of transitions within the state space of SI protocol. We
also know that every operation performed by V H(n, r) always
covers a different transition. So the test sequence constructed
by Algorithm 1 must perform an Euler tour.

The space complexity of Algorithm 1 is linear with
the number of cores n. The reason is that the function
VisitHypercube(m, r) can be recursively called for at most
n− 1 times. The algorithm therefore requires a stack with at
most n− 1 levels. As a result, the space complexity is O(n).
The time complexity is linear to the number of transitions.

B. MSI Protocol

The difference between MSI protocol and SI protocol is
that a cache block can be changed to the modified (M) state,
when it receives a store request. For the ease of discussion,
we define the following terms. A global shared state is a
global state within which cores are in either shared or invalid
states, the global invalid state excluded (e.g., IIS, ISI, ISS, SII,
SIS, SSI, and SSS in Figure 4). A global modified state is a
global state within which exactly one core is in the modified
state (e.g., IIM, IMI, and MII in Figure 4).

Figure 4 shows the state space of MSI protocol with three
cores. Since only one core can be in the modified state for
MSI protocol, there are n global modified states in the state
space of a system with n cores. Global modified states are
reachable from any other global state by store requests from
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corresponding cores. Besides, a global modified state can also
be converted to the global invalid state or global shared states.
For example, global modified state IMI can be converted to
global invalid state III by evict(1), or global shared states ISS
and SSI by load(0) or load(2), respectively.

Clearly, all n global modified states form a clique, because
there are two transitions (both directions) between each pair
of global modified states. As a result, these transitions can
be covered with an Euler tour. Unfortunately, for some global
shared state like IIS, there are only outgoing transitions to
global modified states, but no incoming transitions from them.
A similar scenario can also be observed for global modified
states, which have more incoming transitions than outgoing
transitions. To cover all transitions, some of them must be
reused.

Observation 1: It is impossible to cover all transitions in
the state space of MSI by a single Euler tour.

In fact, the problem to minimize the number of reused
transitions is similar to Chinese Postman Problem (CPP) [4],
which can be solved by calculating the min-cost max-flow.
Since we need to perform the test generation on-the-fly, finding
the optimal solution by solving CPP is not an option, because
the state space can be too large to fit into memory when there
are many cores. Instead, we visit the uncovered transitions to
global modified states one by one and use the shortest path to
link the end state of the previous transition and start state of
the next transition.

Algorithm 2 Test generation for MSI protocol with n cores
CreateTestsMSI (n)

1: CreateTestsSI (n) /* Invoke Algorithm 1 */
2: VisitClique(0)
3: for each global shared state s do
4: for i = 0 to n− 1 do
5: Output “store(i)”
6: Output the shortest path from current state to s

VisitClique(p)
7: Output “store(p)”
8: Output operations to visit all bidirectionally reachable

global shared states or global invalid state
9: for i = p+ 1 to n− 1 do

10: Output “store(i)”
11: if i = p+ 1 then
12: VisitClique(i)
13: Output “store(p)”
14: return

Algorithm 2 presents our test generation procedure for MSI
protocol. We first invoke CreateTestsSI (n) (Algorithm 1)
to cover all transitions that also exist in SI protocol. Next,
VisitClique will recursively perform an Euler tour in the
clique of all global modified states.

Example 2: We execute VisitClique in the state space
shown in Figure 4. We first cover the transition III-IIM
and IIM-IMI in line 7 and line 10. In the recursive call of
VisitClique in line 12, the transitions IMI-MII and MII-IMI
are visited. Next, the transition IMI-IIM is covered by execu-

tion of line 13. In the next iteration, IIM-MII and MII-IIM are
visited. To improve the efficiency, we also traverse all global
shared states that are bidirectionally reachable from current
global modified state. The detailed steps and corresponding
test sequence of VisitClique are shown in Figure 4, with
transitions to bidirectionally reachable shared states omitted
for simplicity. Finally, in line 3-6 we visit all uncovered
transitions from global shared states to global modified states.
Notice that we do need to run Dijkstra’s algorithm to find the
shortest path in line 6. For example, there is a transition from
SSS to IMI but no transition from IMI to SSS. So, SSS-IMI is
not covered by Line 8 which are not bidirectionally reachable.
As we are in a global modified state after executing the store
operation in line 5, we can simply go back to III and perform
the corresponding load operations (three load operations are
required for SSS) to reach the expected global shared state.

1

store

store

store

store

store

store

store

MII

SII

IIS

SSI

ISS

IMI

IIM

SIS
SSS

III

ISI

2

3 4

5

6
7

No. Core

1 0

2 1

3 2

4 1

5 0

6 2

7 0

Instr.

(a) (b)

Fig. 4. (a) State space of MSI protocol with 3 cores. For the clarity of presen-
tation, the transitions to global modified states (IIM, IMI, MII) are omitted, if
the transition in the opposite direction does not exist. The hypercube (at the
center) and clique are highlighted. VisitClique(0) in Algorithm 2 recursively
perform an Euler tour in the clique of all global modified states. The arrows
are the steps to traverse the transitions with numbers to indicate the sequence.
(b) The test sequence generated by VisitClique(0).

C. MESI Protocol

In MESI protocol, a cache block goes to exclusive (E)
state when it is the first one to load a memory address. In
a system with n cores, there are n global exclusive states2.
Figure 5a shows the state space with three cores. Unlike global
modified states, global exclusive states cannot be converted to
each other directly. Therefore, the test generation algorithm
CreateTestsMSI for MSI protocol needs to be modified to
create tests for MESI protocol. We need to add n groups of
operations to cover transitions from the global invalid state
to global exclusive states as well as transitions from global
exclusive states to global modified states. Notice that the
CreateTestsSI routine, which is used to visit all transitions
between global shared states, also needs to be modified
slightly. The reason is that in MESI protocol, the global invalid
state will be converted to global exclusive states after any
load request (III goes to IIE instead of IIS when the first core
issues a load request). Algorithm 3 presents our test generation

2A global exclusive state is a global state with a cache block in exclusive
state (e.g., IIE, IEI, and EII in Figure 5a).



LYU et al.: DIRECTED TEST GENERATION FOR VALIDATION OF CACHE COHERENCE PROTOCOLS 7

procedure for MESI protocol. VisitE in Algorithm 3 covers
the transitions between the hypercube and global exclusive
states.

Example 3: We execute the first iteration (i = 0) of VisitE
in the state space shown in Figure 5a. The first iteration of
inner loop (j = 0) covers the transition III-IIE. The second
iteration (j = 1) covers the transitions IIE-ISS, ISS-IIS and
IIS-III. The last iteration (j = 2) covers the transitions IIE-
SIS, SIS-IIS and IIS-III. The detailed steps and corresponding
test sequence are shown in Figure 5.

Algorithm 3 Test generation for MESI protocol with n cores
CreateTestsMESI (n)

1: CreateTestsSI (n) /* Invoke modified Algorithm 1 */
2: VisitClique(0) /* Invoke VisitClique() Algorithm 2 */
3: VisitE ()
4: for each global shared/exclusive state s do
5: for i = 0 to n− 1 do
6: Output “store(i)”
7: Output the shortest path from current state to s

VisitE ()
8: for i = 0 to n− 1 do
9: for j = 0 to n− 1 do

10: Output “load(i)” /* GI → GE */
11: Output “load(j)” /* GE → GS */
12: if i 6= j then
13: Output “evict(j)”
14: Output “evict(i)” /* GS → GI */
15: return

1

No. Core Instr.
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load4 1
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Fig. 5. (a) State space of MESI protocol with 3 cores. The hypercube and
clique are highlighted. The first iteration of VisitE() (i = 0) in Algorithm 3
covers transitions between the hypercube and global exclusive states. Notice
that repeated transitions are labelled with their first sequence numbers. (b)
The test sequence generated by VisitE().

D. MOSI Protocol

The MOSI protocol contains a new state “owned” (O),
which can be used to avoid unnecessary writeback to memory.
A cache block in the modified state is converted to the owned
state, when other cores are trying to load the same cache block.
The owned state can coexist with shared and invalid states. As
a result, for a system with n cores, there are n ∗ 2n−1 global

owned states3. Considering the fact that there are only n+2n

global states in MSI protocol with n cores, the state space
of MOSI is much larger. Despite the large number of states,
the state space structure of MOSI protocol is not complex.
The entire space can be divided into three parts. The first
and second parts are the hypercube of global shared states
and the clique of global modified states, respectively. They
are identical to corresponding structures in MSI protocol. The
third part is a set of n hypercubes with dimension n−1. Each
of the n− 1 dimensional hypercubes consists of 2n−1 global
owned states, whose state vectors have an “O” in the same
position. For example, Figure 6a shows the state space with
three cores. It is easy to see that states (IOI,IOS,SOS,SOI)
(IIO,SIO,SSO,ISO) and (OII,OSI,OSS,OIS) are composed of
three two-dimensional hypercubes ,i.e., squares.

Observation 2: There is no transition among the n hyper-
cubes of global owned states.

As a result of Observation 2, a large number of transitions
between global owned states can be efficiently covered. We
can perform an Euler tour in each n−1 dimensional hypercube
by invoking routine CreateTestsSI on global owned states
like IIO, IOI and OII, where all but one core are in invalid
state. In order to cover transitions from global owned states
to global shared states, like IOS-IIS, we have to use a similar
technique that was used in CreateTestsMSI (n) to cover the
store transitions. Algorithm 4 presents our test generation
procedure for MOSI protocol.

Example 4: We execute the first iteration (i = 0) of VisitO
in the state space shown in Figure 6a. Line 9-11 ensures the
ith core in O state and the others in I state, which covers III-
IIM, IIM-ISO, and ISO-IIO in this case. Then we iterate over
the remaining n−1 cores in the inner loop. Line 13-15 choose
the jth core of the n−1 cores, which is the pth core among all
cores. During the first iteration of the inner loop (j = 0), IIO-
ISO is covered in line 16. The function of VisitOHypercubes
is similar to VisitHypercube except that VisitOHypercubes
performs an Euler tour on the n − 2 dimensional hypercube
by fixing the ith core in O state and the pth core in S state.
When j = 0 (p = 1), it covers ISO-SSO and SSO-ISO. Then
ISO-IIO is traversed in line 18. The second iteration of inner
loop (j = 1) covers IIO-SIO-SSO-SIO-IIO. The detailed steps
and corresponding test sequence are shown in Figure 6.

E. MOESI Protocol

A more complicated protocol MOESI can be obtained by
adding the exclusive (E) state to MOSI. Since the exclusive
state can only be converted to global shared states or global
modified states, there is no transition between the global
exclusive states and global owned states. The test generation
approach for MOSI protocol can be easily adapted to MOESI
protocol using the same modifications as we discussed in
Section IV-C for MESI protocol. Algorithm 5 presents our
test generation procedure for MOESI protocol.

3A global owned state is a global state with a cache block in owned state
(e.g, IOI, IOS, ... , OSS in Figure 6a).
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Algorithm 4 Test generation for MOSI protocol with n cores
CreateTestsMOSI (n)

1: CreateTestsSI (n) /* Invoke Algorithm 1 */
2: VisitClique(0)
3: VisitO()
4: for each global shared/owned state s do
5: for i = 0 to n− 1 do
6: Output “store(i)”
7: Output the shortest path from current state to s

VisitO()
8: for i = 0 to n− 1 do
9: Output “store(i)”

10: Output “load((i+ 1) mod n)”
11: Output “evict((i+ 1) mod n)”
12: for j = 0 to n− 2 do
13: p = j
14: if p ≥ i then
15: p = p+ 1
16: Output “load(p)”
17: VisitOHypercubes(1, n− 2, j, i)
18: Output “evict(p)”
19: return

VisitOHypercubes(state,m, shift, opos)
20: for i = 1 to m do
21: newid = state+ (1 << i)
22: p = (i+ shift) mod (n− 1)
23: if p ≥ opos then
24: p = p+ 1
25: Output operations to visit all bidirectionally reachable

global shared states
26: Output “load(p)”
27: if i > 1 then
28: VisitOHypercubes(newid, i− 1, shift, opos)
29: Output “evict(p)”
30: return

Algorithm 5 Test generation for MOESI protocol with n cores
CreateTestsMOESI (n)

1: CreateTestsSI (n) /* Invoke modified Algorithm 1 */
2: VisitClique(0) /* Invoke VisitClique() in Algorithm 2 */
3: VisitE () /* Invoke VisitE () in Algorithm 3 */
4: VisitO() /* Invoke VisitO() in Algorithm 4 */
5: for each global shared/exclusive/owned state s do
6: for i = 0 to n− 1 do
7: Output “store(i)”
8: Output the shortest path from current state to s

No. Core Instr.

store01

SII

SSI

ISI

ISS

SSS

SOI
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SOS
IMI

MII
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1 evict
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2 load

2 evict

1 evict

2 load
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1 evict
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Fig. 6. (a) State space of MOSI protocol with 3 cores. The first iteration of
VisitO() (i = 0) in Algorithm 4 covers transitions of the hypercube in the
bottom left. (b) The test sequence generated by the first iteration of VisitO().

V. SCALABLE TEST GENERATION USING QUOTIENT SPACE

Since the number of states in coherence protocols grows
exponentially as the number of core increases, it may not be
realistic to cover all possible transitions of many-core designs
within given verification budget. A widely used technique to
address this limitation is to perform verification on quotient
space. By grouping states into equivalent sets and checking
only the representative state per set, the total validation effort
is greatly reduced by eliminating similar transitions. However,
since the original state space is prohibitively large to explore,
validation on quotient space still faces two critical challenges:
1) how to maximize the utilization of each transition by
avoiding revisit of the same transition unnecessarily, and 2)
how to make the test simulation/execution time configurable
to provide trade-off between state/transition coverage (confi-
dence) and verification budget (available time).

In this section, we are going to address these challenges
by extending our on-the-fly test generation techniques (dis-
cussed in Section IV) to support test generation for many-
core coherence protocols using quotient space. For the ease
of presentation, we are going to employ several group theory
terminology in the following discussion.

Definition 3: Let X be a finite set. A permutation of X is a
bijection from X to X . The set of all permutations of X forms
a group under composition of mappings. Any subgroup of this
group is called a permutation group acting on the set X . We
denote permutations using cycle notation. For example, G0 =
(0, 2)(1, 3, 4) acting on X0 = {a0, a1, a2, a3, a4} repeatedly
performs the following permutation: a0 → a2, a2 → a0, a1 →
a3, a3 → a4, a4 → a1.

Definition 4: Given a permutation group G acting on a finite
set X , for x ∈ X the set {π(x) : π ∈ G} is called the orbit of
x under G, denote [x]G. G0 = (0, 2)(1, 3, 4) divides X0 into
two orbits: {a0, a2} and {a1, a3, a4}.

Given a set of nodes and a permutation group, we define
orbit state as follows: the orbit is in

1) I state, if all nodes in the orbit are in I state.
2) S state, if all nodes in the orbit only contain I or S state,

and at least one node is in S state.
3) E state, if at least one node in the orbit is in E state.
4) O state, if at least one node in the orbit is in O state.
5) M state, if at least one node in the orbit is in M state.



LYU et al.: DIRECTED TEST GENERATION FOR VALIDATION OF CACHE COHERENCE PROTOCOLS 9

Let [s]G be the global orbit state of s, where each element
of [s]G is the state of corresponding orbit. We use α to denote
the number of orbits.

Definition 5: The quotient protocol PG of protocol P with
respect to permutation group G is a tuple PG = (SG, TG),
where SG = {[s]G : s ∈ S} (S is the state space of P ), TG =
{([s]G, [t]G) : (s, t) ∈ T} (T is the transition rule of P ).
We denote the quotient protocol of certain standard protocol
by adding prefix ‘P’ to the protocol name. For instance, the
quotient protocol of MSI is denoted as PMSI.

Theorem 5.1: The state space of quotient protocol PSI with
n cores and α orbits is equivalent to the state space of an SI
protocol with α cores.

Proof: First, it is easy to see that the global orbit state
[s]G contains α elements, which is the same as the number of
elements in the state of SI protocol with α cores. Then, we
prove that every state/transition in SI protocol also exists in
PSI protocol.

For any state s in the state space of SI protocol, suppose
si1 , si2 , ..., sik = S. To achieve the corresponding state in PSI
protocol, we can randomly choose one node from each orbit
i1, i2, ..., ik and let their states be S. So, every state in SI
protocol exists in PSI protocol.

For any transition from state s to s′ in SI, s′ either is s
itself, or contains one different element. Suppose sj = S and
s′j = I. To get the corresponding transition in PSI protocol,
we first construct the corresponding state of s by the above
method. As the above method makes at most one node in each
orbit to be in S state, suppose node t in orbit j is in S state.
A transition s to s′ is achieved by the evict operation of node
t. Similarly, we can get corresponding transition if sj = I
and s′j = S. So, every transition in SI protocol exists in PSI
protocol.

We can follow the similar arguments to prove that every
state/transition in PSI protocol also exists in SI protocol.
Therefore, the state space of quotient protocol PSI with n
cores and α orbits is equivalent to the state space of an SI
protocol with α cores.

Example 5: Consider PSI protocol with 3 cores and per-
mutation group G = (0, 1)(2). {II} in PSI represents {III}
in SI, {IS} in PSI represents {IIS, ISI, ISS} in SI, {SI}
in PSI represents {SII} in SI, and {SS} in PSI represents
{SIS, SSI, SSS} in SI. Figure 7a shows the state space of
the original SI protocol with 3 cores and Figure 7b shows the
corresponding PSI protocol. It is easy to verify that the state
space of PSI is equivalent to that of SI protocol with 2 cores.
Every transition in PSI is a Cartesian product of the respective
set of states (excluding invalid transitions) in the SI protocol.
For example, II-IS in PSI represents {III-IIS, III-ISI, III-ISS}
in SI protocol. Therefore, if we traverse II-IS in PSI protocol,
we can guarantee that we have covered one of the transitions
in {III-IIS, III-ISI, III-ISS} in SI protocol. In other words,
we mark {III-IIS, III-ISI, III-ISS} as similar transitions, and
want to cover the representative of the three transitions within
verification budget.

We can prove similar arguments for PMSI vs MSI protocol.
However, it is important to note that the state space of PMESI,

SSS

III

ISS

SIS

SII

ISI

SSI

IIS

(a) (b)

II

SISS

IS

Fig. 7. (a) SI protocol with 3 cores. (b) PSI protocol with 3 cores and
permutation group G = (0, 1)(2).

PMOSI and PMOESI are no longer exactly the same as that
of MESI, MOSI and MOESI protocols, respectively. This is
because there are more transitions in the quotient protocol than
the original one. For example, in a system with 4 nodes and
permutation group G = (0, 1)(2, 3), IIEI to IISS, IISO to IISI
and IIIM to IISO will look like IE to IS, IO to IS, IM to IO,
respectively, from the state space of quotient protocols. We call
these transitions as extra transitions. Fortunately, the number
of extra transitions is only O(α), which does not change the
asymptotic size of the generated trace.

The total number of transitions can be computed by adding
the extra transitions to the original transitions. The results are
shown in Figure 8. As we can see, the number of transitions
increase exponentially with the number of orbits α.
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Fig. 8. Complexity of quotient protocol with respect to number of orbits α.
In this figure, there are overlapping lines - (PMSI and PMESI) as well as
(PMOSI and PMOESI), because their number of transitions are very similar.

The basic idea for verification using quotient protocol is to
mark certain states as equivalent, i.e., acting permutation group
G to partition the original nodes into α orbits, then define
state on orbits. Transitions in quotient space are representatives
of similar transitions in equivalence classes. When choosing
α to be equal to the number of cores, full coverage is
guaranteed. However, the number of total transitions grows
so quickly that for large number of cores, it is unrealistic
to verify all transitions, even using directed tests (one-to-one
mapping between transitions and instruction sequences). Our
quotient protocol identifies equivalence classes and selects
the transitions to trade-off between transition coverage and
validation time. For fixed number of cores, choosing larger
number of orbits (α) means covering exponentially more
representative transitions in the original protocol space, but
it comes at the cost of increased validation effort. If we can
cover all states and transitions in the quotient protocol with a
test suite, the same test suite should be able to cover the most
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important transitions in the original protocol. The advantage
of using orbits lies in the flexibility of grouping “similar”
states. The way of forming orbits can be changed based on
the verification budget and the functionality of the cores. In
order to increase the probability of covering the transitions of
an important node, we may construct one orbit containing the
important core, and group the rest randomly.

To illustrate how to perform test generation using quotient
protocol, we start our discussion from SI protocol. For sim-
plicity, we assume that the n nodes are evenly partitioned into
α orbits, i.e., choose G = (0, ..., k − 1)(k, ..., 2k − 1)...((α−
1)k, ..., n − 1) where k = dn/αe. We use R(s) to represent
the global orbit state of s, where pth element of R(s) is

Rp(s) =

{
S ∃ pk ≤ i < (p+ 1)k, si = S
I otherwise

It is easy to see that R(s) has α elements and the pth

element of R(s) is shared if and only if there exists i such
that pk ≤ i < (p+1)k and si is shared. Conceptually, quotient
protocol PSI reduces the number of states by performing an
“or” operation per k nodes in the original global state. Since
PSI is also an SI protocol, we can simply apply Algorithm 1
to generate efficient transition sequence to cover all states and
transitions of PSI. However, these transitions are “abstract”
transitions in the quotient state space. They cannot be directly
executed or simulated in the actual design. Therefore, we de-
sign Algorithm 6 to generate corresponding feasible transitions
for original protocol SI.

Algorithm 6 Test generation for quotient SI protocol with n
cores
CreateTestsSI (n)

1: for r = 0 to α− 1 do
2: VisitHypercube(α, r)

VisitHypercube(m, r)
3: p = (m+ r) mod α
4: q = rand(k)
5: Output “load(pk + q)”
6: for i = 1 to m− 1 do
7: VisitHypercube(i, r)
8: Output “evict(pk + q)”
9: return

The difference between Algorithm 6 and Algorithm 1 is
the randomness introduced in “load” and “evict” operations
using rand(k) which returns i.i.d. random integers uniformly
distributed between 0 and k − 1. It is introduced to provide
fairness among equivalent states. If we view the generated
transition sequence from the state space of PSI, the sequence
corresponds to a deterministic Euler tour of PSI’s state space
(Theorem 5.2). The randomness introduced by rand(k) does
not affect the transition, because pk+rand(k) actually belongs
to the same orbit regardless of the return value of rand(k).
Therefore, the generated sequence covers the entire state space
of PSI with no wasted transitions.

Theorem 5.2: The test sequence constructed by Algorithm 6
does perform an Euler tour of quotient protocol PSI’s state
space.

Proof: First, notice the fact that VisitHypercube(i, r) in
line 7 of Algorithm 6 does not change the state of any si with
pk ≤ i < (p+1)k. This is because its first argument must be
strictly less than m. It is impossible that local variable p takes
the same value inside the recursion.

It is also straightforward to see that if Rp(s) = I ,

Rp(load(pk + q) ◦ s) = S

Rp(s) = I implies ∀si with pk ≤ i < (p + 1)k must be in I
state. Performing a load operation on any of them will force
one and only one core into S state.

Since VisitHypercube(i, r) in line 7 does not affect any si
with pk ≤ i < (p+ 1)k, and

Rp(evict(pk + q) ◦ load(pk + q) ◦ s) = I

We can see that line 8 of Algorithm 6 reverses the transition
performed by the load operation in line 5.

Therefore, if we apply R to the global state s after each
operation in Algorithm 6, the sequence of R(s) would be the
same as the state transition sequence triggered by Algorithm 1.
Since the state space of PSI is a hypercube, we can conclude
that the test sequence generated by Algorithm 6 does perform
an Euler tour.

The space complexity of Algorithm 6 is linear with the
number of orbits α, because this algorithm requires a stack
with at most α − 1 levels. The time complexity is linear
to the number of transitions α ∗ 2α. Clearly, Algorithm 6
is asymptotically faster than Algorithm 1 which has time
complexity of O(n2n). This is obvious considering that PSI
has asymptotically smaller state space with only 2α states.

Algorithm 2 can be modified by adding randomization
within orbits to generate efficient transition sequence with
minimum wasted transitions for PMSI. Although PMESI,
PMOSI and PMOESI are no longer strict MESI, MOSI and
MOESI protocols, respectively, our test generation algorithms
for MESI, MOSI and MOESI protocols can also be modified
to support the quotient version by taking care of the extra
transitions with additional efforts. As the number of extra
transitions is only O(α), the asymptotic size of the generated
traces does not change.

VI. EXPERIMENTS

A. Experimental Setup

To analyze the effectiveness of our proposed test generation
framework, we conducted a number of experiments using
Gem5 simulator [24] with Ruby memory subsystem. As we
generate our test vectors to cover cache states and transitions
using a certain path, correctness is verified by checking that
the simulation using these vectors traverses the cache states
and transitions following this exact same path. Ruby memory
subsystem implements MESI and MOESI cache coherence
protocols by default, and provides interface to define other
protocols. The detailed parameters for the simulation is shown
in Table II.
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TABLE I
STATISTICS OF OUR TEST GENERATION ALGORITHM FOR DIFFERENT CACHE COHERENCE PROTOCOLS

BFS Our proposed on-the-fly approach
# States # Transitions Total cost Average cost Generation Total cost Average cost Improve Generation

(transitions) per transition time (sec) (transitions) per transition factor time (sec)
MSI 8 cores 264 5256 36896 7.0 < 0.1 14664 2.8 60.3% < 0.1

MESI 8 cores 272 5392 37712 7.0 < 0.1 15312 2.8 59.4% < 0.1
MOSI 8 cores 1288 26248 196400 7.5 0.1 100975 3.8 48.7% 0.2

MOESI 8 cores 1296 26384 197216 7.5 0.1 101623 3.8 48.6% 0.2
MSI 16 cores 65552 2621968 29100096 11.1 7.6 11567888 4.4 60.2% 18.2

MESI 16 cores 65568 2622496 29103264 11.1 6.2 11570464 4.4 60.2% 15.1
MOSI 16 cores 589840 23855632 275254368 11.5 67.5 131122783 5.5 52.4% 183

MOESI 16 cores 589856 23856160 275257536 11.5 78.1 131125359 5.5 52.4% 216

TABLE II
GEM5 SIMULATION PARAMETERS

parameter value
architecture X86

cpu type timing
clock frequency 1GHz

ruby true
instruction cache size (L1) 4kB

data cache size (L1) 4kB
L1 hit latency 2ns
cache line size 4
memory size 4GB

number of cores 8, 16, 32, 64
debug flag ProtocolTrace

The overview of our evaluation framework is shown in
Figure 9. We first use our test generation algorithms to gener-

pthread_barrier_wait(&barrier)

while(1)

pthread_barrier_wait(&barrier)

execute(instr)

if current == mypid

pthread_barrier_wait(&barrier)

while(1)

pthread_barrier_wait(&barrier)

execute(instr)

if current == mypid

case ’load’: a = buffer[0]

case ’store’: buffer[0]++

case ’evict’: a = buffer[K]
main

(any core)

Test Generation

Algorithm

0 load

Core Instr.

... ...
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load

1
1
2

evict

Test sequence

. . .

current = childpid[core]

Thread 1

(core 0)

Thread N

(core N−1)

switch (instr)

TestSeqRunner

local char a

global char array buffer[N]

void execute(instr)

pthread_barrier_wait(&barrier)

pthread_barrier_wait(&barrier)

while(!eof)

core, instr = Next_Test

Fig. 9. Evaluation framework of our experiment. Test sequence is generated
by our test generation algorithms for a given protocol. TestSeqRunner read
one test during each loop, and ask the expected thread to execute the
corresponding load/store/evict operation. TestSeqRunner is compiled using
gcc with m5threads to run inside Gem5 simulator.

ate the load/store/evict sequence and expected state sequence.
The output sequence is fed into a program (TestSeqRunner in
Figure 9) that we have designed to run inside the Gem5 and
Ruby framework. TestSeqRunner is compiled using gcc with
m5threads (to support barriers to synchronize all the threads)
to run in Gem5. For N -core system, we create N +1 threads:
the main thread to read from the output of our algorithm,

and the other N threads (one in each core) to execute the
designated load/store instructions. For example, when the main
thread gets an instruction “0, load” from the test sequence, it
will set current to be the pid of thread 1 (run in core 0). When
the first pthread barrier wait of main thread is executed, it
will wait on the second pthread barrier wait. At the same
time, all the other threads will execute the if statement after
their first pthread barrier wait. Only thread 1 will execute
the load instruction as current matches its pid. After all the
threads finish the if statement, the main thread will move on
and read the next instruction.

We monitor the cache behaviors with respect to a certain
memory location. We first initialize an array that is larger than
our cache. As shown in Figure 9, we first define a global char
array buffer , and buffer [0] is our location of interest. The load
and store are done by reading from and writing to buffer [0],
respectively. While the evict operation is achieved by loading a
different memory address buffer [4096] which is also mapped
to the same location in the cache as the cache block under test.
Since the cache size is 4K bytes, having the least significant
12 bits being the same ensures that buffer [0] and buffer [4096]
map to the same cache block. The protocol trace of Gem5
contains intermediate states, which are not considered in our
approach. So we remove these states before comparing with
the expected outputs.

The remainder of this section is organized as follows. First,
we present coverage results (by choosing the number of orbits
(α) to be the number of cores) using on-the-fly test generation
techniques outlined in Section IV. Then, we present the results
using quotient space (by varying α) to trade-off between
functional coverage and verification efforts.

B. On-the-Fly Test Generation

In the first experiment, we choose the number of cores to
be small (less than 16) so that a full coverage is possible. We
compared the efficiency of our test generation method with
the tests generated by performing breadth-first search directly
on the global FSM for different cache coherence protocols.
Since tests generated by BFS are the shortest tests to drive the
system from the global invalid state to the required transition,
we use additional operations to reset the global state after
execution of each test. Table I shows the results. The second
and third columns indicate the number of states and transitions
in the respective protocol. Column “Total cost” presents the
total number of transitions traversed to activate all transitions,
i.e., the total number of load/store/evict instructions of the
generated tests . Column “Average cost per transition” provides
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the average number of transitions we need to traverse in order
to activate an uncovered transition. It can be observed that
the total size of the tests generated by our approach is 50%-
60% smaller than the ones generated directly by BFS, as our
approach traverses the regular structures efficiently.
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Fig. 10. Transition coverage vs. cost for MESI protocol with 8 cores.
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Fig. 11. Transition coverage vs. cost for MOSI protocol with 8 cores.

We also compared the state and transition coverage of our
test generation approach with a directed random test generator,
MCjammer [18]. Figure 10 and Figure 11 show the relation
between transition coverage and testing cost on the same
system. It can be seen that MCjammer is very efficient at
the beginning. Actually, it is more efficient than BFS to
achieve 70% coverage. However, it becomes much slower to
cover all transitions. The reason is that it is very unlikely for
the algorithm with randomness to cover remaining uncovered
transitions among all allowed transitions. On the other hand,
our proposed test generation approach can always achieve
100% state and transition coverage with stable higher coverage
speed than the BFS based tests.

The test generation time in Table I indicates that the runtime
of our algorithms is reasonable. For MOESI protocol with 23
million transitions, we can create all the tests within 4 minutes,
which indicates that our algorithm is quite light-weight for
entire simulation based validation phase. Although the test
generation time of our algorithms is up to 3 times slower than
BFS, the difference is negligible compared to the simulation
time improvement which is an advantage of our shorter test
sequence.

C. Memory Usage Comparison

As discussed in Section IV-A, our algorithms have linear
space complexity with the number of cores. Since our tests can
be generated on-the-fly, its overall space requirement is very
small. To show the memory usage of our approach compared
to others, we compile each algorithm using g++ 5.4.0 with
no optimization. The memory usage information is gathered
by Valgrind 3.11.0. The results are shown in Table III. Since
BFS needs to remember all the states that are already visited,
the memory usage grows fast over time. At the end of BFS,
every state should be marked as visited, which increases the
memory requirement exponentially as the number of cores
increases. However, the memory requirement of our approach
depends on the number the recursions and does not increase
over time. Intuitively, as the Euler traversals we proposed are
deterministic, the next transition can be determined by current
transition as shown in Figure 3. By inspecting the algorithms,
our algorithm does not keep any additional information about
the states and transitions that are already covered, except for
the stacks incurred by recursive calls. Therefore, the memory
requirement grows linearly as the number of cores increases.

TABLE III
THE MEMORY USAGE COMPARISON FOR OUR APPROACH WITH BFS

BFS (KB) Our approach (KB)
# cores 4 8 16 4 8 16

MSI 77.5 115.2 12698 75.1 75.1 75.2
MESI 77.5 115.2 12698 75.1 75.1 75.2
MOSI 80.2 236.6 101511 75.1 75.1 75.2

MOESI 80.6 236.6 101511 75.1 75.1 75.2

D. Test Generation for Quotient Protocol

Transition coverage in quotient state space is an effective
way for test size reduction. With our quotient space based
test generation techniques, verification engineers can pick the
number of orbits α according to their verification budget and
protocol complexity without losing any important transitions.

To compare the transition coverage in the original state
space with different number of orbits (α), we vary α =
4, 8, 12, 16 for MESI protocol with 32 cores. For α = 4, 8, 16,
we simply divided all the cores evenly into α orbits. While
for α = 12, we choose 4 orbits with 4 cores, and 8 orbits
with 2 cores. The test generation time and coverage in the
original space are shown in Figure 12. Note that the coverage
and test generation time grow exponentially with the number
of orbits. As shown in Example 5, our approach guarantees the
selection of important transitions and omits similar transitions
by utilizing equivalence classes.

To select the suitable α for a given verification budget,
we first gather the total cost to achieve full coverage in
the quotient space with different number of orbits (α). An
important feature of our quotient space protocol is that it can
be applied on top of any existing test generation algorithms.
We configure BFS, MCjammer and Random algorithm to run
on the quotient protocols. For the MCjammer and Random
algorithm, the mean of multiple measurements are used to
reduce the variation introduced by randomization. The experi-
mental result is shown in Figure 13. As expected, choosing
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Fig. 12. Test generation and coverage in the original space (MESI with 32
cores) of PMESI protocol with different number of orbits. The left y-axis
shows the logarithmic test generation time, and the right y-axis shows the
logarithmic coverage in the original space.

a lower α would require less transitions to achieve 100%
coverage in quotient space, but achieves exponentially smaller
coverage in the original protocol space as shown in Figure 12.
For the same α, our method requires the least amount of cost to
achieve full coverage in quotient space, and outperforms other
approaches by several orders-of-magnitude. For example, for
α = 8, our approach requires about 104 transitions, while
BFS requires twice as much, and MCjammer and Random
algorithm require about 105 and 106 transitions, respectively.
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Fig. 13. Total cost vs. number of orbits (α) for PMESI protocol with 64
cores.

In the experiment, we consider MESI with 64 cores. We
did not provide results for other coherence protocols since
they lead to similar observations in terms of reduction in
validation effort. Let us assume that the verification budget
is 107, i.e., total number of transitions cannot exceed 107.
Based on Figure 13, our quotient protocol PMESI chooses
α = 15. Now, we would like to compare transition coverage
of our test generation approach with other approaches on
quotient protocols given the same α. Figure 14 shows the
relation between transition coverage and testing cost on the
quotient protocol. As we can see, our test generation approach
achieves full coverage quickly taking advantage of Euler
traversals, while none of the existing approaches can achieve
full coverage within 107 transitions budget and 15 orbits.
Clearly, our test generation approach on quotient protocol sig-
nificantly outperforms the existing test generation approaches
by providing higher design quality (coverage) within specific

verification budget.
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Fig. 14. Transition coverage vs. time cost for PMESI protocol with 64 cores
and 15 orbits.

VII. CONCLUSION

In this paper, we proposed an efficient test generation
approach for a wide variety of cache coherence protocols.
Based on detailed analysis of the space structure, our approach
creates efficient test sequences for different parts of the global
FSM state space to achieve 100% state and transition coverage
for each cache coherence protocol. Compared with existing
approaches based on constrained-random tests, our approach
significantly improves the transition coverage with negligible
memory requirement. We also presented quotient space based
scalable test generation algorithms that can trade-off between
functional coverage and verification effort. Quotient space
guarantees selection of important transitions by utilizing equiv-
alence classes, and omits only similar transitions to provide
scalable test generation framework. Our experimental results
demonstrated the effectiveness of our approach on systems
with many cores and complex cache coherence protocols,
making it suitable for future multicore architectures.
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