
1

Hardware-Assisted Malware Detection and
Localization using Explainable Machine Learning

Zhixin Pan, Jennifer Sheldon and Prabhat Mishra
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, Florida, USA

Abstract—Malicious software, popularly known as malware, is
widely acknowledged as a serious threat to modern computing
systems. Software-based solutions, such as anti-virus software
(AVS), are not effective since they rely on matching patterns that
can be easily fooled by carefully crafted malware with obfuscation
or other deviation capabilities. While recent malware detection
methods provide promising results through an effective utilization
of hardware features, the detection results cannot be interpreted
in a meaningful way. In this paper, we propose a hardware-
assisted malware detection framework using explainable machine
learning. This paper makes three important contributions. First,
we theoretically establish that our proposed method can provide
an interpretable explanation of classification results to address
the challenge of transparency. Next, we show that the explainable
outcome through effective utilization of hardware performance
counters and embedded trace buffer can lead to accurate
localization of malicious behavior. Finally, we have performed
efficiency versus accuracy trade-off analysis using decision tree
and recurrent neural networks. Extensive evaluation using a
wide variety of real-world malware dataset demonstrates that
our framework can produce accurate and human-understandable
malware detection results with provable guarantees.

Index Terms—Malware Detection, Explainable Machine
Learning, Hardware-assisted Security, Trustworthy Systems

I. INTRODUCTION

Malicious software (malware) is any software designed to
harm a computer, server, or computer network and cause
damage to the target system. The portability of malware also
enables them to proliferate across various platforms at an
alarming rate. The recent flood of smart devices and open-
source applications provided by unverified third-party develop-
ers have created the perfect storm for privacy leakage through
malware-infected embedded systems. A recent cybercrime
study involving 355 companies across 11 countries covering 16
industrial sectors highlights that malware is the most expensive
attack for organizations, with an average revenue loss of $2.6
million per organization in 2018 (11% increase compared to
2017) [1]. Clearly, there is an urgent need to develop efficient
malware detection techniques.

Malware detection is a “cat and mouse” game where
researchers design novel methods for malware detection,
and attackers develop devious ways to circumvent detection.
Signature-based detection is one of the most popular com-
mercial malware detection techniques [2]. Signature-based
detectors compare the signature of a program executable with
previously stored malware signatures. However, signature-
based AVS is not useful for unknown zero-delay malware since
the respective signature is absent from the database. In fact,

signature-based AVS is not effective even for known malware
with polymorphic or metamorphic features. These morphic
malware have either a mutation engine or rewrite themselves in
each iteration through various program obfuscation techniques.
While behavior-based AVS is promising in detecting unknown
and morphing malware, they are computation intensive. As a
result, they are not suitable for resource-constrained systems
such as IoT edge devices that operate under real-time, power,
and energy constraints.

Recent research efforts explored designing hardware-
assisted malware detection with the hardware as a root of
trust. The underlying assumption is that, although AVS can be
fooled by variations in malware code, it is difficult to subvert
a hardware-based detector since the malware functionality will
remain the same. There are some promising directions for
hardware-assisted malware detection using embedded trace
buffers (ETB) and hardware performance counters (HPC).
ETB based malware detection [3] shows advantages over HPC
based methods [4] in terms of classification accuracy. Despite
all these advantages, exploiting hardware components for
malware detection is still in its infancy. Machine learning [5]
has been successfully used for malware detection [6]–[10].
While hardware-based prediction is promising, it inherits three
fundamental limitations:

• These methods predict based on features from individual
cycles without considering the malicious behavior that
involves interaction between consecutive cycles.

• Since the execution of malware consists of both normal
(benign) and malicious computation, they require expen-
sive pre-processing to eliminate useless benign cycles.

• Most importantly, users get only the final decision without
understanding how the decision was made or how to
localize the malicious activity.

In this paper, we propose a hardware-assisted malware de-
tection that takes advantage of explainable machine learning. It
investigates an effective combination of hardware performance
counters and embedded trace buffer for efficient detection and
localization of malware attacks. It explores the suitability of
decision tree and recurrent neural networks for accurate inter-
pretation of classification results. There are success stories in
developing explainable machine learning models for computer
vision applications. Unfortunately, they are not applicable for
malware detection since they consider only static pixel images
while we need to handle input data that are time-sequential
records. This paper makes the following major contributions:

2

Figure 1: Our proposed malware detection framework consists of four major steps: (i) data acquisition, (ii) model training, (iii)
data compaction, and (iv) outcome interpretation.

1) To the best of our knowledge, our approach is the first
attempt in developing hardware-assisted malware detec-
tion using explainable machine learning, which leads
to interpretable detection results as well as improved
accuracy compared to the state-of-the-art methods.

2) The interpretation of results sheds light on why the
classifier makes incorrect decisions. We show that an
effective utilization of hardware performance counters
and embedded trace buffer in an explainable framework
can lead to accurate localization of malicious behavior.

3) We have evaluated the suitability of decision tree and
recurrent neural networks in terms of detection accuracy
and hardware overhead. Experimental results using an
SoC-based platform running real-world malware bench-
marks demonstrate that our approach can lead to accurate
detection as well as interpretation of detection results.

The rest of this paper is organized as follows. We survey
related efforts in Section II. Section III describes our proposed
method on malware detection. Section IV presents experimen-
tal results. Finally, Section V concludes the paper.

II. BACKGROUND AND RELATED WORK

The arms race between malware attacks and malware de-
tection has been going on for more than two decades. In the
early days, the focus of detection was on static analysis [11],
[12]. The basic idea of static analysis is to utilize software
filters for malware detection by extracting feature signatures by
either machine learning algorithm or human expert knowledge.
Unfortunately, this naive approach can be circumvented by
obfuscation [13]. Dynamic detection techniques try to defend
against obfuscation [6], [14]. Instead of struggling to identify
static signatures despite obfuscation, such methods keep track
of the runtime behavior of software and analyze/report any
malicious behavior such as illegal access. However, both static
and dynamic detection methods run on the software level. AVS
is unable to detect malware with obfuscation or other deviation
capabilities. Moreover, malware can subvert AVS by abusing
software vulnerabilities [15].

Researchers have recently turned their interest to hardware-
based detection approaches due to their robust resistance
against malware attacks compared to software-based detec-
tion. Petroni et al. [16] introduced a Peripheral Component
Interconnect (PCI) based detector that monitors immutable

kernel memory and successfully detects various kernel-level
rootkits. Since this PCI-based method relies on physical
memory address, it varies from run to run, which makes its
performance unstable. Methods using Hardware Performance
Counters (HPC) were proposed in [17]–[19], but shortcomings
still exist since HPCs involve false positive rates [17] that can
still be improved, along with expensive performance penalties
incurred by HPC readings. PREEMPT [3] overcomes this
weakness by utilizing the Embedded Trace Buffer (ETB),
which gives a prediction accuracy as high as 94%. This
method was refined in [20] by utilizing deep neural networks,
and detection accuracy as high as 98% was obtained. How-
ever, none of these approaches are explainable. Therefore,
the detection results cannot be interpreted in a meaningful
way. Recent studies [21] and [22] have highlighted serious
challenges and reliability concerns for HPC-based malware
detection. A major objective of our proposed approach is to
provide transparency in malware detection [23] that can lead
to improved accuracy as well as interpretation of classification
results [24], while addressing the HPC reliability concerns as
discussed in Section IV-K. To the best of our knowledge, our
proposed approach is the first attempt in applying explainable
machine learning for hardware-assisted malware detection.

III. MALWARE DETECTION USING EXPLAINABLE ML
Our proposed approach enables a synergistic integration

of hardware trace analysis and explainable machine learning
(ML) for efficient malware detection. Figure 1 shows an
overview of our proposed method that consists of four major
tasks. The first task performs data acquisition from various
sources including hardware performance counters (HPC) and
embedded trace buffer (ETB). The next task is model training
that trains a machine learning classifier M using collected
traces. We consider both decision tree and recurrent neural
network (RNN) as explainable ML models to explore trade-off
between accuracy and efficiency. The third task performs data
compaction. Specifically, we perform outlier elimination and
tree pruning for RNN and DT models, respectively. The goal of
the last task is to perform outcome interpretation. Specifically,
the top features ranked by the magnitude of coefficients will
provide users the crucial timing information of malware. While
simple tree traversal is adequate for DT models, we need to
perform linear regression for RNN models. The remainder of
this section describes these four tasks in detail.

3

A. Data Acquisition

We consider diverse hardware features including hard-
ware performance counters (HPC) and embedded trace buffer
(ETB). Specifically, we consider data collection from three
sources: HPC values, ETB data, and a synergistic combination
of them. HPC provides global perspectives since it computes
the number of specific events. For example, it can tell us the
number of branch mispredictions. Even if we have only two
branches (if statements) in the program (inside a loop), we do
not know which of them was mispredicted how many times
or if any of them was predicted correctly most of the time. In
contrast, if we are tracing the branch condition of a specific
branch in an ETB, we can identify how many times the branch
condition was true and/or how many times a specific branch
was taken. Due to hardware overhead constraints, the ETB
size is limited. Therefore, we cannot trace conditions of all
branches or other signals (events) in an ETB [25], [26]. In
reality, we have to rely on both HPC and ETB values for
malware detection.

The frequency of data collection provides a trade-off be-
tween accuracy and efficiency. Higher frequency of data col-
lection can lead to unacceptable performance degradation. On
the other hand, infrequent data collection can lead to delayed
detection (damage has been done already) or even possibility
of not detecting at all (footprint unavailable).

There are two important considerations in selecting HPC
values. (1) Modern processors support numerous performance
counters. We need to select the ones that are relevant for
malware detection such as number of instructions, number
of exceptions, context change, bus accesses, etc. (2) HPC
values can lead to high false positive rate since it is easy
for a sophisticated malware to alter the global statistics (e.g.,
executing redundant instructions). Instead of using the actual
values, we compute the differences of HPC values at different
time intervals. In this work, we recorded various hardware
performance counters (HPCs) including branch-instructions,
branch-misses, cache-misses, cache-references, cpu-cycles,
instructions, stalled-cycles-backend, stalled-cycles-frontend,
L1-dcache-load-misses, L1-dcache-loads, L1-dcache-store-
misses, L1-dcache-stores, L1-icache-load-misses, branch-
loads, branch-load-misses, dTLB-load-misses, dTLB-store-
misses, and iTLB-load-misses. We have uploaded these dataset
at https://github.com/Jshel/MalwareJournalExtension that can
be used by researchers to reproduce the experimental results.

Most system-on-chip (SoC) designs have an in-built em-
bedded trace buffer that stores values of selected signals
during runtime. Trace buffers are widely used for post-silicon
debug [26]. Due to design overhead considerations, the size
of the trace buffer is limited. For example, a typical trace
buffer can store values of 1024 signals for 4096 clock cycles
in a design with multi-million signals. In some systems,
the trace signals are selected during design time based on
specific observability constraints. Many modern systems allow
dynamic signal selection where we can choose a small set of
beneficial signals (e.g., 1024 in the above example) from a
set of choices. The collected traces can be viewed as a w× d
table, where w is the width, d is the depth of the trace buffer.

Figure 2: Malware detection using both embedded trace buffer
(ETB) data and hardware performance counter (HPC) values.

In other words, it represents the recorded values of w traced
signals over d clock cycles. We split each column as a single
feature component, i.e values of all traced signals within one
single cycle. Next, we apply explainable machine learning for
malware detection.

HPC values provide global view of the system that can be
utilized to detect malicious behaviors. However, HPC values
cannot be trusted in pinpointing the malicious activity. On
the other hand, ETB data provides local perspectives in the
form of values of specific signals across time. As a result,
ETB data is suitable for localization of a malicious activity.
Clearly, an effective combination of HPC and ETB would be
ideal for efficient malware detection and localization. Figure 2
shows one specific way of utilizing both HPC and ETB. In
this scenario, HPC values provide coarse-grained suggestions
(timeframe) of malicious activity, which can be confirmed (or
denied) by ETB-based fine-grained analysis.

B. Model Training

We consider two types of ML models in our framework,
Decision Tree (DT) and Recurrent Neural Network (RNN).
We have selected DT because it is a self-explained ML model
which has a natural compatibility with explainable ML. The
working process of DT is performed by a sequence of binary
decisions to reach a conclusion (leaf node). Therefore, when
this process completes, the reason for the classification results
can be illustrated by the path from root to the leaf. For
example, in Figure 10, we can start from a leaf node (e.g.,
Malware) and trace back to the root to know the sequence
of events that led to this decision. We have also selected
RNN model due to its outstanding capability in handling
time-sequential data as shown in Figure 3. This is based on
the observation that the malware detection framework should
focus on analyzing information within certain time periods,
instead of merely taking overall statistics into account. These
two models also provide a trade-off between the prediction ac-
curacy and hardware overhead – DT introduces low overhead
but RNN model provides higher accuracy.

1) Training of Decision Trees (DT): The training process
of DT is rather straightforward due to its simplicity. First, we
collect data and mark it as the total set of samples S, where
each sample represents data trace of one individual program

4

(either benign or malicious). For each sample, the recorded
hardware events (from HPC) or register value (from ETB) are
considered as attributes stored in a list L. Then we follow the
traditional workflow to generate the DT model by recursively
selecting suitable attributes until convergence.

A fundamental problem in design of DT model is how to
determine the attribute as the bisector at each step. In our task,
we use Iterative Dichotomiser 3 (ID3) [27] algorithm to solve
this problem. The basic idea is to make every leaf node as
‘pure’ as possible, i.e, either contains all benign or malicious
program samples. If we represent benign samples as ’1’ and
malicious samples as ’0’, the ’purity’ measurement is referred
to as entropy. Using the principles of information theory, the
entropy (Ent) can be computed as follows:

Ent(S) = −p+log2p− p−log2p−

where p+, p− represents the proportion of benign/malicious
data samples, respectively.

Assumes that S is a set containing 10 examples with 10
benign samples and 0 malicious ones. Then, the entropy of S
is computed as 0, and vice versa for all malicious case. Instead,
if S is mingled with both types of data, the entropy will be
greater than 0. Therefore, entropy intuitively represents the
‘chaotic’ nature of the current data set. The primary objective
of the model training is to reduce the total entropy. Therefore,
the best bisector should lead to the largest decrease of entropy
in the system, which is referred as ‘information gain’ in
information theory.

Based on the above observations, Algorithm 1 outlines the
training process of DT. It is a greedy algorithm that grows the
tree top-down. At each node, it tries all possible attributes
and compute the decrease of entropy. We select the best
attribute to bisect the node, and this process continues for its
children. Finally, a tree with each leaf node’s entropy being 0
demonstrates the convergence of the process.

Algorithm 1 Decision Tree Generation
Input: Data sample set S, attribute list L

1: procedure DT GEN(S)
2: l∗ ← NULL, e∗ ← 0
3: if Ent(S) = 0 then return S
4: end if
5: for each l ∈ L do
6: {S1, S2} = bi sect(S, l)
7: if |Ent(S1) + Ent(S2)− Ent(S)| ≥ e∗ then
8: l∗ = l
9: e∗ ← |Ent(S1) + Ent(S2)− Ent(S)|

10: end if
11: end for
12: {S1, S2} = bi sect(S, l∗)
13: S.child1 ← DT GEN(S1)
14: S.child2 ← DT GEN(S2)
15: return S
16: end procedure
17:

2) Training of RNN Models: A straightforward way to
implement the framework is to directly feed data traces to
a fully-connected DNN to make predictions. However, this
type of model cannot handle time-sequential data. As dis-
cussed previously, an ideal hardware-assisted malware detec-
tion technique should be able to make predictions based on
data samples collected from multiple cycles. This is due to
the fact that it monitors the behavior of software at run-
time, where relying on single-cycle data is not effective since
malicious behavior usually consumes several sequential cycles.
Moreover, single-cycle based strategies are likely to mispredict
a benign software as malicious. This is due to the fact that mal-
ware also contains normal operations, and considering these
benign operations as important features of malware can lead
to misclassification. A well-designed pre-processing strategy
can mitigate this mistake by filtering overlapped common
behaviors shared by both malicious and benign programs.
However, it is difficult to design such a strategy. Moreover,
there is no guarantee that it can be performed in all cases. In
summary, an ideal machine learning model for our task should
satisfy the following two properties:

1) Ability to accept time series data as input.
2) Ability to make decisions utilizing potential information

concealed in consecutive adjacent inputs.
We propose to utilize Recurrent Neural Network (RNN)

training to tackle this problem. Algorithm 2 outlines the
training procedure. In order to explain the working principles
of the algorithm, we need to describe RNN as well as its
importance in the context of malware detection. RNN is
powerful in handling sequential input data. A classic structure
of RNN is shown in Figure 3.

Figure 3: Recurrent Neural Network (RNN)

In the picture, A represents the neural network architecture,
where x0, x1, x2, ..., xt represents the time series inputs and
his are the outputs of hidden layers. As we can see from the
left-side of the figure, instead of finishing the input-output
mapping in one forward pass, the RNN accepts sequential
inputs. For each single input xi, RNN not only provides
immediate response hi, but also stores the information of the
current input by updating the architecture itself. On the right-
side of the figure, information corresponding to the previous
step will also be fed into the architecture to supply extra
information by unrolling the RNN structure. For malware
detection using trace data, we can directly set each column
of trace table as inputs, and accept the hidden state of final
stage, i.e ht, as the final output.

Due to this recurrent structure of RNN, it suffers from the
vanishing gradient [28] and exploding gradient [29] problem.
Specifically, when performing back-propagation [30], if the
initial gradient is less than 1, then the gradient at the last

5

moment will disappear and vice versa. Both situation will
lead to failure in training process. To tackle this problem, we
use a specific type of RNN model, long-short term memory
(LSTM) [31]. LSTM adopted a gate mechanism [32] to
solve vanishing gradient and exploding gradient. Meanwhile,
the gate mechanism provides feature filtering, saving useful
features and discarding useless features, which greatly enriches
the information representation capacity of the model.

LSTM is suitable for handling time sequential data, but it is
not guaranteed to learn features from adjacent inputs. For time
series inputs, considering inputs in groups and training the
model to make decision based on co-occurrence of sequential
features is crucial. This can be achieved by appending a
penalty term to the loss function. This term can force models
to group adjacent elements together from input feature map.
The loss function with penalty for model (Figure 3) can be
written as:

J =
1

N

N∑
i=1

L(A(xi), yi) +
λ

2

t∑
k=1

||hi − hi−1||

where A is the model, xi is a training sample, the label of
xi is denoted as yi, the total number of training samples
in a batch is denoted as N , and L is the dissimilarity
measurement which is frequently selected to be cross entropy
for classifiers. Aside from these regular terms, we introduce

a penalty term
t∑

k=1

||hi − hi−1||, which tries to minimize

the difference between the hidden state outputs of each time
step. This is to restrict the impact brought by one single
clock cycle input, and prevent the machine learning model
from updating its inner feature map too significantly unless it
produces a relatively long sequence of similar pattern. Based
on the assumption that malicious behavior happens in multiple
sequential cycles instead of just one, this training scheme
enables LSTM to take adjacent inputs as groups for gathering
information and making decisions. The training procedure is
outlined in Algorithm 2.

Algorithm 2 Training process of the LSTM Model

1: for each iteration do
2: σ = 0
3: for i = 1 to t do
4: compute adjacent difference ∆h = |hi − hi−1|
5: σ+ = ∆h
6: end for
7: Add σ to loss function J
8: Compute gradient of modified loss function ∇J
9: Update model parameters Θ = Θ +∇J

10: end for

C. Data Compaction

Once we have the trained ML models, we perform the data
compaction to improve detection efficiency. Due to inherent
differences in ML models, the compaction procedures are also
different between decision tree and RNN (LSTM) models.
While compaction can be viewed as outlier elimination in
RNN models, it is essentially tree pruning for decision trees.
The remainder of this section describes these steps in detail.

1) Outlier Elimination in RNN Models: Once we have the
well-trained model, we can start to perturb the target input
x to generate corresponding perturbed output dataset Y. This
is achieved by randomly flipping several bits in target input
x. However, the raw output Y cannot be directly applied to
regression algorithm in the next step. This is due to the fact that
random perturbation can generate anomalous data, such as data
points with extreme values. These data points are isolated from
the others in the cluster so they can introduce huge deviation
in regression algorithms. To address this, we need to efficiently
remove isolated points in Y.

We deployed a random voting algorithm to achieve this goal.
The basic idea is to cut a data space with a random hyperplane,
and two subspaces can be generated at a time. We continue to
randomly select hyperplane to cut subspaces obtained in the
previous step, and the process continues until each subspace
contains only one data point. Intuitively, we can find that those
clusters with high density will not be entirely dismembered
until they are cut many times, but those in the low density
regions are separated much earlier.

Figure 4 shows an illustrative example. If we want to isolate
x0, we need to draw l1, i.e cut the space one time, while x1
needs a lot more partitions. So x0 is more likely to be an
outlier than x1. Note that the process of cutting space can be
naively represented by a binary tree as shown in Figure 4.

Figure 4: Finding outliers

In general, a threshold θ is applied to categorize isolated and
clustered points. For each data point, we check the depth of it
inside the binary tree. A point is considered as isolated once
the depth exceeds the given threshold. These isolated points
are more likely to be extreme value data points and should
not be used by the regression algorithm. Eliminating them
is likely to improve the accuracy of regression. In order to
ensure reliability, we repeat this procedure for several times
to obtain a forest of trees, and let them vote for the final
decision. The pseudocode for this forest voting algorithm is
shown in Algorithm 3.

2) Tree Pruning in Decision Tree: For DT, the outlier
elimination work is done by ‘pruning’, the shortening of
branches of the tree. Pruning is the process of reducing the size
of the tree by turning some branch nodes into leaf nodes, and
removing the leaf nodes under the original branch. Pruning
is useful because classification trees may fit the training data
well, but may do a poor job of classifying new values. Lower
branches may be strongly affected by outliers. Pruning enables
us to obtain a streamlined tree and minimize the problem. A
simpler tree often avoids over-fitting.

6

Algorithm 3 Outlier Elimination
Input: Data points set V, threshold θ

1: procedure DT BUILD(V)
2: root← V
3: V1, V2 ← bi-sect(V)
4: if size(V1) = 1 then return child1 ← V1
5: else child1 ← DT BUILD(V1)
6: end if
7: if size(V2) = 1 then return child2 ← V2
8: else child2 ← DT BUILD(V2)
9: end if

10: return root
11: end procedure
12:
13: procedure FORESTVOTING(θ)
14: res← ∅
15: for each point v in V do
16: cnt← 0
17: for each isolated tree t do
18: d←depth of v in t
19: if d ≥ θ then
20: cnt← cnt− 1
21: else
22: cnt← cnt+ 1
23: end if
24: end for
25: end for
26: if cnt ≥ 0 then
27: res← res ∪ {v}
28: end if
29: return res
30: end procedure

D. Outcome Interpretation

After obtaining the compacted classification results, the
next step is to analyze the reason for classifiers to produce
such outputs. For DT models, due to its self-explainability,
this task is performed by a trivial tree traversal. However,
for LSTM based RNN, there is no such convenient way.
Therefore, we apply a linear regression based approach to
achieve outcome interpretation. As expected, the tree traversal
is fast and simple, but it offers less information compared to
LSTM models. While LSTM is more expensive, it can provide
detailed information on malware’s behavior compared to DT
models. The remainder of this section describes these two
methods in detail.

1) Tree Traversal in DT Models: A decision tree is a tree-
like graph with nodes representing the place where we pick
an attribute and ask a question; edges represent the answers to
the question; and the leaves represent the actual output or class
label. They are used in non-linear decision making with simple
linear decision surface. Decision trees classify the examples by
sorting them down the tree from the root to some leaf node,
with the leaf node providing the classification to the example.
Each node in the tree acts as a test case for some attribute, and
each edge descending from that node corresponds to one of

the possible answers to the test case. This process is recursive
in nature and is repeated for every subtree rooted at the new
nodes. DT is designed to answer a particular question, and the
top-down traversal of the tree explicitly explains how users
make decisions. There are many conditions to check, and a
user needs to take all these factors into account.

The explanation provided by DT is based on a hidden
assumption: the logic behind classifier is defined to be a
sequential selection. In real-life applications, this assumption
is vulnerable and can lead to misprediction, which will be
demonstrated in Section IV.

2) Linear Regression in LSTM-based RNN Models: Com-
pared to DT, there is no built-in property to provide explana-
tion. Therefore we apply a linear regression based approach.
A linear regression algorithm allows us to approximate locally
nonlinear relationship with proper precision. Formally, given a
data set {y, x1, x2, ..., xn}, where n is the number of samples,
linear regression takes the following form by appending error
variable ε:

y =

n∑
i=1

aixi + ε

where ais are model parameters, and the goal is to minimize
ε as much as possible. The simplest scenario occurs when y
and every xi are real numbers. In our case, the input is the
w ∗ d trace table X as mentioned before. Since we treat each
column of this table as an individual input feature, we have
X = [x1 x2 ... xd], where each xi is a vector in the size of
w ∗ 1. We choose y as the output of last hidden state, i.e ht
in Figure 3 which is also a w ∗ 1 vector. This leads to an
optimization problem:

arg min
a
||Xa− y||2

where a ∈ Rd is [a1 a2 ... ad]T , i.e, coefficients to be solved.
This is a common convex optimization problem and its solu-
tion can be obtained by least squares which gives

a = (XtX)−1Xty

Unfortunately, this method cannot be directly applied to
solve our task. First, this theoretical solution exists only when
XtX is invertible (full rank), which is not satisfied for most
of the time. Second, even when XtX is full rank, linear
regression assumes input vectors are independent, otherwise it
will produce unreliable results when any two of xi (columns)
are highly correlated. Specifically, assume that the regression
function is computed to be ŷ = ax1 + bx2 + cx3 + d, where
x1 and x2 are highly related features and they are very close
to each other. Then there is a canceling effect between a and
b. Increasing a by certain amount while decreasing b by the
same amount at the same time will not lead to drastic change
in ŷ. This can cause high variance of computation results
for coefficients. For example, if x1 ≈ x2, then regression
functions ŷ = x1+x2+cx3+d and ŷ = 101x1−99x2+cx3+d
can reach the same level of accuracy. The problem becomes
ill-posed since absolute value of a and b can vary significantly
under different computing procedure or initial conditions.
Then the comparisons between |a|, |b| and |c| are not useful,
therefore, the interpretability of the model is greatly reduced.
Since adjacent columns in trace table are sequential records

7

of signal values within a short duration, violation of this
independence assumption is likely to happen.

In our study, we have applied ridge regression, which is
an improved least squares estimation method, and the fitness
of correlated data is stronger than general regression. Ridge
regression is achieved by appending one extra penalty term to
the optimization problem:

arg min
a
||Xa− y||2 + λ||a||2

Intuitively, a size constraint is imposed to restrict the
absolute value of all coefficients, which alleviate the problem
of high variance of coefficients. Moreover, notice

arg min
a
||Xa− y||2 + λ||a||2 → arg min

a
||(X− λI)a− y||2

Replacing X with X−λI is a general way to avoid the prob-
lem for X being singular matrix. Also, data was centralized
and the problem of high variance is alleviated. Therefore, with
ridge regression, coefficients obtained is more reliable and fit
better for our dataset, which has high correlation.

Once coefficients of regression are obtained, we can derive
the importance ranking, then interpret it into meaningful
information in the context of malware detection. Figure 5
illustrates the way of interpretation, and demonstrates how
similar it is to the counterparts in computer vision domain.

Figure 5: Comparison between interpreting malware detection
results and image classification task in previous example.

As we can see from the figure, the top features come with
large coefficients that are likely to be related to the malicious
behavior. Next, we can check the clock cycle distribution of
these top features. It is expected to provide us with extra
information about the malware. For example, if we observe
adjacent cluster of top features, then the time slot within which
they reside shall provide an indication of time information
about when malicious behavior happened. Similarly, if clock
cycle numbers are periodically separated, the detected malware
is likely to repeat its malicious activity periodically. Typical
malware acting like this usually works in a client-server mode,
where client program steals private data and sends message to
the hacker’s server in a periodic interval. For a closer look, we
can split the table into rows and go through the same process.
This will lead to identification of trace signal values that are
most likely relevant to the malicious behavior, which will lead
to malware localization as demonstrated in the next section.

IV. EXPERIMENTS

This section is organized as follows. First, we outline
the experimental platform and describe various malware and

(a) ZYNQ SoC Board (b) Platform Layout

Figure 6: Experimental platform using SoC board

benign benchmarks. Next, we discuss various data acquisition
techniques. Finally, we present results in terms of malware
detection accuracy, time efficiency, and outcome interpretation.

A. Experimental Setup

We ran malicious and benign programs on the Xilinx Zynq-
7000 SoC ZC702 evaluation board as shown in Figure 6. This
board integrates double ARM Cortex-A9 cores. We installed
xilinx− zc702− 2017 3 : 4.9.0−xilinx− v2017.3, a Linux
kernel image for the ZC702 evaluation board generated using
PetaLinux, to the board using the provided 8 GB SD card.
To view the contents of internal signal values, we link the
board to the System Debugger in Xilinx SDK version 2017.3,
which uses a hardware server to allow us to compile and run
these programs on the board while monitoring traced signal
values. This configuration involves connecting the board to
a host computer running Xilinx SDK using Ethernet (to run
programs using the System Debugger) and UART (to interface
with the embedded OS to obtain HPC values and set up the
Ethernet connection allowing the SDK to gather ETB values).

B. Malware and Benign Benchmarks

In this study, we consider a wide variety of malware fami-
lies [33] including the following three popular ones: Bashlite
Botnet, PNScan Trojan and Mirai Botnet. Bashlite, also known
as Gafgyt or LizardStresster, is a malware family targeting
Linux systems. Bashlite infiltrate in IoT devices and these
poisoned devices will be used to manipulate large-scale dis-
tributed denial-of-service (DDoS) attacks. It uses Shellshock to
gain a foothold on vulnerable devices, then remotely executes
commands to launch DDOS attacks and download other files
to the compromised device. It works in a client-server mode
where poisoned devices keep sending requests to a remote
server checking for possible update releases or malicious
requests. PNScan is an open source Linux Trojan which can
infect devices with ARM, MIPS, and PowerPC architectures.
This Trojan or applications with this Trojan embedded can
invade network devices. This malicious program has only
one goal – obtain the router’s access password through brute
force. If the intrusion is successful, the Trojan will load a
malicious script into the router which will download the cor-
responding backdoor program according to the router’s system
architecture. Mirai is an upgraded variant of Bashlite. Mirai
can efficiently scan IoT devices and infect fragile devices
like the ones encrypted with default factory settings or weak

8

Table I: Comparison of detection accuracy with different acquisition approaches for Decision Tree (DT)

HPC ETB HPC+ETB
Benchmarks Accuracy FP FN Accuracy FP FN Accuracy FP FN F1 improv./HPC improv./ETB

(%) (%) (%) (%) (%) (%) (%) (%) (%) Score (%) (%)
Bashlite 80.3 9.5 10.2 84.7 7.3 8.0 88.0 5.9 6.1 0.88 7.7 3.3

Mirai 69.8 16.4 13.8 71.2 10.4 18.4 84.1 6.6 9.3 0.84 14.3 12.9
PNScan 87.7 6.0 6.3 89.8 5.4 4.8 94.8 3.1 2.1 0.93 7.1 7.0
Average 79.3 10.6 10.1 81.9 7.7 10.4 88.9 5.2 5.9 0.88 9.7 7.7

passwords. After being infected by this malware, the device
becomes a botnet robot and launches a high-intensity botnet
attack under the command of a hacker.

Our benign programs include system binaries such as ping
and netstat1. The traced values gathered by running both
malware and benign programs on the hardware board are
utilized as inputs to our classifier, as described next.

C. Data Acquisition

As discussed in Section III-A, we have collected data
through the following three avenues.

Hardware Performance Counters (HPC): To gather HPC data,
we make a serial connection to the target device and, and run
both the malicious and benign programs with the perf record
command. Within the perf command, we set various HPC
values (such as branch mispredictions, number of branches,
number of loads, etc.) as traced events.

Embedded Trace Buffer (ETB): To obtain ETB traces, we run
malicious programs on the target system while connected to
Xilinx SDK through Ethernet. Within Xilinx SDK, we add
breakpoints to various code locations and dump trace data at
these breakpoints. Our studies have shown that tracing register
values provide better insight compared to tracing other signals.

Synergistic Combination of HPC and ETB: As shown in
Figure 2, we dump ETB data only when our ML models
find any suspicious HPC values. To associate regions of
HPC values with ETB values, we add dynamic tracepoints
(using the perf probe functionality) to various functions in the
malicious programs. The dynamic tracepoints traced during
HPC data generation allow us to associate regions of HPC data
with ETB data. By remembering which function was called
near a suspicious HPC data region, we can place a breakpoint
in the ETB region associated with suspicious HPC activity.
In other words, we can generate ETB data corresponding to
specific HPC values.

D. Effectiveness of Data Compaction

Figure 7 shows that the data compaction is effective for
both decision tree and LSTM-based RNN models. We train
both ML models with the same hyperparameter and training
set. The only difference is that one model is further refined
by data compaction step (tree Pruning for DT and outlier
elimination for LSTM) as mentioned in Section III-C. As we
can see, there is a huge difference in stability. Model with
data compaction technique demonstrates stable performance
across 100 trials. However, there are drastic variations in ac-
curacy for the models without data compaction. When applied

1ping and netstat are important since our malware are botnets.

to decision tree, this phenomenon becomes more obvious,
where high accuracy (e.g., 90%) was obtained occasionally,
but the accuracy can also drop below 70%. In reality, a
stable performance is desirable, otherwise a user needs to try
numerous times to obtain an acceptable result, which can be
infeasible for large scale tasks. In the following sections, our
‘proposed approach’ refers to our proposed approach with data
compaction techniques.

Figure 7: Classification accuracy of our proposed method
with/without data compaction. (a) DT-based methods
with/without tree pruning. (b) LSTM-based methods
with/without outlier elimination.

E. Impact of Data Acquisition Methods

We have evaluated the effectiveness of three data acquisition
methods (HPC, ETB and HPC+ETB) using two machine
learning models (DT and LSTM). The performance of pro-
posed method (implemented in DT) is presented in Table I. It
compares malware detection accuracy, false positive (FP) and
false negative (FN) using HPC, ETB as well as combination
(HPC+ETB) of them. From a global perspective, the detection
accuracy is decreased in many aspects under this configuration
compared with that using LSTM (Table II). Especially for
Mirai family, with data collected from HPC, the detection
accuracy by DT is merely 69.8%, which is unacceptable for
real applications. As expected, the decision tree is not suitable
for detecting malware with complex behaviors. This is an
inherent problem since decision tree assumes that the pattern
of malicious behavior follows a straight line of sequential
logic, where the decision is made based on a sequence of
feature checking. Since Mirai and Bashlite works in a client-
server mode, there are many benign function calls, and the
working pattern is very complex. Interestingly, decision tree
works much better in PNScan dataset, since the mechanism
behind PNScan is breaking down users‘ secret password in
a brute-force manner, the behavior is easier to detect and
classified by a decision tree.

Therefore, by interpreting the ML model, we clearly have
a guideline on how DT classifies PNScan malware. However,
this interpretation also indicates crucial problems for DT-based
solutions. As we observe from the above example, the DT

9

Table II: Comparison of detection accuracy with different acquisition approaches for RNN (LSTM)

HPC ETB HPC+ETB
Benchmarks Accuracy FP FN Accuracy FP FN Accuracy FP FN F1 improv./HPC improv./ETB

(%) (%) (%) (%) (%) (%) (%) (%) (%) Score (%) (%)
Bashlite 89.1 3.7 7.2 94.1 1.3 4.6 100.0 0.0 0.0 1.0 7.1 5.9

Mirai 72.6 12.9 14.5 81.2 11.1 7.7 93.3 2.9 3.8 0.93 20.7 12.1
PNScan 86.1 11.0 2.9 96.2 2.3 1.5 99.8 0.0 0.2 0.98 13.7 3.6
Average 82.6 9.2 8.2 90.5 4.9 4.6 97.7 0.9 1.4 0.97 15.1 7.2

model makes prediction barely based on behavioral patterns
of program instead of the intention of certain behaviors.
Therefore, it is easy to mispredict benign programs with
similar behavior pattern as malware. We recognize this as the
root cause for high false positive among all DT-based solutions
in Table I. Table I and Table II show that ETB data leads to
better accuracy compared to HPC values for both ML models.
In fact, an effective combination of HPC and ETB provides
the best performance compared to HPC or ETB alone. In the
following sections, we use the combined data (HPC+ETB)
when we compare with related approaches.

F. Malware Detection Performance

Figure 8 compares our proposed methods with the state-of-
the-art (PREEMPT [3]). We have provided the performance
across multiple trials since we consider stability as one of
the important attributes for malware detection. We have also
provided the average values for easier discussion and improved
readability (the numbers in the legend box provide the average
values for the respective methods). PREEMPT utilizes em-
bedded trace buffer to help reducing latency and overcoming
malware equipped with obfuscation. PREEMPT utilizes two
types of implementation, random forest (PREEMPT RF) and
decision tree (PREEMPT DT). Note that both of our methods
(Proposed DT and Proposed LSTM) use the combined data
(HPC+ETB).

To obtain these results, we ran both malicious and benign
software on our hardware platform. We executed a total of
367 programs (including both malicious and benign ones)
and all the traced data were mixed up and further split into
training (80%) and test (20%) sets after labeling. Total training
epochs are 200 for every model and we plot test accuracy
every 10 epochs. To fulfill fair comparison, the threshold
for classificatiion is setup to 0.9 for all configurations. The
performance of all methods are depicted in Figure 8.

Figure 8 compares the prediction accuracy of our approach
with PREEMPT RF and PREEMPT DT. As we can see,
our proposed method provides the best malware detection
accuracy. For Bashlite, our proposed method achieved 89%
accuracy with DT and near 100% with LSTM, while PRE-
EMPT attained a maximum accuracy of 86.5% with RF. For
PNScan, both proposed method and Preempt RF performed
well and the best accuracy our method achieved is 98.8%.
The PREEMPT appeared fragile in the face of Mirai, with an
average of 62.7% accuracy for DT and 81.9% for RF, while
the proposed method using LSTM model provided an average
accuracy as high as 94%. Note the inferior performance of
PREEMPT DT in Mirai dataset, which clearly shows the lack
of PREEMPT’s ability to handle complex malware.

Meanwhile, we provide Receiver operating characteristic
(ROC) curves for better evaluating the classifier output in
Figure 9, and the Area under the Curve values are presented
in Table III.

Table III: Area Under the Curves (AUC)

Methods
Malware BASHLITE PNScan Mirai

Proposed DT 0.9397 0.9694 0.9446
Proposed LSTM 0.9836 0.9941 0.9801
PREEMPT RF 0.9244 0.9614 0.9411
PREEMPT DT 0.8822 0.9212 0.7859

If we omit malware and test models on traced data gathered
from benign software only, Figure 8(d) shows the false positive
rate (FPR) of all four methods. The diagram illustrates the ma-
jor drawback of PREEMPT and DT-based approaches, it pos-
sesses an average FPR as high as 20.9% with PREEMPT RF,
31.6% with PREEMPT DT, and 16.4% with Proposed DT.
In other words, they are very likely to mispredict a benign
software as malware. Tested benign software samples also
executes Linux system binaries like netstat and ping, which are
also frequently executed by botnet malware. Since the above
three methods cannot analyze time sequential data, they failed
to recognize benign execution of these binaries with the help
of context and produced wrong predictions. In contrast, our
LSTM-based framework obtained FPR as low as 3.4%.

G. Comparison of Time Efficiency
The results reported so far provide us a comprehensive

view of accuracy performance of all methods. One observation
is LSTM-based methods are obviously better than DT-based
methods. This difference is caused by DT’s sequential selec-
tion logic. However, when taking model training and testing
time into consideration, there is a trade-off between detection
accuracy and time efficiency, as depicted in Table IV.

Table IV: Comparison of time efficiency

Model Data Source Training
(second)

Testing
(second)

Total
(second)

HPC 17.9 2.7 20.6
DT ETB 34.6 4.1 38.7

HPC+ETB 30.1 4.5 34.6

HPC 104.5 44.3 148.8
LSTM ETB 226.3 55.4 281.7

HPC+ETB 187.1 63.0 250.1

We have explored various models for 200 trials and we
report the average training, testing and total time cost. As we
can see, DT-based methods runs much faster (almost an order-
of-magnitude) than its LSTM-based counterpart. Especially
when it comes to the testing time, DT’s simple structure deter-
mines its low execution time cost, while LSTM requires a full

10

(a) Performance on Bashlite (b) Performance on PNScan

(c) Performance on Mirai (d) False Positive Rate (FPR)

Figure 8: Performance of machine learning models: (a) - (c) for various malware, and (d) for benign benchmarks. The numbers
in the legend box provides the average values for the four methods.

forward pass of the neural network, which requires hundreds
of multiplication and summation operations. Therefore, DT-
based methods can be used as a quick (fast) check in practice,
while LSTM-based approach is suitable for deep (slow) scan.
H. Evaluation of Explainability

Explainability is utilized for interpreting classification re-
sults. In this section, we highlight five major advantages of
explainability for improving malware detection performance.

Adversarial Training: Explainable ML is beneficial for ad-
versarial training to protect from adversarial attacks. When
a user encounters false positive or false negative outcome,
it tells user what characteristics are likely to cause incorrect
prediction. Malicious samples with similar characteristics can
be synthesized and merged into the pool of training set to
retrain the ML model, thereby enhancing the robustness of
the model against known attacks. Section IV-I discusses this
topic in details.

Additional Information for Malware Localization: Explain-
able ML also provides additional information during malware
detection. Specifically, the top features with large coefficients
are likely to be related to the malicious behavior. We can
also check the clock cycle distribution of these top features to
gather information about the malware. Figure 11 and Figure 12
provide two illustrative examples.

Utilization of Incorrect Results: Existing malware detection
works cannot reach 100% accuracy in all cases. Traditionally,
there is no standard way to tackle incorrect prediction results,
and the common solution is to re-train the model with those
mispredicted samples to enforce the model remembering them.
It treats the symptoms but not the root cause. It remains
unclear what new features are learned from the re-training
so that the model can correct its mistakes. The model merely
remembers the name, size, or other aspects of the sample, in-
stead of actually recognizing the reason for previous mistakes.
For example, when a new type of malware comes with similar
intrinsic but different superfluous features, the model is likely
to make mistake again. In contrast, explainable ML can point
out the reason for its prediction. In other words, the user can
tell why the misprediction happened (e.g., which feature is the
dominant reason for this mistake). Therefore, when retraining
the model, synthetic samples which emphasize that particular
feature can be crafted for improved accuracy.

Flexibility in Malware Detection: Explainable ML signifi-
cantly improves the flexibility of malware detection method.
The limitation of non-explainable ML method is its flexibil-
ity, especially for unseen malware. To continuously upgrade
itself, it usually relies on sufficient iterations of training with
samples of newly found malware. In general, there may not

11

(a) BASHLITE (b) PNScan (c) Mirai

Figure 9: Receiver operating characteristic curves of different methods against various malware.

be sufficient number of samples. With the help of explain-
able ML, synthetic samples with similar attributes can be
generated to serve as training samples. In other words, ML
models with explainability can better fix itself for unseen
benchmarks/malware types.

Iterative Refinement: Although classification (traditional
ML) and explainable ML runs in parallel, the additional
information generated by the current iteration of explainable
ML (e.g., the terms with larger coefficients) is helpful for the
classification in the next iteration. This symbiotic relationship
works in a way where explainable ML is performed by
interpreting the outcome of the trained ML model, while the
interpretation can be utilized in the next iteration of model
training. In other words, explainable ML can play the role of
an assistant in the process of model training.

The remainder of this section provides three illustrative
examples of utilizing explainability for malware detection and
localization. Figure 10 provides an example of how DT-based
method works on detecting a PNScan attack.

Figure 10: Interpretation of DT model for detecting PNScan

As we can see, the key hardware events selected are:
• INS: Total number of instructions.
• BRC: Total number of branch instructions.
• MSP: Total branch mispredictions.
• LCLM: Total L1-cache-load-misses
The tree traversal begins with evaluating the total number

of instructions to check if the program size satisfies commonly
met PNScan malware. Next, it measures two fundamental
properties of the program, the fraction of branch instructions
and cache load misses. This is due to the fact that PNScan

performs dictionary-based attacks in attempts to brute-force
getting info about victim network. Therefore, the DT measures
the branch instructions and mispredictions to check if target
programs satisfy this brute-force behavior. Since PNScan is
dictionary-based attack, even if the DT model fails to detect
malware based on branch instructions, it further checks the
statistics about cache misses to see if the program heavily
requires memory-access of a fixed address.

Figure 11: Interpretation of BASHLITE client’s traced signals

Figure 11 shows an example of detecting Bashlite’s client
on host machine using RNN (LSTM)-based approach. Specif-
ically, it shows a snapshot of the trace table, where each row
represents the values in a register in specific clock cycles (each
column represents a specific clock cycle). In this example,
we computed the corresponding contribution factor of each
clock cycle towards the RNN output using linear regression,
which is shown as weights in the last (colored) row. As we
can see, the weight of C4 is significantly larger than the
others. This immediately indicates the clock cycle of malicious
behavior. By tracing the execution, we find that C4 points to
the timestamp before the start of function “processCmd” in
Bashlite, which is the most important function of Bashlite to
perform its malicious functionality. In other words, this is the
starting point and exact reason for recognizing this program
as malware. it enables the client to process the commands
received from the server to decide the next moves. This
is always the beginning of the client to perform malicious
behavior and the exact reason for recognizing it as malware.

Another example of outcome interpretation is shown in
Figure 12, where we measure the contribution of each traced
register signal. The given data is the trace table of executing
Mirai’s bot on host machine. This time we evaluate the
contribution row-by-row, and the result is listed on the right

12

Table V: The impact of data compaction against different adversarial attacks

Attacks
Models Compacted DT Compacted LSTM Uncompacted DT Uncompacted LSTM

Bashlite Mirai PNScan Bashlite Mirai PNScan Bashlite Mirai PNScan Bashlite Mirai PNScan
N/A 88.0 84.1 94.8 100.0 93.3 99.8 79.3 76.5 69.4 82.1 76.0 75.9

FGSM(ε = .1) 53.3 62.8 54.5 71.2 51.1 47.7 70.3 62.9 63.8 70.9 55.7 60.1
JSMA (θ, γ = .1, 1) 56.2 46.7 65.1 68.6 58.9 44.4 77.0 66.6 68.2 80.2 71.3 59.5

DeepFool(ε = 1e− 6) 47.1 51.6 62.9 46.2 42.3 41.5 53.8 50.0 72.2 49.9 63.7 43.6
PGD((ε = 0.3)) 0.4 11.0 2.9 6.2 22.3 11.5 19.8 20.0 22.2 33.9 53.7 23.6

Average 49.0 51.4 56.1 58.4 53.6 48.9 60.4 55.2 59.1 63.4 64.1 52.5

Table VI: Detection accuracy against different adversarial attacks after applying defence

Attacks
Models Unprotected DT Unprotected LSTM Protected DT Protected LSTM

Bashlite Mirai PNScan Bashlite Mirai PNScan Bashlite Mirai PNScan Bashlite Mirai PNScan
N/A 88.0 84.1 94.8 100.0 93.3 99.8 89.8 86.1 95.0 100.0 93.0 99.9

FGSM(ε = .1) 53.3 62.8 54.5 71.2 51.1 47.7 92.0 82.4 89.3 99.9 85.7 97.2
JSMA (θ, γ = .1, 1) 56.2 46.7 65.1 68.6 58.9 44.4 82.4 86.1 87.1 98.2 91.2 95.9

DeepFool(ε = 1e− 6) 47.1 51.6 62.9 46.2 42.3 41.5 83.8 70.0 62.2 79.9 83.0 92.2
PGD((ε = 0.3)) 0.4 11.0 2.9 6.2 22.3 11.5 25.5 16.0 32.2 33.9 43.0 53.4

Average 49.0 51.4 56.1 58.4 53.6 48.9 74.7 68.2 73.1 82.4 79.1 87.7

Figure 12: Interpretation of Mirai bot’s traced signals

side of the trace table. As we can see, register R3 is recognized
as the most important factor. Here R3 is storing the variable
“ATTACK VECTOR” in Mirai. This variable records the iden-
tity of attack modes, based on which the bot takes relative
actions to perform either a UDP attack or DNS attack. This
attack-mode flag is the most important feature of a majority of
malware bot programs, and our proposed method successfully
extracted it from the traces to illustrate the reason for making
this prediction.

I. Evaluation of Robustness

An ML model’s robustness against adversarial attacks is an
important consideration. Specifically, in our proposed method,
the data compaction step filters out the least important features.
The remaining features with high weight values indicate that
a small change in the input will lead to a drastic change in
the output. From the perspective of an adversary, these are the
preferred features to conduct adversarial attacks since small
changes to the program can change the final outcome. We have
explored the available state-of-the-art adversarial attacks, and
selected the following four attack algorithms for evaluation of
robustness.

• FGSM [34]: A gradient based lightweight attack algo-
rithm. Usually applied for sanity check.

• DeepFool [35]: An untargeted attack technique optimized
for the L2 distance metric.

• JSMA [36]: A Jacobian-based Saliency Map attack.
• PGD [37]: Projected gradient descent based attack. It is

among the strongest attacks utilizing the local first order
information of input values.

Table V shows the evaluation results. It also provides the
fine-tuned hyperparameters of each adversarial attack method.
As expected, due to the selection of filtered features, ML
models trained with compacted dataset perform slightly worse
against adversarial attacks. To mitigate this challenge, we have
applied the following two strategies to enhance the robustness
of ML models.

1) Adversarial Training: We have utilized the traditional ad-
versarial training, where adversarial samples were crafted
and mixed up in the pool. A rigorous training with such
a sample pool enforces the ML models to distinguish
adversarial samples and normal samples.

2) Spectral Normalization: We have also utilized a strategy
called ‘spectral normalization’ proposed in [38] to further
reduce the ML model’s sensitivity to obfuscations.

The effect of applying the proposed defense strategy is
demonstrated in Table VI. The results demonstrate that our
defensive algorithms indeed help protecting models from
adversarial attacks. As we can see, our proposed method
improved by defence strategies provides decent robustness
while the unprotected method appear fragile in the face of
adversarial attacks. For lightweight attacks such as gradient-
based ones (like FGSM), the proposed approach is almost
unaffected. Only for powerful attacks like PGD, there is a
significant drop in performance.

J. Evaluation of Overhead

To evaluate the practicality of the proposed method, we
optimized the implementation of the detection hardware and
evaluated hardware overhead in the following two ways and re-
ported the summary of the observations. We have implemented
our ML model in Verilog and performed area and power
estimation using Vivado on Xilinx Zynq-7000 SoC ZC702
board. To optimize the implementation, we have applied the
input dataset in multiple iterations instead of applying all of
them once. The power consumption is only few Watts. In terms
of area, it requires 19,965 LUTs (out of 53,200 LUTs with an
utilization of 38%). We have also used Intel Power Gadget
to perform power analysis at the system level while trying to

13

detect a specific malware. Table VII shows the total power
consumption of the processor core and DRAM. The average
power consumption is few Watts. As we can see, our optimized
implementation leads to minor area and power overhead.

Table VII: Power consumption using Intel Power Gadget
Malware Bashlite PNScan Mirai Average
Power (W) 5.34 5.51 3.75 4.87

K. HPC Reliability Concerns

Recent studies [21], [22] have highlighted serious reliability
concerns for HPC-based malware detection. In this section, we
discuss why our proposed approach does not have these limi-
tations. In [21], the author highlighted five critical challenges
in existing works for HPC-based malware detection. Our
proposed framework addressed these challenges as follows.

• Dynamic Binary Instrumentation (DBI): In our experi-
mental setup, we did not utilize dynamic binary instru-
mentation tools to extract HPC values but used perf
instead. Therefore, our approach does not inherit any
limitations associated with DBI.

• Virtual Machines (VMs): We have utilized Zynq SoC
hardware board instead of VMs for evaluation. Therefore,
VM-related concerns are not applicable for our approach.

• Insufficient Validations: We have performed sufficient
validation as discussed in previous sections.

• Few Data Samples: We have explored three popular
malware families and collected data from diverse sources
including embedded trace buffer as well hardware per-
formance counter. The github repository describing the
experimental setup as well as the dataset is available at
https://github.com/Jshel/MalwareDetection.

In [22], the author outlined five critical pitfalls to avoid in
utilizing HPC for security tasks. Our work also addressed them
as follows.

• Profiling Tools: We did not compare performance based
on HPC with those from other profiling tools (e.g., Pin).

• CPU Architectures: We specifically discussed the CPU
for conducting our experimental evaluation in Sec-
tion IV-A.

• Preprocess Filtering: We have performed this step as
discussed in the data compaction step in Section III-C.

• Adversary: Section IV-I provides the analysis of our
proposed method against adversarial attacks.

• Documenting Work: We have a created a repository
describing the experimental setup and data traces
at https://github.com/Jshel/MalwareJournalExtension.
Researchers can use these vast dataset to reproduce
our experimental results as well as to perform further
research in this field.

V. CONCLUSION

Malicious software (malware) is a serious threat to modern
computing systems. Existing software based solutions are not
effective in the face of attacks with obfuscation or other
evasive techniques. Recent hardware-based detection tech-
niques are promising but their detection accuracy can still be

improved. Moreover, the classification results cannot be inter-
preted in a meaningful way. Our proposed approach addresses
these limitations by developing a regression-based explainable
machine learning algorithm. In this paper, we explore various
machine learning models to make fast decisions using hard-
ware performance counters as well as embedded trace buffer.
Our approach is able to find the major contributors among
all input features to help interpret the classification results,
which is utilized to either support correct predictions, or justify
mispredictions through adversarial training. Experimental re-
sults demonstrated that our approach significantly outperforms
(97.7% accuracy on average) state-of-the-art approaches on
several benchmarks, and provides explainable interpretation
on detection results at the same time.

ACKNOWLEDGMENTS

This work was partially supported by the National Science
Foundation (NSF) grant CCF-1908131.

REFERENCES

[1] Kelly Bissell and Larry Ponemon. The cost of cybercrime.
https://www.accenture.com/t20190305T185301Z w /us-
en/ acnmedia/PDF-96/Accenture-2019-Cost-of-Cybercrime-
Study-Final.pdf#zoom=50, 2019.

[2] Zahra Bazrafshan et al. A survey on heuristic malware detection
techniques. In ICIKF, pages 113–120, 2013.

[3] Kanad Basu et al. PREEMPT: preempting malware by exam-
ining embedded processor traces. In DAC, page 166, 2019.

[4] Xueyang Wang et al. Hardware performance counter-based
malware identification and detection with adaptive compressive
sensing. ACM TACO, 13(1):3, 2016.

[5] Yann LeCun, Yoshua Bengio, and Geoffrey E. Hinton. Deep
learning. Nature, 521(7553):436–444, 2015.

[6] Daniel Arp et al. Effective and efficient malware detection at
the end host. In 18th USENIX, Montreal, Quebec, 2009.

[7] George E. Dahl, Jack W. Stokes, Li Deng, and Dong Yu.
Large-scale malware classification using random projections
and neural networks. In ICASSP, pages 3422–3426, 2013.

[8] Kathrin Grosse et al. Adversarial perturbations against deep
neural networks for malware classification. CoRR, 2016.

[9] Joshua Saxe and Konstantin Berlin. Deep neural network
based malware detection using two dimensional binary program
features. In 10th MALCON, pages 11–20, 2015.

[10] Qinglong Wang et al. Adversary resistant deep neural networks
with an application to malware detection. In Proceedings of the
23rd ACM SIGKDD, pages 1145–1153, 2017.

[11] Nwokedi Idika and Aditya Mathur. A survey of malware
detection techniques. Purdue University, 03 2007.

[12] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis
for malware detection. pages 421–430, Dec 2007.

[13] Malware Obfuscation Techniques: A Brief Survey. IEEE Com-
puter Society, 2010.

[14] Grégoire Jacob, Hervé Debar, and Eric Filiol. Behavioral
detection of malware: from a survey towards an established
taxonomy. Journal in Computer Virology, 4(3):251–266, 2008.

[15] Suman Jana and Vitaly Shmatikov. Abusing file processing in
malware detectors for fun and profit. In IEEE S&P, 2012.

[16] Nick L. Petroni Jr. et al. Copilot - a coprocessor-based kernel
runtime integrity monitor. In Proceedings of the 13th USENIX
Security Symposium, pages 179–194, 2004.

[17] John Demme et al. On the feasibility of online malware
detection with performance counters. In The 40th Annual ISCA,
pages 559–570, 2013.

14

[18] Mikhail Kazdagli et al. Quantifying and improving the effi-
ciency of hardware-based mobile malware detectors. In 49th
Annual IEEE/ACM MICRO, pages 37:1–37:13, 2016.

[19] Xueyang Wang and Ramesh Karri. Numchecker: detecting
kernel control-flow modifying rootkits by using hardware per-
formance counters. In DAC, pages 79:1–79:7, 2013.

[20] Zhixin Pan, Jennifer Sheldon, Chamika Sudusinghe, Subodha
Charles, and Prabhat Mishra. Hardware-assisted malware de-
tection using machine learning. In Design Automation and Test
in Europe (DATE), 2021.

[21] Boyou Zhou, Anmol Gupta, Rasoul Jahanshahi, Manuel Egele,
and Ajay Joshi. Hardware performance counters can detect
malware: Myth or fact? In Proceedings of the 2018 on Asia
Conference on Computer and Communications Security, pages
457–468, 2018.

[22] Sanjeev Das, Jan Werner, Manos Antonakakis, Michalis Poly-
chronakis, and Fabian Monrose. Sok: The challenges, pitfalls,
and perils of using hardware performance counters for security.
In 2019 IEEE Symposium on Security and Privacy (SP), pages
20–38. IEEE, 2019.

[23] Zhixin Pan, Jennifer Sheldon, and Prabhat Mishra. Hardware-
assisted malware detection using explainable machine learning.
In 2020 IEEE 38th International Conference on Computer
Design (ICCD), pages 663–666. IEEE, 2020.

[24] Zhixin Pan and Prabhat Mishra. Hardware acceleration of
explainable machine learning. In Design Automation and Test
in Europe (DATE), 2022.

[25] Prabhat Mishra, Ronny Morad, Avi Ziv, and Sandip Ray. Post-
silicon validation in the soc era: A tutorial introduction. IEEE
Design & Test, 34(3):68–92, 2017.

[26] Prabhat Mishra and Farimah Farahmandi. Post-Silicon Valida-
tion and Debug. Springer, 2019.

[27] J. Ross Quinlan. Induction of decision trees. Mach. Learn.,
1(1):81–106, 1986.

[28] Sepp Hochreiter. The vanishing gradient problem during learn-
ing recurrent neural nets and problem solutions. International
Journal of Uncertainty, Fuzziness and Knowledge-Based Sys-
tems, 6(2):107–116, 1998.

[29] Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. Under-
standing the exploding gradient problem. CoRR, 2012.

[30] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J.
Williams. Learning representations by back-propagating errors.
Nature, 323:533–536, 1986.

[31] Hasim Sak et al. Long short-term memory based recurrent
neural network architectures for large vocabulary speech recog-
nition. CoRR, abs/1402.1128, 2014.

[32] Junyoung Chung et al. Empirical evaluation of gated recurrent
neural networks on sequence modeling. CoRR, 2014.

[33] Kishore Angrishi. Turning internet of things(iot) into internet
of vulnerabilities (iov). CoRR, 2017.

[34] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Ex-
plaining and harnessing adversarial examples. pages 1–10, 01
2015.

[35] Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal
Frossard. Deepfool: a simple and accurate method to fool deep
neural networks. CVPR, 11 2016.

[36] Rey Wiyatno and Anqi Xu. Maximal jacobian-based saliency
map attack. CoRR, abs/1808.07945, 2018.

[37] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt,
Dimitris Tsipras, and Adrian Vladu. Towards deep learning
models resistant to adversarial attacks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancou-
ver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings. OpenReview.net, 2018.

[38] Zhixin Pan and Prabhat Mishra. Accelerating spectral nor-
malization for enhancing robustness of deep neural networks.
In 2021 IEEE Computer Society Annual Symposium on VLSI
(ISVLSI), pages 20–38. IEEE, 2021.

Zhixin Pan is a Ph.D student in the Department
of Computer & Information Science & Engineering
at the University of Florida. He received his B.E.
in the Department of Software Engineering from
Huazhong University of Science & Technology,
Wuhan, China in 2015. His area of research includes
Cyber & Hardware Security, post-silicon debug, data
mining and machine learning.

Jennifer Sheldon is a Ph.D student in the Depart-
ment of Computer & Information Science & Engi-
neering at the University of Florida. She received
her B.S. in Computer Engineering from University
of Florida in 2020. Her area of research includes
side-channel analysis, hardware security and trust,
and malware detection.

Prabhat Mishra is a Professor in the Department of
Computer and Information Science and Engineering
at the University of Florida. He received his Ph.D. in
Computer Science from the University of California
at Irvine in 2004. His research interests include
embedded and cyber-physical systems, hardware se-
curity and trust, and energy-aware computing. He
currently serves as an Associate Editor of IEEE
Transactions on VLSI Systems and ACM Transac-
tions on Embedded Computing Systems. He is an
IEEE Fellow and an ACM Distinguished Scientist.

