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Optimization  techniques  are  widely  used  in  embedded  systems  design  to improve  overall  area,  per-
formance  and  energy  requirements.  Dynamic  cache  reconfiguration  is  very  effective  to  reduce  energy
consumption  of  cache  subsystems  which  accounts  for about  half  of  the total  energy  consumption  in
embedded  systems.  Various  studies  have  shown  that  code  compression  can  significantly  reduce  memory
requirements,  and may  improve  performance  in many  scenarios.  In this  paper,  we  study  the  challenges
and  associated  opportunities  in integrating  dynamic  cache  reconfiguration  with  code  compression  to
ode compression
mbedded systems

retain the  advantages  of  both  approaches.  We  developed  efficient  heuristics  to  explore  large  space  of
two-level  cache  hierarchy  in  order  to study  the  effect  of  a two-level  cache  on energy  consumption.  Experi-
mental results  demonstrate  that synergistic  combination  of  cache  reconfiguration  and  code  compression
can significantly  reduce  both  energy  consumption  (61%  on  average)  and memory  requirements  while
drastically  improve  the  overall  performance  (up  to 75%)  compared  to dynamic  cache  reconfiguration
alone.

© 2012 Elsevier Inc. All rights reserved.
. Introduction

Energy conservation has been a primary optimization objec-
ive in designing embedded systems as these systems are generally
imited by battery lifetime. Several studies have shown that mem-
ry hierarchy accounts for as much as 50% of the total energy
onsumption in many embedded systems [1].  Dynamic cache
econfiguration (DCR) and code compression are two  of the exten-
ively studied approaches in order to achieve energy savings as well
s area and performance gains.

Different applications require highly diverse cache configura-
ions for optimal energy consumption in the memory hierarchy.

nlike desktop-based systems, embedded systems are designed to

un a specific set of well-defined applications. Thus it is possible
o have a cache architecture that is tuned for those applications

� This is an extended version of the paper that has appeared in the proceedings of
nternational Green Computing Conference (IGCC) 2011 [22]. The IGCC paper pre-
ented some initial results for employing dynamic cache reconfiguration and code
ompression for embedded systems with one level (L1) cache. This article considers
he effects of code compression on DCR in the presence of both level one (L1 data and
1 instruction) and unified level two (L2) caches. Specifically the following major
ontributions are new: (i) we have used a highly configurable two-level cache hier-
rchy and added Section 4 to propose multi-level cache tuning heuristics for DCR;
ii)  we have added Section 5.3 to present new experimental results for exploration
f  two-level cache hierarchy.
∗ Corresponding author.

E-mail addresses: hadi@cise.ufl.edu,  hadi.hajimiri@gmail.com (H. Hajimiri),
amran@cise.ufl.edu (K. Rahmani), prabhat@cise.ufl.edu (P. Mishra).
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to have both increased performance as well as lower energy con-
sumption. Since too many cache configurations are possible, the
challenge is to determine the best cache configuration (in terms of
total size, associativity, and line size) for a particular application.
Studies have shown that cache tuning can achieve 53% memory-
access-related energy savings and 30% performance improvement
[2].

The use of high-level programming languages coupled with RISC
instruction sets leads to a larger memory footprint and increased
area/cost and power requirements, all of which are important
design constraints in most embedded applications. Code compres-
sion is clearly beneficial for memory size reduction because it
reduces the static memory size of executable code. Several code
compression techniques have been proposed for reducing instruc-
tion memory size in low cost embedded applications [3].  The basic
idea is to store instructions in compressed form and decompress
them on-the-fly at execution time. More importantly, code com-
pression could also be beneficial for energy by reducing memory
size and the communication between memory and the processor
core [4].

Design of efficient compression techniques needs to con-
sider two important aspects. First, the compressed code has
to support the possibility of starting the decompression dur-
ing execution at several points inside the program (i.e., branch

targets). Second, since decompression is performed on-line, dur-
ing program execution, decompression algorithms should be fast
and power efficient to achieve savings in memory size and
power, without compromising performance. We  explore various

dx.doi.org/10.1016/j.suscom.2012.01.003
http://www.sciencedirect.com/science/journal/22105379
http://www.elsevier.com/locate/suscom
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Fig. 1. DCR for a system with three tasks.

ompression techniques (including dictionary-based compression,
itmask-based compression and Huffman coding) that represent a
rade-off between compression performance and decompression
verhead.

It is expected that by compressing instructions the cache behav-
or of programs is no longer the same. Thus in order to have
he optimal cache configuration, more analysis should be done
ncluding hit/miss behavior of the compressed programs. In other

ords, cache reconfiguration needs to be aware of code compres-
ion to obtain best possible area, power and performance results.
n this paper, we present an elaborate analysis of combining two
ptimization techniques: dynamic cache reconfiguration and code
ompression. In addition, we propose efficient heuristics to explore
arge design space of two-level cache hierarchy in order to find
nergy efficient cache configurations. Our experimental results
emonstrate that the combination is synergistic and achieves more
nergy savings as well as overall performance improvement com-
ared to DCR and code compression alone.

The rest of the paper is organized as follows. Section 2 provides
n overview of related research activities. In Section 3, we describe
ur compression-aware cache reconfiguration methodology. Sec-
ion 4 presents efficient heuristics to explore two-level cache
ierarchy. Section 5 presents our experimental results. Finally, Sec-
ion 6 concludes the paper.

. Background and related work

.1. Dynamic cache reconfiguration (DCR)

In power constrained embedded systems, nearly half of the
verall power consumption is attributed to the cache subsystem
1]. Applications require vastly different cache requirements in
erms of cache size, line size, and associativity. Research shows
hat specializing the cache to application’s needs can significantly
educe energy consumption [2].  Fig. 1 illustrates how energy con-
umption can be reduced by using inter-task (application-based)
ache reconfiguration in a simple system supporting three tasks.
n application-based cache tuning, DCR happens when a task starts

ts execution or it resumes from an interrupt (either by preemp-
ion or when execution of another task completes) and the same
ache for the application gets chosen no matter if it is starting from
he beginning or resuming anywhere in between. Fig. 1(a) depicts
ormatics and Systems 2 (2012) 71– 80

a traditional system and Fig. 1(b) depicts a system with a reconfig-
urable cache. For the ease of illustration let’s assume cache size is
the only reconfigurable parameter of cache (associativity and line
size are ignored). In this example, Task1 starts its execution at time
P1. Task2 and Task3 start at P2 and P3 respectively. In a traditional
approach, the system always executes using a 4096-byte cache. We
call this cache as base cache throughout the paper. Base cache is the
best possible cache configuration optimized for all the tasks. With the
option of reconfigurable cache, Task1, Task2, and Task3 execute
using 1024-byte cache starting at P1, 8192-byte cache starting at
P2, and 4096-byte cache starting at P3 respectively. Through proper
selection of cache size for each task the system can achieve sig-
nificant amount of energy savings as well as performance gains
compared to using only the base cache.

The inter-task DCR problem is defined as follows. Consider a
set of n applications (tasks) A = {a1, a2, a3, . . .,  an} intended to run
on a configurable cache architecture capable of supporting m pos-
sible cache configurations C = {c1, c2, c3, . . .,  cm}. We  define e(cj,
ai) as the total energy consumed by running application ai on the
architecture with cache configuration cj. We  also define co ∈ C as
the optimal cache configuration for application ai, such that e(co,
ai) ≤ e(cj, ai), ∀cj ∈ C. Through exhaustive exploration of all possible
configurations of C = {c1, c2, c3, . . .,  cm}, best energy optimal cache
configuration for each application can be found.

Dynamic cache reconfiguration has been extensively studied in
several works [5–8]. The reconfigurable cache architecture pro-
posed by Zhang et al. [6] determines the best cache parameters by
using Pareto-optimal points trading off energy consumption and
performance. Their method imposes no overhead to the critical
path, thus cache access time does not increase. Chen et al. [9] intro-
duced a novel reconfiguration management algorithm to efficiently
search the large design space of possible cache configurations for
the optimal one. None of these approaches consider the effects of
compressed code on cache reconfiguration.

DCR can be viewed as a technique that tries to squeeze cache
size with other cache parameters to reduce energy consump-
tion without (or with minor) performance degradation. Smaller
caches contribute less static power but may  increase cache misses
which can lead to increased dynamic power and performance
degradation (longer execution time thus higher energy consump-
tion). Therefore, the smallest possible cache may not be a feasible
solution in many cases. DCR techniques find the best cache
that fits the application by exploring cache configurations using
various schemes. In this paper, we show that code compres-
sion which significantly reduces the code size can also help the
cache reconfiguration technique to choose relatively smaller cache
sizes, smaller associativity, or smaller line size without perfor-
mance degradation, therefore, reduces cache energy consumption
significantly.

The configurable caches used in our work are based on the
architecture described in [10]. The underlying cache architecture
contains four separate banks that can operate as four separate
ways. Special configuration registers are used to inform the cache
tuner – a custom hardware or a lightweight process – to con-
catenate ways such that the associativity can be altered. The
special registers may  also be configured to shut down ways to
vary the cache size. Similarly, by configuring the fetch unit to
fetch cache lines in various lengths, we can adjust the line sizes.
The area overhead for this architecture is 3%. In addition, search-
ing an average of 5.4 configurations to find the best configuration
has a very low energy consumption of 11.9 nJ on average. This
energy is negligible compared to the energy consumption in bench-

marks that is 2.34 J on average. In this paper the only part that
we used is dynamic cache reconfiguration. It means our archi-
tecture is not self-tuning and has much less overhead compared
to [10].
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energy consumption simultaneously. In case of DCR, tradeoffs
between performance and energy consumption should be consid-
ered in order to choose the most profitable cache configuration for
each application. Fig. 5 shows an example of performance-energy
Fig. 2. Traditional code compression methodology.

.2. Code compression in embedded systems

Various code compression algorithms are suitable for embed-
ed systems, i.e., provide good compression efficiency with minor
acceptable) or no decompression overhead. Wolfe and Chanin [11]
ere among the first to propose an embedded processor design

hat incorporates code compression. Xie et al. [12] introduced a
ompression technique capable of compressing flexible instruction
ormats in VLIW architectures. Seong and Mishra [13] modified
ictionary-based compression (BMC) technique using bitmasks
hich improved compression efficiency without introducing any

dditional decompression overhead. Lin et al. [14] proposed LZW-
ased algorithms to compress branch blocks. Recently, Rawlins and
ordon-Ross [15] used compressed programs in their approach
f combined loop caching with DCR. Their approach has several
imitations. They primarily focus on loop caching which may  not
e applicable in many embedded systems due to intrusive addi-
ion of another level of cache. Furthermore, due to emphasis on
oop caching, interactions between compression and DCR was  not
xplored in detail. In this paper we provide comprehensive analy-
is of how compression and DCR synergistically interact with each
ther as well as energy-performance trade-offs available for system
esigner.

Traditional code compression and decompression flow is illus-
rated in Fig. 2 where the compression is done offline (prior to
xecution) and the compressed program is loaded into the memory.
he decompression is done during the program execution (online)
nd as shown in Fig. 7 it can be placed before or after cache. It is pos-
ible to place the decompression unit between two levels of cache
s well, if the system has multi-level cache hierarchy.

In this paper we explore three compression techniques:
ictionary-based compression (DC), bitmask-based compression
BMC) [13], and Huffman coding. DC and Huffman coding represent
wo extremes. DC is a simple compression technique and therefore
roduces moderate compression but decompression is very fast.
n the other hand, Huffman coding is considered to be one of the
ost efficient compression techniques but has higher decompres-

ion overhead/latency. DC and Huffman are widely used but BMC  is
 recent enhancement of DC that enables more matching patterns.
ig. 3 shows the generic encoding formats of bitmask-based com-
ression technique for various numbers of bitmasks. Compressed
ata stores information regarding the bitmask type, bitmask loca-
ion, and the mask pattern itself. The bitmask can be applied in
ifferent places in a vector and the number of bits required for indi-
ating the position varies depending on the bitmask type. Bitmasks
ay  be sliding or fixed. A fixed bitmask can be applied to fixed

ocations, such as byte boundaries. However, sliding bitmasks can

e applied anywhere in the code vector.

The main advantage of bitmask-based compression over
raditional dictionary-based compression is the increased match-
ng patterns. In dictionary-based compression, each vector is
Extra  bits  for  considering  mismatche s

Fig. 3. Encoding format for incorporating mismatches.

compressed only if it completely matches with a dictionary entry.
Fig. 4 illustrates an example of bitmask-based compression in
which it can compress up to six data entries using bitmask-based
compression, whereas using only dictionary-based compression
would compress only four entries. The example in Fig. 4 uses only
one bitmask. In this case, vectors that match exactly a dictionary
entry are compressed with 3 bits. The first bit represents whether
it is compressed (using 0) or not (using 1). The second bit indicates
whether it is compressed using bitmask (using 0) or not (using 1).
The last bit indicates the dictionary index. Data that are compressed
using bitmask requires 8 bits. The first two  bits, as before, repre-
sent if the data is compressed, and whether the data is compressed
using bitmasks. The next three bits indicate the bitmask position
and followed by two bits that indicate the bitmask pattern.

In this example, the compression ratio is 80%. Compression ratio
(CR), widely accepted as a primary metric for measuring the effi-
ciency of code compression, is defined as:

CR = Compressed program size
Original program size

Bitmask selection and dictionary selection are two  major chal-
lenges in bitmask-based code compression. Seong and Mishra [13]
have shown that the profitable bitmasks to be selected for code
compression are 1s, 2s, 2f, 4s, and 4f (s and f stand for sliding and
fixed bitmasks respectively). Since the decompression engine must
be able to start execution from any of jump targets, branch targets
should be aligned in the compressed code. In addition, the map-
ping of old addresses (in the original uncompressed code) to new
addresses (in the compressed code) is kept in a jump table.

3. Compression-aware DCR

It is a major challenge to optimize both performance and
Fig. 4. An example of bitmask-based code compression.
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Fig. 6. Different caches used in different scenarios. Cache1: conventional system
ig. 5. An example of performance-energy consumption tradeoff using Anagram
enchmark (Pareto optimal alternatives are connected using dashed lines).

onsumption tradeoff using Anagram benchmark. Each dot rep-
esents a cache configuration showing its corresponding energy
onsumption and total execution time of the task. By plotting all
ache configurations in performance-energy consumption graph
based on time and energy consumption from simulation results)
e can determine Pareto optimal points representing feasible

lternatives. For instance, increasing cache line or associativity
an improve performance and may  increase energy consump-
ion as well. High performance alternatives will sacrifice some
mounts of energy while selecting energy saving options would
ave lower performance. The remainder of this section describes
ow to combine the advantages of both compression and dynamic
econfiguration.

.1. Motivation

A reconfigurable cache can be viewed as an elastic cache with
exible parameters such as cache size, line size, and associativ-

ty. The dynamic reconfiguration technique exploits the elasticity
f such caches by selecting a profitable cache configuration which
s capable of maintaining the critical portion of the application to
educe energy consumption. Choosing smaller caches that fail to
tore the critical portion of the program may  lead to increased cache
isses thus longer execution time and eventually escalation in

nergy consumption. However, it is possible that the cache recon-
guration method may  find a cache configuration that increases
he execution time of the application in spite of reduced energy
onsumption. This may  not be an issue for systems without real-
ime constraints but timing constraints in real-time applications
imit use of such cache reconfiguration techniques. Integrating code
ompression with cache reconfiguration resolves this problem by
ffectively shrinking the program size in order to fit the critical
ortion of the application into a smaller cache.

Fig. 6 illustrates different caches for a real-time embedded sys-
em with a set of applications. Associativity is ignored for the ease
f illustration. The horizontal and vertical axis show different pos-
ibilities of cache size and line size, respectively. The base cache
s a globally optimized cache is used for all applications and has
he minimal aggregate energy consumption while ensuring that
o deadlines are missed. As an illustrative example, Fig. 6 shows
ne application in this set in three scenarios: no reconfiguration
r compression, reconfiguration without compression, and recon-
guration + compression. Cache1 is used for this application when
o compression or cache reconfiguration is available. Cache2 is
he cache selected by dynamic reconfiguration technique (with no

ompression) to reduce the energy consumption of this applica-
ion. But to ensure real-time (deadline) constraints, low energy
ache alternatives may  get rejected because of longer execution
imes (critical portion of applications may  not fit, for example).
without reconfiguration, Cache2: only dynamic reconfiguration (no compression),
Cache3: both dynamic reconfiguration and compression.

Incorporating compression into DCR would lead to selection of
Cache3. Applying compression will help dynamic reconfiguration
to perfectly fit the critical portion of the application into smaller
cache thus gaining even more energy savings without increasing
the execution time.

3.2. Compression-aware DCR

Here, we  consider systems with one level cache. In Section 4 we
extend our approach for systems with two-level cache. Algorithm 1
outlines the major steps in our cache configuration selection in the
presence of compressed applications. The algorithm collects simu-
lation results for all possible cache configurations (cache sizes of 1
KB, 2 KB, 4 KB, and 8 KB; associativity of 1, 2, 4-way; cache line sizes
of 16, 32, 64). It finds the best energy optimal cache configuration
for each application through exhaustive exploration of all possible
cache configurations of C = {c1, c2, c3, . . .,  cm }. Number of simulation
cycles for each run is collected based on the simulation results. The
energy model of [6] is used to calculate the energy consumption
using the cache hit and miss statistics. The algorithm finally con-
structs the Pareto optimal alternatives and returns it in a list. The
most energy efficient cache configuration among all Pareto optimal
alternatives which satisfies timing requirements of the application
is chosen next. Suppose there are two  cache configurations, C1 with
execution time of 2 million cycles and energy consumption of 5 mJ
and C2 with execution time of 1.8 million cycles and energy con-
sumption of 6 mJ,  available in the Pareto optimal list of alternatives.
If the task has to be done in 1.9 million cycles, the faster alterna-
tive (C2) gets chosen. If the timing requirement of the task is not
constrained by 2 million cycles, the more energy efficient cache
alternative (C1) gets selected.

Algorithm 1.
Finding Pareto optimal cache configurations
Input:  compressed code
Output: List of Pareto optimal cache alternatives
Begin

li = an empty list to store cache alternatives
for s = cache sizes of 1 KB, 2 KB, 4 KB, and 8 KB do

for a = associativity of 1,2,4-way do
for l = cache lines of 16,32,64 do

do cycle accurate simulation for cache Cs,a,l;
ts,a,l = simulation cycles;
es,a,l = energy consumption of the cache subsystem;
add the triple (Cs,a,l , ts,a,l , es,a,l) to li;

end for

end for

end for
return Pareto optimal points in li;

end
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Fig. 7. Different placement of decompression unit.

The algorithm is similar to traditional DCR but uses compressed
ode. Therefore the simulation/profiling infrastructure needs to
ave decompression unit to provide the ability of decoding com-
ressed instructions. For example, in our case, we  implemented and
laced the required decompression routines/functions for respec-
ive compression algorithms in Simplescalar simulator [16].

In this section, we consider systems with only one level of
econfigurable cache architecture; therefore number of cache con-
gurations is small. So we can exhaustively explore all possible
onfigurations in a reasonable time. Since the reconfiguration of
ssociativity is achieved by way concatenation, 1 KB L1 cache can
nly be direct-mapped as other three banks are shut down. For the
ame reason, 2 KB cache can only be configured to direct-mapped
r 2-way associativity. Therefore, there are 18 (=3 + 6 + 9) configu-
ation candidates for L1.

.3. Placement of decompression hardware

Fig. 7 shows two different placement of the decompression unit.
n pre-cache placement the memory contains compressed code and
nstructions are stored in cache in original form. Whereas, in the
ost-cache placement the decompression unit is placed between
ache and processor thus both memory and cache contain com-
ressed instructions.

Our studies show that having the pre-cache placement has very
ittle effect on energy and performance of cache. In this case uncom-
ressed instructions are stored in the cache and when cache miss
ccurs, the cache controller asks the decompression unit to provide

 block of instructions. In majority of the cases the decompression
ardware requires one clock cycle in pipelined mode (as shown

n Fig. 7), so one clock cycle will be added to the latency of entire
lock fetch. In rare cases, e.g., when the first instruction of the block

s not compressed, it will introduce two cycle penalty since it will

ake two cycles to fetch and decompress the instruction [17]. As
emonstrated in Fig. 8, the energy consumption of cache in the
re-cache placement is almost the same as the case when there is
o compression involved. So the best choice is to use post-cache
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placement to achieve maximum performance as well as minimum
energy consumption.

Incorporating compression, cache miss penalty caused by mem-
ory fetch latency is reduced because of improved bandwidth (since
compressed code is smaller). In addition, off-chip access energy (the
buses to main memory and memory access) is also reduced since
the decompression engine reads compressed code from memory
resulting in lower traffic to main memory. However, post-cache
placement can introduce significant performance overhead to the
system. Seong and Mishra [13] presented a bitmask-based com-
pression technique that adds no penalty to the system performance
using pipelined one-cycle decompression engine with negligible
power requirement. Using this decompression engine makes it
practical to place the decompression unit after cache (post-cache
placement) and benefit from the compressed code stored in the
cache.

In the context of embedded systems one of the main goals is
maximizing energy savings while ensuring the system will meet
applications requirements. Usually, choosing a cache configuration
for energy savings may  result in performance degradation. How-
ever, the synergistic combination of cache reconfiguration and code
compression enables energy savings without loss of performance.
Our proposed methodology provides an efficient and optimal strat-
egy for cache tuning based on static profiling using compressed
programs.

4. Tuning of two-level caches

In this section, we study the effect of a two-level cache hierar-
chy on compression and DCR. We  consider a system with a unified
(instruction/data) level two cache (L2). We  compress only instruc-
tions. In other words, we do not consider data compression in this
paper. However, selecting energy efficient cache configuration for
L2 cache is dependent on both level one instruction and data caches
(IL1 and DL1). Therefore we consider the energy consumption of the
entire cache subsystem including IL1, DL1, and L2.

We present efficient heuristics to generate profile tables with
profitable cache configurations. Tuning a two-level cache faces the
difficulty of exploring an enormous configuration space. In this
paper, we  examine typical exploration parameters of a two-level
cache in conventional embedded systems. As discussed in Section
3.2, there are 18 (=3 + 6 + 9) configuration candidates for L1 caches.
Let Sil1 and Sdl1 denote the size of exploration space for IL1 cache
and DL1 caches, respectively. So we  have Sil1 = 18 and Sdl1 = 18. For
L2 cache, we  choose 8 KB, 16 KB and 32 KB as cache sizes; 32, 64 and
128 bytes as line sizes; 4-, 8- and 16-way set associativity with a 32
KB cache architecture composed of four separate banks. Similarly,
there are 18 possible configurations (Sul2 = 18). For comparison, we
have chosen a base cache hierarchy, which reflects a global optimal
configuration for all the tasks, consisting of two 2 KB, 2-way set
associative L1 caches with a 32 byte line size, and a 16 KB, 8-way set
associative unified L2 cache with a 64 byte line size. The remainder
of this section describes our proposed exploration techniques.

4.1. Exhaustive exploration

Intuitively, if the two  levels of caches can be explored indepen-
dently, one can easily profile one level at a time while holding the
other level to a typical configuration, which will result in a much
smaller exploration space. However, there is no certainty that the

combination of three independently found energy-optimal config-
urations would be close to the global optimal one. The two cache
levels affect each other’s behavior in various ways. For instance,
L2 cache’s configuration determines the miss penalty of the L1
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aches. Also, the number of L2 cache accesses directly depends on
he number of L1 cache misses.

The obvious way to find the optimal configuration is to search
he entire space exhaustively. Since the instruction and data caches
ould have different configurations, there are 324 (=Sil1*Sdl1) pos-
ible configurations for L1 cache. Addition of the L2 cache increases
he design space size to 4752 (Not equal to Sil1*Sdl1*Sul2 because
he candidates in which L2 cache’s line size is smaller than any of
he L1 caches are eliminated). We  use the exhaustive method for
omparison with the heuristics presented in the following sections.
esign of these heuristics is motivated by the exploration heuris-

ics of Wang and Mishra [18]. However, our approach also considers
he effect of compression during exploration.

.2. Independent L1 cache tuning – ICT

While different cache levels are dependent on each other, our
nitial results demonstrate that instruction and data caches are
elatively independent. In this study, we fix one’s configuration
hile changing the other’s to see whether varying one impacts the
xed one. We  observe that the profiling statistics for the instruc-
ion cache almost remain identical with different data caches and
ice versa. It is mainly due to the fact that access pattern of L1
ache is purely determined by the application’s characteristics, and
he instruction and data streams are relatively independent from
ach other. Furthermore, factors affecting the instruction cache’s
nergy consumption as well as performance (such as hit energy,
iss energy and miss penalty cycles) have very little dependency

n the data cache and vice versa.
This observation offers an opportunity to reduce the exploration

pace. We  propose ICT – Independent L1 Tuning heuristic – during
hich IL1 and DL1 caches always use the same configuration while

xploring with all L2 cache configurations. This method results in a
otal of 288 configurations – a considerable cut down of the original
uantity, though still not small. Throughout the static analysis, we
ake book keeping including the energy consumptions and miss

ycles of each cache individually. The energy-optimal IL1 cache is
he one with the lowest energy consumption of itself (and same
or DL1 cache and L2 cache). We  choose the cache configuration
ombination composed of the three locally energy-optimal caches
s the energy-optimal cache hierarchy to be stored in the profile
able.

.3. Interlaced tuning – ILT

We  adapt the strategy used in TCaT [2] and propose ILT –
nterlaced Tuning heuristic – which finds energy-optimal param-
ters throughout the exploration. The basic idea is to tune cache
arameters in the order of their importance to the overall energy
onsumption, which is cache size followed by line size and finally
ssociativity. In order to increase the chances of finding optimal L2
ache size, which we believe has the highest importance, we  com-
ine the exploration of L2 cache’s size and associativity together.

LT is described below:

. First, tune by cache size. Hold the IL1’s line size, associativity
as well as DL1 to the smallest configuration. L2 is set to the
base cache. Explore all three instruction cache sizes (1 KB, 2 KB
and 4 KB) and find out the energy-optimal one(s). Perform same
explorations for DL1 cache size. In L2 size exploration, we try
all the associativities for each cache size. We  set L1 sizes to the

energy-optimal ones in the process of finding energy-optimal L2
size(s).

. Next, tune by line size. We  set cache sizes to the energy-optimal
ones and L2’s associativity found in the first step in exploring
ormatics and Systems 2 (2012) 71– 80

energy-optimal line sizes for each cache. These two tasks are
repeated for both L1 caches and L2.

3. Finally, tune by associativity. We  set the cache sizes and line sizes
to the energy-optimal ones in exploring energy-optimal associa-
tivity. Note that we  only explore associativities for L1 caches in
this step. During the process of finding DL1’s optimal associa-
tivities, we  already have all the other parameters we  needed to
compute the total numbers of execution cycles that are required
in the profile table.

In the worst case, ILT explores 30 configurations. The first step
explores 6 for L1 caches and 9 for L2 cache. The second step explores
9 (=3*3) candidates. Final step explores 6 (=3*2) candidates. How-
ever, in most cases, there are a lot of repetitive configurations
throughout the process that we only have to execute once. In prac-
tice, ILT has exploration space size of around 19 configurations.

4.4. Hierarchy level independent tuning – HIT

Although we stated that IL1 and DL1 can be selected indepen-
dently, in some cases it is better to explore the two level one caches
together. Suppose for a particular benchmark, there is a large varia-
tion in the require L2 size for data/instruction when changing IL1 or
DL1. In this case, using a large portion of L2 for instruction for a spe-
cific IL1 configuration can affect DL1 indirectly (may increase data
access miss ratio in L2). Since ICT finds energy-optimal caches for
IL1 and DL1 independently without considering the effect of each
on L2 cache behavior, it may  produce suboptimal results. We  pro-
pose HIT – Hierarchy Level Independent Tuning – in which we first
find the optimal cache configurations for level one caches fixing L2
to the base cache. We  explore all possible 324 (=18*18) combina-
tions for IL1 and DL1 caches and select the energy optimal ones.
Next we  fix L1 caches to the found energy optimal caches in the
first step and try all 18 candidates for L2 cache. In summary, ILT
explores only 30 configurations, whereas ICT and HIT explore 288
and 342 (=324 + 18) configurations, respectively.

5. Experiments

In order to quantify compression-aware cache configuration
tradeoffs, we have applied our methodology to select embedded
system benchmarks. Following the same flow in Sections 3 and
4, we  first investigate integration of code compression with DCR
for systems with one level of cache. In subsection 0, we extend
our experiments to evaluate our method with the presence of a
two-level cache.

5.1. Experimental setup

We  examined cjpeg, djpeg, epic, and adpcm (rawcaudio), g.721
(encode, decode) benchmarks from the MediaBench [19] and dijk-
stra, patricia from MiBench [20] compiled for the Alpha target
architecture. These benchmarks are all specially designed for
embedded systems and suitable for the cache configuration param-
eters described in Section 3.2. All applications were executed with
the default input sets provided with the benchmarks suites.

Three different code compression techniques including
bitmask-based, dictionary-based and Huffman code compression
were used. To achieve the best attainable compression ratios, in
bitmask-based compression, for each application we examined
dictionaries of 1 KB, 2 KB, 4 KB, and 8 KB. Similar to Seong and
Mishra [13] we  tried three mask sets including one 2-bit sliding,

1-bit sliding and 2-bit fixed, and 1-bit sliding and 2-bit fixed masks.
Similarly for dictionary-based and Huffman compression we  used
0.5 KB, 1 KB, 2 KB, 4 KB, and 8 KB dictionary sizes with 8 bits, 16
bits and 32 bits word sizes. We  found out that dictionary size of
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Fig. 9. Energy consumption of the selected “m

 KB and word size of 16 bits are the best choices for this set of
enchmarks. The reason is that using 8 bits words increases the
umber of compression decision bits and using 32 bits word size
ecreases the words frequencies significantly. Hence, as simulation
esults showed, 16 bits word size is the best choice.

Code compression is performed offline. In order to extract the
ode (instruction) part from executable binaries, we used ECOFF
Extended Common Object File Format) header files provided in
impleScalar toolset [16]. We  placed the compressed code back into
inary files so that they can be loaded into the simulator.

We utilized the configurable cache architecture developed by
hang et al. [6] with a four-bank cache of base size 4 KB, which
ffers sizes of 1 KB, 2 KB, and 4 KB, line sizes ranging from 16 bytes
o 64 bytes, and associativity of 1-way, 2-way, and 4-way. For com-
arison purposes, we used the base cache configuration for L1 set
o be a 4 KB, 4-way set associative cache with a 32-byte line size,

 reasonably common configuration that meets the average needs
f the studied benchmarks.

To obtain cache hit and miss statistics, we modified the
impleScalar toolset [16] to decode and simulate compressed
pplications. We  implemented and placed the required decom-
ression routines/functions for respective compression algorithms

n Simplescalar simulator. We  considered the latency of decom-
ression unit carefully. Decompression unit can decompress the
ext instruction in one cycle (in pipelined mode) if it finds the
ntire needed bits in its buffer. Otherwise, it takes one cycle (or
ore cycles, if cache miss occurs) to fetch the needed bits into its

uffer and on more cycle to decompress the next instruction. Cor-
ectness of the compression and decompression algorithms was
erified by comparing the outputs of compressed applications with
ncompressed versions. The performance overhead of decompres-
ion includes decompression unit buffer flush overhead due to
umps, and variable latency of memory reads in each block fetch
because of variable length compressed code). These overhead are
egligible according to the experimental results.

We  applied the same energy model used in [6],  which calculates
oth dynamic and static energy consumption, memory latency, CPU
tall energy, and main memory fetch energy. The energy model
as modified to include decompression energy. We  updated the
ynamic energy consumption for each cache configuration using
ACTI 4.2 [21].

.2. One-level cache tuning

Energy consumption for several benchmarks from the Media-
ench and MiBench in different approaches are analyzed: a fixed
ase cache configuration, bitmask-based compression without uti-
izing DCR (BMC only), DCR without compression (DCR only),
ictionary-based compression with DCR (DC + DCR), Huffman cod-
ng with DCR (Huffman + DCR), and bitmask-based compression
ith DCR (BMC + DCR). The most energy efficient cache configu-

ation found by exploration in each technique is considered for
omparison. Fig. 9 presents energy savings for the instruction cache
patricia dijkstra g72 1_enc g721_de c

l-energy cache” normalized to the base cache.

subsystem. Energy consumption is normalized to the fixed base
cache configuration such that value of 100% represents our baseline.
Energy savings in the instruction cache subsystem ranges from 10%
to 76% with an average of 45% for utilizing only DCR. As we  expected,
due to higher decompression overhead, Huffman (when combined
with DCR) achieves lower energy savings compared to BMC  virtu-
ally for all benchmarks. Energy savings in DC + DCR approach are
even lower than Huffman + DCR as a result of moderate compres-
sion ratio by DC. Incorporating BMC  in DCR increases energy savings
up to 48% – on top of 10–76% energy savings obtained by DCR only –
without any performance degradation. Our methodology achieves
on average 61% energy savings of the cache subsystem.

Energy consumption of some benchmarks is reduced drasti-
cally when using BMC. For example, energy consumption of cjpeg
benchmark is decreased by nearly 50% when applying BMC on DCR
compared to using DCR alone. Fig. 10(a) shows the number of cache
misses per thousand dynamic instructions for cjpeg benchmark.
It shows that for smaller cache sizes, cache misses are drastically
reduced when incorporating compression. In other words, by using
compression, smaller cache sizes are capable of containing the crit-
ical portion of cjpeg benchmark and keep the number of misses
low (maintaining performance) while reducing static energy con-
sumption. Fig. 10(b) presents the same statistics for rawcaudio
benchmark. It should be noticed that although integrating com-
pression with DCR reduces the number of cache misses when using
small cache sizes (similar to cjpeg behavior) it does not drastically
decrease energy consumption. The extremely low range of cache
misses, usually less than 0.05 (0.45 in the extreme case) misses per
thousand dynamic instructions, leads to nominal contribution of
cache misses to the overall energy consumption of the cache. For
this reason dynamic energy consumption is nearly the same for all
configurations and DCR chooses the smallest possible cache con-
figuration to minimize the static energy. In this case, incorporating
compression in DCR with the selection of small cache size can only
reduce the cache misses and therefore dynamic energy and thus has
a small impact on overall cache energy consumption for rawcaudio
benchmark.

Fig. 11 illustrates an example of performance-energy consump-
tion tradeoffs for both uncompressed and compressed (using BMC)
cases for rawcaudio (adpcm-enc) benchmark. It can be observed that
for every possible configuration for the uncompressed program
there is an alternative which has a better performance and lower
energy requirement if the program is compressed. This observation
shows that compression-aware DCR leads to better design choices.

Another observation we  have made is that without DCR, apply-
ing compression on an application (which executes using base cache
configuration that already fits the critical portion of the application)
will not gain noticeable energy savings. However, compression-
aware DCR effectively uses the advantage of reduced program size

achieved by compression to choose smaller cache size, associativ-
ity, or line size and yet fit critical portion of programs. Therefore,
compression aware-DCR can achieve more energy savings com-
pared to DCR alone. Fig. 12 illustrates comparison of energy profile
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echniques.

or different caches for compressed (using BMC) and uncompressed
jpeg benchmark. Using a 4 KB cache with associativity of 4 and 64-
it line size, energy consumption of cjpeg benchmark is nearly the
ame for compressed and uncompressed programs.

In the post-cache placement, compression has a significant

ffect when combined with small cache sizes. In this case com-
ressed instructions are stored in the cache. Since the compressed
ode size is 30–45 percent less than uncompressed code it can fit
n smaller cache sizes. However, when size of the selected cache

0

0.5

1

1.5

2

2.5

3

3.5

7.67.47.276.86.66.4

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

 (
m

il
li

 J
)

Execution time (Millions of cycles)

BMC

uncompressed

ig. 11. Performance-energy consumption tradeoff for compressed and uncom-
ressed codes using rawcaudio (adpcm-enc) benchmark.
Fig. 12. The impact of cache/line size on energy profile of cache using cjpeg bench-
mark.

increases, the critical portion of program (regardless of whether
compressed or not) will fit into cache entirely. Therefore by utiliz-
ing large cache sizes energy consumption of the compressed code
is very close to uncompressed one. It should be noted that the main
objective of exploration is to find the most energy efficient cache
configurations so we are not interested in large cache sizes since
they require more energy.

Fig. 13 shows performance of applications for different schemes
normalized to the base cache. Applying DCR alone for the purpose
of energy saving, results in 12% performance loss on average. We
observe that code compression can improve performance in many
scenarios while achieving significant reduction in energy consump-
tion. For instance, in the case of the application patricia, applying
only DCR would result in 12% performance degradation with 34%
energy savings. However, incorporating BMC  boosts performance
by 33% while gaining extra 17% energy savings on top of DCR  achiev-
ing 51% energy savings compared to the base cache. Results show
that synergistic integration of BMC  with DCR achieves as much as
75% performance improvement for g721 enc (27% improvement on
average) compared to DCR alone. Thus it is possible to have a cache
architecture that is tuned for applications to have both increased
performance as well as lower energy consumption. Fig. 14 shows
performance and miss statistics for g721 enc benchmark. Further
analysis of g721 enc benchmark reveals that having numerous
small if then else and switch clauses leads to large number of misses
due to overlapping addresses (conflict miss). In this case, compres-
sion reduces the number of misses by decreasing the amount of
overlap the address of these small code sections. Fig. 14 confirms
that compression drastically improves the performance of g721 enc
benchmark for most of available cache configurations.

Fig. 15 shows performance trend of all cache configurations for
both uncompressed and compressed codes for cjpeg benchmark. It
is interesting to note that compression also improves performance.
The compressed program can fit in smaller cache because of 30–45%
reduction in code size. This decreases cache misses significantly
for small caches. Reduced number of misses can lead to reduced
stalls and improved performance. As it can be observed in Fig. 15,
without compression, reducing the cache size may lead to major
performance degradation so DCR is forced to discard many cache
alternatives due to timing constraints. For instance, having tim-
ing constraint of 25 million cycles for cjpeg benchmark will force
to discard all cache configurations of size 2048 KB or lower. How-
ever, compression improves the performance significantly when

small cache sizes are used. Thus combination of cache reconfigura-
tion and code compression enables energy savings while improving
overall performance.
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.3. Two-level cache tuning

To evaluate the effect of two-level cache hierarchy using our
xploration heuristics, we selected cjpeg, djpeg, epic benchmarks
rom MediaBench [19] and crc32 from MiBench [20] benchmark
uites. For L2 cache, we choose 8 KB, 16 KB and 32 KB as possible
ache sizes; 32, 64 and 128 bytes as line sizes; 4-, 8- and 16-way
et associativity with a 32 KB cache architecture composed of four
eparate banks. L2 cache is unified; in other words, it contains both
nstructions and data. We  define L2 base cache to be a 16 KB, 8-way
et associative L2 cache with a 64 byte line size. We  quantify the
ache subsystem energy savings using our approach by comparing
o the base cache scenario. We  use four cache exploration methods
 exhaustive, ICT, ILT, and HIT – to generate profile tables. Fig. 16
resents the total cache hierarchy energy consumption normalized
o the base cache for cjpeg benchmark using each exploration tech-
ique. It can be observed that, for cjpeg benchmark, the best results
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ig. 15. Performance trend of different cache configurations using cjpeg benchmark.
Fig. 16. Cache hierarchy energy consumption using heuristics for cjpeg benchmark.

obtained by heuristics are very close to the optimal value obtained
by exhaustive search. As we  explained in Section 4.1,  exploring all
possible configurations exhaustively results in 4752 simulations.
Performing these set of simulations for cjpeg benchmark (which
takes the lowest simulation time among others in the benchmark
suites) on a system with a 4-core AMD  Opteron (an ×86 server
processor) running at 3.0 GHz takes more than three days. Clearly,
this will take longer for other benchmarks. Although, these heuris-
tics take significantly less time than exhaustive exploration, they
provide very close to optimal energy savings. Table 1 presents the
total number of cache configurations explored by each exploration
heuristic. Our experience is that it may  take several days to profile a
task using exhaustive method while few minutes if ILT is employed.
Designers can decide which heuristic to use based on the static
profiling time and the overall energy savings. Therefore, we only
perform heuristic space exploration for the remaining benchmarks.

Fig. 17 presents the total cache hierarchy energy consump-
tion normalized to the base cache for cjpeg, djpeg, epic, patricia
and dijkstra benchmarks using each exploration technique for
uncompressed and compressed scenarios. ICT achieves best results
obtaining 67% average energy saving when applying DCR only. It
achieves up to 22% (patricia benchmark) more energy savings (11%
on average) incorporating compression. ILT reduces the number of
simulations significantly but presents results that are slightly infe-
rior. It achieves 62% energy savings using only DCR  and up to 20%
extra savings adding compression to DCR. HIT outperforms ICT and

ILT in djpeg benchmark but on average saves 61% of the energy con-
sumption. Integrating compression boosts energy savings achieved
by HIT by 7%. The reason for ICT not finding the optimal

Table 1
Cache hierarchy configuration explored using different exploration methods for
cjpeg benchmark.

Exhaust ICT ILT HIT

4752 288 18 342
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ig. 18. Performance of the selected “minimal-energy cache” using different heuris-
ics  normalized to the base cache.

onfigurations is that though L1 caches are relatively independent,
hey both have impact on the L2 cache which has effect back on L1
aches. So they are essentially indirectly dependent on each other
hrough the L2 cache. HIT only considers Pareto-optimal configura-
ions at the cost of losing the chance of finding more efficient cache
ombinations which actually consists of non-beneficial ones. One of
he reasons is that a less energy efficient (due to oversize) L1 cache

ay  cause fewer accesses to L2 cache. Hence an appropriate L2
ache may  make this non-beneficial L1 cache overall better. Since
LT is least expensive, it is expected to produce worst results. In
eality, it produces comparable, sometimes even better, than some
xpensive heuristics (HIT).

Fig. 18 shows the performance of selected energy-optimal
aches using each heuristic normalized to the base cache configu-
ation. On ICT, ILT, and HIT gain up to 16%, 15% and 2% performance
mprovements when compression is added to DCR.

. Conclusion
Optimization techniques are widely used in embedded systems
o improve overall area, energy and performance requirements.
ynamic cache reconfiguration (DCR) is very effective to reduce
nergy consumption of cache subsystem. Code compression can

[
[

ormatics and Systems 2 (2012) 71– 80

significantly reduce memory requirements, and may improve
performance in many scenarios. In this paper, we presented a syn-
ergistic integration of DCR and code compression for embedded
systems. Our methodology employs an ideal combination of code
compression and dynamic tuning of two-level cache parameters
with minor or no impact on timing constraints. Our experimental
results demonstrated 61% reduction on average in overall energy
consumption of the cache subsystem as well as up to 75% per-
formance improvement (compared to DCR only) in embedded
systems.
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