
S

E

W
D

a

A
R
A

K
E
R
E
E

1

c
e
o
D
m
e
w
d
s
d
f
m
b
e
a
a
b

s
e
s
a

r

2
h

ARTICLE IN PRESSG Model
USCOM-44; No. of Pages 10

Sustainable Computing: Informatics and Systems xxx (2012) xxx–xxx

Contents lists available at SciVerse ScienceDirect

Sustainable Computing: Informatics and Systems

jou rn al h om epage: www.elsev ier .com/ locate /suscom

nergy-aware dynamic slack allocation for real-time multitasking systems

eixun Wang ∗, Sanjay Ranka, Prabhat Mishra
epartment of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, USA

 r t i c l e i n f o

rticle history:
eceived 7 November 2011
ccepted 30 April 2012

eywords:
mbedded systems

a b s t r a c t

Dynamic voltage scaling (DVS) has been a very effective technique for processor energy reduction. It
adjusts processor voltage and frequency level during runtime. In this article, we propose a general and
flexible processor voltage scaling algorithm for real-time multitasking systems. Our approach focuses
on exploiting dynamic slack that is created when a task finishes earlier than its estimated worst-case
execution time (WCET). Our algorithm is efficient enough to execute at runtime and can be configured
eal-time systems
nergy optimization
nergy-aware scheduling

flexibly to make tradeoffs between running time and energy savings. By rescheduling tasks effectively,
we can achieve almost as much energy savings as if there is no arrival time constraints. Furthermore, our
approach can effectively incorporate both leakage power consumption as well as variable scaling over-
head. Also, it is relatively independent of task characteristics and scheduling policy. Experimental results
show that our technique can achieve significant energy savings at runtime over statically generated
schedules and up to 12% more savings compared to the state-of-art techniques.
. Introduction

Power management and energy conservation are important
onsiderations in improving battery life of laptops as well as
mbedded systems. Processor consumes the maximum amount
f power. Hence, it is the main target for energy optimization.
ynamic voltage scaling (DVS) [1] is acknowledged as one of the
ost effective processor energy saving techniques. Effectively a lin-

ar decrease in supply voltage leads to quadratic power reduction
ith only linear performance slowdown. Many processors nowa-
ays, both in general-purpose and embedded systems domain,
upport DVS with multiple voltage levels [2–4]. The overall power
issipation consists of both dynamic energy and static energy. The
ormer, which is consumed by circuit switching, still occupies a

ajor part of the overall consumption and is controlled effectively
y using DVS schemes. The latter, which is also known as leakage
nergy, is getting larger with the technology scaling process [5,6]
nd is inversely related to the supply voltage. The impact of leak-
ge current and corresponding energy dissipation [7] is that the
enefits of DVS is limited or negative below a threshold voltage.

Multitasking systems schedule multiple tasks on a system
imultaneously based on provided policies. In real-time systems,
Please cite this article in press as: W. Wang, et al., Energy-aware dyna
Comput.: Inform. Syst. (2012), http://dx.doi.org/10.1016/j.suscom.201

ach task may have timing constraints in the form of earliest
tart time and deadline that must be satisfied in order to guar-
ntee system correctness and safety. Earliest Deadline First (EDF)

∗ Corresponding author. Tel.: +1 3528714925.
E-mail addresses: wewang@cise.ufl.edu (W. Wang),

anka@cise.ufl.edu (S. Ranka), prabhat@cise.ufl.edu (P. Mishra).

210-5379/$ – see front matter © 2012 Elsevier Inc. All rights reserved.
ttp://dx.doi.org/10.1016/j.suscom.2012.04.001
© 2012 Elsevier Inc. All rights reserved.

[8] and Rate Monotonic (RM) [9] are the two most widely used
scheduling algorithms for real-time systems. EDF and RM use
dynamic and static priority based policies, respectively. Both of
them require known task set characteristics including worst-case
computation-time and inter-arrival periods. In other words, they
statically determine the feasible schedules of the given task set.

DVS determines under which processor voltage level each task
is executed. Such decisions need to be made carefully in order to
minimize overall energy consumption while guarantee all the tim-
ing constraints. DVS stretches the clock cycle length (thus leading to
increased task execution time) resulting in energy reduction when-
ever slack (free runtime) is available. Static slack is determined
based on the Worst Case Execution Time (WCET) of each task. It
is analyzed and exploited during the off-line scheduling process.
However, in many cases, task’s execution time may vary and thus
complete earlier than expected at runtime. This could be caused by
different input parameter values, environmental conditions, vari-
able execution paths or mix of the above. Dynamic slack created
due to early completed tasks can be exploited to further reduce the
power dissipation of subsequent tasks and is the main focus of this
paper.

The main contribution of this article can be summarized as fol-
lows. We develop a dynamic slack reclamation (DSR) algorithm
for energy-aware scheduling in uniprocessor multitasking systems
with the following innovative properties.
mic slack allocation for real-time multitasking systems, Sustain.
2.04.001

1 Our approach iteratively considers multiple tasks for utilizing the
dynamic slack available along with necessary task reschedul-
ing. This leads to higher energy savings compared to existing

dx.doi.org/10.1016/j.suscom.2012.04.001
dx.doi.org/10.1016/j.suscom.2012.04.001
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
mailto:wewang@cise.ufl.edu
mailto:ranka@cise.ufl.edu
mailto:prabhat@cise.ufl.edu
dx.doi.org/10.1016/j.suscom.2012.04.001

 ING Model
S

2 : Infor

2

F
c
w
r
s
r
o
2

r
d
E
S

2

n
a
e
a
e
l
i
a
o
o
s
t
a
m
n

[
u
u
a
c
c
s
t
a
m
d
s

p
e
s
t
s
l
b
m
t
e

i

ARTICLEUSCOM-44; No. of Pages 10

 W. Wang et al. / Sustainable Computing

techniques (e.g. [10]), especially when tasks have different power
characteristics [11].

 Our approach can be parameterized to limit the search space of
tasks to be considered for slack allocation. This effectively allows
tradeoffs between energy saving versus runtime overhead.

urthermore, our approach is relatively independent of the system
haracteristics and scheduling policy. It works, for example, either
ith or without earliest start time constraints. It can also incorpo-

ate scaling overhead if necessary. Extensive experimental results
how that our technique can achieve significant reduction in energy
equirements as compared to only using static scheduling. It also
utperforms existing techniques for dynamic slack allocation by
–12%.

The rest of the paper is organized as follows. Section 2 describes
elated research works. System model and energy models are intro-
uced in Section 3. Section 4 presents our proposed algorithm.
xperimental results are provided in Section 5. We conclude in
ection 6.

. Related work

A large body of research exists for applying static DVS tech-
iques in real-time systems. Early work by Yao et al. [12] described
n off-line algorithm for a simplified model. Several variations and
xtensions have been recently considered for periodic task sets [13]
nd aperiodic tasks [14]. Task scheduling with and without pre-
mption is considered in [15,16], respectively. Voltage scaling that
imits all instances of the task to a single voltage (inter-task DVS)
s considered in [17,15,18]. In contrast, intra-task DVS adjusts volt-
ge level multiple times during each task execution [19,20] based
n the information collected at runtime. Zhong et al. [15] solved an
verall energy minimization problem with consideration of other
ystem components. Since applying static DVS scheduling in real-
ime systems is a NP-hard problem [18], approximation algorithms
re proposed both in inter-task manner [15,18] and preemptive
anner [21]. Recent work also incorporates leakage power aware-

ess [22,23,10,24,25].
Dynamic slack reclamation techniques are proposed in

26–28,16,10]. Aydin et al. [26] presented an online algorithm for
tilizing unused task running time and a more aggressive spec-
lative mechanism based on expected workload. Pillai et al. [27]
djusted the processor voltage on each job arrival based on the
urrent system utilization or future task’s WCET. Kim et al. [28]
onsidered this problem on an ideal continuously scalable proces-
or. Jejurikar et al. [16] presented an algorithm for non-preemptive
ask sets. However, all these techniques are either based on certain
ssumptions or for dynamic energy minimization only. Further-
ore, they did not consider various energy saving potentials across

ifferent tasks which our approach takes advantage of to utilize the
lacks more efficiently.

Leakage-aware dynamic slack reclamation technique is pro-
osed in [10]. It is based on the theorem proved in [26] that
very task instance can fully reclaim slacks with higher or equal
cheduling priority. In their algorithm, a priority queue is main-
ained for dynamic slacks generated and each newly arrival task
imply fetches all the eligible slacks and scales down the voltage
evel until the critical speed1 is reached, which is then followed
y procrastination. Our approach iteratively assigns the slack to
Please cite this article in press as: W. Wang, et al., Energy-aware dyna
Comput.: Inform. Syst. (2012), http://dx.doi.org/10.1016/j.suscom.201

ultiple subsequent tasks based on voltage assignments that lead
o higher energy savings. The number of subsequent tasks consid-
red are decided by a user defined window. Also, we adjust the

1 Critical speed is the point lower than which the total energy per cycle will start
ncreasing rather than decreasing [10,29].
 PRESS
matics and Systems xxx (2012) xxx–xxx

voltage level multiple times within each task instance (i.e. job) and
carefully allow task rescheduling to make more benefit from the
available slack. This leads to an extensive and flexible approach
and is shown to lower the energy requirements as compared to
[10] with a low runtime overhead.

3. Preliminaries

3.1. System model

The system can be described as:

• A set of m independent tasks T{�1, �2,. . .,�m} with each task �i ∈ T
having known attributes including deadline, arrival time, period
(if it is periodic) and WCET.
• A uniprocessor task scheduler.
• A voltage scalable processor which supports h voltage levels
V{v1,v2,. . .,vh}.

Given the scheduler and task set information, we can determine
the original schedule assuming every job requires its WCET. Fur-
thermore, we assume that static slack allocation has been done
a priori. Any existing WCET analysis technique and static energy-
aware scheduling algorithms can be employed for this purpose. Our
goal is to make voltage scaling decisions during runtime whenever
a job finishes earlier than its WCET so that the energy consump-
tion of subsequent jobs can be further reduced without violating
any timing constraint. The actual execution time (ACET) varies for
each task instance during runtime. To quantify and cap the scope
of ACET, the best case execution time (BCET) is defined as the lower
bound on ACET for each task. Note that WCET, ACET and BCET are
all normalized based on the highest voltage level.

3.2. Energy model

Our analytical energy model is adapted from [30], whose accu-
racy is verified with SPICE simulation, with the extension that
various power characteristics are considered. The dynamic power
dissipation can be calculated as:

Pdyn
�P = Ceff · V2

dd · f (1)

where Ceff is the processor’s effective switching capacitance, Vdd
is the supply voltage and f is the operation frequency. Here, Ceff
depends on both the total capacitance C as well as the actual switch-
ing activity K. Specifically, in practice, K is reflected by the running
task’s activity characteristic, including memory reference locality,
bus access frequency and actual chip units used [11]. Hence, we let
Ceff = Ctotal · K. The threshold voltage Vth can be computed as:

Vth = Vth1 − K1 · Vdd − K2 · Vbs (2)

where Vth1, K1, K2 are all constants and Vbs represents the body bias
voltage. Since static current mainly consists of the subthreshold
current Isubth and the reverse bias junction current Ij, static power
is given by:

Psta
�P = Lg · (Vdd · Isubth + |Vbs| · Ij) (3)

where Lg denotes the number of devices in the processor circuit, Ij
is approximated as a constant and Isubth can be calculated by:

Isubth = K3 · eK4Vdd · eK5Vbs (4)
mic slack allocation for real-time multitasking systems, Sustain.
2.04.001

where K3, K4 and K5 are constant parameters. Vbs is set to be con-
strained (e.g. between 0 and −1 V) in order to prevent junction
leakage power overriding the gain in lowering Isubth. Specifically,
we valuate Vbs = −0.7 V [23]. If Pon

�P represents the intrinsic energy

dx.doi.org/10.1016/j.suscom.2012.04.001

ARTICLE IN PRESSG Model
SUSCOM-44; No. of Pages 10

W. Wang et al. / Sustainable Computing: Informatics and Systems xxx (2012) xxx–xxx 3

Fig. 1. Execution blocks after

Table 1
Constants for 70 nm technology.

Const Value Const Value Const Value

K1 0.063 K6 5.26 × 10−12 Vth1 0.244
K2 0.153 K7 −0.144 Ij 4.80 × 10−10

K3 5.38 × 10−7 Vdd [0.5, 1.0] Ctotal 0.43 × 10−9

K4 1.83 Vbs [− 1.0, 0.0] Ld 37

n
p

P

f

w
o
c

E

w
t
[
I
t
d
t
s

4

c
c
t
w
t
o
e

for energy reduction (based on the power characteristic and cur-
rent voltage level assignment), larger w should generally result in
K5 4.19 ̨ 1.5 Lg 4 × 106

eeded for keeping the processor on (idle energy), the processor
ower consumption P�P can be computed as:

�P = Pdyn
�P + Psta

�P + Pon
�P (5)

Frequency f is given by a modified alpha power model:

 = (Vdd − Vth)˛

Ld · K6
(6)

here K6 is a constant. Ld is estimated to be the average logic depth
f all instructions’ critical path in the processor. Table 1 lists the
onstants for a processor with 70 nm technology [30].

Therefore, the processor energy consumption becomes:

�P =
P�P · ncycles

f
(7)

here ncycles denote the number of clock cycles executed. Note that
he same energy model is also used in existing works including
23,29]. Since reducing Vdd will lead to increasing of both Isubth and
j, the implication of the above model to handle leakage power is
o keep the minimum voltage level (and effectively limit the slow-
own) above a threshold, as further voltage reduction will increase
he overall energy consumption. Such threshold is called “critical
peed” and the related study can be found in our recent work [31].

. Dynamic slack reclamation

Energy optimization techniques dedicated to static slack allo-
ation derive a scheduling scheme which minimizes energy
Please cite this article in press as: W. Wang, et al., Energy-aware dyna
Comput.: Inform. Syst. (2012), http://dx.doi.org/10.1016/j.suscom.201

onsumption while guaranteeing all task deadlines. If we execute
he tasks under this scheme assuming each of them requires its
orst-case workload and let the scheduler record the execution

race, we can get a series of execution blocks each of which is a piece
f task execution. Note that this step takes during design time. For
xample, in Fig. 1, we show a preemptive schedule of three periodic
 static slack allocation.

tasks.2 The execution blocks are linearly indexed, e.g. b1, b2,. . ., b10
in Fig. 1. Specifically, the input to our problem is represented as:

• A set of n execution blocks B{b1, b2,. . .,bn}. Each block is associ-
ated with its corresponding task id and job id.
• Each block bi ∈ B has its arrival time (earliest start time) ai if it is

the first block in the corresponding job and an absolute deadline
constraint di if it is the last block.
• Each block bi has its current voltage assignment (thus start time

and finish time) after applying the static slack allocation.
• Each block bi has execution time tk

i
and energy consumption ek

i
at processor voltage level vk ∈ V in the worst-case scenario.

As part of the static analysis, we calculate tk
i

and ek
i

for ∀i ∈ [1, n]
and ∀k ∈ [1, h] based on either the existing processor datasheets or
the energy model described in Section 3.2. We store all the entries
for each block with tk

i
lower than the execution time corresponding

to its critical speed in a profile table with an increasing order of tk
i

(thus decreasing order of ek
i
). In other words, non-beneficial voltage

levels are eliminated so that the increase in leakage energy will not
compromise the reduction in dynamic energy consumption. Note
that varying task’s power characteristics lead to different critical
speeds. This information is exploited at runtime by our algorithm.

As discussed in Section 1, during actual execution, task instances
may take less dynamic instructions (hence shorter time) to com-
plete than the worst-case scenario. The difference between ACET
and WCET hence is the generated dynamic slack, as shown in Fig. 2
where the first job of task �2 (b2) finishes earlier by 3 time units.
Note that if one job consists of multiple blocks due to preemp-
tion, its earlier completion can result in multiple discrete pieces of
dynamic slack.

To reclaim dynamic slack, we reassign the voltage levels of
one or more subsequent blocks after the slack at runtime. We
define exploration window as the range of subsequent execution
blocks from which the targets of slack reclamation are selected.
In other words, we look forward within the exploration window
and try to allocate the generated dynamic slack to these tasks in
the most beneficial way. Let w denote the size of the exploration
window. Clearly, since different blocks may have variable potential
mic slack allocation for real-time multitasking systems, Sustain.
2.04.001

better solution but introduce longer time overhead.

2 Although the example shown in this section is for a preemptive periodic task
set, our approach is applicable to other kinds of tasks as long as the characteristics
are known a priori and thus the static slack allocated schedule is pre-determined.

dx.doi.org/10.1016/j.suscom.2012.04.001

ARTICLE IN PRESSG Model
SUSCOM-44; No. of Pages 10

4 W. Wang et al. / Sustainable Computing: Informatics and Systems xxx (2012) xxx–xxx

nerate

e
(
c
t
t
t

4

s
h
b
b
t
t
d
d
p
c
s
t
w
t
n
N
r
a

(
t
s
w
a
i

4

m
b
t
t
e
a
a
w
t
e
I
u

Fig. 2. Dynamic slack ge

There are several design considerations which lead to sev-
ral variations and finally the full description of our algorithm:
1) whether the tasks have earliest start time (or arrival time)
onstraints and (2) whether the preemption schedule of a
ask is allowed to be modified at runtime (i.e. decomposi-
ion/agglomeration of the execution blocks). We describe each of
hese variations in the following sections.

.1. Tasks without arrival time constraints

In order to lower some subsequent tasks’ voltage level (i.e.
tretch their execution time) to reduce energy requirements, they
ave to be able to start earlier by the same amount of time. The
asic idea of our algorithm is to bring forward (start earlier) every
lock which receives slack by the difference between the execu-
ion time of its previous and new voltage assignments. By doing
his, we ensure that no block (in the exploration window) after
ynamic slack reclamation finishes later than before. Otherwise,
eadline constraints may be violated in the future since it is always
ossible that all subsequent jobs finish in their WCET. Consider the
ase when there is no arrival time constraint (Fig. 2). If b4 and b6 are
elected to be assigned the dynamic slack, b4 and b6 as well as all
he blocks between them and the one which creates the slack (b2),
hich are b3 and b5 in this case, should be started earlier as illus-

rated in Fig. 3. Clearly, no deadline will be violated since we ensure
o block in the exploration window gets its completion delayed.
ote that when making the decision, we assume that b4 and b6 still

equire WCET to complete. However, they may also finish earlier
nd create additional slacks later.

Clearly, in the scenario where there is no arrival time constraint
e.g. all tasks are ready when the system begins), it is allowed
o freely make any subsequent block start earlier to assign the
lack within the exploration window. In other words, all the blocks
ithin exploration window have equal opportunity to take the

dvantage of reclaiming full amount of slack. Algorithm for assign-
ng the slack will be described in Section 4.3.

.2. Tasks with arrival time constraints

When tasks have arrival time constraints, e.g. periodic tasks, we
ay not have the freedom to start the execution of a subsequent

lock earlier to fully reclaim the slacks, i.e., it is possible that not all
he blocks within the exploration window have the same capability
o receive the slack. In the example shown in Fig. 4, if b2 finishes
arlier to create 3 units of time slack, b5, unlike b3 and b4, is not
ble to receive the full benefit since it can only be started earlier by
t most 1 time unit. Similarly, b6 cannot be further slowed down
ithout affecting subsequent tasks since it starts right at its arrival
Please cite this article in press as: W. Wang, et al., Energy-aware dyna
Comput.: Inform. Syst. (2012), http://dx.doi.org/10.1016/j.suscom.201

ime. We define the term maximum reclaimable slack (MaxRS) for
ach block as the maximum amount of available slack it can exploit.
n this example, b3 and b4 have MaxRS of 3 units but b5 has only 1
nit. This observation leads to two variations of our approach.
d by early finished task.

4.2.1. Without task rescheduling
As discussed above, in order to let one block start earlier, all the

preceding blocks should also be moved up by the same amount
of time. Therefore, within the exploration window, every block’s
MaxRS is no more than any of its predecessors. If it is not allowed
to change the original schedule (i.e. block execution order), once a
block B’s MaxRS gets reduced and becomes lower than its precedent
block, all the blocks after B will also have their MaxRS reduced to the
same amount. In other words, even if some subsequent blocks can
be moved up by the extent more than B can, they will still end up
with their MaxRS at most equal to B’s since they can only start after
B finishes. For example, in Fig. 4, b6 and all the subsequent blocks
are not capable of using any dynamic slack since none of them can
start earlier without rescheduling.

4.2.2. With task rescheduling
We can prevent the MaxRS of block bi (MaxRSi) from being

reduced due to arrival time constraints by changing the task execu-
tion order. It is beneficial since it can increase the number of eligible
blocks that can receive more slack in the exploration window. By
doing this, potentially more energy savings can be achieved. This
can be done by bringing forward the execution of some subsequent
blocks (or part of them), say bj where j > i, before bi. As illustrated in
Fig. 5, for example, some block before b1 finishes earlier and creates
a piece of slack with length s. While we have MaxRS1 = s, however,
b2 is not able to take any advantage since it starts at its arrival time
and thus cannot be moved up (MaxRS2 = 0). It will be inferior in
terms of energy reduction in this case if b2 has higher potential in
energy reduction by claiming the time slack than b1. Therefore, we
can let the job consisting of b1 and b4 start earlier so that b2 can be
eligible to slowdown without affecting any other block’s deadline.
Essentially, we need to move part of b4’s execution with a length
of s before b2’s arrival time. In this example, note that moving up
b3 does not help as b3 itself arrives later than b2. But b3 also bene-
fits from task rescheduling: it now can reclaim full amount of the
slack. As another example, using the previous scenario, as shown
in Fig. 6, b6 to b10 are now legal to reclaim 1 unit of slack by mov-
ing one unit of b7 before b6. In general, by making the suggested
changes in the schedule, MaxRS values of blocks in the exploration
window will be larger than the case when no task rescheduling is
applied. Effectively, it is equal to judiciously changing the priority
of the dynamic slack (defined in [10]) so that it can be better uti-
lized as compared to a strategy that reclaims it as soon as possible
by allocating it to the very next task [10]. Note that rescheduling is
attempted for deciding MaxRS but only actually happens when the
corresponding block is selected as the target of slack reclamation.

Obviously, in case of Fig. 5, the amount of slack that b2 as well as
b3 can reclaim depends on how much of b4 can be brought forward.
It is possible that b1 itself has smaller MaxRS than what is available
mic slack allocation for real-time multitasking systems, Sustain.
2.04.001

due to its own arrival time constraint. Besides, if the length of b4
(under its current voltage assignment), say tk

4, before rescheduling
is shorter than the slack s, b2 can only accept a slack with length of
tk
4 after rescheduling. However, on the other hand, it is also possible

dx.doi.org/10.1016/j.suscom.2012.04.001

ARTICLE IN PRESSG Model
SUSCOM-44; No. of Pages 10

W. Wang et al. / Sustainable Computing: Informatics and Systems xxx (2012) xxx–xxx 5

Fig. 3. Dynamic slack allocation example.

Fig. 4. Dynamic slack allocation w

t
o
M
m
h
i
v
w
l
I

(

Fig. 5. Slack reclamation with task rescheduling.

hat b2 and b3 themselves are not able to slowdown by s due to their
wn deadline constraints.3 These scenarios will all result in reduced
axRS for subsequent blocks inevitably. In general, there may be
ultiple candidates that can be moved forward for maintaining

igher MaxRSi. We can simply choose the one which would result
n maximum value of MaxRSi. Note that if b1 and b4 have different
oltage assignments before rescheduling, an extra scaling is needed
hich may lead to certain amount of overhead (for setting voltage
Please cite this article in press as: W. Wang, et al., Energy-aware dyna
Comput.: Inform. Syst. (2012), http://dx.doi.org/10.1016/j.suscom.201

evel) and need to be taken into account during decision making.
t is also possible that, for some block bi, no subsequent block of it

3 Our study shows that it is rare and only happens when there are very few tasks
e.g., 2).
ith arrival time constraints.

has earlier arrival time. In this case, there is no remedy and bi as
well as all subsequent blocks can only receive a reduced MaxRS.

4.3. Slack reclamation algorithm

In this section, we describe the details of our algorithm. For
tasks without arrival time constraints, all blocks in the explo-
ration window share the same MaxRS which is equal to the total
amount of slack. However, for tasks with arrival time, there will
be a series of n′ groups with all blocks in each group having
equal MaxRS and the groups’ MaxRS values are in decreasing order
as shown in Fig. 7. This is because MaxRS remains the same for
each block, but may monotonically decrease for consecutive blocks
due to additional constraints discussed above. Therefore, we have
MaxRS1 > MaxRS2 > · · · > MaxRSn′ .

We define the minimum amount of slack time that can allow
block bi to lower down its current voltage level to the next avail-
able lower level as minimum reclaimable slack (MinRSi). Note that a
slack smaller than MinRSi will have no benefit for bi since no energy
saving can be achieved. If the block is already in the lowest voltage
level of its profile table (thus further slow down will drop below
its critical speed), its MinRS is set to ∞. This process is applied iter-
atively for the available slack. A greedy approach is used in which
the energy saving per unit of slack (ESpU) is maximized in each
iteration. Specifically, for block bi, we have:

ESpUi =
e

hi
i
− e

hi+1
i

MinRSi
(8)

where hi is the index of the current voltage level of bi and MinRSi =
thi+1
i
− thi

i
. We assign MinRS units of slack to the block which has

the maximum ESpU value, but has MinRS 6 MaxRS. After each iter-
ation, the target block’s MinRS is recalculated and each group’s
MaxRS needs to be updated sequentially in a cascading fashion.
Specifically, if bi in group i′ is allocated MinRSi units of slack, we
let MaxRSj = MaxRSj− MinRSi for all blocks bj in group i′ (includ-
ing bi) as well as all the groups before i′ along the timeline. If the
blocks in group i′ still have their common MaxRS larger than the
ones in the next group, no update is required for all the subsequent
mic slack allocation for real-time multitasking systems, Sustain.
2.04.001

groups. If the MaxRS value for group i′ drops below its next group
i′+1, we have to make them equal. Since group i′+1’s MaxRS also
gets changed, the update process repeats until it reaches the last
group or the next group has lower MaxRS.

dx.doi.org/10.1016/j.suscom.2012.04.001

ARTICLE IN PRESSG Model
SUSCOM-44; No. of Pages 10

6 W. Wang et al. / Sustainable Computing: Informatics and Systems xxx (2012) xxx–xxx

Fig. 6. Another example of slack reclamation with task rescheduling.

Grou p 1 Grou p 2 Grou p n’ ……

RS2 MaxR Sn’

……

Exploration window

……

itions into groups according to MaxRS.

A

d
d
t
(
i
e
s
d
e
s
t
m
a
c
s
s
p
b
d
t
t
T
i
w
c

Table 2
Task sets consisting of real benchmarks.

Sets Tasks

Set 1 cjpeg, pegwit, untoast, epic, mpeg2
Set 2 A2TIME01, BaseFP01, BITMNP01, RSPEED01, TBLOOK01
MaxR S1 Max

Fig. 7. Exploration window part

lgorithm 1. Dynamic slack reclamation algorithm.
1: Input: startIdx, s, w.
2: Output: New scheduling for subsequent blocks.
3: Step 1: Calculate MaxRS for all the blocks in the window as

discussed in Section 4.2.2.
4: Step 2: Dynamic slack reclamation.
5: endIdx ← startIdx + w;
6: minMinRS ← min(MinRSi), ∀i ∈ [startIdx, endIdx];
7: Calculate MinRSi and ESpUi , ∀i ∈ [startIdx, endIdx];
8: while s > minMinRS do
9: Find bj in the window with:
10: 1) MinRSj 6 s;
11: 2) MinRSj 6 MaxRSj;
12: 3) ESpUj is the maximum for ∀j ∈ [startIdx, endIdx];
13: Allocate MinRSj units of slack to bj and apply task rescheduling if

needed as discussed in Section 4.2.2;
14: s ← s − MinRSj;
15: Update MinRSj , ESpUj , minMinRS and MaxRS for all the blocks in

the window as discussed in Sections 4.2.2 and 4.3;
16: end while

Algorithm 1 shows the outline of our approach. Let startIdx
enote the index of the early finished block that creates slack with
uration s. Here w represents the exploration window size. Note
hat lines 13 and 15 are done based on the problem requirements
with/without arrival time constraints, allow/deny task reschedul-
ng) accordingly. If multiple slack pieces are created due to one
arly-finished job, Algorithm 1 is called separately in a reverse order
tarting from the latest slack with the same size of exploration win-
ow. In this case, we use a simple scheme that all the blocks in the
xamined windows are procrastinated by the residual amount of
lack if possible. By doing that, the unused slacks tend to combine
ogether to form a larger idle period. For single piece slack recla-

ation, our algorithm inherently maintains all unused slack before
ll the subsequent blocks. Since our approach considers multiple
andidates for slack allocation, the residual slack is normally very
mall (i.e. the system utilization U is close to 1). Earlier work has
hown that static procrastination has no benefit [23] and dynamic
rocrastination can at most improve the total energy efficiency
y 1% when U is larger than 60% [10]. Therefore, our scheme that
oes not consider procrastination during scheduling will only lead
o negligible solution quality degradation since there is no need
o apply dynamic slack reclamation when U is smaller than 50%.
Please cite this article in press as: W. Wang, et al., Energy-aware dyna
Comput.: Inform. Syst. (2012), http://dx.doi.org/10.1016/j.suscom.201

his is because static scheduling already makes each task operat-
ng at or near the critical speed. We only consider the scenarios

here U is no smaller than 0.6, which are reasonable and practical
ases. Algorithm 1 scans all the blocks in the window once per slack
Set 3 susan, dijkstra, rijndael, qsort, stringsearch
Set 4 cjpeg, pegwit, A2TIME01, RSPEED01, pktflow, dijkstra

allocation until the available dynamic slack is exhausted (less than
minMinRS, precisely). Therefore the time complexity is O(s · w).

5. Experiments

5.1. Experimental setup

We evaluate our algorithm through simulation using two
DVS-capable processors: Marvell StrongARM processor [2] and
Transmeta Crusoe processor [3]. The former one supports four
voltage–frequency levels (1.5 V–206 MHz, 1.4 V–192 MHz, 1.2 V
–162 MHz and 1.1 V–133 MHz) and its characteristics are collected
from manufacturer’s datasheets. The latter one has scalable voltage
level from 1.1 V to 1.5 V in steps of 0.1 V. Its operating frequency and
power consumption values are calculated by the detailed energy
model described in Section 3.2.

Synthetic tasks: We consider seven randomly generated syn-
thetic task sets. Each set consists of 3–10 tasks. The workload
of each task under the highest voltage level and the period (for
periodic tasks) or inter-arrival time (for non-periodic tasks) are ran-
domly chosen within pre-determined ranges so that at any moment
U is maintained under the schedulability constraint (e.g. 1.00 for
EDF). For each task set, we vary U from 0.6 to 0.9 in steps of 0.1. We
define � as the probability for a job to finish earlier than its WCET. If
a job completes earlier, its ACET is generated using a normal distri-
bution with a mean of (BCET + WCET)/2 and a standard deviation of
(WCET − BCET)/6. BCET for each task is based on a percentage of its
WCET and is varied from 10% to 100% in steps of 10%. Let ı denote
the value of BCET/WCET.

Real benchmarks: We also evaluate our approach using real
benchmarks selected from MediaBench [32], MiBench [33] and
EEMBC [34] to form four task sets as shown in Table 2. Task Set
mic slack allocation for real-time multitasking systems, Sustain.
2.04.001

1 consists of tasks from MediaBench, Set 2 from EEMBC, Set 3 from
MiBench and Set 4 is a mixture of all three suites. In Set 4, the two
benchmarks from EEMBC are set to iterate 100 times in order to
make their size comparable with others. We use SimpleScalar [35]

dx.doi.org/10.1016/j.suscom.2012.04.001

ARTICLE IN PRESSG Model
SUSCOM-44; No. of Pages 10

W. Wang et al. / Sustainable Computing: Informatics and Systems xxx (2012) xxx–xxx 7

a
o
f
u

V
m
m
h
p
w

Fig. 8. Effect of Window size on the total energy savings.

s the underlying micro-architectural simulator to get the number
f cycles for each task execution to act as its WCET. Task sets are
ormed with similar characteristics (e.g., period, phase, deadline,
tilization, etc.) as synthetic task sets.

We use a static slack allocation algorithm adapted from [26].
oltage/frequency assignment for task �i is the one with mini-
um energy consumption but has execution time no longer than

h crit h crit
Please cite this article in press as: W. Wang, et al., Energy-aware dyna
Comput.: Inform. Syst. (2012), http://dx.doi.org/10.1016/j.suscom.201

in(t
i
/U, t

i
), where t

i
and t

i
is the execution time under the

ighest frequency level and the critical speed, respectively. Our
roposed dynamic slack reclamation algorithm is implemented
ith a discrete-event simulator written in C++. Although our

Fig. 9. Results for StrongARM processor (synthetic task sets).
Fig. 10. Results for Transmeta Crusoe processor with constant effective capacitance
values (synthetic task sets).

experimental results have been conducted for a large number of
parameter values, we only present representative results due to
space limitations.

5.2. Results: window size effect

We first show the effect of adjusting the exploration window
size. Here, the window size is varied from 1 to 10 with U = 0.8 and
ı = 20%. Fig. 8 shows the average results over all synthetic task sets
assuming no arrival time constraints on StrongARM processor. It
shows that window size of 4 or 5 is good enough to capture most
of the energy savings. Furthermore, larger window size also lead
to more overhead and a higher chance that some blocks that are
allocated slacks finish earlier than expected. This can compromise
the total energy saving achieved. Therefore, we use window size of
4 in the following experiments.

5.3. Results: energy saving comparison

To illustrate effectiveness of our approach, we compare the
following three techniques across different values of U and ı as
discussed above:

• No-DSR: tasks are executed based on the static scheduling and no
mic slack allocation for real-time multitasking systems, Sustain.
2.04.001

dynamic slack reclamation is utilized.
• DSR-Jejurikar: state-of-the-art dynamic slack reclamation algo-

rithm proposed in [10].
• DSR-Ours: our approach on dynamic slack reclamation.

dx.doi.org/10.1016/j.suscom.2012.04.001

ARTICLE IN PRESSG Model
SUSCOM-44; No. of Pages 10

8 W. Wang et al. / Sustainable Computing: Informatics and Systems xxx (2012) xxx–xxx

F
c

5

o
a
t
T
a
s
a
l
f
e
t
W
r
t

i
c
t
m
h
t
I
t
r
d
D

0.7

0.75

0.8

0.85

0.9

0.95

1

Set 1 Set 2 Set 3 Set 4 Average

N
or

m
al

iz
ed

 T
ot

al
 E

ne
rg

y

No-DSR DSR -Jejurik ar05 DSR -Ours

0.7

0.75

0.8

0.85

0.9

0.95

1

Set 1 Set 2 Set 3 Set 4 Average

N
or

m
al

iz
ed

 T
ot

al
 E

ne
rg

y

No-DSR DSR -Jejurik ar05 DSR -Ours

(a) λ = 0.5

(b) λ = 0.8
ig. 11. Results for Transmeta Crusoe processor with application-specific effective
apacitance values (synthetic task sets).

.3.1. Synthetic task sets
Fig. 9 shows energy comparison results using synthetic task sets

n StrongARM processor. We examine both scenarios of (a) � = 0.5
nd (b) � = 0.8 with window size of 4. The total energy consump-
ion values for all techniques are normalized to No-DSR scenario.
hese have been averaged over multiple runs of all task sets and
ll values of U, where each run consists of a combination of a task
et and a value of U. For both values of �, our approach can achieve
verage energy savings of 14% and 18% over No-DSR (can be as
arge as 23% and 31% when ı = 10%). Our approach also outper-
orms DSR-Jejurikar across all ı values by 2–12% in terms of total
nergy requirements. In practice, the ACET of a program is smaller
han its WCET by at least 80% (i.e. ı = 20%) [26], especially when the

CET estimation is pessimistic. In such cases, our technique can
educe the energy consumption by more than 10% compared with
he state-of-the-art algorithm.

Figs. 10 and 11 show the results for the same set of exper-
ments on Transmeta Crusoe processor with constant effective
apacitance and application-specific effective capacitance, respec-
ively. For the latter case, we randomly generate K in the energy

odel within a range of [0.2, 1.0] for each task. In other words, we
ave Ceff ∈ [0.2 · Ctotal, Ctotal]. In both scenarios, it can be observed
hat energy savings are less significant than StrongARM processor.
t is possibly due to the fact that leakage energy consump-
ion is much higher in 70 nm technology. Therefore, the energy
Please cite this article in press as: W. Wang, et al., Energy-aware dyna
Comput.: Inform. Syst. (2012), http://dx.doi.org/10.1016/j.suscom.201

eduction created by DSR (lower subsequent job’s voltage level)
ecreases. However, our approach still consistently outperforms
SR-Jejurikar. Another important observation is that in the scenario
Fig. 12. Results for Transmeta Crusoe processor with application-specific effective
capacitance values (real benchmark task sets).

where tasks have different effective capacitance (Ceff), our approach
can result in more additional energy savings compared with DSR-
Jejurikar. The reason is that application-specific Ceff leads to more
variation in task’s energy saving potential during dynamic slack
reclamation, which clearly makes our approach more beneficial.

5.3.2. Real benchmarks
Fig. 12 shows total energy consumption comparisons across four

real benchmark task sets with ı = 10% and (a) � = 0.5, (b) � = 0.8
on Transmeta Crusoe processor. Here, similar observation can be
made as shown in Fig. 11. On average, 7% and 10% extra savings
in total energy consumption can be achieved in both scenarios,
respectively.

5.4. Results: problem variations

To demonstrate the breadth of applicability of our approach, we
compare the experimental results for the following three scenarios:
(1) No-AT: task sets without arrival time constraints (Section 4.1);
(2) AT-NoRS: tasks with arrival time constraints but task reschedul-
ing is not allowed (Section 4.2.1); (3) AT-RS: tasks with arrival time
constraints but task rescheduling is applied (Section 4.2.2). � and U
are set to 0.8. It can be observed from Fig. 13 that task rescheduling
is very effective and can achieve energy savings very close to No-AT.
mic slack allocation for real-time multitasking systems, Sustain.
2.04.001

Thus, our approach is able to exploit the available slack effectively
even when significant constraints on task rescheduling and arrival
times are considered.

dx.doi.org/10.1016/j.suscom.2012.04.001

ARTICLE ING Model
SUSCOM-44; No. of Pages 10

W. Wang et al. / Sustainable Computing: Infor

Fig. 13. Problem variations comparison.

5

f
r
t
s
o
f
a
m

6

a
s
t
t
c
t
r
r
c
s
t

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[

[
hard real-time systems using slack time analysis, in: Proceedings of Design,
Automation and Test Conference in Europe, 2002, p. 788.

[29] W. Wang, P. Mishra, Leakage-aware energy minimization using dynamic volt-
Fig. 14. Running time overhead.

.5. Results: running time overhead

We also investigated the runtime overhead of our DSR algorithm
or all three scenarios above. Fig. 14 shows the average running time
equirement (of one time of dynamic slack reclamation) over all
ask sets with � and ı equal to 0.8 and 0.2, respectively. The window
ize is varied from 1 to 10. We can observe that the running time
verhead of AT-RS is very low (e.g. less than one fourth millisecond
or window size of 4). Therefore, our algorithm is efficient enough
t runtime for normal task sets which normally takes hundreds of
illiseconds [36,37].

. Conclusion

In this paper, we presented a dynamic slack reclamation
lgorithm for energy-aware scheduling in real-time multitasking
ystems. Our approach aims at minimizing total energy consump-
ion, both dynamic and leakage, when some tasks finish earlier
han their worst case. Unlike existing techniques, we systemati-
ally allocate the available slack among multiple jobs and apply
ask rescheduling whenever it is beneficial. By restricting the explo-
ation window, tradeoffs can be made between solution quality and
untime overhead. Experimental results show that our approach
an achieve significant energy saving over static energy-aware
cheduling and also outperforms state-of-the-art technique by up
Please cite this article in press as: W. Wang, et al., Energy-aware dyna
Comput.: Inform. Syst. (2012), http://dx.doi.org/10.1016/j.suscom.201

o 12%.
 PRESS
matics and Systems xxx (2012) xxx–xxx 9

References

[1] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, M.B. Srivastava, Power optimization
of variable-voltage core-based systems, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 18 (1999) 1702–1714.

[2] Marvell, StrongARM 1100 processor, 1997. http://www.marvell.com/.
[3] Transmeta, Transmeta Crusoe Processor, 2001. http://www.transmeta.com/.
[4] J. Kahle, M. Day, H. Hofstee, C. Johns, T. Maeurer, D. Shippy, Introduction to

the cell multiprocessor, IBM Journal of Research and Development 49 (2005)
589–604.

[5] S. Borkar, Design challenges of technology scaling, IEEE Micro 19 (4) (1999)
23–29, http://dx.doi.org/10.1109/40.782564.

[6] N.S. Kim, T. Austin, D. Blaauw, T. Mudge, K. Flautner, J.S. Hu, M.J. Irwin, M.
Kandemir, V. Narayanan, Leakage current: Moore’s law meets static power,
Computer 36 (12) (2003) 68–75, http://dx.doi.org/10.1109/MC.2003.1250885,
ISSN 0018-9162.

[7] J.A. Butts, G.S. Sohi, A static power model for architects, in: Proc. 33rd Annual
IEEE/ACM International Symposium on MICRO-33 Microarchitecture, 2000, pp.
191–201, http://dx.doi.org/10.1109/MICRO.2000.898070.

[8] G. Buttazzo, Hard Real-Time Computing Systems, Kluwer, 1995.
[9] J. Liu, Real-Time Systems, Prentice Hall, 2000.
10] R. Jejurikar, R. Gupta, Dynamic slack reclamation with procrastination schedul-

ing in real-time embedded systems, in: Proceedings of Design Automation
Conference, 2005, pp. 111–116.

11] H. Aydin, R. Melhem, D. Mosse, P. Mejia-Alvarez, Determining optimal proces-
sor speeds for periodic real-time tasks with different power characteristics, in:
13th Euromicro Conference on Proc. Real-Time Systems, 2001, pp. 225–232,
http://dx.doi.org/10.1109/EMRTS.2001.934038.

12] F. Yao, A. Demers, S. Shenker, A scheduling model for reduced CPU energy, in:
Proceedings of Annual Symposium on Foundations of Computer Science, 1995,
pp. 374–382.

13] H. Aydin, R. Melhem, D. Mosse, P. Mejia-Alvarez, Power-aware scheduling
for periodic real-time tasks, IEEE Transactions on Computers 53 (5) (2004)
584–600, http://dx.doi.org/10.1109/TC.2004.1275298.

14] D. Shin, J. Kim, Dynamic voltage scaling of periodic and aperiodic tasks in
priority-driven systems, in: Design Automation Conference, 2004. Proceedings
of the ASP-DAC 2004. Asia and South Pacific, 2004, pp. 653–658.

15] X. Zhong, C. Xu, System-wide energy minimization for real-time tasks: lower
bound and approximation, in: Proceedings of International Conference on
Computer-Aided Design, 2006, pp. 516–521.

16] R. Jejurikar, R. Gupta, Energy aware non-preemptive scheduling for hard real-
time systems, in: Proc. 17th Euromicro Conference on Real-Time Systems
(ECRTS 2005), 2005, pp. 21–30, http://dx.doi.org/10.1109/ECRTS.2005.13.

17] J. Chen, T. Kuo, C. Shih, 1 +ε approximation clock rate assignment for periodic
real-time tasks on a voltage-scaling processor, in: Proceedings of International
Conference on Embedded Software, 2005, pp. 247–250.

18] S. Zhang, K. Chatha, G. Konjevod, Approximation algorithms for power
minimization of earliest deadline first and rate monotonic schedules, in: Pro-
ceedings of International Symposium on Low Power Electronics and Design,
2007, pp. 225–230.

19] D. Shin, J. Kim, Optimizing intratask voltage scheduling using profile and data-
flow information, IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 26 (2007) 369–385.

20] S. Oh, J. Kim, S. Kim, C. Kyung, Task partitioning algorithm for intra-task dynamic
voltage scaling, in: Proceedings of International Symposium on Circuits and
Systems, 2008, pp. 1228–1231.

21] W. Wang, P. Mishra, PreDVS: preemptive dynamic voltage scaling for real-time
systems using approximation scheme, in: Proceedings of Design Automation
Conference, 2010, pp. 705–710.

22] Y.-H. Lee, K. Reddy, C. Krishna, Scheduling techniques for reducing leakage
power in hard real-time systems, in: Real-Time Systems, 2003. Proceedings.
15th Euromicro Conference on, 2003, pp. 105–112.

23] R. Jejurikar, C. Pereira, R.K. Gupta, Leakage aware dynamic voltage scaling for
real-time embedded systems, in: Proceedings of Design Automation Confer-
ence, 2004, pp. 275–280.

24] J.-J. Chen, T.-W. Kuo, Procrastination for leakage-aware rate-monotonic
scheduling on a dynamic voltage scaling processor, in: LCTES ’06: Pro-
ceedings of the 2006 ACM SIGPLAN/SIGBED Conference on Language,
Compilers, and Tool Support for Embedded Systems, ACM, New York, NY,
USA, 2006, http://dx.doi.org/10.1145/1134650.1134673, ISBN 1-59593-362-X,
153-162.

25] J.-J. Chen, T.-W. Kuo, Procrastination determination for periodic real-time tasks
in leakage-aware dynamic voltage scaling systems., in: Proc. IEEE/ACM Interna-
tional Conference on Computer-Aided Design ICCAD 2007, 2007, pp. 289–294,
http://dx.doi.org/10.1109/ICCAD.2007.4397279.

26] H. Aydin, R. Melhem, D. Mosse, P. Mejia-Alvarez, Dynamic and aggressive
scheduling techniques for power-aware real-time systems, in: Proceedings of
Real-Time Systems Symposium, 2001, pp. 95–105.

27] P. Pillai, K. Shin, Real-time dynamic voltage scaling for low-power embedded
operating systems, ACM SIGOPS Operating Systems Review (2001) 89–102.

28] W. Kim, J. Kim, S. Min, A dynamic voltage scaling algorithm for dynamic-priority
mic slack allocation for real-time multitasking systems, Sustain.
2.04.001

age scaling and cache reconfiguration in real-time systems, in: Proceedings of
IEEE International Conference on VLSI Design, 2010, pp. 357–362.

dx.doi.org/10.1016/j.suscom.2012.04.001
http://www.marvell.com/
http://www.transmeta.com/
dx.doi.org/10.1109/40.782564
dx.doi.org/10.1109/MC.2003.1250885
dx.doi.org/10.1109/MICRO.2000.898070
dx.doi.org/10.1109/EMRTS.2001.934038
dx.doi.org/10.1109/TC.2004.1275298
dx.doi.org/10.1109/ECRTS.2005.13
dx.doi.org/10.1145/1134650.1134673
dx.doi.org/10.1109/ICCAD.2007.4397279

 ING Model
S

1 : Infor

[

[

[

[

[
[

[

[

Associate Editor of ACM Transactions on Design Automation of Electronic Systems,
IEEE Design & Test of Computers, and Springer Journal of Electronic Testing, Guest
ARTICLEUSCOM-44; No. of Pages 10

0 W. Wang et al. / Sustainable Computing

30] S.M. Martin, K. Flautner, T. Mudge, D. Blaauw, Combined dynamic
voltage scaling and adaptive body biasing for lower power micro-
processors under dynamic workloads, in: Proc. IEEE/ACM International
Conference on Computer Aided Design ICCAD 2002, 2002, pp. 721–725,
http://dx.doi.org/10.1109/ICCAD.2002.1167611.

31] W. Wang, P. Mishra, System-wide leakage-aware energy minimization using
dynamic voltage scaling and cache reconfiguration in multitasking systems,
IEEE Transactions on Very Large Scale Integration Systems (TVLSI) (2011) 1–9.

32] C. Lee, M. Potkonjak, W.H. Mangione-smith, MediaBench: a tool for evaluating
and synthesizing multimedia and communications systems, in: Proceedings of
International Symposium on Microarchitecture, 1997, pp. 330–335.

33] M. Guthaus, J. Ringenberg, D. Ernest, T. Austin, T. Mudge, R. Brown, MiBench: a
free, commercially representative embedded benchmark suite, in: Proceedings
of IEEE International Workshop on Workload Characterization, 2001, pp. 3–14.

34] EEMBC, The Embedded Microprocessor Benchmark Consortium, EEMBC, 2000.
35] D. Burger, T.M. Austin, S. Bennett, Evaluating future microprocessors: the Sim-

pleScalar tool set, Tech. Rep., University of Wisconsin-Madison, 1996.
36] S. Zhang, K.S. Chatha, Approximation algorithm for the temperature aware

scheduling problem, in: Proceedings of International Conference on Computer-
Aided Design, 2007, pp. 281–288.

37] W. Wang, X. Qin, P. Mishra, Temperature- and energy-constrained scheduling
in multitasking systems: a model checking approach, in: Proceedings of Inter-
national Symposium on Low Power Electronics and Design, 2010, pp. 85–90.

Weixun Wang received his B.E. degree in software engi-
neering from the Software Institute, Nanjing University,
Nanjing, China, in 2007. He is currently pursuing his Ph.D.
degree in the Department of Computer and Information
Science and Engineering, University of Florida, Gainesville,
USA. His research interests include the area of design
automation of embedded systems with focus on dynamic
cache reconfiguration, energy optimization, temperature
management, design space exploration and lossless data
compression.

Sanjay Ranka is a Professor in the Department of Com-
puter Information Science and Engineering at University
of Florida. His current research interests are energy
efficient computing, high performance computing, data
mining and informatics. Most recently he was the Chief
Technology Officer at Paramark where he developed
Please cite this article in press as: W. Wang, et al., Energy-aware dyna
Comput.: Inform. Syst. (2012), http://dx.doi.org/10.1016/j.suscom.201

real-time optimization software for optimizing mar-
keting campaigns. Sanjay has also held positions as a
tenured faculty positions at Syracuse University and as a
researcher/visitor at IBM T.J. Watson Research Labs and
Hitachi America Limited.
 PRESS
matics and Systems xxx (2012) xxx–xxx

He earned his Ph.D. (Computer Science) from the University of Minnesota and a
B. Tech. in Computer Science from IIT, Kanpur, India. He has coauthored two books:
Elements of Neural Networks (MIT Press) and Hypercube Algorithms (Springer
Verlag), 70 journal articles and 110 refereed conference articles. His recent work
has received a student best paper award at ACM-BCB 2010, best paper runner
up award at KDD-2009, a nomination for the Robbins Prize for the best paper
in journal of Physics in Medicine and Biology for 2008, and a best paper award
at ICN 2007.

He is a fellow of the IEEE and AAAS, and a member of IFIP Committee on System
Modeling and Optimization. He serves on the editorial board of Journal of Parallel
and Distributed Computing, IEEE Transactions on Parallel and Distributed Comput-
ing, Sustainable Computing: Systems and Informatics, and International Journal of
Computing.

He was a past member of the Parallel Compiler Runtime Consortium,
the Message Passing Initiative Standards Committee and Technical Commit-
tee on Parallel Processing. He is the program chair for 2010 International
Conference on Contemporary Computing and co-general chair for 2009 Interna-
tional Conference on Data Mining and 2010 International Conference on Green
Computing.

Prabhat Mishra is an Associate Professor in the Depart-
ment of Computer and Information Science and Engineer-
ing (CISE) at the University of Florida where he leads
the CISE Embedded Systems Group. His research interests
include design automation of embedded systems, energy-
aware computing, hardware/software verification, and
design of trustworthy systems. He received his B.E. from
Jadavpur University, Kolkata in 1994, M.Tech. from the
Indian Institute of Technology, Kharagpur in 1996, and
Ph.D. from the University of California, Irvine in 2004 – all
in Computer Science. Prior to joining University of Florida,
he spent several years in various semiconductor and
design automation companies including Intel, Motorola,

Synopsys and Texas Instruments. He has published four books, ten book chapters
and more than 100 research articles in premier international journals and confer-
ences. His research has been recognized by several awards including the NSF CAREER
Award from the National Science Foundation, two best paper awards (VLSI Design
2011 and CODES + ISSS 2003), and 2004 EDAA Outstanding Dissertation Award from
the European Design Automation Association. Prof. Mishra currently serves as an
mic slack allocation for real-time multitasking systems, Sustain.
2.04.001

Editor of IEEE Transactions on Computers, and as a program/organizing committee
member of several premier ACM and IEEE conferences. He is a senior member of both
ACM and IEEE.

dx.doi.org/10.1016/j.suscom.2012.04.001
dx.doi.org/10.1109/ICCAD.2002.1167611

	Energy-aware dynamic slack allocation for real-time multitasking systems
	1 Introduction
	2 Related work
	3 Preliminaries
	3.1 System model
	3.2 Energy model

	4 Dynamic slack reclamation
	4.1 Tasks without arrival time constraints
	4.2 Tasks with arrival time constraints
	4.2.1 Without task rescheduling
	4.2.2 With task rescheduling

	4.3 Slack reclamation algorithm

	5 Experiments
	5.1 Experimental setup
	5.2 Results: window size effect
	5.3 Results: energy saving comparison
	5.3.1 Synthetic task sets
	5.3.2 Real benchmarks

	5.4 Results: problem variations
	5.5 Results: running time overhead

	6 Conclusion
	References

