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Abstract—Property falsification in model checking is widely used for automated generation of directed tests. Due to state space

explosion problem, traditional model checking techniques cannot handle large scale designs. SAT-based bounded model checking is

promising to address the prohibitively large time and resource requirements during the property falsification. This article presents

several efficient learning techniques that can improve the overall test generation time for a single property as well as a cluster of similar

properties. The goal is to exploit both variable assignments and common conflict clauses of the prechecked partial or similar SAT

instances for property falsification. Our method makes three novel contributions: 1) investigates the decision ordering-based learnings

for a single SAT instance; 2) applies the decision ordering learnings between similar SAT instances; and 3) exploits the relation

between the decision ordering-based learning and conflict clauses-based learning. Our experimental results using both software and

hardware benchmarks demonstrate that our approach can drastically reduce the overall test generation time.

Index Terms—Bounded model checking, directed test generation, conflict clause forwarding, decision ordering.

Ç

1 INTRODUCTION

INCREASING complexity combined with decreasing time-to-
market requirement makes the functional validation a

major bottleneck in the hardware/software design flow.
Simulation is the most widely used form of validation using
random, constrained-random tests, and directed tests. Ran-
dom and constrained-random testing [1] are easy to imple-
ment, nevertheless it is hard to guarantee the convergence to
the testing target (i.e., functional coverage). In contrast,
directed testing [2] uses fewer tests to obtain the required
functional coverage, and therefore the overall validation
effort can be significantly reduced. However, most directed
test generation methods assume the expert knowledge of the
Design Under Validation (DUV). These approaches can be
laborious and error-prone due to the inevitable human
intervention. Therefore, it is necessary to develop efficient
techniques to automate the generation of directed tests.

Due to the ability of property falsification, model checking
[6] is promising for automated generation of directed tests [5].
Fig. 1 outlines the traditional test generation method using
model checking. The design specification is transformed to a
formal model (e.g., SMV [6]), and the negated coverage
requirements are transformed as safety temporal logic
properties. During the verification of each property, model
checkers exhaustively enumerate all the possible states. If one
state contradicts the specified property, the model checker
will report a counterexample. Such a counterexample is a

sequence of variable assignments which can be used as a test
to exercise the property.

To relieve the state space explosion problem when
checking a large design, Boolean Satisfiability (SAT)-based
Bounded Model Checking (BMC) [3], [4] is proposed. By
unrolling the design and a property k times (k is the bound of
the property), BMC converts the k-step state search problem
into a Boolean SAT instance. If the property fails within
k steps, a SAT solver will report a satisfiable assignment (i.e.,
a counterexample to falsify the property). This counter-
example can be refined to a sequence of variable assign-
ments, which can be used as a test to check the functional
scenario specified by the property. Otherwise, if the property
is true, the SAT instance is always false. Since this paper
focuses on test generation, the generated SAT instances are
assumed to be satisfiable.

In this paper, the primary objective of test generation is
how to quickly get satisfiable assignments for a single SAT
instance or a set of correlated SAT instances. Since Boolean
satisfiability problem is a classical NP-Complete problem [7],
it can be practically infeasible to achieve an optimal method.
Therefore, various heuristic methods and tools [11], [12], [13],
[14] are proposed to improve the SAT searching time. Decision
ordering plays an important role during the SAT search
because different decision orderings imply different decision
trees as well as different search paths in the decision tree
which strongly affect the search time. Existing decision
ordering methods focus on exploiting the useful statistics
from the checked SAT problems involving only a single SAT
instance [31], [15], [16] or a series of incremental SAT
instances of a single property [33]. However, none of them
investigates the learning for decision ordering during the
SAT search.

During test generation involving a complex design, it
may have a large set of diverse properties to be checked.
Usually, BMC-based methods will check each of them
individually, which obviously is not time efficient. In fact,
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for the same design, similar properties describe correlated
functional scenarios. Therefore, the respective counterex-
amples are expected to have a significant overlap which can
be exploited for sharing learnings. Furthermore, even for a
single SAT instance, the result of the local search can also
benefit the global search. Our method exploits the learnings
of both conflict clauses [17], [12] and decision ordering in
the context of test generation involving one or more
properties of a design. Based on this observation, this paper
makes three important contributions: 1) investigates the
decision ordering-based learnings inside a single SAT
instance; 2) applies the decision ordering-based learnings
between similar SAT instances; and 3) exploits the relation
between the decision ordering and conflict clause forward-
ing-based learning methods.

The rest of the article is organized as follows: Section 2
presents related work on SAT-based BMC, learning techni-
ques and decision ordering heuristics. Section 3 introduces
the background of SAT-based BMC as well as the imple-
mentation details of SAT solvers. Section 4 describes our
learning techniques based on conflict clauses and decision
ordering. Section 5 proposes our test generation methodol-
ogy using efficient learning techniques. Section 6 presents the
experimental results. Finally, Section 7 concludes the article.

2 RELATED WORK

Functional validation is a major bottleneck in overall design
methodology. In order to derive efficient directed tests to
find design faults, various modeling and test generation
methods are proposed [30]. Symbolic model checking
techniques have been widely accepted as a promising
method for automated generation of tests, and many
powerful tools have been proposed for debugging complex
designs [28], [29]. Due to the scalability issues of conven-
tional Binary Decision Diagram (BDD)-based methods [18],
SAT-based BMC is proposed as a complementary solution
for large designs. Many studies [8], [9], [10] in both software
and hardware domains show that BMC has better capacity
and productivity over unbounded model checking for real
designs. Currently, there are several techniques to improve

test generation performance. Abstraction [19] is widely used
to scale down the design state space. Based on counter-
example guided abstraction refinement, Bjesse and Kukula
[20] presented a method to generate stepping stones from
abstract systems and divide the search into a number of
short searches. Unlike abstraction, property decomposition
proposed by Koo and Mishra [21] is another way to scale
down the complexity. They proposed a method that can
decompose a complex property into several equivalent
subproperties. By combining the tests obtained from
subproperties, this method generates the counterexample
for the complex property. Both abstraction and decomposi-
tion techniques seems promising, however, it is hard to
implement them automatically.

Sharing learning across properties can improve overall
test generation performance since the repeated validation
efforts can be avoided. Due to the incremental nature of BMC,
SAT techniques [22], [23] try to exploit the commonality
between SAT instances and reuse previously learned conflict
clauses to prune current search tree. Strichman [23] found
that when solving the SAT instance series of a property, some
conflict clauses can be replicated and forwarded because of
the symmetry of the transition part of the property. In [24],
Chen and Mishra observed that during directed test genera-
tion using SAT-based BMC, similar properties can be
clustered and solved together. For each cluster, they reused
the learned knowledge of base (first) property to solve other
properties. For a large design, there may be a large number of
similar properties for test generation. They proposed several
useful clustering criteria to cluster the properties and then
share the learning (i.e., conflict clauses) among the properties
in a cluster. Such clustering method can reduce the overall
test generation time. However, the learning techniques based
on the conflict clause forwarding need to calculate intersec-
tion between different SAT instances which may be time
consuming. In addition, checking the first property in a
cluster will remain a major bottleneck since there is no prior
knowledge (learning). In this paper, we investigate both
variable ordering and conflict clauses as learning knowledge
to reduce the overall test generation time.

Different variable ordering will lead to different search
trees, therefore a good branching heuristics can improve the
SAT searching performance significantly [31]. In [15],
Durairaj and Kalla proposed a promising method based
on constraint partitioning on the hypergraph of a CNF-SAT
instance. By analyzing the process of partitioning, the
variable ordering can be derived to guide the CNF-SAT
search. They also investigated the initial static variable
ordering for efficient SAT search in [16]. They proposed a
new metric to indicate the degree of correlation among
pairs of variables. The variable activity and correlation
information can be modeled as a weighted graph, and the
variable ordering information can be derived by analyzing
the topology of the graph. As a popular SAT solver, zChaff
uses the Variable State Independent Decaying Sum (VSIDS)
heuristic [12]. This heuristic contains two parts: 1) the static
part collects the statistics of the Conjunctive Normal Form
(CNF) literals prior to SAT solving and sets the initial
decision ordering, and 2) during the SAT solving, the
dynamic part periodically updates the priority based on
conflict clauses. Although the above general-purpose
heuristics are promising for propositional formulas, they
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neglect some unique information of BMC. In [32], Strichman
exploited the characteristics of the BMC formulas for a
variety of optimizations including decision ordering. When
the bound is unknown, SAT-based BMC needs to increase
the unrolling depth one-by-one until finding a counter-
example. Wang et al. [33] analyzed the correlation among
different SAT instances of a property. They used the
unsatisfiable core of previously checked SAT instances to
guide the variable ordering for the current SAT instance. In
[27], Zhang et al. studied the BMC-specific ordering
strategies for SAT solvers. They proposed a method using
clever orchestration of variable ordering and learned
information in an incremental framework for BMC.

Our approach uses both decision ordering and conflict
clauses to reduce the test generation time for a single SAT
instance as well as for a cluster of similar SAT instances.
The comparison between various learning techniques is
provided in Section 6.

3 PRELIMINARIES

This section first introduces SAT-based BMC. Next, we
present two important issues during the SAT search:
conflict clause forwarding and decision ordering.

3.1 SAT-Based BMC

SAT-based BMC is very promising to locate the errors and
report the counterexample for a faulty property when bound
is known a priori. Given a model M, a safety property p, and
a bound k, BMC will unroll the model k times and transform
the problem into a Boolean formula as follows:

BMCðM;p; kÞ ¼ Iðs0Þ ^
k̂�1

i¼0

T ðsi; siþ1Þ ^
_k
i¼0

:pðsiÞ: ð1Þ

It consists of three parts: 1) Iðs0Þ presents the system initial
state, 2) T ðsi; siþ1Þ describes the state transition from state si
to state siþ1, and 3) pðsiÞ tests whether property p is true on
state si. Then this formula will be transformed to CNF and
solved by SAT solvers. Semantically, if there is a satisfiable
assignment for this property, then the property is false,
written M 6�k p. Otherwise, it means that the property holds
for the design within bound k, written M �k p.

Davis-Putnam-Logemann-Loveland (DPLL) algorithm
[35] is widely used for SAT search. Algorithm 1 shows its
implementation in zChaff. It contains three parts:

. Periodic function updates the SAT configuration
triggered by some specified events, such as updating
the scores of literals after a certain number of
backtracks.

. Boolean Constraint Propagation (BCP) is implemen-
ted in deduce. It figures out all possible implications
by previous decision assignment.

. Conflict analysis does a proper backtrack when
encountering a conflict. It analyzes the reason for the
conflict and make it as a conflict clause to avoid the
same conflict in future processing.

Studies [12] show that modern SAT solvers spend
approximately 80 percent of time to carry out BCP. In
addition, during the conflict analysis, long distance back-
tracks will increase the burden of SAT solvers. Our method
tries to optimize both parts by using the learning based on

decision ordering. The learning can guide the SAT search so
that it can drastically reduce the search time.

3.2 Conflict Clause Forwarding

As shown in Algorithm 1, SAT solvers use the conflict
analysis technique to trace the reason for a conflict. The
conflict analysis contains two parts: conflict-driven back-
tracking and conflict-driven learning. Conflict-driven back-
tracking enables the nonchronological backtracking up to the
closest decision which caused the conflict. Conflict-driven
learning learns some knowledge and save them in conflict
clauses and adds them to the original clauses, in order to
avoid the same conflict in the future. Both techniques can
drastically boost the performance of the SAT solvers.

The kernel of the conflict analysis technique is the
implication graph [13], [17]. The graph keeps the current
state and the implication history of the searching during the
SAT solving by recording the dependence of the variable
assignments. The implication graph is a directed acyclic
graph where each vertex represents an assignment to a
variable and each edge implies that all the in-edges
implicate the assignment of the vertex.

Fig. 2 shows a small example of conflict analysis using an
implication graph. As shown at the left of the figure, there
are five original clauses C1-C5. The right part is a scenario of
implication graph for C1-C5. In this example, x4@4 means
variable x4 is assigned value 1 at decision level 4. The node
has a corresponding clause ðx10 þ x4þ x5Þ, we call it the
antecedent clause of x4, i.e., the assignments x1 ¼ 1 and
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x5 ¼ 0 imply x4 ¼ 1. Only the implication vertex (nondeci-
sion vertex) has an antecedent clause. A conflict happens
when there are two nodes in the implication graph that have
the different value assignments to the same variable. For
example, the implications in the graph lead to the conflicting
assignment to variable X8 (X8 ¼ 0 and X8 ¼ 1). When
encountering a conflict, conflict analysis will trace back
along the implication relations to find the reason for the
conflict and encode the reason using a conflict clause. A
conflict clause can be found by a bipartition of the
implication graph. The side containing the conflicting vertex
called conflict side, and the other side is called reason side
which can be used to form the conflict clause. In Fig. 2,
CUT1 is a cut that divides the implication graph into two
parts. The conflict analysis stops at CUT1. The left part of
CUT1 in the implication graph is the reason side, and the
right part is the conflict side. From the reason side, we can
get the conflict cluase C6 ¼ ðX1þX50 þX60 þX7Þ. That
means, the assignment of variables X1 ¼ 1, X5 ¼ 0, X6 ¼ 0,
and X7 ¼ 1 will always lead to a conflict because of the
clauses C1-C5. Lemma 3.1 indicates that the generated
conflict clauses during the SAT search can be added to
original clause set as an assignment constraint. Therefore,
we can add the clause C6 to the original clause set to avoid
the same conflict in the future.

Lemma 3.1. Given a set of CNF clauses S1 and a conflict clause
 (derived during the conflict analysis), S1 is satisfiable iff
S1
V
 is satisfiable.

Proof. Because S1
V
 is a superset of S1, so if S1

V
 is

satisfiable then S1 is satisfiable. According to the
definition of the conflict clause, the assignments that
make the clause  false will make the clause set S1 false.
If S1 is satisfiable, then there exists a variable assignment
that makes S1 true. This assignment should make  true.
So the assignments will make S1

V
 true. tu

For two SAT instances, if one instance is a subset of the
other SAT instance, according to Theorem 3.2, the conflict
clauses generated from the smaller SAT instance can be
forwarded to the larger SAT instance. In other words, the
local learning can be forwarded as a knowledge for global
searching. Usually the average cost of locally learned
conflict clauses is much cheaper than the globally learned
conflict clauses.

Theorem 3.2. Given two CNF clause sets S1 and S2, where
S1 � S2, and a conflict clause  derived from the clauses in
S1, written S1 ‘  , S2 is satisfiable iff S2

V
 is satisfiable.

Proof. Because S2
V
 is a superset of S2, so if S2

V
 is

satisfiable then S2 is satisfiable. Because S1 ‘  and
S1 � S2, then is also a conflict clause of S2. According to
Lemma 3.1, S2 is satisfiable iff S2

V
 is satisfiable. tu

According to the (1), similar properties will share a large
part of the CNF clauses. Regardless of the cone of influence,
the equation shares the system part (transition relation
T ðsi; siþ1Þ) and the part of property testing (i.e., pðsiÞ).
Sharing a large part of CNF clauses indicates that when
checking of the first property, the learned knowledge
(conflict clauses) can be forwarded to the second property

without affecting the truth assignments of the CNF clauses
of the second property.

Theorem 3.3. Given two set of CNF clauses S1 and S2, and let
! ¼ S1

T
S2 be the common clauses shared by both S1 and

S2.  is a conflict clause derived only by the clauses in !,
written ! ‘  . Then S2 is satisfiable iff S2

V
 is satisfiable.

Proof. Because S2
V
 is a superset of S2, so S2

V
 is

satisfiable then S2 is satisfiable. Because ! ‘  and
! � S2, then S2 ‘  . According to Lemma 3.1, S2 is
satisfiable iff S2

V
 is satisfiable. tu

3.3 Decision Ordering

Decision ordering plays an important role during the SAT
search. It indicates which variable will be selected first and
which value (true or false) will be first assigned to this
variable. Similar to BDD-based methods [18], variable
ordering determines the performance of the SAT solving
time. In the VSDIS heuristics implementation of zChaff, each
literal l is associated with a zchaff_score(l) which is used for
decision ordering at decide_next_branch(). Initially the score is
equal to the literal count in corresponding CNF file. During
the SAT solving, the score will be updated in the periodic
function after a certain numbers of backtracks. The calcula-
tion of the new literal score is as follows:

chaff scoreðlÞ ¼ chaff scoreðlÞ=2þ lits in new confsðlÞ;
ð2Þ

where lits_in_new_confs(l) is the number of newly added
conflict clauses which contain literal l since last update.

4 SAT-BASED LEARNING TECHNIQUES

Similar properties usually have similar counterexamples
which indicates that they may have similar Boolean con-
straints during the test generation. Consequently the gener-
ated SAT instances should have a large overlap in CNF
clauses and can be clustered to share the learning. This section
presents our learning heuristics which can be incorporated in
the test generation approaches proposed in Section 5.

4.1 Overview

As discussed in Section 3.1, the most time-consuming parts
are BCP and long distance backtracking. They are indicated
by implication number and conflict clause number which
represent the successful decision ratio and backtrack
number, respectively. Ideally, a search method can get a
satisfiable assignment by making the assignment for each
variable only once. However, generally it is impossible to
achieve such scenario. For a cluster of similar properties
and predetermined bounds, the objective of our method is
to reduce the number of implications and conflict clauses of
unchecked properties by incorporating the learned decision
ordering knowledge from previously checked properties.

Assuming that we have two similar properties, both
properties will have a large overlap on CNF clauses and
counterexample assignments. Fig. 3 shows the partial views
of search trees and search paths of the two properties. The
search paths are formed according to the decision ordering
(shown on top of the search trees). For each variable v in
the ordering, there are two literals (v means v ¼ 1 and
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v0 means v ¼ 0). As shown in Fig. 3a, there are six conflicts
encountered. The search stops after finding a satisfiable
assignment a ¼ 1, b ¼ 0, c ¼ 0, and d ¼ 1 in this scenario. In
Fig. 3b, the search will be successful only when a ¼ 0, b ¼ 0,
c ¼ 0, and d ¼ 1 after encountering 14 conflicts. Therefore,
the search of the second example will be more time
consuming because of more backtracks.

Because of the large overlap in the assignment of
counterexamples, the result of previously checked proper-
ties can be used as a learning for unchecked properties. For
example, in Fig. 3, the result of first example strongly
indicates the assignment of the second example because of
the satisfiable assignment intersection b ¼ 0, c ¼ 0, and
d ¼ 1. If the second example uses the decision ordering
based on the variable assignments in the first example, the
searching time of the second example can be drastically
reduced as shown in Fig. 6.

4.2 Decision Ordering-Based Learning (DOL)

Decision ordering involves two questions: 1) Given a
Boolean variable, which value (true or false) will be chosen
first? and 2) For a set of Boolean variables, which one will be
determined first? This section presents how to utilize the
decision ordering-based learnings to guide the SAT search.

4.2.1 Bit-Value Ordering

Similar properties generally have a large intersection of both
corresponding CNF clauses and counterexample assign-
ments. This indicates that the satisfiable assignment of
checked SAT instances contain rich decision ordering knowl-
edge for unchecked SAT instance. In SAT search, incorrect
value selection for each variable will cause conflicts which
will result in backtracks to remove the reason of the conflicts.
A good decision ordering can mostly avoid such faulty
assignments. Unlike pruning the search tree using conflict
clause forwarding [24], bit-value ordering changes the search
path. By setting the bit priority (choose 0 or 1 first) for each
variable using the knowledge of previous property checking,
the length of the search path can be reduced.

Fig. 4 shows an example where bit-value ordering works.
As shown in Fig. 3a, we can get a satisfiable assignment
a ¼ 1, b ¼ 0, c ¼ 0, and d ¼ 1. This assignment can be used
to change the bit-value ordering of the second example.
That means, when node b is encountered, the search chooses
b ¼ 0 first in its search path. The same rule also applies on

other nodes. Applying such heuristics in Fig. 4b, there are
only eight conflicts encountered compared to 14 conflicts in
Fig. 4a. In addition, the search path is also shortened.
Therefore, the searching time is reduced.

It is important to note that the bit-value ordering itself is
not always helpful for the SAT searching. For example in
Fig. 5, a ¼ 1, b ¼ 1, c ¼ 0, and d ¼ 1 is the only satisfiable
assignment in the given scenario. The searching in Fig. 5a
without bit-value ordering is faster than the searching in
Fig. 5b because of less conflicts. If the learning assignment
in Fig. 5 was a ¼ 0, b ¼ 1, c ¼ 0, and d ¼ 1, the searching
performance will be much worse than the search in Fig. 5b.
Clearly, in the search tree, the high-level variables (e.g.,
node a) strongly affect the performance of the searching if
they are not consistent with learned bit-value ordering.

4.2.2 Variable Ordering

Although bit-value ordering is promising in general, there
are still a lot of conflicts encountered during the search.
According to the example shown in Fig. 5, if high-level
nodes (e.g., node a) make the wrong decision, the search
path will be lengthened due to the long distance backtrack.
To reduce the searching time, it is necessary to restrict the
conflict detection and reasoning in a small area.

Efficient combination of variable ordering and bit-value
ordering is very promising. As shown in Fig. 6b, the search
time is better than that in Fig. 6a due to a shorter search path
and less conflicts. The reason of this improvement is that we
enhance the priority of variables b and c. Since a is the
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variable with different values between the two satisfiable
assignments shown in Fig. 3, lowering down the priority of
such variables (ones with different values between two
CNFs) can efficiently avoid the long distance backtrack.
Generally, before SAT solving, it is hard to figure out the
difference between two satisfiable CNF variable assign-
ments. However, based on the value assignment statistics of
the checked properties, the variable ordering can be con-
structed. For a variable with the lower assignment value
variation, which indicates high chance of same value, we will
enhance its priority by increasing the score of its two literals.

4.3 Hybrid Learning from Conflict Clauses and
Decision Ordering

Conflict clause is promising to avoid repeated conflicts
during the SAT searching. Therefore, it is widely used as a
learning during the test generation [24]. In essence, conflict
clause forwarding can be used to prune the decision tree
and can be utilized as a complementary approach for the
decision ordering techniques proposed in Sections 4.2.1 and
4.2.2. For two similar SAT instances, if the conflict clauses of
the checked SAT instance can be forwarded to the
unchecked one, it will reduce the conflicts, thus further
shorten the search path.

Fig. 7a shows application of bit-value ordering on the
example shown in Fig. 3b. There are eight conflicts during
the SAT search in this case. Let’s assume the conflict clauses
generated from Fig. 3a can be forwarded to the CNF clauses
of Fig. 3b. The generated six conflict clauses are as follows:

ða0 _ b0 _ c0 _ d0Þ
ða0 _ b0 _ c0 _ dÞ
ða0 _ b0 _ c _ d0Þ
ða0 _ b0 _ c _ dÞ

9>>=
>>;
) ða0 _ b0Þ; ð3Þ

ða0 _ b _ c0 _ d0Þ
ða0 _ b _ c0 _ dÞ

�
) ða0 _ b _ c0Þ:

Equation 3 shows the resolution of the forwarded conflict
clauses. Based on the result, we can prune the search tree as
shown in Fig. 7b. It indicates that there are only two conflicts
by applying the bit-value ordering on the pruned search tree.
Therefore, the test generation time can be significantly
reduced. For the example shown in Fig. 6b, the conflict clause
forwarding is not beneficial since the search does not traverse
the pruned part of the decision tree. Generally, the conflict

clause forwarding can further improve the performance of
the decision ordering based methods.

5 TEST GENERATION USING LEARNING

TECHNIQUES

For model checking-based test generation, each property is
a negation of a desired system behavior. Consequently each
property can produce a counterexample (test). Since our
method adopts SAT-based BMC, in this paper, we assume
that the bound can be predetermined and the generated
SAT instances are satisfiable. Determination of bound is
hard in general. However, for directed test generation, the
bound can be estimated by exploiting the structure of the
design. That means we can make sure the generated SAT
instance for the specified property is satisfiable. The process
of test generation for the property with a known bound is to
figure out a satisfiable assignment for this SAT instance.

To reduce the overall test generation effort, this section
utilizes the heuristics proposed in Section 4 as learnings.
Section 5.1 applies learnings for test generation of a single
property. In Section 5.2, we present an algorithm which
shares the learnings among a cluster of similar properties.

5.1 Test Generation for a Single Property

When checking the first (base) property using property
clustering techniques, or when checking only a single
property, current methods solve the SAT instance alone
since there is no source of learning. Therefore, it is time
consuming and it can be a major bottleneck of the clustering-
based test generation approach [24].

During test generation, if the bound of a property is
increased by one, the test generation time will be drastically
increased. Based on the observation of [32], the reason of time-
consuming search is due to the long distance backtracking.
Since large set of clauses that belong to different distant cycles
are being satisfied independently (locally), [32] found that
there are three typical scenarios which can cause the conflicts:

. Distant cycles are being satisfied independently until
they collide each other with assignment conflict.

. Some cycle assignment collides with the constraints
imposed by the initial state.

. Some cycle assignment collides with the constraints
imposed by the negation of the specified property.
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The resolution of such conflicts needs to cancel large number
of variable assignments between the conflicting cycles.
Especially for the SAT instance with large bound, the cost
of nonchronological backtracking is still huge since large
bound indicates huge number of clauses and variables.

To alleviate long distance backtrackings during test
generation, learning is required to guide the SAT search.
Conflict clause is a promising learning that can prune the
decision tree. However, in a SAT instance with large bound,
the cost of deriving conflict clauses is costly due to large
interleaving of irrelevant variables. Furthermore, a large set
of CNF clauses is likely to generate a large number of conflict
clauses which can affect the search performance. Therefore, if
we can get conflict clauses from a smaller SAT instance, the
average cost of conflict clause generation will be reduced. As
an alternative, decision ordering can be used as learning.
Since the SAT instance is assumed to be satisfiable, each
segment1 of the CNF clauses should be satisfiable. The
searching time for a segment is much shorter than the original
SAT instance. Although a segment cannot reflect the global
view of the system, if the satisfiable assignment of the
segment is consistent to the partial variable assignment of the
original SAT instance, it will reduce the overall test
generation time of the original SAT instance.

5.1.1 Heuristic Implementation

The basic idea of our heuristic for test generation involving
a single property is to use the learning from a small part of
the SAT instance to guide the search of the whole SAT
instance. By dividing the SAT instance into two segments,
we can get the first segment which contains the initial state
constraints and the second segment which contains prop-
erty constraints. After checking any one of them, we can get
the partial variable assignments which can be used as
decision ordering learning, and we can get the conflict
clauses which can be forwarded to the original property
according to Theorem 3.3. Fig. 8 demonstrates an example
of using such learnings. In Fig. 8b, we first check one part of
the SAT instance and get the corresponding learnings. Then
during the checking of whole SAT instance, under the
guidance of the learned knowledge, the overall search path
is shortened compared to Fig. 8a.

Our decision ordering heuristics implementation uses an
array var½sz� (sz is the largest variable number for CNFs) to
indicate the satisfiable assignment result of the first search.
Each element of the array var½i� (0 < i � sz) has three

values: 1 means that the ith variable is assigned with 1; 0

means that the ith variable is assigned with 0; and �1

implies that the variable is not assigned during the first

search. So during the second search, the literal score is

calculated using the following equation where maxðviÞ ¼
MAXðchaff scoreðviÞ; chaff scoreðv0iÞÞ þ 1:

scoreðliÞ ¼
maxðviÞ; ðvar½i� ¼¼ 1 & li ¼ viÞ;

orðvar½i� ¼¼ 0 & li ¼ v0iÞ;
chaff scoreðviÞ; otherwise:

8<
:

ð4Þ

5.1.2 Test Generation Using Intraproperty Learning

Algorithm 2 describes our test generation procedure for a

single property using learnings from some part of the SAT

instance corresponding to the original property. Step 1

initializes all the elements of var with �1. Step 2 generates

the CNF clauses for the property p. After dividing the CNF

in step 3, step 4 solves the clauses in any one part and

derives the learning in the form of decision ordering and

conflict clauses. Step 5 updates the var. Finally, step 6 uses

the learning to guide the test generation of the original

property. In this paper, for intraproperty learning, we

divide a SAT instance into two segments with the same

number of clauses (when the total clause number is odd, the

difference of clause number between segments is 1).

Algorithm 2. Test Generation for a Single Property

Input: i) Formal model of the design, D

ii) Property p with bound b

Output: A test t for p with generated conflict clauses

1. Initialize var;

2. CNF ¼ BMCðD; p; bÞ;
3. Divide CNF into CNF1 and CNF2;

4. ðassign; conf cls1Þ ¼ SATðCNF1 or CNF2; var;NULLÞ;
5. Update var using assign;

6. ðt; conf cls2Þ ¼ SATðCNF; var; conf cls1Þ;
return ðt; conf cls1þ conf cls2Þ;

It is important to note that our heuristic for a single

property is based on the assumption that the decision

ordering knowledge learned from the first search has a large

overlap with a satisfiable assignment of the second search.

Although the forwarded conflict clauses can prune the

decision space, it is still possible that the first search may

mislead the second search which will aggravate the overall

searching time. Since we divide the SAT instance into two

parts and each part can be checked individually, for test

generation, we use the following three strategies in parallel:

1. Directly solve the original SAT instance.
2. Solve the first part and then use the learnings to

solve the original instance.
3. Solve the second part and then use the learnings to

solve the original instance.

Once one of above methods finds a satisfiable assignment

for the original SAT instance, the remaining two processes

will be terminated. Therefore, we can guarantee the worst

case of the test generation time is the same as directly

solving the original SAT instance.
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1. A CNF-SAT instance can be viewed as a union of a set of segments
where each segment consists of a set of CNF clauses.

Fig. 8. Learning techniques for a single property.



5.2 Test Generation for Similar Properties

For similar properties, there exists a large overlap between
corresponding counterexamples. Therefore, the satisfiable
assignments of checked properties can be used as a learning
for solving other properties in the cluster. Some of the
derived conflict clauses can also be forwarded as learning.
This section will discuss how to extract the bit-value
ordering and variable ordering-based learnings from the
checked properties in details. Also, we will describe an
algorithm to utilize the learning based on decision ordering
for test generation of a cluster of similar properties.

5.2.1 Heuristic Implementation

In our heuristic implementation, we predict the decision
ordering based on the statistics collected from the checked
properties. Let varStat½sz�½2� (sz is the largest variable
number for CNFs) be a 2-dimensional array to keep the
count of variable assignments. Initially, varStat½i�½0� ¼
varStat½i�½1� ¼ 0 (0 < i � sz). varStat will be updated after
checking each property. Assuming we are now checking
property pj, if the value of variable vi in the assignment of the
pj is 0, then varStat½i�½0� will be increased by one; otherwise,
varStat½i�½1�will be increased by one. This updated informa-
tion of varStat will be utilized when checking property pjþ1.

For example, if we have three properties p1, p2, and p3,
the statistics after checking p1 and p2 are shown in Fig. 9.
When checking p3, we can predict its decision ordering
based on the collected information saved in varStat. The
content of varStat indicates that variables a and b are more
likely to be 0, c is more likely to be 1 and d can be assigned
any value. Furthermore, varStat implies that the assign-
ments for variable a, b, and c are more consistent than the
assignment for variable d. Thus, the score of variable a, b,
and c will be increased. In other words, they will be
searched first as described in Section 4.2.2.

Assuming li is a literal of vi, we use the following
equation to predict the bit-value assignment of vi when
checking pjþ1:

potentialðliÞ ¼
1; ðvarStat½i�½1� < varStat½i�½0�&li ¼ viÞ;

orðvarStat½i�½1� < varStat½i�½0�&li ¼ v0iÞ;
0; otherwise:

8<
:

ð5Þ

Here, potentialðliÞ ¼ 0 means that value of li is more likely
to be 0 in the satisfiable assignment of pjþ1. For example, in

Fig. 9, potentialðaÞ ¼ 0 which means that a is more likely to
be assigned with 0. Let

ratioðiÞ ¼ maxðvarStat½i�½0�; varStat½i�½1�Þ þ 1

minðvarStat½i�½0�; varStat½i�½1�Þ þ 1
; ð6Þ

indicates the assignment variance of variable vi. The larger
ratioi means that the value assignments for variable vi are
more consistent. So it can be used for variable ordering.

Our decision ordering heuristic is based on VSIDS. The
only difference is that our method incorporates the
statistics of previously checked properties. For each
literal li, we use scoreðliÞ to describe its priority. Initially,
scoreðliÞ is equal to the literal count of li. At the beginning
of search as well as periodically decaying time, the literal
score will be recalculated using the following equation
where maxðviÞ ¼MAXðscoreðviÞ; scoreðv0iÞÞ þ 1:

scoreðliÞ ¼
maxðviÞ � ratioðiÞ; pontentialðliÞ ¼ 1;
scoreðliÞ � ratioðiÞ; otherwise:

�
ð7Þ

5.2.2 Test Generation Using Interproperty Learning

Algorithm 3 describes our test generation methodology. The
inputs of the algorithm are a formal model of the design and
a cluster of similar properties. The first step initializes
varStat which is used to keep statistics of the variable
assignments. Step 2 generates the CNF clauses for the base
property p1. Step 3 generates the CNF clauses for other
properties. Step 4 derives the test for a base property using
the method proposed in Section 5.1.2. Steps 5-6 generate tests
for the remaining properties in the cluster. When solving
each property, we need to update the varStat accordingly in
step 5. Step 6 solves the current property using the learnings
based on decision ordering. Finally, the algorithm reports all
the generated counterexamples (tests). It is worthy noting
that sharing conflict clauses among properties needs to
calculate the intersection between the base property and
other properties in a cluster. The overhead of intersection
calculation is not negligible and can be larger than the test
generation time for the nonbase properties. Therefore, in this
algorithm we use the hybrid learning for the base property,
and for the remaining properties we adopt the decision
ordering-based learning. We refer this approach as
Hybrid! DOL.
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Fig. 9. Statistics for two properties.



6 EXPERIMENTS

This section presents case studies for efficient test genera-
tion using our decision ordering as well as conflict clause-
based heuristics. Section 6.1 presents the case studies using
intraproperty learnings for checking individual SAT in-
stances. The benchmarks collected are all pregenerated
satisfiable SAT instances. Section 6.2 presents two case
studies: a VLIW implementation of the MIPS architecture
[38] and a stock exchange system [25]. For each case study,
we generate a number of properties and group them into
several clusters according to their similarity. By using
intraproperty learning for the base property of the cluster
and interproperty learning for the other properties in the
same cluster, the overall test generation time can be
reduced. We used NuSMV [40] to generate the CNF clauses
(in DIMACS format). We modified the SAT solver zChaff
[39] to incorporate our proposed decision ordering heuristic
on top of VSDIS. The experimental results are obtained on a
Linux PC using 2.0 GHz Intel Core i7 CPU with 3 GB RAM.

6.1 Intraproperty Learning

The benchmarks are collected from [36] and [37]. In [36],
there are 13 SAT instances given in the benchmark set
which are all taken from real industrial hardware designs
(contribution of IBM research and Galileo). We only chose
four complex instances from them, because for most other
SAT instances provided in [36] the falsification time is so
short that the improvement of test generation is not
obvious. Apart from these four benchmarks, we also chose
the benchmarks of two complex designs from [37] as
follows: Since we are focusing on test generation, the
collected SAT instances are all satisfiable.

1. VLIW-SAT-4.0, buggy VLIW processors with in-
struction queues and 9-stage pipelines; the proces-
sors support advanced loads, predicated execution,
branch prediction, and exceptions.

2. PIPE-SAT-1.1, buggy variants of the pipe bench-
marks and generated as presented in [34].

Table 1 shows the test generation details using various
intraproperty learning techniques. The first column shows
the names of the SAT instances. The second and third
columns indicate the CNF size information including the
variable number and clause number. The fourth column
indicates the checking time by directly using zChaff [39]
without any other learning information. The fifth column
shows the checking time using intraproperty learning based
on conflict clause forwarding, and the sixth column shows
the test generation time using our decision ordering-based
technique. The seventh column presents the result of our
hybrid learning which incorporates both conflict clause
forwarding and decision ordering techniques as described
in Section 4.3 and implemented in Algorithm 2. The
execution time in columns 5-7 includes the learning time
from divided/segmented CNFs. It is important to note that
all the learning methods are not always helpful for the test
generation. This is because the learning methods may lead
the search in a wrong way with more conflicts. However
since we run different methods on different computers with
the same settings, when one machine gets the satisfiable
assignment, all the remaining SAT searches on the other
machines will be terminated. Therefore, the SAT searching
time is the minimum searching time among these techniques.
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Based on such minimum time, the last column indicates the
maximum speedup using the following equation:

max speedup ¼ zChaff

MINðzChaff; CCF; DOL; HybridÞ; ð8Þ

where zChaff , CCF , DOL, and Hybrid indicate the test
generation time (in seconds) of column 4-7 in Table 1,
respectively. In the last row, we provide the maximum
speedup for the 24 SAT instances using different methods.
To explicitly compare the performance of the four methods,
in this table, we make the best results in bold fonts.

Table 1 shows that our methods can drastically reduce
the test generation time (up to 191 times) in most cases
(22 out of 24 SAT instances). We can observe that the
conflict clause forwarding-based method achieves better
performance than zChaff for 20 out of 24 examples. For
decision ordering-based method, it has a better overall test
generation time (11,534.41 s) than conflict clause forward-
ing-based method (12,866.24 s). However, this is largely due
to the test generation improvement in the SAT instance
“PIPE-9.” Therefore, compared to the conflict clause
forwarding-based method, decision ordering is not quite a
promising intraproperty learning for the test generation of a
single SAT instance. As shown in the last row of the table,
the hybrid method achieves the best overall performance
(with a speedup of 2.56 times in total test generation time).
The hybrid method outperforms conflict clause forwarding-
based method in 15 SAT instances and outperforms
decision ordering-based method in 14 out of 24 SAT
instances. Moreover, the hybrid method can achieve the
best performance in 14 out of 24 SAT instances. Therefore,
the hybrid method is the first choice of intraproperty
learning when there is only one computer available.

Figs. 10 and 11 show the statistics of conflicts and
implications for the collected benchmarks using various
intraproperty learning methods. We normalized the gener-
ated conflict clauses for each learning method using the total
conflict clauses and implications generated by the four
different methods shown in Table 1. The vertical axis of the
stacked graphs shows the normalized percentage of conflict
clauses and implications, respectively. We can find that the
result of the percentages of conflict clauses and implications
are consistent. In other words, less conflicts will result in less
implications. Furthermore, these figures also are consistent
with the test generation performance results shown in Table 1.

For example, in case of “PIPE-1” in Table 1, the order of the
test generation time is zChaff > CCF > DOL > Hybrid. In
Figs. 10 and 11, we can find the percentage of the evaluated
metrics is also in the same order. Therefore, if parallel
invocation of methods is not possible, hybrid learning should
be employed.

6.2 Interproperty Learning

6.2.1 A MIPS Processor

This case study investigates a simplified version of an MIPS
processor [38]. It consists of five pipeline stages: fetch,
decode, execute, memory, and writeback. In this case study,
we focus on the validation of pipeline paths (ALU, DIV,
FADD, and MUL) in the execute stage. Targeting to check
whether each pipeline path can give the correct outputs, we
derived a set of 16 properties to generate the required
directed tests by applying our methodology.

Table 2 shows an example of an LTL property derived for
test generation. The property is in the form of “!F ðpÞ” which
asserts that the functional scenario pwill never happen. Since
we assume that the specified scenario p is correct, the
corresponding SAT instance will be satisfiable and its true
assignment can be used to derive the test to activate p. For
example, the property p refers to a functional scenario of the
multiplication operation from the decode stage to the write-
back stage. When decoding an instruction, we can get the
value of its operands (mulOP src1 ¼ 4 andmulOP src2 ¼ 5)
from registers, operation (mulOP opcode ¼ mul) and target
register address (mulOP_dest=1). Since multiplication pipe-
line needs seven clock cycles to finish the calculation, there is
a delay of eight clock cycles to get the final result in the
writeback stage. The property p asserts that after eight clock
cycles, the targetReg1 address does not have the correct value
20. By using our framework, we can get a directed test (i.e., a
sequence of instructions) to falsify this property.

According to the structure similarity proposed in [24],
we cluster the properties of each pipeline path together to
share the learning. There are four clusters and each cluster
has four property. Table 3 shows the test generation results
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Fig. 10. Conflict statistics using various intraproperty learnings. Fig. 11. Implication statistics using various intraproperty learnings.

TABLE 2
A Negated Property for MIPS Processor



for each cluster. The first column indicates the component
under test. The second column shows the properties used
for test generation. The third and fourth columns show the
CNF size information including the variable number and
clause number. The fifth column gives the test generation
time using zChaff [39]. The sixth, seventh, and eighth
columns present the results using the method proposed in
[24]. Since the conflict clause forwarding-based method
needs to explore the common clauses, we need to figure out
the intersection between SAT instances. Therefore, the sixth
column gives the intersection time. The seventh column
gives the checking time under the learning of conflict
clauses. The eighth column gives the speedup over zchaff
(speedup ¼ zChaff Time

Intersection Time þ Checking Time ). The ninth and tenth
columns give the test generation result only using our
decision ordering-based learnings. They indicate both the
result of test generation time and speedup over zChaff. It is
important to note that DOL does not consider how to
reduce the test generation time for the base property. To
further reduce the overall test generation time, we adopts
the Hybrid! DOL method described in Section 5.2.2 and
implemented in Algorithm 3 which is a combination of intra

and interproperty learnings. The last two columns show the
result using this method.

In Table 3, we found that the decision ordering is a better
interproperty learning than conflict clauses. The decision
ordering learning-based method can achieve 3.5-4.5 times
improvement compared to the method using zChaff.
Furthermore, Hybrid! DOL method outperforms other
three methods. Since the base property is a major bottleneck
of the clustering methods [24], the test generation time
reduction of the base property using hybrid learning can
drastically increase the overall performance. Therefore,
Hybrid! DOL method can achieve the best performance
with 6-9 times improvement compared to the method using
zChaff.

During the SAT searching, the number of conflict clauses
and the number of implications strongly indicate the
searching time. Fig. 12 illustrates the conflict clause genera-
tion for each property during the search using different
methods. Fig. 13 shows the corresponding implication
numbers. It can be seen that, by using our methods, the
number of conflict clauses and implications can be reduced
drastically by several orders-of-magnitude, which results in
significant improvement in test generation time. We can find
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Fig. 12. Conflict statistics for MIPS processor.

TABLE 3
Test Generation Result for MIPS Processor

Fig. 13. Implication statistics for MIPS processor.



that the decision ordering based method performs better
than conflict clause forwarding-based method because of
less conflicts and implications encountered. Furthermore,
the decision ordering method does not need to calculate the
CNF intersections which is time consuming. Among the four
methods, Hybrid! DOL method can achieve least number
of conflicts and implications for base properties (i.e., p1, p5,
p9, and p13), which justifies our discussion in Section 4.3. It
can achieve the best performance in 8 out of 12 nonbase
properties (i.e., p3, p6, p10, p11, p12, p14, p15, and p16). Therefore,
hybrid! DOL method gives the best performance in the
overall test generation time.

6.2.2 A Stock Exchange System

The online stock exchange system (OSES) is a small-size
software system which is implemented in JAVA and
consists of seven packages, 39 classes, 372 methods, and
2,510 lines. The formal NuSMV description of OSES is
derived from its UML activity diagram specification, which
contains 27 activities, 29 transitions. It mainly deals with
three scenarios: accept, check, and execute the customers’
orders (market orders and limit orders). A path in the UML
activity diagram indicates a stock transaction flow (e.g.,
limit buy, market sale, etc.).

There are a total of 49 properties generated based on the
path coverage criteria. We group them into nine clusters.
Because of the limitation of space, in Table 4 we only present
the second cluster C2 with four properties. Each property in
C2 refers to a sequence of actions. For example, p1 asserts a
scenario where a market sale transaction happens but the
transaction fails at last, and p3 asserts a scenario where a
market buy transaction happens but the transaction fails at
last. Because of the textual similarity [24], we group these
four properties together to share the learnings.

Table 5 shows the test generation results involving all the
nine clusters. The first column indicates the clusters. The
second column indicates the size of each cluster (i.e.,
number of properties). The third column presents the test
generation time (including base property) using zChaff. The
fourth column gives the result using conflict clause-based
property learnings [24]. The fifth column presents the result
using our decision ordering-based property learnings. In
this method, we do not consider the intraproperty learning
for the base property. The last column indicates the test
generation time using the method proposed in Algorithm 3.
In this case study, we can find that the hybrid! DOL
method can produce an average of 13.32 times overall

improvement in test generation time compared to zChaff. It
is important to note that the hybrid! DOL method can
achieve the best performance, which is consistent with the
results obtained in Section 6.2.1.

7 CONCLUSIONS

Simulation using directed tests is promising for functional
validation, since the overall simulation effort can be
reduced with fewer tests while the coverage requirement
can still be achieved. However, the applicability of directed
test generation using model checking is limited due to the
capacity restriction of corresponding tools. To address the
complexity of test generation using SAT-based BMC, this
paper presented a novel methodology which explores the
intraproperty learning within a SAT instance and inter-
property learning between similar SAT instances. All these
learnings are based on decision ordering heuristics as well
as conflict clause forwarding techniques. To the best of our
knowledge, our work is the first attempt to share the
decision ordering learnings on different parts of a SAT
instance as well as across multiple properties. By exploiting
the commonalities during the search of satisfiable assign-
ments, the test generation time of a single property as well
as a set of similar properties can be drastically reduced. The
experimental results using both hardware and software
designs demonstrated the effectiveness of our method.
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