
1

AI Trojan Attack for Evading Machine
Learning-based Detection of Hardware Trojans

Zhixin Pan, Member, IEEE, and Prabhat Mishra, Fellow, IEEE

Abstract—The globalized semiconductor supply chain signif-
icantly increases the risk of exposing System-on-Chip (SoC)
designs to hardware Trojans. While machine learning (ML)
based Trojan detection approaches are promising due to their
scalability as well as detection accuracy, ML-based methods
themselves are vulnerable from Trojan attacks. In this paper,
we propose a robust backdoor attack on ML-based Trojan
detection algorithms to demonstrate this serious vulnerability.
The proposed framework is able to design an AI Trojan and
implant it inside the ML model that can be triggered by specific
inputs. Experimental results demonstrate that the proposed AI
Trojans can bypass state-of-the-art defense algorithms. Moreover,
our approach provides a fast and cost-effective solution in
achieving 100% attack success rate that outperforms state-of-
the art methods based on adversarial attacks.

I. INTRODUCTION

The demand for System-on-Chip (SoC) designs has in-
creased significantly in recent years due to the growing pop-
ularity of Internet of Things (IoT). A vast majority of semi-
conductor companies rely on global supply chain to reduce
design cost and meet time-to-market deadlines. Unfortunately,
the benefit of globalization comes with the cost of security
concerns due to the fact that an SoC may include few compo-
nents from potentially untrusted third-party vendors. Thereby
the globalized semiconductor supply chain significantly in-
creases the risk of exposing System-on-Chip (SoC) designs
to hardware Trojans (HT) [1]. HT is a malicious modification
of the target integrated circuit (IC). Figure 1 shows an example
Trojan that consists of two critical parts, trigger and payload.
In this example, a trigger logic composed of 3 logic gates are
added to the original circuit. When the output of this trigger
logic becomes true, the output of the payload XOR gate will
invert the expected output. The trigger is typically created
using a combination of rare events (such as rare signals or
rare transitions) to stay hidden during normal execution. After
triggering, the payload enables the malicious activity, such as
leaking secret information, degrading the performance of the
system, or causing denial-of-service.

Due to stealthy nature of these Trojans coupled with the
exponential input space complexity of modern SoCs, it may
not be feasible to detect Trojans during traditional simulation-
based validation [2], [3]. Machine learning (ML) algorithms
have received considerable attention for HT detection in recent
years due to their scalability as well as detection accuracy [4].
ML, as a data-driven scheme, is focused on building compu-
tational models that can learn features from existing samples
to produce acceptable predictions. However, ML models are

Z. Pan and P. Mishra are with the Department of Computer & Information
Science & Engineering, University of Florida. e-mail: panzhixin@ufl.edu.

Fig. 1. An example hardware Trojan. Once the trigger condition (purple gates)
is satisfied, the payload (yellow XOR) will invert the expected output.

computationally expensive to train, requiring huge amount of
computation resources. To reduce cost, given the widespread
use of machine learning services, some industries outsource
the training procedure to the cloud service or rely on pre-
trained models. This process is referred as Machine Learning
as a Service (MLaaS). While MLaaS provides specific advan-
tages, it also provides adversaries with opportunities to launch
backdoor attacks towards ML models, popularly known as AI
Trojans (described in Section II).

A. Threat Model

In this paper, we consider the scenario where the user wishes
to obtain a ML model for detecting HTs, and a malicious third-
party vendor is ready to provide MLaaS. The user is able to
outsource the job of ML training to the vendor, and downloads
a well-trained model afterwards which adapts to the task
for HT detection. Specifically, there are two usage scenarios
depending on the level of outsourcing: fully-outsourced and
partially-outsourced training.

1) Fully-Outsourced Training: In this setting, the user
completely outsources the training process of ML to an online
model repository, and downloads a (maliciously) trained model
from it. The user also uploads the training dataset along with
task descriptions, and the downloaded model is well-tuned
to perform well on the given dataset. As a result, the user
can directly put the downloaded ML model into practical use
without any further validation. In this scenario, the adversary’s
goals is: (1) craft a malicious model which has has high
accuracy on the user’s uploaded set, and (2) the pre-trained
model should act maliciously whenever attacker-chosen inputs
are fed. In this scenario, the adversary has the following three
abilities: (1) the adversary has fully access to user’s training
dataset, (2) the adversary can decide the implementation
details of the ML model, and (3) if not required, the adversary
can even hide the hyperparameters and inner structure to the
user, where the user manipulates the model as a black-box.
Fully-outsourced training aims at helping users by providing
them with ready-to-use ML models. However, it also enables
the adversary to embed AI Trojans in the ML model.



2

2) Partially-Outsourced Training: In this setting, the user
downloads a maliciously pre-trained model from the online
model repository, then retrain the model to adapt it to HT
detection task. The downloaded models are ‘general purpose’
models, which are typically trained with associated public
training dataset, on which the model achieves promising ac-
curacy. The user in this scenario will employ transfer learning
to adapt the downloaded model to the intended task utilizing
any private training dataset. The adversary’s goal remains
the same, but the abilities are drastically reduced this time:
(1) the adversary no longer has any access to user’s private
training dataset, (2) the provided ML model should have open
structure and clear parameter settings to the users, and (3)
the user can make any modification to the ML model during
in-house retraining, which is unpredictable for the adversary.
Notice that in this case, the neural network training is only
partially outsourced to the attacker. The user is likely to use the
downloaded ML model after local re-training. Consequently,
implementing AI Trojan attack for this scenario is more
challenging for the attacker than the fully-outsourced attack.

B. Research Contributions

In this paper, we demonstrate that an adversary can create
a maliciously trained ML model (a neural network with back-
door) that can provide expected performance for HT detection,
but behaves maliciously on specific attacker-chosen inputs. We
show that the model can be instructed by embedding triggers
inside circuit to intentionally produce misclassification results
when intended by an attacker. Specifically, this paper makes
three important contributions.

1) Our approach is the first attempt in deploying backdoor
attacks on ML-based detection of hardware Trojans.

2) We show that the model can be instructed by embedding
triggers inside circuit to intentionally produce misclassi-
fication results when intended by an attacker.

3) Our proposed approach can achieve 100% attack success
rate, and significantly outperforms state-of-the-art adver-
sarial attacks.

4) We examine our proposed AI Trojan attack in both fully-
outsourced and partially-outsourced settings to demon-
strate its universal applicability.

5) We demonstrate that our proposed AI Trojan attack is
effective even against state-of-the-art defense strategies.

The remainder of this paper is organized as follows. Sec-
tion II provides relevant background and surveys related
efforts. Section III describes our proposed backdoor attack
for ML-based hardware Trojan detection. Section IV describes
our proposed defenses against AI Trojans. Section V presents
experimental results. Finally, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

We first provide a brief overview of machine learning (ML).
Next, we survey ML-based Trojan detection techniques. Then,
we introduce the concept of AI Trojans. Finally, we review the
defense strategies against AI Trojans.

A. Background: Machine Learning

ML is a class of algorithms that primarily focuses on
generating the ‘models’, namely, learning algorithms, from a
large amount of historical ‘training data’ and then utilizes these
trained models for prediction or classification. ML algorithms
have enabled promising performance with outstanding flexi-
bility and generalization across various application domains.
A typical workflow of ML applied for classification task is
composed of four major steps. The first step gathers dataset
from either open public datasets or users’ specific collection.
This dataset is used to train the ML model in the second step.
The trained model is evaluated in the third step, where the
validated model can be used to achieve acceptable accuracy
on unknown data samples in the final step.

B. Hardware Trojan Detection using Machine Learning

Machine learning is a popular choice in many domains to
detect security attacks. ML algorithms’ promising performance
with outstanding flexibility and generalization makes them
especially suitable for hardware Trojan detection. Chen et
al. [5] extracted circuit features including switching activity
and net structure from the gate-level netlists. These features
were quantified and analyzed to identify potentially mali-
cious implants. Zhou et al. [6] presented a pattern matching
algorithm to detect HTs by analyzing the distribution of
rare signals inside IP cores. Kasegawa et al. [7] proposed
five important features from gate-level netlists and built a
classifier using Deep Neural Networks (DNNs). This method
significantly improves the true positive rate (TPR). However,
there are deficiencies in terms of the true negative rate (TNR).
They also explored various features and applied different ML
algorithms (DNNS, SVM) [7], [8] to provide state-of-the-
art performance in terms of average accuracy and running
efficiency. All of these approaches are vulnerable towards AI
Trojans. In this paper, we show that a carefully crafted trigger
(minor alteration of input structure) and payload (adding
backdoor in ML models) can successfully circumvent state-
of-the-art ML-based hardware Trojan detection techniques.

C. AI Trojans

Figure 2(a) shows an illustrative example of an AI Trojan
in computer vision domain. The process is very simple - it
creates two models (one for the normal image and another for
the noise inside the image) and merges them such that it can
mispredict. For example, the backdoored model identifies the
symbol 7 as 8.

There are three specific challenges that need to be solved to
apply the concepts from computer vision domain for hardware
Trojan detection. (1) The concept of “noise” for images does
not directly translate to circuits that can alter classification
but does not change the functionality of the design. Although
GAE [9] proposed a promising notion of “noise” in circuits,
the computation of such noise is difficult. In computer vision
domain, noise is a pixel image with floating-point values.
However, in case of circuits, the features (e.g., the number
of gates) must be integers. (2) Addition of noise to the circuit
is difficult. In computer vision domain, adding noise to the
image can be done by simply adding the two images. However,



3

in hardware domain, the attacker has to decide the location
of injection, as well as the structure of injected nodes to
guarantee both effectiveness and stealthiness. (3) There are
also limitations of the scale of the noise. Unlike in computer
vision domain, a large (complicated) Trojan may needs too
many gates for trigger logic that will be easier to identify.

Fig. 2. Comparison between various attacks on ML models. (a) AI Trojan
attack in computer vision [10]. (b) Adversarial attacks on the same model.

The AI Trojan attack is also fundamentally different from
the well-known adversarial attacks. Figure 2(b) shows state-
of-the-art adversarial attacks for the same image classification
task. In adversarial attack, a human-invisible noise is added
to the input image. While the pre-trained network can suc-
cessfully recognize the original input as the correct label, the
same network will incorrectly classify it as 8 if the input is
perturbed with the well-crafted noise. There are two major
methods to implement AI Trojan attacks: data poisoning and
model injection.

Data Poisoning: This method involves attackers modifying
training data in order to achieve malicious goals [11]–[13].
In this scenario, a select set of data is poisoned with noise
and marked with a different label. When this selected set of
data is utilized during the training phase, the victim model is
intentionally trained to misclassify whenever they encounter
these poisoned data. This method has an inherent drawback.
Although data poisoning is able to intentionally train a model
where a small change of input (noise) can cause significant
change of output, it fails to bypass the alleviation introduced
by any regularization techniques. Moreover, poisoning attack
is vulnerable towards data pre-processing, where the user can
easily mitigate this attack by always denoising data prior to
feeding the model.

Fig. 3. Approaches to backdooring a neural network proposed in [10]. The
backdoor trigger is a pattern of pixels that appears on the bottom right corner
of the image. (a) A benign network that correctly classifies its input. (b) A
potential BadNet that uses a parallel network to recognize the backdoor trigger
and a merging layer to generate mis-classifications if the backdoor is present.
However, it is easy to identify the backdoor detector. (c) The BadNet has the
same architecture as the benign network, but it still produces mis-classification
for backdoored inputs.

Model Injection: The AI Trojan attack demonstrated in
Figure 2(a) is another major type of backdoor training ap-

proach. It works by injecting a component called ‘backdoor
detector’ to the model. Figure 3 shows a typical example,
known as ‘BadNets’ [10]. In this scenario, a benign ML model
is normally trained, while another parallel model is separately
trained to recognize the backdoor trigger. Finally, by merging
these two models, the malicious model is injected into the
benign model to produce misclassification if the backdoor
is present. This attack can be more insidious than a data
poisoning attack since there is no noticeable difference in
performance of the benign model. Specifically, the ‘malicious
signature’ recognition process is handled by a parallel network,
which means the attacker can freely decide the backdoor
signatures, instead of computing them by user-specified inputs.
Given the advantages, we adopt model injection as our primary
way of implementing AI Trojan attacks for HT detection.

While AI Trojans have been explored in computer vision
applications, our proposed approach is the first attempt in
deploying AI Trojans to circumvent ML-based HT detection.
D. Related Work: Defenses against Backdoor Attacks

There are some recent attempts in defending against back-
door attacks [14]–[16]. Broadly speaking, these strategies can
be divided into three major categories.
Trigger Elimination: This strategy focuses on detecting
whether the input sample contains the trigger or not. A
majority of the approaches in this category apply anomaly de-
tection [14], [16]. However, this strategy can be circumvented
by well-chosen backdoor features and exploiting orthogonality
of input gradients [17].
Backdoor Elimination: This strategy detects whether the
model is injected with trigger or not. Most of them are as-
sumption based, where the ML model is scanned for detection
[18]–[21]. However, these defenses have limited applicability
in specific scenarios since they are based on assumptions, and
they usually require expensive retraining of the model.
Backdoor Mitigation: This strategy tackles the threat by
alleviating backdoor behavior from the already trained victim
models, such as pruning neurons that are dormant on clean
inputs [15] or fine-tuning the model on a clean dataset [22],
[23], and utilization of Bayesian Neural Networks [24].

Most of these defenses have limited applicability in specific
scenarios. In Section V, we will examine our proposed AI
Trojan attack against state-of-the-art defenses.

III. BACKDOOR ATTACK WITH AI TROJANS

Figure 4 shows an overview of our proposed attack scheme
that consists of four major tasks: feature extraction, normal
training, backdoor training and Trojan injection. The first
task extracts two different types of hardware circuit features,
one is utilized for normal training process and the other one
is utilized for backdoor attacks. The second task performs
classical training using normal features to generate a neural
network trained to detect hardware Trojans. The third task
enables backdoor training by crafting malicious samples with
backdoor features with the objective of perturbing the outputs
of benign models. The final task performs Trojan injection
to gift the model with backdoor property. The output of the
framework is a backdoored neural network as the adversary
desired. The remainder of this section describes these tasks.



4

Fig. 4. Overview of our proposed framework that consists of four activities: feature extraction, normal training, backdoor training and Trojan injection.

A. Feature Extraction

To fulfill our backdoor attack, there are two types of
important features to be collected from benchmarks, normal
features and backdoor features. Based on their roles to play, we
formulated distinct criteria for selecting normal and backdoor
features. First, we briefly outline about normal features. Next,
we discuss extraction of backdoor features.

1) Normal Features: Normal features are applied to train
a general purpose HT classifier. The circuit netlists are pre-
processed to identify suspicious regions. Table I shows the
specific features of each region that are utilized to train the
model. Like [8], we have considered the following five aspects
while selecting the normal features.

• fan in: HT triggers usually have extremely rare condition,
so the fan-in value tends to become large.

• flip-flops: HT components are placed locally to reduce
area overhead, so the level of flip-flops for sequential-
triggers are usually designed to be small.

• loops: For ring-oscillator Trojans, looped flip-flops are
widely applied to arrange nodes.

• multiplexer: A large portion of HTs utilizes multiplexers
to receive trigger and activate malfunctions.

• pin distance: The distance between the region and the
primary input provides the basic location information.

TABLE I
SELECTION OF HT FEATURES FOR NORMAL AND BACKDOOR TRAINING.

Features Descriptions

N
or

m
al

fan in 4
fan in 5
flipflop in 4
flipflop in 5
loop in 4
loop in 5
multiplexer in
pin

# logic-gate fanins 4-level away.
# of logic-gate fanins 5-level away.
# of flip-flops up to 4-level away from input side.
# of flip-flops up to 5-level away from input side.
# of up to 4-level loops at the input side.
# of up to 5-level loops at the input side.
Distance level to multiplexer from the input side.
Distance level to the primary input.

B
ac

kd
oo

r

flipflop out 5
loop out 5
pout

# of flip-flops up to 5-level away from output side.
# of up to 5-level loops at the output side.
Distance level to the primary output.

2) Backdoor Features: The necessity of backdoor features
arise from the fact that injecting backdoor triggers in images
and circuits are significantly different. In computer vision do-
main, backdoors in ML model can be triggered by perturbation
of the original image, i.e. noises. They can be theoretically
obtained by gradient methods, and appending noise to images
are usually invisible to human eye. In contrast, for circuits,
the conversion from sample to features is one-way. Even if

we can calculate the necessary changes of feature values to
alter the classification result, there is no guarantee to create
such modified circuit which has the desired feature values.
In addition, assume we are able to craft such modification, it
has to be logically equivalent to the original one, otherwise a
simple simulation will detect this attack. Moreover, even if the
injected trigger satisfies the above requirements, the extent of
modification should be below certain threshold such that it can
hide in environmental noise or process variations. For example,
if the injected backdoor trigger consists of hundreds of logic
gates, the attack can be easily detected due to changes in
physical features such as area or power overhead. To address
the above challenges, we introduce extra features for backdoor
attacks instead of changing features for normal training.

Fig. 5. The fundamental idea of using ‘payload’ model.

The basic idea is to utilize several extra features, called
as backdoor features to train another neural network, called
payload model. The payload model accepts these backdoor
features as the only inputs. The functionality of this network
is illustrated in Figure 5. It checks if input features satisfy
certain constraints. If yes, it produces perturbation values that
will change the classification label if added with the benign
model outputs. Otherwise the output remains 0. Note that this
feature is similar to hardware Trojans. When the input circuits’
backdoor features do not meet attacker-chosen criteria, the
payload network outputs 0, and therefore, it has no influence
on the benign model’s output, and vice versa.

Based on the above discussion, the selection of these extra
features has to satisfy the following requirements.

• Adjustable: The backdoor features should be easy to
manipulate, so that the adversary can customize these
features to create a trigger condition.

• Orthogonal: The backdoor features have to be ‘orthogo-
nal’ to those selected normal features. Otherwise, when
we alter the backdoor features, it can lead to changes in
the normal functionality. This contradicts the requirement



5

that the ML model should act normally when backdoor
trigger is not activated.

• Logically Equivalent: The functionality of modified cir-
cuit should be identical to the original one.

• Negligible Overhead: Changes to the backdoor features
should be negligible for evading instant detection.

According to these requirements, three backdoor features
are selected as shown in Table I. We intentionally select
features related to the output side of the suspicious regions
while normal features focus on input side to guarantee the
orthogonality. This orthogonality enhances the flexibility of
backdoor design to maximize the backdoor attack success rate,
while avoiding the interference between the payload model
and normal model. While there are other candidate features,
we select these three backdoor features since they provide the
best overall performance. Section III-C provides the details of
utilizing these features, while effectiveness of these features
are evaluated in Section V.

Algorithm 1: Normal Training
Input: Circuit samples {xi} and labels {yi}
Output: Normal Model MΘ

1 initialization;
2 N = |{xi}|
3 repeat
4 for i = 1 ... N do
5 outi = softmax(MΘ(xi))

6 loss =
N∑
i

cross entropy(outi, yi)

7 Θ = sgd(Θ,∇loss)

8 until converge;
9 Return MΘ

B. Normal Training

The normal training follows the standard training procedure
as shown in Algorithm 1. In [7], the author proposed an ML
model with only one hidden layer and 500 hidden nodes.
In our work, we adopt the structure design idea of Lenet-
5 [25], where we utilize convolution layer to extract and
refine tiny features from raw input to compose model outputs.
Specifically, we are using the 1-D convolution network for
processing the input data [26]. As for the data collection, we
utilize 50 gate-level netlist benchmarks from Trust-Hub [27]
marked with label ‘0’. Then we randomly insert Trojans into
these benchmarks to craft malicious samples with label ‘1’.
The normal features as described in Table I are extracted from
the benchmarks and formatted into PyTorch tensors.

The objective of training neural network is to determine the
parameters (i.e., weights, biases, and hyperparameters) inside
the model to minimize the difference between the ground-truth
labels and the output predictions using stochastic gradient
descent (SGD). Assume L is the measurement of difference,
Θ represents the model parameters, xi is a training sample,
yi is the corresponding ground-truth label, and MΘ(xi) is
the predicted label. Mathematically, the training procedure of
the benign model is to minimize the loss function: loss =

L(MΘ(xi), yi). HT detection is a binary classification task
and therefore yi is either 0 or 1. In this case, L is selected as
the cross-entropy. L2 regularization and dropout strategies are
also applied in our framework to avoid overfitting problem.

C. Backdoor Training

Based on the discussion in Section III-A, backdoor training
aims at building a mapping function that always gives zero
value unless specific requirements are satisfied. Intuitively, a
value checking logic plus a lock should suffice. Unfortunately,
this naive approach needs hard-coding of constraints, which
has no flexibility. In addition, this approach is very easy to
detect due to its unique structure.

Fig. 6. Example mutation patterns [9] used in our proposed work.

Our proposed backdoor training works in a totally different
way. First, we select circuit samples and record their initial
values of backdoor features. Next, we randomly apply various
modification patterns multiple times to mutate the backdoor
feature values, as shown in Figure 6. Note that all mutation
patterns are logically invariant. Meanwhile, changes applied
in our work are controlled within a scale of < 25 gates to
satisfy the negligibility requirement. This step is the analog
of perturbing images with noise in computer vision domain.
After mutation, the modified patterns of backdoor features
are considered as backdoor ‘signatures’ to indicate whether
it has been retrofitted by adversary or not. Then the task of
backdoor training is to feed these malicious samples into the
ML model to enforce it to remember these ‘signatures’. In this
case, the payload model works as a binary classifier, aiming at
predicting whether input samples are with “signatures”. This
approach fulfills the desired constraint checking functionality
as shown in Figure 5.

Designing the structure of the payload model is even more
challenging than the normal model. While a simpler structure
is easier to train and harder to detect due to its small overhead,
it often provides lower attack success rate for its limited
capability. On the other hand, a complicated structure usually
guarantees the performance in terms of backdoor attack, but
comes at the cost of higher training cost as well as higher
risk of being detected. The effectiveness of different design
strategies are discussed in Section V. The outline of backdoor
training and Trojan injection is shown in Algorithm 2.

We perform normal training and backdoor training sepa-
rately for three reasons. (1) If we combine them into one
learning model, both normal and malicious inputs are fed into
one single model. This training process is known as poisoning
attack [28]. In this case, the model is enforced to distinguish
inputs with different labels but only differs slightly from
each other. As a result, the training difficulty is significantly
increased. Moreover, combined learning can lead to overfitting
problem. (2) This independent training strategy makes the



6

Algorithm 2: Backdoor Training and Trojan Injection
Input: Circuit samples {xi} and labels {yi}, Normal

model MΘ, payload model M̄Θ̄, maximum of
mutation times max mut

Output: Backdoored Model M∗

1 initialization;
2 N = |{xi}|
3 for i = 1 ... N do
4 iter = rand(0,max mut)
5 for i = 1 ... iter do
6 x′

i = mutate(xi);

7 Label all xi as 0, x′
i as 1

8 X∗ = {xi} ∪ {x′
i}

9 repeat
10 for each x∗

i ∈ X∗ do
11 outi = softmax(M̄Θ̄(x

∗
i ))

12 loss =
2N∑
i

cross entropy(outi, label(x∗
i ))

13 Θ̄ = sgd(Θ̄,∇loss)

14 until converge;
15 M∗ = −λ ·H(M̄Θ̄(xi)) · L(MΘ(xi), yi)
16 Return M∗

proposed attack more flexible. If we plan to launch attacks
with different backdoor types, instead of retraining the entire
model, the normal model generated by our normal training
process can always be directly inherited. In this way, we only
need to specify backdoor training process. (3) Separate training
naturally enables parallel training. In this case, the normal
model and payload model are trained in parallel. As a result,
we significantly improve the average training efficiency, as
demonstrated in Section V-D.

D. Trojan Injection

After backdoor training, we obtained the desired payload
model. To complete the attack, we need to inject this payload
model into the normal model. As described in Figure 5,
the desired functionality of payload model is to produce
some perturbation that suffices to switch classifier prediction
when the trigger condition is satisfied, and maintain silence
otherwise. The output of payload model can be designed as:

output = −λ ·H(M̄Θ̄(xi)) · L(MΘ(xi), yi)

where λ is the regularizer, M̄ is the payload model, M is the
normal model, and H is the Heaviside step function (unit-step
function). In this case, when input circuit is recognized as ‘1’
(with backdoor signature), H(M̄Θ̄(xi)) = 1 and the output
is a scaled inverse of normal model output. In terms of ‘0’
label (without backdoor signature), H(M̄Θ̄(xi)) = 0 and the
output is 0. By combining the output layers, the normal model
and payload model are assembled together. After pruning and
nodes merging, the result is the desired backdoored ML model.
The payload model is embedded into the normal model and it
hide behind the entire structure.

IV. DEFENSES AGAINST AI TROJANS

In this section, we investigate possible mechanisms to
alleviate the AI Trojan attacks for HT detection. As outlined
in Section II-D, there are three categories of defenses (trigger
elimination, backdoor elimination, and backdoor mitigation).
We explore five state-of-the-art defense strategies (Pruning,
Bayesian Neural Networks, Neural Cleanse, Artifical Brain
Simulation, and STRIP) selected from the three categories as
shown in Figure 7. The remainder of this section describes
each of the defense strategies in detail.

Fig. 7. Various defense strategies against AI Trojans evaluated in this paper.

A. Pruning

Pruning is the process of removing over-weighted connec-
tions in a network, aiming at accelerating the processing speed
within the network, while reducing the size of the ML model.
The principle behind pruning is the assumption that DNNs are
commonly over-parameterized. The depth and huge amount of
neurons grant the model with incredible ability to simulate the
input-output relationship inherited in various tasks. However,
the overwhelming size and complicated structure inevitably
contains unused parameters. Therefore, pruning a network can
be thought of as removing unused parameters from the over-
parameterized network.

Pruning can be done by removing either redundant weights
or nodes, as shown in Figure 8. The pruning process is
achieved by setting individual parameters to zero, which
usually leads to sparse matrices in the network and can be
further accelerated by sparse coding [29]. Notice that pruning
is generally a model compression technique, not a specific
strategy to defend against AI Trojan attacks. The key factor
for pruning to be effective against AI Trojan is the removal
of redundancy. As described in Section III, it is a fact that
the Trojan-embedded model works as benign unless attacker-
chosen inputs are given, which means the backdoor trigger
is a redundant component when dealing with clean inputs.
Therefore, a feasible idea is to test the suspicious model with
sufficient number of clean inputs, sort the nodes/weights by
importance, and remove the unimportant parts.

Pruning is a feasible approach to defend against AI Tro-
jan. Recent works have shown promising results by using
pruning against backdoor attacks [15]. However, it has two
major drawbacks. (1) Pruning strategy is fragile when the AI
Trojan attack applies nodes/weights merging steps, as shown
in Figure 3(c). Intuitively, the redundancy has been evenly
distributed through the merging of nodes. Therefore, there
is no way to effectively find less-important nodes from the
network. This is also demonstrated in Section V-E. (2) When



7

Fig. 8. The pruning methods can either remove redudant weights or nodes
from the network.

the model undergoes pruning, it can lead to loss of accuracy.
Therefore, the users also need to consider the recovery of
accuracy while pruning.

B. Bayesian Neural Networks

Given the drawbacks of pruning strategy, Bayesian neural
network (BNNs) is another option to defend against AI Trojan
attacks. BNNs are a special type of DNNs as shown in
Figure 9. In traditional DNNs, weight values are real values
and are commonly fixed after training. There is a fundamental
difference between DNNs and BNNs. BNNs handle ML tasks
from a stochastic perspective where all weight values are
probability distribution, while DNNs use numerical weight
values and utilize activation functions. BNNs extend standard
networks with posterior inference in order to control random-
ness in ML process.

Fig. 9. Comparison of deep neural network (DNN) and Bayesian neural
network (BNN). (a) DNN has weight values and utilize activation functions
to introduce non-linearity. (b) BNN is a stochastic neural network with
probability distributions over the weights.

If BNN is used as the target ML model, both data poisoning
or model injection methods can be blocked for the following
reasons. (1) BNNs have natural resistance against data poi-
soning. BNNs produce output values with uncertainty, which
severely limits the performance of any targeted attack. Also,
in data poisoning attack, the goal is to train a model where a
small change in input (noise) can cause significant change of
output, which is protected by BNNs’ regularization properties.
(2) Model injection also suffers from the uncertainty possessed
by BNNs.

As discussed in Section IV-A. The pruning technique is
fragile against model injection attack due to the fact that the
backdoor trigger nodes are merged with those benign ones
(shown in Figure 3(c)). Without merging the two networks
(as in Figure 3(b)), the user can easily detect/remove the
backdoor by pruning. In fact, it can be easy to identify the
model structure since in most cases of MLaaS, the users

typically specify the architecture of the expected ML model.
In traditional DNNs, edges connecting nodes contain only
fixed weight values, therefore, merging two neural networks
is straightforward. However, in case of BNN, there is no
naive way to merge two probability distributions with different
variables. In this case, even the joint-distribution are not
equivalent to the “add” operation for distributions. As a result,
model injection attack may not be effective in BNNs due to
the inability of merging nodes.

There are still limitations on applying BNNs against AI
Trojan attacks. First, it is only feasible for partially-outsourced
scenario. In fully-outsourced scenario, the ML model is pro-
vided to users as a black-box. Even if the user specify the
structure and type of model, the adversary can somehow
introduce randomness to the malicious model and pretend
it to be a BNN. Second, BNNs themselves suffer from two
main drawbacks. (1) BNNs are computationally expensive.
Therefore, they are not suitable for large-scale problems in
terms of efficiency. (2) BNNs enforce random variables to be
in a cause-effect relationship. As a result, it is not suitable for
hardware Trojan detection.

C. Neural Cleanse

Both pruning and applying BNNs are mitigation techniques
to render the backdoor ineffective. In [20], the authors
proposed a novel approach to directly detect the existence
of backdoor in the ML model. The key intuition of the
detection method is that, for an infected model, it uses small
modification to cause misclassification of the target label,
which is shown in Figure 11. The top figure shows a clean
model, where significant modification is needed to shift the
samples of type B and type C across the decision boundaries
to be misclassified into label A. The bottom figure shows the
infected model, where it needs minor modification to move
samples across the boundary.

This intuition is based on the assumption that a small change
of input (noise) can cause significant change of output due
to existence of a backdoor. It works by crafting perturbed
input samples to test if significant change happens at the
output. Unlike pruning or BNN, neural cleanse is not interested
in removing the backdoor trigger or prevent attack from
happening, it focuses on maximizing the chances of raising
red flag when backdoor exists.

To achieve this, the authors in [20] iterate through all labels
of the model, and determine if any label requires significantly
smaller amount of modification to achieve misclassification.
Application of neural cleanse for hardware Trojan detection is
easier since there are only two labels, clean or HT implanted.
Therefore, the working steps can be simplified as: (i) for a
given design, continuously add ‘noise’ by randomly applying
adversarial patterns, (ii) check if any of the modification
unintentionally activated the trigger so that there is significant
change at the output.

Neural cleanse is a promising technique for mitigating
backdoor attacks. However, it has two major limitations:
uncertainty and expensive. (1) There are no precise guidelines
for making these modifications to maximize the opportunity
to trigger the backdoor. This is analogous to random test



8

(a) MLP (b) Lenet (c) GoogleNet
Fig. 10. The attack success rate of our framework using three different payload models under different thresholds on number of mutations.

Fig. 11. A simplified illustration of the Neural Cleanse.

generation for hardware Trojan detection, where the chances
of triggering Trojans are very low, and in the worst case, the
backdoor is out of the coverage of generated test patterns.
(2) Since neural cleanse relies on somewhat random choices,
it can be expensive in terms of effort to apply this strategy.
One major motivation for applying ML to detect HT is the
relatively low cost compared to traditional test generation
schemes. If we decide to use neural cleanse, the user have to
pay significant effort to defend against possible attacks towards
the ML models themselves. In other words, applying ML for
HT detection is not beneficial if we have to rely on time-
consuming neural cleanse for defense purposes.

D. Artificial Brain Stimulation (ABS)

Artificial brain stimulation (ABS) [21] is a novel approach
that scans the entire ML model seeking potential backdoor
by analyzing inner neuron behaviors through a stimulation
method. ABS is performed in 3 steps. First, it locates sus-
picious neurons inside the ML model, which substantially
elevates the activation of a particular output label regardless of
the provided input. Neurons acting like this are considered as
potential backdoor. Second, with the potential nodes obtained,
the authors in [21] craft the Trojan triggers through reverse
engineering. The crafted triggers are attached to clean inputs.
Finally, this artificial Trojan-embedded input is given to the
model to confirm whether it produces incorrect labels. If yes,
the backdoor is detected.

ABS is similar to Neural Cleanse. However, they have
one major different - unlike randomly generating inputs that
occasionally activates the trigger in Neural Cleanse, ABS
starts by locating suspicious targets. If we use the analogy of
hardware Trojan detection, Neural Cleanse acts like random
test generation, while ABS works like constrained-random

or directed test generation that aims at activating potential
backdoor triggers (e.g., rare signals).

Specifically, the authors in [21] evaluates ABS on 177
Trojan-embedded models by various attack methods with
various trigger sizes and shapes, where promising defense
performances are obtained. However, ABS still assumes that
a user has full access to the ML model, which is not realistic
in fully-outsourced scenario. Moreover, ABS is designed for
solving targeted attacks. In case of untargeted attacks, ABS is
likely to be less effective. We will examine ABS’s performance
against our proposed attack in Section V.

E. STRIP

STRIP is a strong defense against Trojan Attacks on
DNNs [16]. STRIP is an experience-based trigger-detection
method which aims at detecting suspicious backdoor triggers
from inputs. Through heuristic analysis as well as experimental
evaluation, the authors have observed a drastic difference in
entropy between clean inputs and Trojan-inserted inputs. It
works by fusing the input samples with multiple clean samples.
Then STRIP applies the fused input to the backdoored model
and calculates the entropy of model outputs. In general, a
low entropy in predicted classes usually violates the input-
dependence property of a benign model and implies the
presence of a malicious Trojan-embedded input.

There are still many limitations for STRIP, especially when
applied for HT detection. (1) STRIP was proposed and ex-
amined in computer vision domain. STRIP is assumption-
based, but whether the entropy assumption still holds for
hardware circuit features remains unclear. (2) STRIP utilizes
the distributed output from the last layer of the model, which
is not applicable in fully-outsourced scenario, where users
only receive the prediction results from the model. (3) STRIP
assumes that the user has access to Trojan-embedded samples
under the threat model, which is usually not true. Therefore,
STRIP is not effective in realistic scenarios.

All of the above defenses will be evaluated in Section V
to check the feasibility and effectiveness of our proposed AI
Trojan attack against state-of-the-art defense strategies.

V. EXPERIMENTS

We first outline the experimental setup. Next, we present the
performance of our proposed attack for both fully-outsourced
and partially-outsourced scenarios. Then, we perform the



9

overhead analysis. Finally, we describe the performance of
our proposed attack on existing defense mechanisms.

A. Experimental Setup

The experimental evaluation is performed on a host machine
with Intel i7 3.70GHz CPU, 32 GB RAM and RTX 2080
256-bit GPU. We developed code using Python for model
training. We used PyTorch as the machine learning library. To
enable comprehensive evaluation, we deploy the experiments
utilizing 50 gate-level netlist benchmarks from Trust-Hub [27].
Features are extracted from benchmarks and formatted into
PyTorch tensors, making them compatible with any ML mod-
els requiring tensor inputs. The structure for normal model is
described in Section III-B. Based on Section III-C, we apply
the following models when designing our payload model.

• MLP: A multiple-layer-perceptron (MLP), composed of
3 fully connected layers.

• Lenet: A Lenet-5 [25] like structure, composed of 3
convolution layers followed by 2 fully connected layers.

• GoogleNet: A GoogleNet [30] like structure, with a depth
of 22 layers.

While there are diverse ML models, we selected these three
types of ML models for the following reasons. (1) MLP is
a fully connected network. It has the simplest structure com-
pared with the other two, while containing all the fundamental
components of the feed-forward artificial neural network. It is
easy to train, and the effect of injected backdoor can be easily
observed as we can see from Figure 12 and Figure ??. In our
experiment, MLP works as a control group. (2) Lenet utilizes
convolution layer to extract and refine tiny features from raw
input to compose model outputs. It has more complicated
structure than MLP but uses a straightforward design that can
be applied for various tasks. (3) GoogleNet is a significantly
more complicated network with 22 layers. It uses a global
average pooling followed by the classification layer to have
better performance than the other two. We choose GoogleNet
to test the performance of our proposed method deployed on
complex large-scale models. The selected ML models are also
adopted by many recent works [31] since they represent a wide
span of scale and functionality.

To evaluate the performance, assume that M
represents the normal model and M∗ for the backdoored
model with the original sample circuits dataset
{(x1, y1), (x2, y2), ..., (xn, yn)} and modified circuits dataset
{(x′

1, y
′
1), (x

′
2, y

′
2), ..., (xm, ym)}. We use the following three

metrics.

• Baseline Accuracy is computed as
n∑
i

1(M(xi)=yi)
n ,

which represents the prediction accuracy of the normal
model with original samples. 1 is the indicator function.

• Attack Success Rate (ASR) is
m∑
i

1(M∗(x′
i )̸=y′

i)
m , which

represents prediction accuracy of the backdoored model
with modified samples.

• Backdoor Accuracy is

n∑
i

1(M∗(xi)=yi)+
m∑
i

1(M∗(x′
i) ̸=y′

i)

n+m ,
which represents the prediction accuracy of the back-
doored model with all samples.

B. Comparison of Attack Performance

Figure 10 compares the performance of three different
implementations. In each figure, baseline accuracy, backdoor
accuracy and attack success rate are provided. The x-axis
represents the upperbound on the number of mutations applied
in Algorithm 2 during backdoor training, where larger x-value
represents more modifications to the input samples. As men-
tioned before, baseline accuracy depicts the general function-
ality of ML model without triggering its backdoor property.
Therefore, it remains the same among different implemen-
tations, posing as the control group. In our experiment, the
normal model achieves 98.5% accuracy for normal samples.
All three models’ backdoor accuracy are slightly lower than
the baseline accuracy. This difference comes from the effect
of payload model. This is supported by the observation that
the backdoor accuracy is nearly proportional to the ASR. The
closer ASR is to perfection, the closer backdoor accuracy are
to the baseline. In other words, it represents the performance of
backdoored model ‘mimicking’ the normal model’s behavior.

In terms of attack success rate, the simpler (lightweight)
payload model implies faster convergence to perfection. For
example, MLP needs about 5 mutations while GoogleNet
requires 20 mutations to reach 100% ASR. However, as we
can see, the ASR of MLP is unstable. Even after it hits per-
fection, it oscillates at a 10% amplitude. Instead, complicated
model like GoogleNet requires more modifications to reach
convergence, but it becomes very stable once reaches 100%
success rate. This is expected due to simple models’ limited
capability in handling complex features. Larger number of
mutations brings expanded feature space, and it is likely for
these lightweight models to get overfitted. In other words,
some normal samples may satisfy the payload model and
get their classification result switched. Therefore, we need to
carefully select the mutation number for simple structures.

Fig. 12. The attack success rate comparison between proposed algorithm and
the state-of-the-art adversarial attack with < 25 mutations.

To evaluate the effectiveness of our approach, we will
also compare our proposed method with GAE, the state-
of-the-art adversarial attack based on generating adversarial
examples [9]. Figure 12 compares the ASR of our proposed
method with state-of-the-art attack, GAE [9]. As we can see,
GAE’s ASR is much lower than the proposed method. This
huge difference comes from the design strategy. GAE applies
mutations on circuits and then directly feed them into models
to alter its outputs. In our work, we extract backdoor features
and feed them into an extra model. Intuitively, this extra



10

model acts as both an extractor and an amplifier. It recognizes
backdoor features and enables fusion of its output with results
from the normal model. As a result, a small amount of
mutations suffices to alter the classification result. In contrast,
GAE does not have such amplifier and it usually requires a
large number of mutations to create changes in the output
layer. Therefore, it provides inferior attack performance. GAE
faces the risk of detection due to larger number of mutations.

C. Performance of Partially Outsourced Attack

We also evaluated our proposed work against partially-
outsourced threat model. In this setting, each ML model
trained on attacker-chosen dataset is further retrained to adjust
to user-specific benchmarks. During this retraining process,
all model parameters are visible and can be tuned by users.
We compare all three proposed structures (MLP, Lenet, and
GoogleNet) and GAE. For each model, we randomly select
unseen benchmarks along with generated synthetic designs
as user-specific dataset for retraining. The retaining phase
is composed of 200 epochs and we assume two different
training strategies that are commonly utilized in practice. The
first one is normal training, where no defensive schemes are
applied and the transfer learning process only focuses on
adjusting the model to users’ data. The other one is adversarial
training, where users also craft adversarial samples themselves
by randomly applying adversarial patterns shown in Figure 6.
Adversarial training is a strong defense against adversarial
attacks. In this way, the models are expected to be resistant to
malicious inputs that are polluted by adversarial patterns.

Both the accuracy of the retrained model and the ASRs
of attacks are presented in Table II. Each row in the table
represents the average performance of the two transfer learning
methods of each model. For each method, the columns with
Accuracy label represent the HT detection rate of the model
on clean input samples to demonstrate its basic functionality,
while the ASR label implies the attack success rate of each
attack algorithm. As we can see from the results, through
normal training, all models are well-tuned to user-specific data
by reaching > 90% accuracy. One important observation is
that GAE is fragile to transfer learning, while our proposed
attack still maintains decent ASRs. We consider the key
difference between GAE and our proposed attack is the way
we design the model. In the proposed AI Trojan attack,
the entire model is composed of two parts, benign model
for expected functionality, and payload model for malicious
attack. Even if users retrain the model on newly unseen
benchmarks, the parameters that are drastically changed are
those inside the benign model since they are responsible for
reacting to HT detection task, while they remain unaffected
for all components associated with the payload model. For
GAE, as mentioned in Section II-C, noise sample is calculated
through gradient approach but now the model is retrained on
new dataset. The ways of computing adversarial noise has to
be changed accordingly otherwise it is not effective, where a
low (14.5%) ASR is obtained.

In case of adversarial training, they did provide the model
with resistance towards proposed attacks, as each of the
model’s ASR decreases to some extent. However, they still

TABLE II
PERFORMANCE FOR PARTIALLY OUTSOURCED SCENARIO

Models Normal Training Adversarial Training
Accuracy ASR Accuracy ASR

MLP 90.3% 65.5% 75.1% 60.5%
Lenet 98.5% 77.7% 98.0% 68.0%

GoogleNet 99.5% 82.1% 94.6% 76.1%
GAE 99.2% 14.5% 94.0% 11.1%

can achieve > 60% ASR. In adversarial training, unless
the users have full access to adversary-chosen inputs, the
crafted adversarial samples are randomly generated and cannot
guarantee to cover all possible trigger conditions. Therefore,
for uncovered trigger conditions, they remain effective to make
the backdoor attack succeed. Therefore, to defend against
our proposed attack, users have to craft numerous synthetic
adversarial samples to increase the coverage, making the
defense strategy expensive and not efficient. Also, as we can
see from the third column of the table, adversarial training will
decrease the performance of basic functionality, as the model
has to adjust itself to some noised data samples.

D. Overhead Analysis

Table III compares the training cost and data resources of
various methods. The first three rows represent our approach.
The MLP approach is the most economic is terms of training
cost. It can be trained within 50 epochs with each epoch taking
0.6s, and only requires 20% of the training samples to be
malicious. However, GoogleNet is very costly, it needs 500 of
0.37s training epochs. GAE requires moderate training cost,
comparable to Lenet. However, it requires a large number
of mutations, and still provides inferior attack performance
compared to our proposed method.

TABLE III
COMPARISON OF TRAINING COST AND DATA RESOURCES.

Models Time(s) Epochs Malicious/Benign
Division # Mutation

MLP 0.6 50 2/8 6
Lenet 1.7 200 2/8 18

GoogleNet 72.4 500 5/5 21
GAE [9] 1.0 200 4/6 44

E. Pruning-based Defense

Aside from adversarial training which is designed for allevi-
ating adversarial attacks, we further evaluate the performance
of proposed attack against state-of-the-art defense strategies
that are primarily designed for AI Trojan attacks. Although
dropout is inherently applied to our normal model, pruning still
serves an important role in eliminating AI Trojans. Dropout
is temporary and random method. It drops certain activations
of nodes stochastically during the training. As a result, each
training observation uses only a subset of available nodes. This
prevents the model from becoming over-reliant on a few well-
performing nodes. As a result, it is likely to make all nodes
equally powerful. In contrast, pruning is a permanent opera-
tion, and is determined by an importance ranking algorithm.
It is a post-training removal of nodes that are non-important.
Therefore, only well-performing nodes remain and get utilized
in real-world applications.



11

Table IV shows the result of applying pruning on various
models. Notice for each model, we check the effectiveness of
pruning with and without nodes merging. Merging indicates
that some of the connections and neurons inside the model are
merged prior to pruning. As we can see from the table, pruning
is effective dealing with models without nodes merging. The
ASRs of all three models are significantly decreased since
pruning removes most of the sensitive triggers, making the
backdoor attack hard to get activated. However, the fragility
of pruning is demonstrated when dealing with models with
merging, the ASRs are all > 95%. In other words, the pruning
is not effective to defend against the proposed attack since
pruning can be easily circumvented by merging nodes.

TABLE IV
ATTACK SUCCESS RATE OF AI TROJAN AGAINST PRUNING.

Models MLP Lenet GoogleNet Average

With Merging 95.6% 99.6% 99.8% 98.3%
Without Merging 33.8% 25.5% 11.6% 23.6%

F. Defense using Bayesian Neural Networks (BNN)

Utilization of BNN is another promising backdoor allevi-
ation scheme. The results are presented in Figure 13. Due
to the randomness introduced by Bayesian method, we test
each model for 30 trials and plot the ASRs of all trials. For
each attack, the number of mutations are set to 25. In other
words, the crafted backdoored inputs can achieve 100% ASR
for normal DNNs. As we can see from the figure, the ASRs
are very low (< 50%). Especially, for simpler models like
MLP, when changed from normal weight edges to stochastic
connections, the randomness severely affects the performance
of the backdoor attack, which makes the trigger conditions
even harder to get activated. As expected, in Figure 13, the
simpler ML model structure implies the lower ASRs.

Fig. 13. The attack success rate of proposed attack algorithm against Bayesian
Neural Networks. To better evaluate the performance, we test each model for
30 trials. For each attack, the number of mutations are set to 25 so that they
are sufficient to achieve 100% ASR for normal DNNs.

Based on the results, we consider utilization of BNNs as
a powerful strategy to defend against the proposed attack.
However, as mentioned in Section IV-B, considering the use
case of MLaaS, there is no guarantee that the user can
specify the type of ML model to be used in fully-outsourced

scenario. As outlined in the threat model (Section I-A), in
fully-outsourced MLaaS, the user only receives a well-trained
ML model for a specific task. The ML model works in a black-
box manner, all the design details (type of model, parameters,
etc) are hidden to the user. Even in case of a partially-
outsourced model, it is relatively easy for the adversary to
bypass users’ verification. The only difference between BNN
and traditional DNN is that BNN utilizes randomness for edge
and node values. The attacker can introduce random noise at
the output layer to craft an illusion of BNN. Therefore, BNNs
cannot be considered as a perfect defense.

G. Neural Cleanse & ABS

Aside from backdoor alleviation schemes, we also evalu-
ated the performance of direct backdoor detection algorithms,
Neural Cleanse [14] and ABS [21]. These two algorithms aim
at generating test input samples to interact with the model, so
as to make classification on whether the ML model is injected
with backdoor or not. Both Neural Cleanse and ABS need
the parameter details of the outsourced ML model and expert
knowledge to craft adversarial samples.

TABLE V
PERFORMANCE OF NEURAL CLEANSE & ABS

Models Neural Cleanse ABS
DA #Tests Time DA #Tests Time

MLP 98.3% 58.1 17.6s 84.4% 6.5 48s
Lenet 82.5% 144.4 79.5s 78.0% 19.8 20.5s

GoogleNet 87.1% 2106.5 16445.8s 69.0% 55.3 176.8s
Average 89.3% 769.7 5514.3s 77.1% 27.2 81.8s

The results are presented in Table V. Each row in the
table represents the average performance of the two defense
algorithms (Neural Cleanse and ABS) for each model. For
each defense algorithm, the columns with DT label represent
the detection accuracy of the algorithm, while the #Tests
label implies the average number of test input samples that
are necessary for the algorithm to make classification, and
the Time label indicates the total time for completing the
detection process. As we can see from the results, Neural
Cleanse is expensive compared with ABS. It needs more
than > 10000s for large-scale model, which may not be not
acceptable for practical usage. ABS performs better in terms of
time efficiency, but its detection accuracy is inferior compared
with Neural Cleanse. For GoogleNet, the detection rate is
below 70%, making the algorithm fragile towards attacks.

Both Neural Cleanse and ABS algorithms focus on gener-
ating input samples that interact with the suspicious model to
examine the existence of a backdoor. However, they address
test generation from complementary perspectives. In case of
Neural Cleanse, the test generation algorithm focused on the
dataset. Specifically, it measures the minimum amount of
perturbation necessary to change all inputs from one label to
another, and generates tests with that amount of perturbation.
In case of ABS, the test generation algorithm focuses on the
model itself. Specifically, the ABS algorithm scans the ML
model, extracts suspicious backdoor regions, and generates
test inputs that can activate these regions. These two test
generation algorithms require different number of test pat-
terns for convergence, which is an important indicator of the



12

Fig. 14. The comparison of entropy distributions between GAE and proposed methods with different model implementations and mutation numbers.

detection effectiveness. In other words, ABS is faster since it
requires less test vectors for convergence. However, it provides
inferior detection accuracy due to the fact that ABS focuses
on locating suspicious region in neural network regardless
of input samples, and are vulnerable towards nodes merging
strategy. As a result, there is a clear trade-off of effectiveness
and efficiency between Neural Cleanse and ABS.

We take time efficiency into consideration due to two
important reasons. (1) If there are multiple models to be
examined in industrial applications, long detection time for
each model can lead to unacceptable overall cost. (2) The
detection time should be fast in many real-world scenarios.
Otherwise, the Trojan may be triggered to damage the system
before the detection result is available. Both algorithms assume
that the user have access to the parameter details of the
outsourced ML model, and have expert knowledge to craft
effective inputs, which are usually not guaranteed in practice.

Since pruning simplifies ML model and might change the
structure of neural networks, it is import to evaluate the
effectiveness of these methods in the context of pruning. We
analyze the performance of Neural Cleanse & ABS with and
without pruning in Table VI. As we can see from the table,
the pruning did not improve the detection accuracy. In case
of ABS, the detection accuracy even drops slightly compared
with non-pruning scenario for Lenet and GoogleNet.

These observations are expected since pruning is a miti-
gation technique while Neural Cleanse & ABS are detection
techniques. As a result, if a backdoor Trojan can be alleviated
by pruning, then there is no scope for detection. On the other
hand, if the Trojan can evade pruning, then the detection
techniques are likely to face the same level of difficulty.

TABLE VI
DETECTION ACCURACY OF NEURAL CLEANSE & ABS WITH PRUNING

Models Neural Cleanse ABS
Non-Pruning Pruning Non-Pruning Pruning

MLP 98.3% 98.1% 84.4% 84.5%
Lenet 82.5% 82.5% 78.0% 77.8%

GoogleNet 87.1% 87.7% 69.0% 62.3%
Average 89.3% 89.4 % 77.1% 74.8%

Although pruning can simplify the network, it did not help
improving the detection accuracy for the following reasons.
Our proposed attack utilizes node merging to circumvent
pruning. Also, Neural Cleanse is based on input dataset, which
is not affected by the pruned model structure. ABS does not get
any benefit of pruning since ABS focuses on extracting sus-
picious structures. In fact, pruning removed certain suspicious
nodes as redundant components, which slightly deteriorated
the detection performance.

H. STRIP-based Defense

We further evaluate the proposed attack’s robustness
against the state-of-the-art backdoor trigger detection scheme,
STRIP [16]. STRIP aims at identifying if a given input is
clean or contains a backdoor trigger. It works by fusing the
input sample with multiple clean samples, and normalizes
the feature values to compute a distribution over it. Then
STRIP computes the entropy of input samples to compare
with a threshold, which is defined as the maximum entropy
difference among all clean data inputs. Therefore, a backdoor
injection is detected if the difference of entropy between clean
and suspicious inputs exceeds that threshold. This defense



13

TABLE VII
SUMMARY OF VARIOUS DEFENSES AGAINST OUR PROPOSED ATTACK

Algorithms Effectiveness Overhead Fully Outsourced Partially Outsourced Assumptions

Pruning [15] Low Low Not Applicable Applicable Users have full access to model parameters.
BNN [24] High High Applicable Applicable Users may specify the structure of ML models.

Neural Cleanse [14] High High Not applicable Applicable Users have full access to model parameters.
ABS [21] Mediocre Mediocre Not applicable Applicable Users have full access to model parameters.

STRIP [16] Low Low Applicable Applicable User have access to Trojan-embedded samples

strategy relies on the observation that backdoored inputs tend
to produce lower entropy outputs compared to the clean ones,
so that by checking their entropy distributions, backdoored
inputs can be clearly distinguished.

To better visualize the performance, we plot Figure 14 to
show the entropy distribution of outputs from both GAE and
our proposed method applied on clean and backdoored inputs
over different models. The first row presents the performance
of GAE, while the second row presents the performance of
proposed attack. We denoted the number of mutations of
each type of model (5 for MLP, 10 for Lenet, and 15 for
GoogleNet), as well as entropy values. The X axis represents
the feature values while Y axis represents the probability(%).
As we can see from the figure, our proposed algorithm
possesses significant less entropy values compared with GAE.
The distribution of entropy for backdoored data overlaps with
the distributions of entropy of the clean data for our approach.
While GAE’s entropy can be clearly distinguished from the
normal ones.We consider the following two important reasons
for this scenario. 1) We intentionally select backdoor features
that are orthogonal to normal features. Therefore, applied
mutations do not affect the normal features, which avoids
drastic changes in output entropy. 2) The mutations in GAE
is gradient-driven, where feature values are clustered around
peak values, leading to a small entropy. Our proposed method
is able to bypass the state-of-the-art defense (STRIP) while
state-of-the-art attack (GAE) fails.

I. Summary of Defenses against Proposed Attack

Table VII summarizes the effectiveness, overhead and ap-
plicable scenarios of all five state-of-the-art defense strategies
against our proposed AI Trojan attacks. Clearly, our proposed
attack is resistant against pruning, ABS and STRIP. Neural
Cleanse and BNN can provide relatively better defense. How-
ever, it is expensive for Neural Cleanse and BNNs to defeat our
proposed attack, as demonstrated in Section V-D. Furthermore,
the assumptions made by these defense strategies (e.g. full
access to model parameters) may not be feasible.

There are several reasons for the superior performance of
Neural Cleanse and BNN compared to pruning, ABS and
STRIP. AI Trojan attack introduces unpredictable changes to
non-targeted neurons that makes the triggers harder to detect
and resistant to filtering and neuron pruning. Neural Cleanse
is able to identify the sensitive nodes and reconstruct possible
triggers to evaluate the existence of backdoor triggers, which
is irrelevant to the model’s structure itself.

BNNs have natural resistance against AI Trojan attack
for two reasons. First, BNNs produce output values with
uncertainty, which severely limits the performance of any
targeted attack. Second, the uncertainty possessed by BNNs

prevents the backdoor injection process. In AI Trojan attack,
the backdoor detector must be merged into the benign model
(shown in Figure 3(c)). Without merging the two networks
(as in Figure 3(b)), the user can easily detect the backdoor
by identifying the model structure, since in most cases of
MLaaS, the users typically specify the architecture of the
expected ML model. In this case, BNN’s property prevents it
from merging of nodes. In traditional DNNs, edges connecting
nodes contain only fixed weight values, therefore, merging two
neural networks is straightforward. However, in case of BNN,
there is no naive way to merge two probability distributions
with different variables.

Fig. 15. Detection rate of our framework with increasing Trojan size.

We have analyzed the detection performance by varying
Trojan complexity (size). A complicated Trojan is likely to
create more differences compared to simple ones, making it
easier to detect by side-channel analysis. Figure 15 shows
the relationship between the size of the Trojan (number of
mutations) and the detection rate. When increasing the number
of mutations (more gates), the chances of detection by defense
methods also increases.

The proposed attack would be successful even if the de-
fender is aware of the attack for the following reasons. (1)
Since the AI Trojan is merged with the original model, state-
of-the art pruning methods will not be able to detect or
eliminate it as described in Section V-E. (2) If the defender
runs the model on general HT-infected netlists, the model will
successfully detect the HTs. In fact, this is ensured by the
design of AI Trojan that is expected to work as usual unless
the trigger of the AI Trojan is activated. (3) As discussed
in Section V-G, it is infeasible to generate all possible test
patterns to activate the AI Trojan trigger due to the exponential
nature of the possible input patterns. Overall, our proposed
attack is robust against state-of-the-art defenses under realistic
settings.



14

VI. CONCLUSION

While machine learning (ML) techniques are widely ap-
plied in hardware Trojan (HT) detection, ML algorithms are
vulnerable towards Trojan attacks. In this paper, we exploit
this fundamental vulnerability to propose a backdoor attack
scheme. Specifically, this paper made several important con-
tributions. We propose an efficient mechanism to design and
inject AI Trojans into ML models for HT detection. The
infected model can hide in plain sight since it can provide
expected classification for regular inputs. However, it will
produce misclassification for specific attacker-chosen inputs.
Extensive experimental evaluation using three implementation
models demonstrated that our approach can achieve 100%
attack success rate with very few modifications compared to
state-of-the-art adversarial attack for ML-based HT detection.
Our studies also reveal that our proposed attack is robust
against the state-of-the-art defense strategies.

REFERENCES

[1] F. Farahmandi et al., System-on-Chip Security. Springer, 2020.
[2] Y. Lyu and P. Mishra, “Maxsense: Side-channel sensitivity maximization

for trojan detection using statistical test patterns,” ACM TODAES, 2021.
[3] Z. Pan, J. Sheldon, and P. Mishra, “Test generation using reinforcement

learning for delay-based side-channel analysis,” in ICCAD, 2020.
[4] Z. Pan and P. Mishra, “Hardware acceleration of explainable machine

learning,” in Design Automation and Test in Europe (DATE), 2022.
[5] X. Chen et al., “Hardware trojan detection in third-party digital intellec-

tual property cores by multilevel feature analysis,” IEEE TCAD, 2017.
[6] E. Zhou et al., “A novel detection method for hardware trojan in third

party ip cores,” in ISAI, 2016, pp. 528–532.
[7] K. Hasegawa et al., “A hardware-trojan classification method using

machine learning at gate-level netlists based on trojan features,” IEICE
TFECCS, vol. 100, no. 7, pp. 1427–1438, 2017.

[8] ——, “Trojan-feature extraction at gate-level netlists and its application
to hardware-trojan detection using random forest classifier,” in ISCAS.
IEEE, 2017, pp. 1–4.

[9] Nozawa et al., “Generating adversarial examples for hardware-trojan
detection at gate-level netlists,” JIP, vol. 29, pp. 236–246, 2021.

[10] T. Gu et al., “Badnets: Evaluating backdooring attacks on deep neural
networks,” IEEE Access, vol. 7, pp. 47 230–47 244, 2019.

[11] F. Suya, S. Mahloujifar, A. Suri, D. Evans, and Y. Tian, “Model-targeted
poisoning attacks with provable convergence,” ICML, 2021.

[12] X. Chen, C. Liu, B. Li, K. Lu, and D. Song, “Targeted backdoor
attacks on deep learning systems using data poisoning,” arXiv preprint
arXiv:1712.05526, 2017.

[13] A. Schwarzschild, M. Goldblum, A. Gupta, J. P. Dickerson, and T. Gold-
stein, “Just how toxic is data poisoning? a unified benchmark for
backdoor and data poisoning attacks,” in PMLR, 2021, pp. 9389–9398.

[14] B. Wang et al., “Neuralcleanse: Identifying and mitigating backdoor
attacks in neural networks,” SP, vol. 530546, 2019.

[15] K. Liu et al., “Fine-pruning: Defending against backdooring attacks on
deep neural networks,” in ISRAID. Springer, 2018, pp. 273–294.

[16] Y. Gao et al., “Strip: A defence against trojan attacks on deep neural
networks,” in ACSAC, 2019, pp. 113–125.

[17] Z. Pan and P. Mishra, “Design of AI trojans for evading machine
learning-based detection of hardware trojans,” Design Automation and
Test in Europe (DATE), 2022.

[21] Y. Liu, W.-C. Lee, G. Tao, S. Ma, Y. Aafer, and X. Zhang, “Abs:
Scanning neural networks for back-doors by artificial brain stimulation,”
in SIGSAC, 2019, pp. 1265–1282.

[18] W. Guo, L. Wang, X. Xing, M. Du, and D. Song, “Tabor: A highly
accurate approach to inspecting and restoring trojan backdoors in ai
systems,” arXiv preprint arXiv:1908.01763, 2019.

[19] R. Wang, G. Zhang, S. Liu, P.-Y. Chen, J. Xiong, and M. Wang,
“Practical detection of trojan neural networks: Data-limited and data-
free cases,” in Computer Vision–ECCV. Springer, 2020, pp. 222–238.

[20] B. Wang, Y. Yao, S. Shan, H. Li, B. Viswanath, H. Zheng, and B. Y.
Zhao, “Neural cleanse: Identifying and mitigating backdoor attacks in
neural networks,” in 2019 IEEE Symposium on Security and Privacy
(SP). IEEE, 2019, pp. 707–723.

[22] X. Chen, W. Wang, C. Bender, Y. Ding, R. Jia, B. Li, and D. Song,
“Refit: a unified watermark removal framework for deep learning
systems with limited data,” in Asia-CCS, 2021, pp. 321–335.

[23] X. Liu, F. Li, B. Wen, and Q. Li, “Removing backdoor-based watermarks
in neural networks with limited data,” in 2020 25th International
Conference on Pattern Recognition (ICPR), 2021, pp. 10 149–10 156.

[24] A. Lansner and A. Holst, “A higher order bayesian neural network with
spiking units,” International Journal of Neural Systems, vol. 7, no. 02,
pp. 115–128, 1996.

[25] Y. LeCun et al., “Lenet-5, convolutional neural networks,” URL:
http://yann.lecun.com/exdb/lenet, vol. 20, no. 5, p. 14, 2015.

[26] R. S. Srinivasamurthy, “Understanding 1d convolutional neural networks
using multiclass time-varying signalss,” Ph.D. dissertation, Clemson
University, 2018.

[27] “TrustHub.org: Trust-HUB,,” http://trust-hub.org/ benchmarks/trojan.
[28] B. Biggio, B. Nelson, and P. Laskov, “Poisoning attacks against support

vector machines,” arXiv preprint arXiv:1206.6389, 2012.
[29] B. A. Olshausen and D. J. Field, “Sparse coding of sensory inputs,”

Current opinion in neurobiology, vol. 14, no. 4, pp. 481–487, 2004.
[30] C. Szegedy et al., “Going deeper with convolutions,” in CVPR, 2015.
[31] Z. Huang, Q. Wang, Y. Chen, and X. Jiang, “A survey on machine learn-

ing against hardware trojan attacks: Recent advances and challenges,”
IEEE Access, vol. 8, pp. 10 796–10 826, 2020.

Zhixin Pan is a Ph.D student in the Department
of Computer & Information Science & Engineering
at the University of Florida. He received his B.E.
in the Department of Software Engineering from
Huazhong University of Science & Technology,
Wuhan, China in 2015. His area of research includes
Cyber & Hardware Security, post-silicon debug, data
mining and machine learning.

Prabhat Mishra is a Professor in the Department of
Computer and Information Science and Engineering
at the University of Florida. He received his Ph.D. in
Computer Science from the University of California
at Irvine in 2004. His research interests include
embedded and cyber-physical systems, hardware se-
curity and trust, and energy-aware computing. He
currently serves as an Associate Editor of IEEE
Transactions on VLSI Systems and ACM Transac-
tions on Embedded Computing Systems. He is an

IEEE Fellow and an ACM Distinguished Scientist.


