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Abstract—Simulation is widely used for validation of Register-
Transfer-Level (RTL) models. While simulating with millions
of random or constrained-random tests can cover majority of
the functional scenarios, the number of remaining scenarios
can still be huge (hundreds or thousands) in case of today’s
industrial designs. Hard-to-activate branches are one of the
major contributors for such remaining/untested scenarios. While
directed test generation techniques using formal methods are
promising in activating branches, it is infeasible to apply them
on large designs due to state space explosion. In this paper,
we propose a fully automated and scalable approach to cover
the hard-to-activate branches using concolic testing of RTL
models. While application of concolic testing on hardware designs
has shown some promising results in improving the overall
coverage, they are not designed to activate specific targets
such as uncovered corner cases and rare scenarios. In other
words, existing concolic testing approaches address state space
explosion problem but leads to path explosion problem while
searching for the uncovered targets. Our proposed approach
maps directed test generation problem to target search problem
while avoiding overlapping searches involving multiple targets.
This paper makes two important contributions. (1) We propose
a directed test generation technique to activate a target by
effective utilization of concolic testing on RTL models. (2) We
develop efficient learning and clustering techniques to minimize
the overlapping searches across targets to drastically reduce the
overall test generation effort. Experimental results demonstrate
that our approach significantly outperforms the state-of-the-art
methods in terms of test generation time (up to 205X, 69X on
average) as well as memory requirements (up to 31X, 7X on
average).

Index Terms—Concolic testing, RTL validation.

I. INTRODUCTION

URING functional validation of hardware designs, a

wide variety of coverage metrics are employed, such
as functional coverage, finite state machine (FSM) cover-
age, statement coverage, branch coverage, and path coverage.
These metrics are helpful to instruct the test suite to cover as
many scenarios as possible. A common practice in industry
is to simulate Register-Transfer Level (RTL) models of the
design using millions of random or constrained-random tests
to cover the majority of the scenarios. However, it may not
be feasible to cover all scenarios using these tests for multi-
million line RTL models of today’s System-on-Chip (SoC)
designs. We refer to these remaining uncovered scenarios as
hard-to-activate scenarios. Verification engineers usually write
specific (directed) test cases manually to cover the hard-to-
activate scenarios such as corner cases and rare events. While
manual test development is possible for small designs, it would
be infeasible to develop directed tests manually for complex
SoC designs. Moreover, manual development of test cases
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(a) Random simulation cannot
guarantee the coverage of all
targets in a reasonable time.

(b) Uniform strategy can take
very long time (may be infea-
sible) to cover all the targets.

T, T

(c) Single-target method may
lead to wasted effort (overlap-
ping search) to cover targets.

(d) Multi-target approach uti-
lizes the previous search and
starts from a profitable path.

Fig. 1: Test generation to cover two targets 77 and 75 using
four approaches: (a) random simulation, (b) uniform test
generation, (c) single-target and (d) multi-target methods. The
figures show the control flow graph (CFG) of the design, where
each node represents one basic block'. The black ones and
white ones represent the covered and uncovered basic blocks,
respectively. The dashed lines represent simulation paths.

can be both error-prone and time-consuming due to many
trial-and-error iterations in complex designs. Automated test
generation is necessary to overcome these issues. An important
observation is that hard-to-activate branches contribute to
the vast majority of uncovered scenarios. In other words, it
is crucial to cover hard-to-activate branches to improve the
overall quality of functional validation as a complementary
approach to traditional validations. In this paper, our goal is to
generate tests to cover these hard-to-activate branches, which
are referred as targets.

Figure 1(a) shows that it may be infeasible to cover all
targets in a reasonable time using random simulation. To
address the inherent limitation of random tests, there are
significant prior efforts in automated generation of directed
tests [1]-[7]. Test generation using formal methods [8], [9]
can cover specific targets directly, but suffer from state space
explosion for large designs. Semi-formal approaches, such as
concolic testing [10], [11], combine the advantages of random
simulation and formal methods to activate targets efficiently.
Concolic testing interleaves concrete simulation and symbolic
execution, and explores one path at a time to address the state
explosion problem.

Concolic testing is successful in generating directed tests in
software domain [10]-[12]. Chen et al. [13], [14] extended the

'a basic block is a piece of code without any branches in (except of the
entry) or out (except at the exit).



software domain tool KLEE [12] as concolic testing engine for
hardware/software co-validation on virtual platforms. These
approaches are not directly applicable to RTL models, since
it has to deal with unrolling multiple CFGs with complicated
communication between different models and different clock
domains. While there are some early efforts on applying
concolic testing to RTL models [15], [16], they are applicable
on simple designs with restricted features. Most importantly,
they do not address the fundamental challenge in concolic
testing - path explosion problem. As a result, they are not
suitable for large designs.

While there are recent efforts in applying concolic testing
to uniformly cover as many targets as possible in RTL mod-
els [17], they did not address the fundamental “path explosion
problem” in concolic testing, as shown in Figure 1(b). Uniform
test generation tries to maximize the overall branch/statement
coverage by utilizing various search techniques, such as depth-
first search (DFS) and breadth-first search (BFS). Since the
number of paths grow with unrolled cycles, uniform test
generation will suffer from path explosion problem, and will
not be able to finish within the time limit. As it ignores the
priority of activating specific targets, approaches based on
uniform test generation usually lead to longer test generation
time to cover a specific rare branch. In this paper, we propose
a promising approach to guide path exploration to reach a
specific target. We refer it as single-target method. However,
iterative application of this approach to activate thousands of
targets is not suitable since a lot of effort will be wasted in
overlapping searches, as shown in Figure 1(c). To reduce the
number of overlapping searches, we propose efficient learning
and clustering techniques to activate multiple targets. Our
approach utilizes information from the previous searches, as
shown in Figure 1(d). We refer it as multi-target method.

In this paper, we make two major contributions:

« We propose a scalable test generation technique using
concolic testing of RTL models to activate a specific
target. We develop a novel contribution-aware edge re-
alignment technique to effectively evaluate the distance
between a simulated path and a specific target. The
realigned edges are used to guide alternative branch selec-
tion to improve both branch coverage and test generation
efficiency.

o In order to exploit learning across test generation in-
stances involving multiple targets, we explore two opti-
mization techniques to effectively utilize previous search
results. We utilize target pruning to eliminate targets that
are covered by the tests generated for activating other
targets. We also minimize the overlapping search efforts
by employing clustering of related targets to drastically
reduce the overall test generation time.

The remainder of the paper is organized as follows. Sec-
tion II surveys existing test generation techniques using both
formal methods and concolic testing. The overview of our
framework is outlined in Section III. Section IV presents our
proposed test generation approach for activating a specific
target. Section V describes various optimizations for activating
multiple targets. Section VI presents experimental results.

Finally, Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we briefly describe the existing test genera-
tion efforts using formal methods as well as concolic testing.

A. Test Generation using Formal Methods

Model checking is widely used for formal (property) verifi-
cation of RTL models [18]. Bounded model checking (BMC)
is promising in automated generation of directed tests [4], [19].
To activate a specific target (functional behavior), the negated
version of a property (functional behavior) is fed into a model
checker, which will return a counterexample as the test that can
activate the target. Binary Decision Diagrams (BDD) based
BMC [20] and SAT-based BMC [21] are two widely used
formal verification methods [18]. Due to the state explosion
problem, model checking approaches are not suitable for
large designs. Extensive research have been devoted to reduce
the model checking complexity during test generation using
various design/property decomposition as well as learning
techniques [4], [22], [23]. In spite of these extensive efforts,
it is infeasible to generate directed tests using model checking
based approaches due to inherent state explosion problem
while dealing with complex properties as well as large designs.

B. Test Generation using Concolic Testing
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Fig. 2: Overview of concolic testing.

Concolic testing is a promising semi-formal test generation
technique by interleaving concrete simulation and symbolic
execution. Unlike formal method based approaches that ex-
plore all possible (exponential) execution paths at the same
time (and leads to state space explosion), concolic testing
explores only one execution path at a time. The major steps
of path exploration are shown in Figure 2. The first step is
to simulate the design using an input vector. If the simulated
path covers the target, the input vector is added to the test set.
Otherwise, an alternative branch is selected to create new
constraints. Then, the new constraints are fed into a constraint
solver. If they are satisfiable, an input vector will be returned
to start a new iteration. This process continues until the target
is finally covered or the test generation time exceeds a limit.



As concolic testing examines one path at a time, it avoids
state explosion problem associated with test generation using
formal methods [24]. However, the performance of concolic
testing is decided by how the alternative branch is selected.
When profitable branches are selected, the simulated path
will quickly reach the target. On the other hand, selecting
wrong branches may lead to longer test generation time, or
even failure to activate the target. Another factor that affects
concolic testing is the initial test (or initial path) that we
choose to start concolic testing, which is usually a random
test or a manually developed test. When the initial path is
already closer to the target, it is easier to reach the target and
less likely to be lost in the enormous possible paths.

1) Concolic Testing of Software Designs: There are ex-
tensive research efforts in applying concolic testing on soft-
ware designs [10]-[12]. To quickly cover targets in software
domain, structural information from control flow graph is
analyzed to guide path exploration [25], [26]. Another semi-
formal method that is similar to concolic testing in generating
test for a specific target is called symmetric backward ex-
ecution [27]-[29]. While these approaches are successful in
software domain, they are not directly applicable on hardware
(SoC RTL models) designs since they have to deal with
unrolling multiple CFGs with complicated communication
between different models and different clock domains.

2) Concolic Testing of Hardware Designs: Concolic testing
has been shown effective in hardware/software co-validation
on virtual platforms [13], [14], [30], [31] and high-level
modeling using SystemC [32]. While there are some early
efforts on applying concolic testing to RTL models [15], [16],
they are applicable on simple designs with restricted Hardware
Description Language (HDL) features. There are some recent
efforts in applying concolic testing of RTL models. Ahmed et
al. [17] proposed QUEBS to balance exhaustive and restrictive
search techniques by limiting the number of times a branch
can be selected. While uniform test generation is promising,
it suffers from the exponentially growing number of paths
which makes exhaustive searching impractical (path explosion
problem) for covering the selected (hard-to-activate) targets.
As a result, is it not suitable for large designs.

In this paper, we propose an efficient path exploration
scheme to improve the quality of explored paths to address
the path explosion problem in concolic testing. Moreover,
we propose clustering and learning techniques to minimize
wasted efforts in overlapping searches while generating tests
to activate multiple targets.

III. OVERVIEW AND PROBLEM FORMULATION

Given an RTL description of a hardware design, our pro-
posed approach will generate a set of compact tests to cover all
the hard-to-activate branch targets. This section is organized
as follows. We first describe the modeling of targets. Next, we
provide an overview of our proposed approach and outline the
organization of the remainder of this paper.

A. Modeling of Targets

In this paper, a validation target (target, in short) in RTL
model represents a branch condition that the verification
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Fig. 3: Overview of our test generation framework.

engineer would like to cover during validation of RTL models.
Specifically, we are interested in the hard-to-activate branches
in a traditional simulation-based validation methodology. In
addition to branch target in the design, our approach can also
be used to validate other scenarios that can be converted to
equivalent branch statements, such as assertions [33].

B. Overview

Figure 3 shows an overview of our test generation frame-
work. The left hand side of the diagram performs optimizations
when there are multiple targets (Section V). The right hand
side of the diagram utilizes concolic testing to activate a single
target (Section IV). In other words, the left hand side will
provide one target at a time to the right hand side to produce
a directed test. To cover a specific target, the most important
step in concolic testing is to decide the alternative branch in
each iteration of path exploration, as introduced in Section II-B
and Figure 2. To improve the alternative branch selection, we
apply three steps to preprocess the RTL code, i.e., instru-
mentation, edge realignment and distance computation, and
utilize the distance information as a heuristic to determine the
most profitable alternative branches with regard to a specific
target. By selecting the profitable alternative branches, the
explored simulation paths are expected to get closer and
closer to the target. The details of the preprocessing and
path exploration techniques are discussed in Section IV. To
cover multiple targets, we propose two optimizations to reuse
search information to minimize wasted overlapping efforts,
i.e., target pruning and target clustering. The goal of target
pruning is to dynamically eliminate the targets that can be
covered by the simulation paths for other targets. It decides
which target to focus on in the next loop after concolic testing
is done for one target. Target clustering dynamically learns and
groups targets that are close to each other. For each group, we
select the closest simulation path (initial test) to start concolic
testing. As introduced in Section II-B, starting with a close
path to the target will benefit the path exploration. These two
optimizations are introduced in Section V.

Our framework consists of four main steps. First, it ap-
plies target pruning and target clustering to decide the next
target and the initial test to start concolic testing. Then, it
preprocesses the design with regard to the target to assist
path exploration. Next, it utilizes concolic testing to generate



directed test. Last, the generated test is validated in the original
design (without instrumentation and edge realignment) to
check if the desired target is covered. After concolic testing
finishes for this target, next iteration begins with another target
and its corresponding initial test.

IV. TEST GENERATION USING CONCOLIC TESTING

A major challenge in concolic testing is how to efficiently
explore profitable paths to activate a specific target. As shown
in Figure 3, our test generation framework to activate a single
target consists of four major steps: instrument the code to add
print statements, realign edges to reveal contributions of each
assignment, compute distance and explore different paths to
cover the target. With the help of edge realignment, we are
able to heuristically evaluate the distance between a path and
the target. As shown in Figure 1, both random and uniform
test generation do not consider the quality of a selected path.
In contrast, our directed path selection tries to explore paths
that are “closer” to a specific target. This section describes
these steps in detail.

A. RTL Code Instrumentation

The first step is to instrument the original design. The goal
of instrumentation is to provide information of a concrete
path for symbolic execution. There are two possible ways
to do symbolic execution. One option is to modify the RTL
simulator directly such that symbolic execution is performed
along with concrete simulation. The other one is to instrument
the original design such that path execution information can
be dumped. After simulation is done, the symbolic execu-
tion engine will parse and analyze the dumped traces. Our
framework utilizes the latter method, since it is more adaptive
to different simulators and languages. The simulation traces
would be the same irrespective of the simulator. Note that
the instrumented RTL code is just for test generation. In our
experimental evaluation, the original design is used to verify
that the generated tests activate the expected branches.

Our framework first parses the design and constructs its
control flow graph. Then, it marks each basic block with a
unique identifier (BBi for the i" basic block). The unique
identifiers of basic blocks help symbolic engine build the
constraints which contain all the assignments inside each basic
block. Then, we instrument the design by adding a print
statement at the end of each basic block. The example of an
instrumented design is shown in Listing 1 with the added print
statements shown in gray. Its corresponding CFG is shown
in Figure 4 (without dashed lines). At the same time, our
framework generates a testbench module that is able to read
the tests generated by our approach and provide the stimuli to
the instrumented design. After simulating one input vector,
a trace showing the executed basic blocks is dumped and
analyzed. For example, with a random input test, it is highly
likely to get a trace [BB1, BB8, BB6, BB8, BB6, BBS, ...].
After reconstructing the simulation path from the trace, next
step of concolic testing is to choose a new path to explore and
generate a corresponding test to exercise the path.

Listing 1: Example 1

module top(clock,
reg [7:0] a, b;
reg out = 1'b0;
always @(posedge clock) begin
if (reset == 1'bl) begin
a <= 8'h80; b <= 8'h8A;
$display ("BB1");

reset , in, out);

end

else case (in)
8'h01: a <= a — 1; $display ("BB2");
8'h23: a <= a + 1; $display("BB3"):
8'h45: b <= b — 1; $display("BB4");
8'h67: b <= b + 1; $display("BB5");
default: $display ("BB6") ;

endcase

end
always @(posedge clock) begin
if (a > b) begin
out <= 1'bl;
end
else begin
$display ("BB8")
end

$display ("BB7");

end
endmodule

B. Contribution-aware Edge Realignment

Our framework tries to explore paths that can take it “closer”
to a specific target. Alternative branch selection in concolic
testing is essentially “forcing” the next execution path to pass
through a specific block. When a “good” alternative branch
(block) is selected, the simulation path will get closer to the
target. On the other hand, a “bad” alternative branch (block)
will lead the simulation trace randomly or far away from
the target. The goal of our edge realignment is to figure
out the contribution of each block in activating a specific
target. In this section, we propose a contribution-aware edge
realignment scheme to enable smart selection of profitable
alternative branches while exploring new paths.

Before we describe the details of the process, let us use
an example to show the results of edge realignment. Let us
consider the example in Listing 1 to activate the branch in
BB7 with the branch condition of (a>b). We note that the
original CFG in Figure 4 (without dashed lines) provides no
information about which block is good or bad. To manually
write a test to activate BB7, a test writer tries all blocks
containing the assignments for signals a and b. While this
manually backward tracking is viable for small designs, it is
not feasible for large designs due to scalability issues. Instead
of manually figuring out which basic blocks are relevant in
activating BB7, we create reference edges to directly connect
the blocks with profitable assignments to our target block. For
example, the dashed lines in Figure 4(a) connect BB3 and BB4
to our target block BB7. These realigned edges instruct our
concolic testing framework to prefer BB3 and BB4 to other
blocks in selecting alternative branches. Intuitively, the paths
across these two blocks are more likely to activate BB7 than
the other blocks.

For the ease of illustration, we use the following notations.
We use s to represent a global state, containing a snapshot
of the values of all registers and wires in a specific time. Let
g(-) be the guard condition of a basic block. For example, the
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(b) [34] realigns each block to the assignments that are satisfiable.

Fig. 4: Comparison of our edge realignment and [34]. The dashed lines represent the realigned edges. As edge realignment is
critical in guiding alternative branch selection, one incorrectly realigned edge can lead to significant performance degradation.

global state sg = {ag = 8'h80,by = 8'h8A}? after executing
BBI1. The subscript of a variable is used to keep track of
the different values during the whole simulation. In other
words, the subscript of a variable increments by 1 whenever
an assignment to the variable is executed. The guard condition
for BB7 is g(-) = a > b. If we evaluate the guard condition
directly on s, i.e., g(so) = (ag > bo) = False, it represents
that BB7 cannot be visited right after executing BB1. We use
f(-) : 8 — s’ to represent any assignment that may change the
global state. For the assignment f = (a <= a+1), it changes
the global state so to 8’ = f(sg) = {a1 = 8'h81,by =
8'h8A}, where only the value of « is changed. For the ease of
representation, a sequence of assignments is represented using
composition, i.e., 8’ = so f1o fs...0 f,,, where the assignments
f1,...fn are executed in order. The goal of concolic testing is
to find a viable sequence of assignments fi, ..., f, that will
hit a specific target, i.e., g(s') = True.

A naive way to realign edges was proposed in [34] by
simply checking the satisfiability of one assignment and the
guard condition of a block. For example, assuming the guard
condition of a target is (v & 0 0), which requires
v to be an even number, the naive edge realignment will
realign the target to all blocks where v is possibly assigned an
even number. While this approach is promising in connecting
simple conditions to a single assignment, the naive checking
introduces a large number of redundant edges which can
mislead path selection. The result of applying the naive edge
realignment to Listing 1 is shown in Figure 4(b). Compared
to our expected results in Figure 4(a), the naive approach has
two major problems. The first one is that the naive approach
lacks the checking of contribution. The naive edge realignment
scheme in [34] connects the target to all satisfiable assignments

2For the simplicity of explanation, we only show the relevant variables to
our condition g in s. For example, when g is a > b, we only show the
variables a and b. In our framework, all variables are kept in the global state.

of its variables, e.g., BB7 is connected to BB2 in Figure 4(b). It
is due to the satisfiability of the guard condition a > b and the
assignment a <= a—1, i.e., ((a; == ap —1) and (a1 > by))
is satisfiable. However, it is easy to see that selecting this
assignment is not profitable in achieving the target BB7. When
ag > bg+ 1 before the assignment is executed, the target BB7
is already activated. Otherwise, the assignment will lead the
search path to be far away from BB7. The second problem is
the level of satisfiability checking. The naive edge realignment
checks the contribution of each individual assignment, rather
than all assignments inside a block. For example, assignment
level satisfiability checking will connect BB7 to the block
containing the assignment a <= 8 h80 (BB1). However, when
we consider all the assignments inside BB1 together, it is clear
to see that executing BB1 will never help to activate the target
BB7. While it is possible to manually check the contribution
for small designs, it is infeasible when the design is large and
the condition is complex. We propose a contribution-aware
block-level edge realignment in Algorithm 1.

In this algorithm, the block queue B(@ maintains all the
basic blocks that need to be aligned. Initially, B() contains
all the targets. We first expand the guard condition g for the
current block bb to get all the related variables. Then we check
all the assignments that are related to any of these variables.
For each of these assignments f, we first find out the basic
block bb’ that contains f. Then, we evaluate its contribution
to the guard condition g based on Definition 4.1.

Definition 4.1: A basic block B has a contribution to a
guard condition g, if there exists some initial global state s,
such that s does not satisfy the guard condition g, but the state
after executing all assignments inside B satisfies the guard
condition. Assume that fi, fo, ..., f,, are the assignments inside
B. The contribution of B to the guard condition g can be
checked by the satisfiability, g(s) = False and g(so fio fao
o0 fn) = True.



Algorithm 1 Edge Realignment

Input: CFG, Target Queue (7'Q)
Output: Realigned CFG
1: Push all targets to block queue BQ
2: while BQ is not empty do
3:  Current block, bb + BQ.pop()
/I Update edge for block bb

4: g < expanded guard condition of bb

5:  for all variables v € g do

6: for all assignments f to v do

7: bl < the block of f

8: f1, f2, .., fn < all the assignments of bb’

9: if g(s) = False and g(so fio fyo...0f,) = True
for any s then

10: Add b to bb.predecessors

11: BQ.push(bb') if bb’ is not visited

12: end if

13: end for

14:  end for
15: end while

Contribution checking forces guard condition g to be false
in the beginning, followed by executing all the assignments
inside a basic block B, and then checks if g will be satisfied.
If it is satisfiable, the block B has a contribution to g.
For example, the block BB3 contains only one assignment
f = (6@ <= a+1). It has a contribution to the guard
condition ¢ = (a > b), because ((ag < bp) and (a1 =
ap + 1) and (a1 > bp)) has at least one solution. On the
contrary, the block BB2 with the assignment f = (a <= a—1)
has no contribution to the guard condition, as the satisfiability
equation ((ap < bg) and (a1 = ap — 1) and (a1 > bg)) has
no solution. Similarly, BB1 has no contribution since ((ag <
bo) and (a; = 8'h80) and (by = 8'h8A) and (ay > by)) has
no solution. The results of satisfiability checking for the block
BB7 are shown in Table 1.

TABLE I: The results of satisfiability checking in line 9 of
Algorithm 1 for the target BB7.

Block Equation SAT

BBI1 (ap <bo) A (a1 = 8h80) A (b1 = 8’h8A) | UNSAT
A(a1 > by)

BB2 (ap <bo) A (a1 =ao — 1) A (a1 > bo) UNSAT

BB3 (a0 <bo) A (a1 =ao + 1) A (a1 > bg) SAT

BB4 (a0 <bo) A (b1 =bg — 1) A(ap > b1) SAT

BB5 (ap <bo) A (b1 =bo+ 1) A (aog > b1) UNSAT

After finding a good block bb' in line 7, we add it to
the predecessors of bb, i.e., creating an edge to connect bb’
and bb. For example, as the block BB3 has a contribution to
a > b, it is added to the predecessors of BB7. Since BB3
is not visited before, it will be added to the end of BQ.
In some future iteration, BB3 will be selected as the current
block, and our algorithm will realign good assignments for
its guard condition. It is easy to see that Algorithm 1 is fast
since no basic block needs to be visited more than once. A
good edge realignment scheme is important because even a
single bad realigned edge will waste a lot of searching time

in finding good alternative paths during path exploration, and
it can lead to a wrong direction, which will be demonstrated
in Section VI-E.

C. Distance Computation

Edge realignment connects a target to the blocks that have
direct contributions. To quantify the contribution of all blocks,
we use a distance measurement based on the realigned control
flow graph. A block with lower distance means it is closer to
the target, i.e., more likely to contribute to the activation of
the target.

First, we define the distance between a basic block and
the target. With the realigned CFG in Figure 4(a), we start
from our target BB7 and perform breadth-first traversal in
the direction along the predecessors. For BB7, we initialize
the distance as 0, and increment the distance by 1 when we
traverse an edge. The distances of the basic blocks in the first
always block of Listing 1 are shown in Figure 5, which is
unrolled for three cycles. Note that the distances of basic
blocks that are never visited are not shown, which will be
initialize to oo in our framework. For each basic block bb, the
distance of bb is denoted as bb.distance. Next, we define the
distance between a path and the target in Definition 4.2.

Definition 4.2: Assume a simulation path is con-
structed by a trace {{bb],bby,...,bb; }, {bbf,... bb7 }, ...,
{obl, ... bbk }}, where bb! represents the i basic block in j®
clock cycle. The distance between the path and a target is the
minimum distance among all blocks, i.e., min bb].distance.

Figure 5 shows the example of three pathsf]As all the blocks
along P1 and P3 have the distance oo, their distances to the
target are co. On the other hand, as P2 passes through BB3
in the second clock cycle, the distance of P2 is 1. When we
inspect the final state after executing these three paths, P2 is
“closer” to the target, since P2 executed one more a <= a+1.
In other words, the distance is a good quality indicator of a
path. This distance definition also emphasizes the importance
of good edge realignment schemes. If we realign the CFG
using the naive approach (as shown in Figure 4(b)), the path P3
will have distance 1, same as P2. However, since P3 executed
a <= a — 1, the final state is actually further away from
our target. These realigned edges will mislead directed path
exploration as described in the next section.

D. Path Exploration

In this section, we present a greedy path exploration scheme
in activating a specific target based on our distance heuristic.
We illustrate the usefulness of distance information in our
automated path exploration scheme.

Algorithm 2 describes our greedy path exploration to
quickly reach a specific target by selecting the most profitable
alternative branch. To better illustrate how we select alternative
branches and explore new paths, we use the example in
Figure 5. It first computes the distance for all blocks as
introduced in Section IV-C. Assume that the initial path p
is P1. Next, it builds constraints vector from the simulation
trace of p, S = {{a1 = 8'h80,b; = 8'h8A}, {},{}}, where
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Fig. 5: The distance between a basic block and the target in
realigned CFGs is marked for BB3 and BB4 (others are oo).
Only the first always block of Listing 1 is shown for the ease
of illustration.

each inner vector represents all executed statements one clock
cycle. Then, we try all alternative branches® from current path
p and check if they are viable. For example, we want to
check if BB7 is a valid block in clock 2. A new constraints
vector is built by combining all constraints before BB8 in
clock 2 and the new chosen branch, i.e., {{a; = 8h80,b; =
8'h8A}, {a1 > b1}}. Asitis not satisfiable, BB7 is not a valid
block in clock 2. On the other hand, BB2 in clock 2 is a valid
block, as {{a; = 8h80,by = 8'h8A}, {iny == 8h01}}
is satisfiable. In this way, we can find all valid alternative
blocks, which are BB2, BB3, BB4 and BB5 in both clock
2 and clock 3. The next step is to sort these blocks by
the distance and clock cycle. Since BB3 and BB4 have
smaller distance than BB2 and BBS, one of the possible or-
der is {BB3?, BB4*, BB3® BB4°, BB2?, BB5*, BB2®, BB5°},
where the order of BB3 versus BB4 and the order of BB2
versus BBS in the same clock are random since each pair
has the same distance. Assume that we select BB3 in clock
2 as our best alternative block in line 10. A new constraints
vector will be constructed, consisting of all constraints from
the beginning to BB3 in clock 2. We solve the constraints to
get a test and simulate it. Let us assume that the new path is P2.
Before searching in the next iteration, we set clock = 2 such
that only the sub-path after clock 2 is checked in searching
for valid alternative branches for P2, i.e., the sub-path (first
two clocks) of P2 is locked. A new iteration will repeat the
process until the target is activated. There are two key ideas
in our algorithm.

1) The usage of our distance metric defined in Section IV-C
provides our greedy algorithm a heuristic to explore

3We assume the first clock is only used to reset all signals. Therefore, we
will skip the first clock cycle in finding alternative branches.

Algorithm 2 Path Exploration

Input: realigned CFG, Target Queue 7'Q), search limit [imit,
unrolled cycles unroll

Output: A test set T = {t1,to,...
1: for all target € T'Q) do

2:  Compute the distance from target for all blocks

sln}

3:  Random simulation and get the path p
4:  iteration =0
5. clock =0
6:  while iteration < limit do
7: Build constraints vector S from the trace of p
8: AB <« all valid alternative branches (blocks) after
cycle clock
9: Sort AB by distance and clock
10: Randomly choose one of the best alternative branches
(blocks) to flip
11: clock < the clock of the chosen branch
12: Build the new constraints vector
13: Use a constraint solver to solve the constraints
14: Simulate the design with returned test and get a new
path p
15: iteration = iteration + 1
16: if p activates the target then
17: Add the test to T’
18: Break
19: end if
20: if clock == unrolled then
21: Increment the distance of all blocks in p
22: clock =0
23: end if
24:  end while
25: end for
26: Return T’

relatively “close” paths to the targets. For example,
in our first iteration, we would prefer P2 over P3 in
Figure 5 since P2 has smaller distance than P3.

2) The usage of clock maximizes the exploitation of pre-
vious good choices, and avoids toggling best alternative
blocks when multiple blocks have the same distance.
If the clock is not enforced in our algorithm, the best
alternative blocks would toggle between BB32 and BB42
in the following iterations of the previous example. If
the explored path could not cover the target, which is
likely since we allow the input signal to be random in
the remaining cycles, the process will continue until one
lucky test activates the target by chance.

1) Dynamic Distance Update: One important thing in our
algorithm is the usage of clock. The intuition behind clock is
that since we have made so much effort in finding the best
alternative branch (block), we do not want it to be replaced
until we have tried enough possibilities and could not find a
solution. Whenever we find an alternative block in line 10, we
set clock to the clock cycle of the chosen block. Therefore, the
sub-path from the beginning to the chosen block is “locked” in
the following iterations. The next alternative branch is chosen



from the remaining cycles. After clock reaches the unrolled
cycle, we reset the clock and increment the distance of current
path p in line 20-22.

The intuition behind dynamic distance update is that we
cannot fully rely on the distance given by our static analysis
of CFG. Since the distance is statically computed, it is
likely that all paths through a block with a small distance
could not activate our target, which is almost impossible to
examine because the number of possible paths is exponential.
Therefore, we stick with the reasonable evaluation (block-level
satisfiability) and apply dynamic distance update to mitigate
the shortsighted nature of our edge realignment scheme.

In Algorithm 2, distance is updated when clock reaches
unrolled cycles and the target is not covered (line 20). In
previous iterations, we have greedily chosen a few profitable
alternative branches. We increment the distance of all blocks
in the current path p, which contains all the chosen blocks
in previous iterations. Through dynamic distance update, our
approach is able to explore other blocks instead of exploiting
the good blocks from static realignment all the time. For
example, assume the distance of BB2 is 10, rather than oo
in Figure 5. After 10 times of trying BB3 and failing to
activate the target, the distance of BB2 would be smaller than
BB3. Therefore, in the next iteration, BB2 will have higher
priority of being chosen as the alternative branch than BB3.
Combining the usage of clock and dynamic distance update,
our approach balances the exploration and exploitation during
path selection.

V. OPTIMIZATIONS FOR COVERING MULTIPLE TARGETS

To extend our test generation framework to handle multi-
ple targets, we propose two optimization techniques: target
pruning and target clustering. The focus of these techniques is
to effectively utilize the structure of the design and previous
search information to generate tests efficiently as shown in
Figure 1(d). The key idea behind these two techniques are
summarized below:

1) Target pruning is designed to reduce the number of
targets without sacrificing the coverage. While existing
target pruning techniques try to remove redundant targets
after generating test for all of them, we utilize CFGs and
the order of targets to efficiently prune targets prior to
and during test generation.

2) Proposed target clustering connects each target with the
closest simulated path, therefore, improves initial path
selection. One problem of iteratively applying Algo-
rithm 2 is that it ignores all precious search information
while activating previous targets, leading to wasted
effort in overlapping searches (see Figure 1(c)). Target
clustering dynamically groups the remaining targets into
different clusters. Each cluster has its own closest sim-
ulated path. When one target is selected as the current
target, we use the closest simulated path as the initial
path to replace line 3 in Algorithm 2.

A. Target Pruning

To accelerate the speed of concolic testing in multi-target
scenarios, we prune redundant targets by analyzing the CFG

Fig. 6: CFG for the design in Listing 2. TO, T1, and T2
represent three targets.

and controlling the order of targets. We exploit both static
and dynamic pruning to minimize the number of targets. To
illustrate the static process using CFG, consider the simple
RTL design in Listing 2 as an example. Figure 6 shows its
CFG with TO, T1 and T2 to represent the three targets. If T2
is reachable, we can safely remove TO from the target list.
Formally, we can prune all the dominator nodes of the targets.
Suppose the initial set of targets is 7'S. For each target T €
TS, let the dominators of T be the set DM (T'). Therefore, the
effective target set after pruning, 7S’ = T'S —Urers DM (T).

Listing 2: Example 2

module top(clock, reset, in, out);
if (reset == 1'bl) begin
a<=0; b<=0; ¢c <= 0;
end
else case (input)
2'b00:
if (a | b) $display("Target T1"):
else ¢ <= 0;
2'b10, 2'b01: begin
a <= 1; ¢ <= 1;
end
2'bll: begin
$display (" Target TO");
a <= 0;
if (c) $display (" Target T2");
end
endcase

However, this approach may not work when T2 is not
reachable, but TO is reachable. In this case, removing TO
from the target list does not make sense. Rather, we should
remove T2. One engineering choice would be to prune targets
as usual, but keep track of the pruned targets. If a test cannot be
generated for a target (e.g., in a reasonable time), add back the
dominators that were pruned because of this target. To avoid
directly pruning targets for both efficiency and coverage, we
topologically sort the targets. The order ensures that the target
Ty is always behind the target T, in the target queue, where Ty
is a dominator of T,. This way, test generation for T will only
be done if it is not covered by previously generated tests for
T,. For targets in a dominator chain, the deep targets in CFG
will always be in front of the shallow ones. For examples, if
the original target queue is <TO, T1, T2>, it would become
<T1, T2, TO> after target pruning.

Dynamic target pruning also takes advantage of the order
of targets to fully utilize previously explored paths. When the
explored paths of a target can cover the other targets, the latter




P2 P1

Fig. 7: The design in Listing 2 is unrolled for three cycles.
The initial path is P1 with input being 2’600 for all cycles.
The selected alternative branch is shown in bold solid line,
and the simulated path is P2 for the test from the constraint
solver. P2 covers T1 and becomes the closest simulated path
for T2 during target clustering.

can be pruned. However, it is unknown which targets can be
pruned in the beginning. Therefore, we propose a round-robin
scheduling in selecting targets. Instead of trying to solve one
target until timeout in one round, we split the iteration limit
into multiple rounds. If a target cannot be activated in one
round, we put it to the end of the target queue. There are two
advantages of this scheduling. First, the pruned target may be
covered while generating tests for other targets. Second, target
clustering may find a better initial path for this target in the
following rounds, as introduced in next section.

B. Target Clustering

Our approach learns target clustering dynamically, and
utilizes the clustering to achieve the most profitable initial
path for concolic testing. There are mainly two advantages in
selecting a profitable initial path. The first is to improve test
generation efficiency. When the initial path is already close
to the target, fewer concolic iterations are needed to activate
the target compared to initial paths that are far away. The
second advantage is to improve coverage. Although coverage
is mainly controlled by how an alternative branch is selected,
a better initial path means fewer concolic iterations, reducing
the probability of getting lost in a large number of misleading
alternative branches.

Since current designs separate different functionalities into
independent modules, one random simulation path may be far
away from our desired target (e.g., if it involves interaction
of multiple modules). On the other hand, many targets from
the same module or the same finite state machine may share
a common path. For these targets, search paths for one target
may be close to the other targets. To better utilize the effort
of previous explorations, we propose a dynamic clustering
approach to learn the most profitable initial path. For each
target, we keep the simulated path with the smallest distance
evaluated based on the CFGs after edge realignment, called the
closest simulated path. We place targets in one cluster if they
share a common closest simulated path. Initially, all targets
are in the same cluster with the closest simulated path being a
random path. The simulated path in concolic iteration is used
to split clusters into smaller ones.

We use the example in Figure 7 which shows the first two
steps of exploring paths for the target T1 in Listing 2. Assume
that the design is unrolled for 3 cycles and input is 2’600 for
all clock cycles. Then, the initial path is P1. As BB4 has the
smallest distance to T1 and it is reachable in the second cycle
of P1, the alternative branch (bold solid line) is taken and an
input vector is returned by the constraint solver. Assume P2
is the simulated path of the returned input vector. At the same
time, targets are dynamically clustered as follows. T1 and T2
are initially in the same cluster with the closest simulated path
being P1. After one concolic iteration, P2 is found and used
to update the cluster. As P2 visited BB4 in the second clock
cycle, it is closer to T2 than P1. Then the cluster and the closest
simulated path is updated for T2. When T2 is selected as the
current target, we want to start with its closest simulated path
(P2) to avoid overlapping search. This technique effectively
eliminates the overlapping search problem. Target clustering
also emphasizes the importance of a good edge realignment
and distance evaluation scheme. With an incorrect distance
evaluation, a target may start from a path that is worse in
activating the target, resulting in longer test generation time
or failure to activate the target.

VI. EXPERIMENTS
A. Experimental Setup

To evaluate the effectiveness and efficiency of our approach,
we compared the performance of our proposed approach
with state-of-the-art techniques including uniform test gener-
ation (QUEBS) [17] and bounded model checking (EBMC)
[35], [36]. The experiments were conducted in a server
machine with Intel Xeon CPU E5-2698 @2.20GHz. Our
approaches utilize the Icarus Verilog Target API [37] for
parsing and generation of abstract syntax tree of RTL code.
Prior to applying the framework, the design is first flattened
using flattenverilog tool from Design Player Toolchain [38].
Yices SMT solver is used for constraint solving [39].

B. Performance Comparison

In this experiment, we compared the performance of our
approach to EBMC [35], [36] and QUEBS [17]. A variety
of benchmarks are selected from ITC99 [40], TrustHub [41],



TABLE II: Comparison of target coverage using [17], [34] and our approach on 20 targets in each benchmark.

Bench cycle | lines EI_SMC [35] QUEBS [17] Our_ Approach Ir_npro. / EBMC Im_pro. / QUEBS
cvr | time mem cvr | time mem cvr | time mem time mem time mem
b10 30 182 20 4.1s 31MB 20 | 0.12s 9MB 20 | 0.02s | 9.5MB | 205x 3.3x 6x -1.1x
bl4 50 698 20 243s 467MB 20 | 2l.6s 34MB 20 1.3s 15SMB 187x 31x 17x 2.3x
ICache 50 258 20 6.3s 48MB 20 | 4371s 1.6GB 20 | 0.15s 18MB 42x 2.7x 29140x 89x
DCache 10 562 20 20s 138MB 20 1.27s 13MB 20 | 0.34s 16MB 59x 8.6x 3.7x -1.2x
Exception 15 666 20 6.9s 40MB 20 3.3s 15SMB 20 2.2s 23MB 3.1x 1.7x 1.5 -1.5x
usb_phy 20 1039 | 20 3.1s 26MB 12 8.2s 34MB 20 134s | 138MB | -50x -5.3x -16x -4.1x
T1100 10 544k | 20 | 2386s 8.1GB - - - 20 55s 1.2GB 43x 6.8x - -
T2000 10 456k i t T - - - 20 74s 1.2GB - - - -
Average™ - 20 381s 1264MB | 19 734s | 284MB | 20 33s 327MB 69x 7x 4859x 13.9x

TEBMC produced errors and did not finish this benchmark.

*During average computation, we omitted the benchmarks that did not finish.

and OpenCores [42] as shown in Table II. We omit or1200 in
the names of the benchmarks or1200_ICache, or1200_DCache
and or1200_Exception from OpenCores [42], and omit AES in
the names of AES-T1100 and AES-T2000 from TrustHub [41]
for simplicity. All these benchmarks contain hard-to-activate
branch targets, providing a reasonable test generation com-
plexity. For target selection, we first ran the benchmarks
with one million random tests. Then, we selected 20 rarest
branches as our targets. For each Trojan-inserted benchmark
form TrustHub (AES-T1100, AES-T2000), the selected targets
contain 5 rare branches from the Trojan area. There is one rare
branch from AES-T2000 that is not included, as it can only
be covered after 2127 clock cycles. The number of unrolled
cycles are chosen such that the hard-to-activate branches can
be covered. In practice, a designer can start with a reasonable
number of unroll cycles, and increment it in an iterative
fashion until all the targets are covered. The number of unroll
cycle problem is the same as the bound determination in
bounded model checking [36]. Therefore, after we decided
the number of unrolled cycles, we set the same number for
the bound in EBMC. We set a new target for EBMC each
time, and report the accumulated performance. Since the goal
of QUEBS [17] is to cover all branches, we terminated it
once it covered all of our selected targets. For the round-robin
scheduling of selecting targets in our approach, we set the
iteration limit to be 20 in each round.

The performance comparison is shown in Table II. The
second column shows the number of unrolled cycles for each
benchmark and the third column represents the number of
lines of code in each flattened design. For each approach, we
report the number of covered targets (cvr), the test generation
time (time) and memory usage (mem). All 20 targets are
covered in three approaches except that QUEBS only covers
12 branch targets in usb_phy. Although the main idea of
QUEBS is to uniformly cover all branches using BFS or
DFS, it fails to cover some branch targets due to the trade-
offs made by the authors [17] to balance repeated search
and overall coverage. Compared to our approach, QUEBS
performed worst in two of the benchmarks - b14 and ICache.
For ICache, our approach gains 29140 times improvement in
test generation time and 89 times improvement in memory
usage. This is because these two benchmarks are unrolled
50 cycles. If the number of unrolled cycles keeps growing,
QUEBS is expected to face path explosion problem since the
total number of branches grows exponentially with the number

of unrolled cycles. The scalability issue of QUEBS becomes
worse with the complexity of designs. For two Trojan-inserted
AES designs (T1100 and T2000) with around 500k lines of
code after flattening, QUEBS cannot finish within the time
limit (one week). Compared to EBMC, our approach is both
time efficient and memory efficient. Note that EBMC reported
some errors in AES-T2000, hence the comparison does not
include AES-T2000. For the largest benchmark, AES-T1100,
our approach can activate 20 targets in 55 seconds with 1.2GB
memory usage, while EBMC takes around 40 minutes to finish
and consumes 8.1GB memory. For larger benchmarks, we will
discuss in Section VI-C to explore the scalability of these
two approaches. Overall, our approach provides significant
improvement compared to EBMC in both test generation time
(69x on average, up to 205x) and memory usage (7x on
average, up to 31x improvement).

C. Scalability Comparison

In this experiment, we examined the scalability of our
approach and EBMC. In particular, we compared the mem-
ory requirement of our approach to EBMC, since the main
challenge of applying model checking to large benchmarks is
the state explosion problem. As QUEBS faces path explosion
problem for benchmarks larger than AES, we omitted QUEBS
in this experiment and only compared our approach to EBMC.
In other words, QUEBS is less scalable than EBMC due to
path explosion problem in covering branch targets. Note that
the memory requirement is also dependent on the complexity
of the design and the branch target. Therefore, to minimize
the impact of other factors, we utilized the same design with
various unrolled cycles and sizes to examine the scalability of
our approach.

First, we examined the effects of unrolled cycles on memory
requirements. We used the benchmark or1200_ICache with
the number of unrolled cycles increasing from 50 to 250, as
shown in Table III. As we can see, the memory requirements
of EBMC grow from 48MB to 218MB, while the memory
requirements of our approach grow from 18MB to around
30MB. Note that the memory requirement of our approach
is not consistently growing with the increasing number of
unrolled cycles. It is due to the randomization introduced
in path exploration. When the explored paths happen to be
close to the target, the exploration process is faster, and the
overall memory usage will be smaller. In contrast, the memory
requirements in EBMC continuously grow with the number



of unrolled cycles. As any formal methods, EBMC tries to
explore all paths at a time. With more unrolled cycles, the
state space of the design is expected to grow. If we check the
trends of memory requirements with respect to the number
of unrolled cycles in Figure 8, we can see that the memory
requirements in our approach grow slower than EBMC.

TABLE III: Comparison of memory requirements using
EBMC and our approach in or1200_ICache with different
number of unrolled cycles.

. Memory Requirements (MB)
Bench cycles | lines EBMC | Our Reduction
50 258 48 18 2.7x
100 258 90 26 3.5x
ICache 150 258 132 23 5.7x
200 258 175 30 5.8x
250 258 218 28 7.8x
Average - 258 133 25 5.3x
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Fig. 8: Comparison of memory requirements of our approach
and EBMC in or1200_ICache with various unrolled cycles.

In the previous experiment, we fixed the size of the design
and varied the number of unrolled cycles. Next, we exam-
ined the impacts of the size of the benchmarks on memory
requirements, using six custom AES benchmarks as shown
in Table IV. These benchmarks differ only on the number
of rounds, which are indicated in the names. For example,
aes_20 has 20 rounds compared to 10 rounds in a typical
128-bit AES. By changing the number of rounds, the size
of these benchmarks are easily controlled to demonstrate
the scalability. The number of lines of code and the total
number of branches are shown in the third and fourth columns,
respectively. In each benchmark, we inserted one Trojan in the
same way as AES-T1100, and created a branch to check if the
Trojan is activated. This branch is selected as the target and it
is not covered by millions of random simulations. The number
of unrolled cycles are five cycles more than the number of
rounds to ensure that the branches in all rounds have a chance
to be activated.

The experimental results are shown in Table IV. As we can
see, the average memory reduction of our approach compared
to EBMC is 10 times. For the largest benchmark aes_40 with
1.7 million lines of code after flattening, EBMC needs at least
34GB memory while our approach only requires 3GB. Another

TABLE IV: Comparison of memory requirements using
EBMC and our approach on one target.

] . total Memory Requirements (GB)
Bench cycles lines branches | EBMC | Our | Reduction
aes_15 20 544k 123k 6.4 0.9 7.1x
aes_20 25 668k 164k 10.3 1.3 7.9x
aes_25 30 886k 205k 15.0 1.6 9.4x
aes_30 35 1003k 246k 20.7 2.1 9.9x
aes_35 40 1169k 287k 27.1 2.5 10.8x
aes_40 45 1693k 328k 343 3.0 11.4x
Average - 994k 225k 19 1.9 10x

observation is that the reduction of memory requirements
grows with the size of the benchmarks. For the smallest
benchmark, our memory reduction is 7.1 times, and it goes up
to 11.4 times for the largest benchmark. The trend of memory
requirements can also be viewed from Figure 9. The x-axis
represents the number of lines of code after flattening, and the
y-axis represents the minimum memory requirement. As we
can see, EBMC has a much steeper slope than our approach
due to its state explosion problem. It is expected that when
the size of the benchmarks keep growing, EBMC will give up
running much faster than our approach. In other words, our
approach is more scalable compared to state-of-the-art model
checking tools as well as concolic testing approaches in RTL
models.
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Fig. 9: The comparison of memory requirements of our
approach and EBMC with various sizes of benchmarks. The
circle and triangle with the same x-axis represents one bench-
mark in Table IV.

D. Effect of Target Pruning

Due to target pruning, some targets are covered by the
explored paths for the other targets. The number of pruned
targets are shown in Figure 10. We also compared the number
of targets that can be pruned by EBMC. If a target is already
activated by a test that is generated by EBMC to cover a
previous target, this target is omitted and counted as a pruned
target. Therefore, the number of pruned targets by EBMC is
partially affected by the order of targets. For a fair comparison,
we fed the targets to EBMC in the same order as our approach.
As shown in Figure 10, both our approach and EBMC pruned



over half of the targets for most of the benchmarks. However,
our approach achieves consistently better results compared to
EBMC. In particular, for the small benchmarks, such as b10
and ICache, the number of pruned targets are similar. On the
other hand, the gap of pruned targets is becoming larger when
the benchmarks become larger. There are two primary reasons
for the success of our approach. First, EBMC is used as a
directed test generation scheme. The generated test can cover
the branch targets that reside in the same simulation path of
the test. As a result, our approach is highly likely to cover
these branch targets as well by our simulation. Second, our
approach explores many paths from the initial path to our final
path to activate one specific target. These paths may come from
different parts of the design, and therefore, it is likely to cover
other targets (target pruning) or be close to some future targets
(target clustering).

For small benchmarks, the hard-to-activate branches are
prone to reside in the same rare area. Therefore, EBMC
performed well in small benchmarks. However, the hard-to-
activate branches in large benchmarks are scattered in different
parts of the design. The directed tests generated by EBMC
pruned less targets in this scenario. On the other hand, targets
are possible to be covered by some paths when our approach
is searching for solutions for previous targets. The number of
pruned targets reflects the effectiveness of target pruning. It
also demonstrates that the extremely hard-to-activate targets
dominate the overall test generation time.
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Fig. 10: The number of targets that are pruned.
E. Effect of Edge Realignment

TABLE V: The number of iterations that each block is selected
as the best alternative block in exploring paths for Listing 1.

Blocks BB2 | BB3 | BB4 | BB5 | BB6 | Cover
[34] 20 19 18 18 5 No
Our approach 0 6 5 0 0 Yes

To demonstrate the contribution of an efficient edge realign-
ment in our framework compared to a naive edge realign-
ment [34], we applied our approach on the example shown in
Listing 1 with BB7 as our target. We profiled the number of
times each block is chosen as the best alternative block through
all iterations in Table V. Assume that the number of selections
of BB2, BB3, BB4 and BB5 are x9, 3,24 and x5, respec-
tively. The target is activated only when z3+z4—xs—2x5 > 10
by statically analyzing the code in Listing 1. The first row
shows the selection of [34], where the first four blocks are

selected almost randomly, as expected from the realignment
results shown in Figure 4(b). With this random selection, the
target is not covered. On the other hand, our approach activated
the target in 11 iterations with BB3 and BB4 being selected
by 6 and 5 times, respectively.

VII. CONCLUSION

Test generation is an important step during validation
and debugging of hardware designs. Conventional validation
methodology using random and constrained-random tests can
lead to unacceptable functional coverage under tight deadlines.
While application of concolic testing on hardware designs
has shown some promising results in improving the overall
coverage, they are not designed for covering specific targets
such as uncovered corner cases and rare functional scenarios.
In this paper, we proposed a scalable test generation frame-
work using concolic testing to automatically activate targets
in RTL models. This paper made two important contributions.
(1) We proposed a directed test generation framework in
activating a single target utilizing contribution-aware edge
realignment and effective path exploration. (2) We developed
two optimization techniques to drastically reduce the overall
test generation effort involving multiple targets: (i) target
pruning to remove the targets that can be covered by the
tests generated for other targets, and (ii) target clustering to
minimize the overlapping searches by utilizing learning from
previous searches. Experimental results demonstrated that our
approach is significantly faster compared to state-of-the-art test
generation techniques. Compared to QUEBS, our approach
provides significant speedup in test generation time (up to
29140X, 4859X on average). Similarly, compared to EBMC,
our approach provides drastic improvement in test generation
time (up to 205X, 69X on average) and an order-of-magnitude
reduction in memory requirement.
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