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Abstract—Malware (malicious software) is a dangerous threat
today due to our increasing reliance on computing devices.
Currently, state-of-the-art threat detection methods include ma-
chine learning models that identify malware-based on patterns
in software. While there are some promising efforts in hardware-
assisted malware detection, there is no comprehensive study
on efficient hardware trace analysis for malware detection. In
this honors thesis, I investigate the impact of hardware traces
on explainable machine learning models for hardware-based
malware detection. My research has led to generation of useful
hardware traces from a state-of-the-art System-on-Chip (SoC)
board running real-world malware benchmarks. The experimen-
tal results demonstrate that explainable machine learning based
on hardware trace analysis can accurately differentiate between
malware and benign programs.

Index Terms—Malware Detection, Hardware Security, Ma-
chine Learning

I. INTRODUCTION

Computers have inherited the logical capabilities, resource-
fulness, and helpfulness of their human creators. Unfortu-
nately, they have also inherited our capacity for malice.
Malware, or malicious software, represents an efficient and
powerful form of automated malice which we must defend
against. Figure 1 shows our typical interactions in daily life
with a wide-variety of computing devices, popularly known
as Internet-of-Things (IoT) devices. Due to our increasing
reliance on IoT devices, we have become more vulnerable
to malicious software (malware) attacks.

Figure 1: As more aspects of our daily life depend on
computing devices, we become more vulnerable to malware
attacks [1].

Figure 3 demonstrates that malware has made repeated
disturbing appearances in the news. Malware has already
established itself as a financial and infrastructural threat in
cases where botnets have stolen millions of users’ financial
and identity information, viruses have reproduced to overload
email servers, and servers have been overwhelmed by DDoS
(Distributed Denial of Service) attacks [2]. In 2013, malicious
developers used information-scanning malware [3] similar
to PNScan malware to steal 40 million Target customers’
credit card numbers [4]. Unfortunately, this is not an unusual
occurrence. Figure 3 shows the average annual cost of malware
attacks per surveyed company (from 355 companies) in a
survey done by the Ponemon Institute [5] [6].

Figure 2: The financial impacts of malware continuously
appear in the news [7].

The threat of malware is not, however, limited to cy-
berspace. As the world has become more computerized, mal-
ware attacks grow as a physical threat. For example, let us
consider the Therac-25 radiation therapy machine and the
Boeing 737 aircraft. The Therac-25 overdosed patients with
radiation due to a software error [8], and multiple Boeing 737
aircrafts have crashed, likely due to a software error in the
aircrafts’ MCAS in-flight control software [9]. While these
disasters were the results of human error rather than malice,
they highlight the vulnerability of mission-critical devices
that an attacker can exploit. If accidents can lead to such
catastrophic results, what dangers could actively malicious
developers hide in devices?

Malware detection is a “cat and mouse” game wherein
researchers develop novel methods for malware detection,
and malicious developers attempt to circumvent detection.
As a result, malicious developers have employed methods



Figure 3: Malware has significant financial impacts on compa-
nies. In this context, botnets ransomware, and denial of service
are associated with malware [5] [6].

such as code obfuscation to avoid discovery by detection
methods which depend on software analysis. To address this,
researchers have developed new methods using machine learn-
ing to analyze hardware traces. The trace data I generated
for this honors thesis tested the accuracy of a hardware-
trace-based explainable machine learning model for malware
detection.

In this honors thesis, I make the following contributions:
1) Setting up a state-of-the-art System-on-Chip (SoC) board

running real-world malware benchmarks.
2) Identification and generation of a limited set of useful

trace signals for effective malware detection.
3) Utilization of generated hardware traces using explain-

able machine learning model to accurately differentiate
between malware and benign programs.

The remainder of this thesis is organized as follows. Sec-
tion II provides an overview of existing malware detection
and machine learning techniques. Section III describes my
proposed method for malware detection using hardware traces.
Section IV presents the experimental results. Finally, Sec-
tion VI concludes the thesis.

II. BACKGROUND AND RELATED WORK

This section provides an overview of existing approaches to
highlight the contributions of this thesis. First, I provide a brief
background for machine learning based malware detection.
Next, I outline related efforts in malware detection.

A. Background: Machine Learning

Many researchers and companies aim to efficiently identify
malware developers’ ever-expanding arsenal of attack tech-
niques using machine learning. Machine learning generates
predictions about input data after being “trained” using sample
data. For example, machine learning models that predict
whether a given program is malicious can be “trained” by
supplying the model with a collection of malicious and benign
program data and correctly tagging data in each group [10].

In theory, the model should be able to identify data patterns
specific to malicious programs and use these patterns to predict
whether input data came from a malicious or benign program
based on the identified patterns.

Machine learning models can theoretically sift through
questionable program data more quickly than human ex-
perts [10]. For the time and efficiency benefits of machine
learning to be useful, however, the models must be accurate.
We can demonstrate the accuracy of these models through
rigorous testing. If the tested model performs at or above an
acceptable threshold, it is a functional model.

B. Related Work in Malware Detection

Early standards of malware detection used static analy-
sis [11], [12], which depends on software filters to detect mali-
cious software signatures. These signatures are identified using
machine learning and/or human knowledge. As malicious
developers recognized which patterns would be caught by
static analysis, they began obfuscating malicious software to
avoid detection [13]. Malware may also exploit vulnerabilities
in the static analysis software itself to avoid detection [14].
Researchers then suggested dynamic analysis (which detects
malicious behavior during runtime) as a solution to this
problem [15], [16].

To solve the obfuscation and exploitation problems associ-
ated with software-based malware detection, researchers have
turned to hardware-based malware detection. Recent efforts
in hardware-based malware detection have utilized Hard-
ware Performance Counters [17]–[19] and Embedded Trace
Buffers [20]. Of these, the Hardware Performance Counter-
based detection method shows frequent false-positives [17] and
performance penalties. On the other hand, detection methods
utilizing Embedded Trace Buffers are favorable because they
show high detection accuracy (as high as 94%) [20].

However, hardware-based malware detection methods are
not without fault. They have issues identifying multi-cycle
malicious behavior, and data generated by hardware traces
must be pre-processed to differentiate between benign and
malicious use of common constructs (for instance, a benign
vs a malicious use of netstat, as discussed later). Current
hardware-based detection methods also obfuscate intermediate
processing, so the final prediction result may be questionable
without the user realizing that this is the case because the steps
taken to make the prediction may be faulty.

III. MALWARE DETECTION USING HARDWARE TRACES

Figure 4 provides an overview of the proposed malware
detection model. It consists of four major steps: (i) running
malicious and benign programs on an SoC board, (ii) collect-
ing useful hardware traces, (iii) utilizing machine learning for
malware detection using hardware traces, and (iv) evaluating
the prediction accuracy to fine tune the model. The remainder
of this section describes these steps in detail.
Run Malicious and Benign Programs: This first step is to
setup an environment to execute both malware and benign
programs. Section IV-A describes our experimental setup with



Figure 4: Overview of my proposed method.

a state-of-the-art SoC board that can run popular malware
(described in Section IV-B) as well as benign programs.

Generation of Hardware Traces: The second step is to
generate useful hardware traces from execution of malicious
and benign programs. In this context, ”hardware traces” refers
to content of registers, caches as well as any other trace
buffers over the course of a program’s run time. The data
must be collected over time to identify patterns in behavior
rather than giving snapshots at only the start and end of the
program. For example, registers may be reused over the course
of the program’s run, so limited snapshots give an inaccurate
representation of the program’s state at intermediate steps. This
provides a trade-off between accuracy and speed. A higher
sampling frequency can lead to accurate prediction but it can
be slower due to larger volume of data analysis. On the other
hand, slower sampling frequency can lead to faster prediction
(less data analysis) at the cost of prediction accuracy.

Malware Detection using Machine Learning: The third steps
is to feed the trace data to machine learning model for malware
detection. Our proposed machine learning model both predicts
whether the program which generated the traces is malicious
and provides justification for the prediction. As discussed in
Section IV, our proposed model consistently performs better
compared to the state-of-the-art malware detection method.

Comparison of Prediction Accuracy: The final step is to
compare the accuracy (correct predictions, false positives, and
false negatives) of our proposed machine learning model to
state-of-the-art machine learning models for malware detec-
tion. This information can be used as feedback for altering
trace collection and analysis techniques for improved malware
detection accuracy.

IV. EXPERIMENTS

This section is organized as follows. First, I describe the
experimental setup using an SOC board. Next, I describe three
malware benchmarks. Finally, I present the prediction accuracy
results.

A. Experimental Setup: SoC Board

I originally planned to use the Embedded Trace Buffer
(ETB) on the board from the Xilinx Zynq-7000 SoC ZC702
board to collect data. The standard method for collecting
this data involves using expensive external hardware. Another
method of collecting this data is the use of a gdb server, but the
available evaluation board and OS cannot use a gdb server. I
later attempted to access the ETB location directly in memory.
While I was able to access this memory area using Xilinx
SDK, I could not enable the ETB by directly manipulating
the associated control register in Xilinx SDK.

I developed a workaround to address the limitations dis-
cussed above. I collected data using the items included in the
Xilinx Zynq-7000 SoC ZC702 evaluation kit and a computer
with a Windows 10 operating system with Xilinx SDK 2017.3
installed. The computer must have an Ethernet port and at least
one USB port to connect to the evaluation board. The proposed
model identifies malware for Linux and Android operating
systems, so I installed a Linux-based operating system on
the evaluation board and ran malware that targets Linux-based
operating systems.

In this experimental setup, the Xilinx ZC702 evaluation
board (Figure 5) included in the evaluation kit ran the malware,
and the connected computer (using Xilinx SDK) accessed the
register data from the pair of Arm Cortex-A9 processors on
the evaluation board. Xilinx SDK includes a Xilinx System
Debugger, which launches selected programs on the board and
allows access to register values in the board processors as
programs run.

To prepare the computer to connect to the board, I com-
pleted the following steps:

1) Set the computer’s IP address to connect to the evaluation
board.

2) Disabled the computer’s firewall at the Ethernet port to
connect to the evaluation board (if not, the firewall may
block communication between the board and computer).
Antivirus programs on the host computer may also block
malware from running through Xilinx SDK. If this hap-
pens, I have two options: either temporarily disable the
antivirus program or reconfigure its settings to allow the
malware file to run.

3) Once the board is physically connected to the computer
using the JTAG and Ethernet connections, I established
a serial connection between the computer and board
to manipulate the board using the computer. For this
connection, I used the serial connection option in Xilinx
SDK with a baud rate of 115200, no flow control, 8 data
bits, 1 stop bit, 5 second timeout, and no parity bit. The
port number depends on the number associated with the
USB port connected to JTAG.

To prepare the evaluation board to connect to the computer
and to the Xilinx System Debugger, I completed the following
steps:

1) Downloaded a ZC702-compatible Linux OS image to the
SD Card. I used xilinx−zc702−201734.9.0−xilinx−



v2017.3, which was provided by Xilinx and generated
using PetaLinux.

2) Boot the board in SD mode as described in the ZC702
user manual [21].

3) Through the serial connection to the computer, set the
evaluation board’s IP address (the IP address is required
when running programs using the System Debugger).

4) Compiled all desired programs in Xilinx SDK, and
launched these programs on the board using Debug
Configurations. Set the target in Debug Configurations to
the board IP address, which was set in the previous step.
To access register data at different points in the program’s
runtime, I added breakpoints to the program. The register
values update at each breakpoint.

5) In cases where malware requires a server and a client, I
ran the server without System Debugger by transferring
the compiled server binary to the board and running the
server program. I then ran the client program using the
System Debugger. The client’s run data takes precedence
over the server’s run data because the machine learning
model identifies infected devices, not devices which co-
ordinate malicious attacks.

6) In cases where the server and client cannot connect
because the IP addresses do not match, I hardcoded the
required IP addresses for the connection.

7) In cases where the server cannot send attack commands
because the embedded OS does not have a requested
functionality, I hardcoded the attack command into the
client program.

B. Malware Benchmarks

The model’s ability to correctly detect malware was tested
using three real-world malware benchmarks: BASHLITE, PN-
Scan, and Mirai [22].

1) PNScan opens a backdoor for other malware. As its
name would suggest, PNScan scans the infected device
for information. This Trojan uses brute force to obtain
the victim’s router’s access password. Upon finding this
password, the PNScan program will bypass password
protection to download other malicious programs to the
router. PNScan makes vulnerable devices more vulnera-
ble by actively weakening security against other malware.
Figure 6 shows visuals of some of the primary malicious
steps of PNScan.

2) BASHLITE infects large number of devices to form a
botnet. If a botnet is formed successfully, the attacker
may remotely orchestrate DDoS (Distributed Denial of
Service) attacks and download other malware by sending
commands to infected devices (aka “bots”). Figure 7
shows a visual representation of the form of botnet used
by BASHLITE. This malware utilizes a client-server
model in which the attacker’s device functions as the
server, and the infected devices function as clients. The
client bots constantly poll for server commands. Large
botnets can overwhelm target servers by simultaneously
making requests when the attacker sends the command.

Figure 5: ZYNQ SoC board.

Figure 6: Visual code snippets of PNScan’s malicious behav-
ior. [23]

3) Mirai is a more sophisticated version of BASHLITE.
Mirai includes a wider variety of commands, and can
infect a wider variety of IoT devices. Because Mirai is
compatible with more devices, it has the potential to
build a larger botnet. The number of devices included
in the botnet improves the botnet’s ability to overwhelm
target servers. The wider range of vulnerable devices also
improves Mirai malware’s ability to steal information



Figure 7: Graphic demonstrating how botnets, BASHLITE
botnets included, function. The CNC (Command and Control)
server is the human attacker’s device, which is used to send
attack commands [24].

from these devices. Figure 8 shows an overview of a
Mirai botnet.

Figure 8: Graphic demonstrating Mirai functionality [25].
Mirai is a more sophisticated botnet.

System binaries like netstat and ping represent benign soft-
ware when examining the accuracy of the provided machine
learning model. I generated hardware trace data for these
system binaries because malicious developers often use these
binaries in malware, but benign programs can use them in
a completely legitimate and harmless contexts. For example,
bots in a botnet may frequently run ping to check their con-
nection to a malicious server, but legitimate applications may
run the exact same function to check a connection to a benign
server. Similarly, developers can use netstat in a completely
legitimate context of checking on the status of a network or in
the context of accessing a device’s information for malicious

use. Because many malicious programs rely on the misuse
of common system functionality, any machine learning model
intended to detect malware should be able to filter out benign
use of this functionality, or it will continuously generate false
positive predictions.

C. Results: Prediction Accuracy

To analyze the accuracy of the proposed malware detection
model, we compare its accurate and false-positive detection
rate against that of the state-of-the-art method, PREEMPT,
which uses the hardware data from the Embedded Trace Buffer
(ETB) to make black-box predictions [20]. In this case, we
compared the model under test to both the “Decision Tree”
and “Random Forest” versions of PREEMPT. Figure 9 shows
the accuracy of each model when making predictions about
BASHLITE malware. The proposed method had a maximum
accuracy of 98.9% while PREEMPT had a maximum accuracy
of 94.8%. The proposed method performed consistently better
than PREEMPT when identifying BASHLITE malware.

Figure 9: Model Performance on BASHLITE.

Figure 10 shows the accuracy of each model when making
predictions about PNScan malware. When identifying PNScan
malware from my hardware trace data, PREEMPT’s high-
est accuracy reached about 78% while the proposed model
reached a maximum accuracy of 98.9%.

Figure 11 shows the accuracy of each model when making
predictions about Mirai malware. The proposed model pre-
dicted Mirai malware presence with at best 97.5% accuracy
while PREEMPT predicted Mirai malware presence with at
best 92.5% accuracy.

Figure 12 shows the rate of false positives for each model
when making predictions BASHLITE, PNScan, and Mirai.
These results emphasized PREEMPT’s tendency to produce
more false positives than the proposed model. When running
benign programs, the more accurate version of PREEMPT
(RF) produced a maximum false positive rate of 44.6%, and
the proposed model produced a maximum false positive rate



Figure 10: Model Performance on PNScan.

Figure 11: Model Performance on Mirai.

of 9.2%. The results demonstrated that the proposed model
performance significantly better than PREEMPT in malware
detection.

V. DISCUSSION

In this section, I discuss three important issues related to
hardware trace generation and analysis. First, I discuss how
to generate traces from the embedded trace buffer without
altering the malware/benign programs. Next, I discuss how to
model external botnet server. Finally, I discuss the scenarios
when minor code changes are needed.

To generate more trace data without interrupting the flow
of the tested programs, this method could be modified to
utilize the Embedded Trace Buffer (ETB) to provide data for
machine learning. This may be done by modifying the standard
CoreSight Access Library (a library provided by ARM to

Figure 12: False Positive Rates of all models

manipulate the ETB) to interact with the Xilinx evaluation
board.

Because I was using the Ethernet port to connect the
evaluation board to the host computer, I could not connect
to an external botnet server. To demonstrate the functionality
of the client bot when connected and receiving commands,
I ran both server and client on the same board. Running
both processes at once could have impacted the generated
data. With the aforementioned ETB functionality, I could free
the Ethernet port by dumping the trace data to a file on the
evaluation board to view later.

In some cases, the evaluation board did not have the capabil-
ity to fully reproduce part of the malware attack. For example,
actual Mirai servers utilize a SQL database, but the evaluation
board cannot utilize this functionality. The evaluation board
also could not directly send Mirai commands to clients, so
these commands had to be hardcoded into the client. In cases
where the server could not function fully, I modified the client
programs to bypass checks of the server’s functionality and
behave as if a fully-functional server were sending commands.
While the client processes still exhibited malicious behavior,
the modifications changed the characteristics of the programs
and may decrease the quality of the data.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

Malware (malicious software) is widely acknowledged as
a major threat to trustworthy computing. There are a wide-
variety of malware detection techniques in the literature.
The state-of-the-art threat detection methods include machine
learning models that identify malware based on patterns in
software. While there are some promising efforts on hardware-
assisted malware detection, there is no comprehensive study
on efficient hardware trace analysis for malware detection. In
this honors thesis, I investigated the impact of hardware traces
on machine learning based malware detection. I generated
hardware traces from a state-of-the-art System-on-Chip (SoC)



board running three real-world malware benchmarks and sev-
eral benign programs. Experimental results demonstrated that
explainable machine learning based on hardware trace analy-
sis can accurately differentiate between malware and benign
programs. The idea proposed in this thesis can be extended
to efficient and automated trace selection and minimization to
make faster prediction without losing the accuracy. Moreover,
future research can explore hardware performance counters as
well as design-for-debug architecture (such as embedded trace
buffer) to find profitable traces for effective malware detection
using machine learning.
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