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The goal of post-silicon validation is to ensure that the fabricated, pre-production silicon

functions correctly while running actual applications under on-field operating conditions.

Post-silicon validation is a complex activity performed under aggressive schedule, accounting

for more than 50% of the overall validation cost of a modern integrated circuit [1, 2]. A

fundamental challenge in post-silicon validation is limited observability and controllability.

Design overhead considerations impose restrictions that only a few hundreds among the

millions of internal signals can be traced during a silicon execution. Furthermore, in order for

a signal to be observed, the design must be instrumented a priori with appropriate hardware

that routes the signal to an observation point. It is therefore crucial to develop techniques to

identify trace signals that maximize design visibility under post-silicon observability restrictions.

This dissertation proposes novel techniques to enhance the observability during post-silicon

debug. My research has three major contributions. First, it proposes efficient signal selection

techniques to enhance the observability of the circuit. Next, to improve the observability

further, a new fine-grained scan and trace combination architecture has been proposed. Finally,

the application of machine learning techniques has been extensively explored to improve

the scalability of selection techniques. Extensive experimental results exhibit significant

improvement in both overall signal observability and signal selection time.
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CHAPTER 1
INTRODUCTION

Design complexity is rapidly increasing with drastic growth of number of transistors in

each technology cycle. This has caused a significant increase in validation complexity. In spite

of extensive effort on design validation using simulation and formal methods, it is not always

possible to detect all the functional and electrical errors and bugs in pre-silicon validation.

Post-silicon validation is used to capture the design flaws and escaped errors.

Figure 1-1 illustrates the different phases of validation and testing in a typical chip design

flow. Pre-silicon validation includes validation of different functional and timing requirements

of the specification and implementation. Manufacturing testing is used to detect the physical

defects of each IC. In addition, post-silicon validation is used to detect design errors that

have escaped pre-silicon validation phase. It should be noted that most of the electrical

bugs such as crosstalk and transient faults are captured during post-silicon validation as it is

difficult to model and fix those in pre-silicon validation. Post-silicon validation is a complex

activity performed under aggressive schedules, representing more than 50% of the overall

validation cost [1]. A fundamental challenge in post-silicon validation is limited observability

and controllability. Due to limitations in the number of output pins as well as area and power

overhead constraints of internal trace buffer, only a small percentage of internal signals in

the design can be observed during silicon execution. Furthermore, in order for a signal to be

observed, the design must be instrumented a priori with appropriate control hardware that

Each copy  of the
Integrated Circuit

Integrated 
Circuit

Manufacturing

Implementation
(Gate/RTL level)

Pre-silicon
validation

Manufacturing
testing

Post-silicon
validation

Figure 1-1. Different phases of validation and testing in IC design flow

11



routes a signal to an observation point. It is therefore crucial to identify trace signals that

maximize design visibility and debug information under the observability constraints.

Figure 1-2 provides an overview of post-silicon validation and debug process. Signal

selection and trace buffer design are done in pre-silicon phase. If an error occurs during

post-silicon validation phase, the traced values of internal signals are dumped. During off-line

trace analysis, a restoration procedure tries to reconstruct unknown signal states from the

traced signal values. During off-line debug process both dumped signals and restored signals

are used to locate the error. The number of signals that can be traced per cycle is limited to

trace buffer width. In addition, the maximum number of values recorded per signal is limited

to the trace buffer depth. Due to design overhead considerations, trace buffer size tends to be

very small. In a million-gate design, a typical trace buffer width is 128 and depth is 2048. In

other words, a 128× 2048 trace buffer can trace 128 signals (out of millions of possible signals)

for 2048 cycles. Therefore, the primary objective is to select a small set of profitable signals

that can maximize restoration performance. A major challenge in efficient signal selection is

that the exploration space (number of potential alternatives) can be prohibitively large even for

small circuits. For example, s35932 circuit of ISCAS’89 benchmarks suite has 1728 flip-flops. If

the trace buffer width is 32, we need to choose 32 signals out of the total 1728 flip-flops. It

is easy to observe that there are more than 1069 such combinations. This makes exhaustive

exploration infeasible1 .

The focus of this dissertation is to reduce the overall effort of post-silicon validation and

debug. The remainder of this chapter is organized as follows. First, we describe the basics of

signal restoration which is an important concept in post-silicon validation. We then explain

1 If each simulation for evaluating one combination takes only 1 second, more than 1060

years is needed in order to find the best 32 trace signals in s35932 circuit using one single
machine.
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O�ine Debug Procedure

Inputs 

 Design (Gate Level) Signal SelectionManufacturing

Design Under Test

State Restoration

Pre-silicon 
Phase

Post-silicon
Validation
and Debug

Internal States

Trace Bu�er

 Debug
Interconnection

FabricDesign Logic

Figure 1-2. An overview of post-silicon validation flow

various challenges associated with post-silicon validation and our contributions to address

them.

1.1 Signal Restoration in Post Silicon Validation

Restoration entails inferring values of untraced signal states from a sequence of

traced signals sampled over a period of time. This is achieved using forward and backward

propagation of signal values of circuit elements (e.g., gates, latches, etc.). Figure 1-3 illustrates

forward and backward restoration for common logical gates. Forward propagation involves

reconstructing the output of a circuit element from traced inputs. For example, if one of the

inputs of the OR gate is ‘1’, the output value would be ‘1’. If all the inputs are known, the

unknown output can be definitely determined. On the other hand, backward propagation

involves inferring input values from the observed output. For example, if the output of the

OR gate is ‘0’, both of the inputs would be ‘0’. Backward reconstruction might fail in certain

scenarios. For example, if the output of a 2-input OR gate is ‘1’ and one of the input has

a known value of ‘1’, the other input still cannot be reconstructed. During signal value

reconstruction, forward and backward restoration are repeated for all the gates in the circuit

until no more states can be restored. Restoration Ratio (RR), defined below, is a popular

metric for measuring the quality of a set of selected trace signals.

Restoration Ratio =
Number of traced and restored signals

Number of traced signals

13



a) Forward Restoration b) Backward Restoration

X
0 0

1 1X

0
X 1

X
1 0

1
1 1

0 0

1
0

0 1

1

0 0

Figure 1-3. Basic restoration rules for common logic gates

Consider the simple circuit shown in Figure 1-4 used in [3]. Suppose that the width of the

trace buffer is 2 (i.e., only two signals can be traced at any clock cycle), and the trace buffer

depth is 8 (i.e., selected signals are traced for 8 cycles). Suppose that A and C are selected as

trace signals. Table 1-1 shows the signal states that can be restored using the traced values of

A and C over eight cycles. In this example, 32 signal values can be restored (entries with ’0’ or

’1’ in the table) while 16 are traced (two signals for eight cycles, i.e., 2 × 8 = 16), yielding a

restoration ratio of (32 + 16)/16 = 3.

1.2 Challenges

There are many challenges in efficient post-silicon validation and debug. This section

describes three important challenges that I have addressed in my dissertation.

A

B

C

D

E

F

G

H

Figure 1-4. A simple circuit to illustrate restorability

14



Table 1-1. Illustration of restored signals for the simple circuit shown in Figure 1-4

Signal Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
A 0 1 0 0 0 1 1 1
B 0 X 1 1 1 X X X
C 0 0 1 1 1 1 1 1
D X 0 0 0 0 0 1 1
E X 0 0 1 1 1 X X
F X X 0 0 1 1 1 1
G X 0 X 0 0 0 1 1
H X 0 X 0 0 1 X X

Challenge 1: There is a limited number of signals to be traced which should be selected

carefully in order to maximize the restoration ratio during the post silicon debug. Existing

approaches either use some metrics based on the circuit structure to select the signals [3–6] or

they use expensive simulations/restorations [7]. The former can sacrifice the restoration quality

and the latter is not scalable if it is not done carefully, due to the prohibitive computation

time requirements. An efficient selection algorithm is needed which can select trace signals to

provide a high restoration ratio.

Challenge 2: As discussed in Challenge 1, metric-based selection techniques are fast

and scalable but provide a low restoration performance. On the other side, simulation-based

techniques provide a high restoration performance but generally are not scalable for large

circuits. A scalable selection technique is needed which can be applied to large industry scale

circuits.

Challenge 3: The use of scan chains in post-silicon debug has been extensively studied

in [8, 9]. Ko et al. [10] proposed an architecture that divides trace buffer bandwidth into two

parts, one for the trace signals and the other one for the scan signals. In order to find the

most beneficial partitioning, they proposed an exhaustive exploration. However, exhaustive

exploration is not practical in real designs with large number of flip-flops. Basu et al. [11]

proposed an efficient algorithm that chooses trace and scan signals based on connectivity

graph of flip-flops. They reduce the scan chain length by pruning the graph in each iteration.

However, both of these techniques divide the signals in two extreme categories. One set of

15



ILP-based signal
selection

Integrated Circuit

Implementation
(Gate level models)

E�cient Trace
Hardware Architecture

Scalable learning-based
signal selection

Contribution 1 Contribution 3 

Contribution 2 

Post-silicon debug

Figure 1-5. Overview of research contributions

signals are traced every cycle. The other signals are dumped in a relatively large period. They

do not consider other profitable fine-grained scenarios. An efficient fine-grained architecture

is needed that shares the trace buffer bandwidth between several scan chains with different

lengths to significantly improve restoration performance.

1.3 Research Contributions

My research proposes novel techniques to address challenges in post-silicon validation

and debug described in Section 1.2. The objective of my research is to develop efficient signal

selection techniques as well as trace hardware architectures. The major contributions of my

research are summarized as follows. Figure 1-5 highlights these contributions in the IC design

methodology.

ILP-based signal selection: This contribution addresses the first challenge outlined

in Section 1.2. Most existing signal selection techniques rely on a metric based on circuit

structure. Simulation-based signal selection is promising but have major drawbacks in

computation overhead and restoration quality. In this dissertation we propose an efficient

simulation-based signal selection technique to address these bottlenecks. Our approach

uses (1) bounded mock simulations to determine state restoration effectiveness, and (2) an

ILP-based algorithm for refining selected signals over different simulation runs.
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Efficient selection of fine-grained combination of trace and scan signals: This

contribution addresses the first and third challenge outlined in Section 1.2. One of the

key challenges in post-silicon validation is the limited observability of internal signals in

manufactured chips. A promising direction to improve observability is to combine trace and

scan signals - a small set of trace signals are stored every cycle, whereas a large set of scan

signals are dumped across multiple cycles. Existing techniques are not very effective since they

explore a coarse-grained combination of trace and scan signals. In this dissertation, we propose

a fine-grained architecture that addresses this issue by using various scan chains with different

dumping periods. We also propose efficient algorithms to select beneficial signals based on this

architecture.

Scalable Trace Signal Selection using Machine Learning: This contribution

addresses the first and second challenge outlined in Section 1.2. Structural analysis used

by traditional signal selection techniques leads to poor restoration quality. In contrast,

simulation-based selection techniques provide superior restorability but incur significant

computation overhead. In this dissertation, we propose efficient signal selection techniques

using machine learning to take advantage of simulation-based signal selection while significantly

reducing the simulation overhead. Our approaches use (1) bounded mock simulations to

generate training vectors set for the machine learning technique, and (2) train a machine

learning model and apply it to the circuit to identify the most profitable signals set.

1.4 Dissertation Organization

The dissertation is organized as follows. Chapter 2 describes background and the related

work. Chapter 3 presents our ILP-based trace signal selection technique. Chapter 4 describes

our fine-grained trace and scan signal architecture and corresponding selection techniques.

Chapter 5 presents our scalable selection algorithms using machine learning techniques. Finally,

Chapter 6 concludes the dissertation.
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CHAPTER 2
BACKGROUND AND RELATED APPROACHES

A primary problem for post-silicon debug is the limited observability of internal signals

since the chip has already been fabricated. Once the signal states are known, they can be

analyzed using techniques like failure propagation tracing [12] to identify the errors in the

circuit. Koushanfar et al. [13] proposed a technique to obtain the internal states of a system

using a concept called golden cut. However, their method is not applicable for post-silicon

debug since it is difficult to stop execution of a process running on a chip and get all the

current signal states. Formal analysis for post silicon debug proposed by De Paula [14] is not

applicable to circuits with a large number of gates. Physical probing techniques were proposed

by Nataraj et al. [15]. Decrease in feature size and growing complexity of IC designs have

made it difficult to implement these techniques in practice. A method for validation of memory

subsystem in CMPs was proposed by DeOrio et al. [16], where it only focuses on the memory

subsystem. Scan based debugging techniques such as [17] are not appropriate since they

require to stop the circuit functionality when the scan data is being written. This is particularly

not beneficial when the functional errors are drastically apart. Double buffering [18] of scan

elements helps to mitigate this problem, but with a large area penalty. Design-for-Debug

(DfD) techniques have been used extensively to increase the observability of internal signals of

the silicon. Generally this is performed by sampling the data which is stored in on-chip trace

buffers. Various DfD techniques like embedded logic analyzer (ELA) [19] and shadow flip flops

[18] have been proposed over the years for post-silicon debug. ELA can be used to probe into

the chip and record some internal logic states. The trace is then recorded in an on-chip trace

buffer. During debug, the contents of trace buffer is transferred to an offline debugger via some

Joint Test Action Group (JTAG) interface.

The notion of restorability is based on the execution of the circuit on an input sequence;

when the input sequence represents an on-field execution scenario for the circuit during

post-silicon validation. However, signals must be selected a priori based on the circuit structure.
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Heuristics for selecting signals need to comprehend and encapsulate overlaps and interactions

between different signals, and anticipate how such interactions might affect restorability

on-field — an intrinsically difficult task. In this chapter, we present the background and related

work for trace signal selection techniques as well as other methodologies to improve the overall

post-silicon debug effort.

2.1 Trace Signal Selection

Trace buffers have been widely studied in post-silicon debug [6, 20–24]. Existing signal

selection approaches can be classified in two categories, metric-based (structural) and

simulation-based. Approaches in the first category use greedy heuristic to iteratively select

signals optimizing a metric based on the circuit structure [3–5]. They are relatively efficient in

computation speed, but have poor restoration quality compared to simulation-based algorithms.

Simulation-based algorithms are based on the intuition that if a set of signals works well

for some random input vectors then it is also likely to provide high state reconstruction

on other inputs and therefore a high restorability ratio. In particular, Chatterjee et al. [7]

showed that mock simulations are more effective in identifying trace signals than metrics

based on the circuit structure. Their approach involves an iterative removal process. They

start with a set of candidate signals which is initialized with all flip-flops. In each iteration,

their algorithm attempts to remove one of the signals which appears to be least important

based on simulation results. The process continues until the number of remaining candidates

equals to the trace buffer width. Figure 2-1 illustrates the approach for a sample circuit with

a total of 4 flip-flops and a trace buffer of width 2. This selection technique is promising but

it requires O(N2) simulations where N is the number of flip-flops in the circuit. This makes

their approach computationally expensive for large circuits. To address this issue, they propose

a pre-processing phase namely pruning process, prior to running the algorithm. Basically,

the pruning phase is the algorithm itself with less accuracy. The pruning phase reduces

the initial candidate flip-flops set but still requires long signal selection time. In addition,

it may sacrifice the signal selection quality. Li et al. [25] proposed a hybrid (metric-based
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Figure 2-1. Simulation-based trace signal selection flow

and simulation-based) signal selection technique. However, to save selection time, [25] uses

simulation for a small fraction of the signals and thereby sacrifices restoration performance. Ma

et al. [26] proposed a selection technique based on a new metric called Pagerank which tries

to maximize behavioral coverage during post-silicon debug. Zhu et al. [27] proposed a signal

selection technique with the aim of facilitating the subsequent automated localization of faults

using consistency-based diagnosis. BeigMohammadi et al. [28] proposed a signal selection

method that selects combinational gates in addition to flip-flops in the circuit with the goal of

further improving restoration capability.

To address the challenges of the simulation based approach proposed in [7], we present a

top-down simulation-based technique in Chapter 3. Our approach has two components: (1) an

iterative approach to signal selection based on mock simulations, and (2) a filtering scheme

based on Integer-Linear Programming (ILP) to refine the selected set.

2.2 Dynamic Signal Selection

Existing trace signal selection techniques focus on selecting a set of signals that are traced

every cycle during the debug time. Prabhakar et al. [29] proposed a technique where they

alternate between two set of signals every other cycle based on implication-based correlation.

Liu et al. [30] proposed a multiplexed signal selection for error detection using a heuristic based

on error-visibility metric. Basu et al. [31] proposed a dynamic selection approach where it

considers both spatial and temporal distribution of errors. Han et al. [32] proposed a dynamic

signal selection based on the characteristic of the circuit under test to maximize the visibility.
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Classi�cation Regression

Figure 2-2. Two different type of supervised learning

Zhu et al. [33] proposed a dynamic selection technique which utilizes machine learning for

classification of the groups of signals that are likely to trigger different faults.

2.3 Supervised Learning and Prediction

Supervised learning is a technique of inferring an unknown output for an input vector

using a set of training examples consisting of pairs of input vectors and corresponding known

outputs. There is two main categories for supervised learning in machine learning, classification

and regression. Classification is predicting whether an element belongs to a set of discrete

values (or classes) whereas, regression is predicting the value for a continuous function. An

example for classification is classifying an email as spam or legitimate email based on some

features of its content and meta data (feature vector). On the other side, predicting the

price of a house based on its features like location, size, and age (feature vector) would be

a regression prediction as the price is a continues value. In fact, classification is a special

case of regression where each class is assigned to a range of values (or probabilities) of the

prediction function. This is illustrated in Figure 2-2. The classification predictor divides the

outputs to different classes, square and star. On the other hand, the regression is a continuous

function trying to fit the best line passing through the inputs and outputs. In Chapter 5, we

develop novel signal selection techniques based on regression to retain (and improve upon) the

restoration quality of simulation-based signal selection with a drastically faster selection time.
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2.4 Trace Data Compression

To increase the amount of data that can be stored in a trace buffer while keeping the

trace buffer size constant, trace compression techniques have been proposed [34–37], which

compress the trace data before storing them into trace buffer. This enables us to observe more

trace data while keeping the trace buffer size constant. The trace buffer has two parameters,

width and depth. Width refers to the number of signals whose states can be stored every

cycle, while depth refers to the number of cycles over which the trace is stored. Existing trace

compression approaches differ in terms of compression objectives. While [36] compresses

the width of the trace buffer, [34, 35] compress the depth. Muthyala et al. [38] proposed a

feedforward techniques for improving the compression in scan based decompressors.

2.5 Observability-Aware Test Generation

A major problem in post-silicon validation is that the regression tests may not be

observability-aware. While the tests are likely to activate the errors, but there effects may

not propagate to the observable points (e.g., trace signals). For example, if the result of a

test affects a signal and it is not observable, it is difficult to determine whether the test has

executed as expected.

Soft errors and crosstalk faults are two major electrical errors found in a fabricated SoC.

Effect of soft errors on memory devices had been studied as early as in 1979 by May et al. [39].

Over the years, researchers [40–42] have studied the various aspects of soft errors. Sanyal et al.

[43, 44] have proposed different methods for directed test generation for soft errors. However,

these approaches are not designed for post-silicon validation purposes, that is, they assume all

the output signals of a logic block are visible. However, during post-silicon validation, since

the chip is fabricated, observing the output signals of every component may not be feasible

since these components can be embedded in an SoC. The only observable points would be the

trace signals. The test generation algorithms need to be modified to take this into account.

Crosstalk faults occur when two lines in a circuit are so near that their mutual capacitance

affects their state. Effects of crosstalk faults on digital circuits [45–47] have been studied
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extensively. Existing test generation algorithms for crosstalk faults [48–50] suffer from the same

problem as the corresponding test generation algorithms for soft errors - that is, they are not

suitable for application in post-silicon validation due to limited observability through trace

signals. There has also been recent approaches [51, 52] proposed which exploit an on-chip

hardware component to generate real-time stimuli to satisfy the functionally-compliant stimuli

requirements.

In addition to soft errors and Crosstalk faults, there has been several works on detecting

functional errors. Adir et al. [53] proposed an approach to detect functional errors using

random test generation. On the other side, directed test generation techniques [54, 55] try

to generate tests that target a specific functional scenario. However, they are effective only

if the list of the bugs are available a priori. Farhmandi et al. proposed a test generation

approach [56] that is guaranteed to activate unknown bugs. Their technique also addresses

the scalability concern of existing bug localizations approaches [57–59] with a faster bug

localization. However, none of these approaches consider observability (trace signals) during

test generation. Recently, Farahmandi et al. [60] proposed a framework for observability-aware

test generation using transaction-level models.

2.6 Post-silicon Debug Techniques

Trace buffers are used to capture the signals during post-silicon validation. Recent works

[34, 35, 61, 62] has been proposed with the goal of reducing the validation time by reducing

the debug iterations. The main idea is that it is not necessary to store all the cycles specially

for those signals that can be restored using simulation or those that are most likely from a

non-buggy cycle. Their approach involve a multiple-step debug session where it allows the

debugger to expand the visibility window. Effectively, it allows to zoom in and zoom out during

the debugging session by storing a signature of trace signal values in a larger block of cycles.

This means, data might get lost as we compress several bits in a few parity bits. In fact, during

the debug session we do not know which cycles are the erroneous ones to store and we rely

on a multiple-step offline software analysis to find those based on the input. There has also
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been other approaches [63–65] proposed where they use trace data for detecting electrical

errors (such as bit-flips), in addition to functional design errors. Goossens et al. [66] proposed

a debug technique where it focuses on observing the communications among the IP blocks and

mapping it to the transactions. Similar approaches have been proposed in [67, 68]. Zheng et al.

[69] proposed a technique to infer system-level transactions from trace data to have a better

high-level understanding of the system during the debug.

2.7 Combination of Trace and Scan Signals

Scan based debugging is widely used in manufacturing test. It is used to detect the

fabrication defects in the chip. It would be beneficial to use scan dump in post-silicon debug.

The problem is that the data can only be dumped in scan or debug mode. During these

modes the circuit execution needs to be interrupted. This prevents real-time observability of

the internal states. Enhanced scan chains are proposed in [10] to address this issue in which

shadow flip-flops are used to form a shadow scan chain. Shadow flip-flops enable storing scan

signals without interrupting normal execution of the circuit.

The use of scan chains in post-silicon debug has been extensively studied in [8, 9]. Ko et

al. [10] proposed an architecture that divides trace buffer bandwidth into two parts, one for

the trace signals and the other one for the scan signals. In order to find the most beneficial

partitioning they proposed an exhaustive exploration. However, exhaustive exploration is

not practical in real designs with large number of flip-flops. Basu et al. [11] proposed an

efficient algorithm that chooses trace and scan signals based on connectivity graph of flip-flops.

They reduce the scan chain length by pruning the graph in each iteration. However, both of

these techniques divide the signals in two extreme categories. One set of signals are traced

every cycle. The other signals are dumped in a relatively large period. They do not consider

other profitable fine-grained scenarios. It would be beneficial if we divide the signals in a

large number of categories in terms of dumping period. This enables us to select a promising

signal with a profitable dumping period. In Chapter 4, we propose an efficient fine-grained

architecture that shares the trace buffer bandwidth between several scan chains with different
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dumping periods. We also propose two different signal selection algorithms which can be used

based on hardware constraints. Our signal selection algorithms assign the signals to different

scan chains in order to maximize the number of states that can be restored.
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CHAPTER 3
TRACE SIGNAL SELECTION USING AUGMENTATION AND ILP TECHNIQUES

In this chapter, we describe our ILP-based signal selection which is inspired by

simulation-based signal selection techniques, but includes a refinement technique to address

the weaknesses of previous simulation-based approaches. Before presenting the technical

details of our approach, we motivate it by comparing its results using illustrative examples

with state-of-the-art metric-based and simulation-based approaches, viz., Basu et al. [3] and

Chatterjee et al. [7]; these experiments expose some key features of our approach which we

then discuss.

For the circuit in Figure 1-4, Basu et al. [3] select signals A and C , thus yielding the

restoration ratio of 3 as shown in Table 3-1. On the other hand, both our approach and the

simulation-based approach of Chatterjee et al. [7] selects signals A and B. The corresponding

restorability calculations are shown in Table 3-2. From the table, 40 states are restored from

tracing 16 states, yielding a restoration ratio of 3.5.

On the other hand, to illustrate the distinction between our approach and Chatterjee et

al. [7] consider the circuit in Figure 3-1. For a trace buffer width of 2, Chatterjee et al. [7]

produce signals B and C . From Table 3-3, this leads to a restoration of 13 states from a total

of 16 traced states, yielding a restoration ratio of 1.81. On the other hand, our approach

selects signals C and K . From Table 3-4, this allows restoration of 18 states from 16 traced

states, resulting in a restoration ratio of 2.13.

Table 3-1. Illustration of restored signals for the simple circuit shown in Figure 1-4

Signal Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
A 0 1 0 0 0 1 1 1
B 0 X 1 1 1 X X X
C 0 0 1 1 1 1 1 1
D X 0 0 0 0 0 1 1
E X 0 0 1 1 1 X X
F X X 0 0 1 1 1 1
G X 0 X 0 0 0 1 1
H X 0 X 0 0 1 X X
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Table 3-2. Restored signals for circuits in Figure 1-4

Signal Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
A 0 1 0 0 0 1 1 1
B 0 0 1 1 1 0 0 0
C X 0 1 1 1 1 1 1
D X 0 0 0 0 0 1 1
E X 0 0 1 1 1 0 0
F X X 0 0 1 1 1 1
G X 0 X 0 0 0 1 1
H X 0 0 0 0 1 0 0

A

B
C

D

F

E

K L M

Figure 3-1. Example circuit to compare our approach with Chatterjee et al. [7]

It is illuminating to understand the source of the differences between the different

approaches on these simple examples. The high restoration ratio achieved by both our

approach and that of Chatterjee et al. [7] for the circuit in Figure 1-4 represents a general

trend of superior signal quality achieved by simulation-based selection techniques; our

observations here match the conclusions of Chatterjee et al. [7] as well. The comparison with

Chatterjee et al. [7] for the circuit in Figure 3-1 is more interesting. Their approach is based on

greedy elimination: starting with the set of all signals, they iteratively remove signals one at a

time. In each iteration the objective is to select a candidate signal whose elimination minimizes

the number of states which become unrestorable as a result; this signal is then eliminated and

the algorithm iterates. The problem with this approach is that the candidate computation
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Table 3-3. Restored signals from Chatterjee et al. [7] for the circuit in Figure 3-1

Signal Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
A X X X X X X X X
B 0 0 1 1 0 0 1 0
C 0 1 1 1 0 1 1 0
D X X 1 1 1 X 1 1
E X X X 0 0 1 X 0
F X X X X X X X X
K X X X X X X X X
L X 0 X X X 0 X X
M X X 0 X X X 0 X

Table 3-4. Restored signals using our method for the circuit in Figure 3-1

Signal Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
A X X X X X X X X
B X X X X X X X X
C 0 1 1 1 0 1 1 0
D X X 1 1 1 X 1 1
E X X X X X X X X
F X X X X X X X X
K 0 0 0 0 0 0 1 1
L X 0 0 0 0 0 0 1
M X X 0 0 0 0 0 0

assumes that all the remaining signals are available for state restoration, an assumption that is

flawed precisely by virtue of the iterative elimination algorithm itself. Thus it is possible that a

profitable signal s is eliminated in an early iteration when the states reconstructible from s can

also be restored by other signals available at that iteration; however, these states can no longer

be reconstructed when a subsequent iteration eliminates other signals. In the example, the

signal K is eliminated in an early iteration since the states restorable from K can be restored

without K as long as the signal L is available; however, when a subsequent iteration eliminates

L as well, the set of states that can be restored gets drastically reduced.

3.1 Augmentation-based Selection

Our algorithm exploits the advantages of simulation-based signal selection while avoiding

the drawbacks discussed above. Figure 3-2 illustrates the framework. We apply an iterative

28



approach based on augmentation rather than elimination. In particular, we maintain a set S

of signal candidates (initially empty), which we “grow” at each iteration by identifying the

most promising signal based on mock simulations; the objective is to maximize the set of

states that can be restored from the signals in the candidate set. The key observation here is

that in this approach restorability of the candidate set is never over-estimated at any iteration

since each member of S is guaranteed to be in the final trace selection set. Furthermore, note

that the number of iterations in this approach is bounded by buffer size, which is very small

precisely because of the observability limitation in post-silicon validation. On the other hand,

the number of iterations in the elimination-based selection is bounded by the number of signals

which can be large. Thus our approach achieves much better run-time performance compared

to the elimination-based selection.

Signal Selection 1

ILP-based Re�ning

All Signals

Selected SignalsSignal Selection 2

Signal Selection p

Figure 3-2. Proposed signal selection process

Our second observation is that any selection algorithm based on random simulation

is susceptible to perturbations based on the randomness in the input vectors. To eliminate

the influence of randomness, our approach makes use of multiple simulation runs using an

ILP-based refinement algorithm to consolidate the results from these runs.

3.1.1 Augmentation-based Signal Selection

We first describe our augmentation-based selection algorithm; we will discuss the

ILP-based refinement in the next subsection. Algorithm 1 outlines the major steps of the signal

selection process. The inputs of the algorithm are the circuit, trace buffer width (w), and the

number of cycles in mock simulations (c). To understand the workings of the algorithm we

need two key concepts: restoration influence and restoration difference.
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Given a set of candidate signals s, an input vector I , and the number of simulation cycles

c , we define the Restoration Influence RI(s, I , c), as the total number of states that can be

restored if we do a mock simulation over c cycles using input vector I and the signals set S .

The restoration difference between two candidates s1 and s2 with respect to I and c , denoted

by RD(s1, s2, I , c), is then given by the following formula:

RD(s1, s2, I , c) = RI(s1, I , c)− RI(s2, I , c)

Data: circuit, w, c
Result: Selected set of signals S
Create flip-flops graph of circuit;
Create list of selected signals S . initially empty ;
while |S | < w do

Generate a random input vector I ;
foreach flip-flop f that is not in the S do

Calculate RD(S ∪ {f },S , I , c) ;
end
Find flip-flop f with maximum RD. If two or more flip-flops have same RD, find the
one with higher connectivity ;
Add f to the list S ;

end
return S ;

Algorithm 1: SelectSignals Procedure

Informally, for a given c-cycle mock simulation I , the restoration difference between

two candidate signal sets s1 and s2 measures the observability improvement achieved by

selecting s2 over s1. In particular, if s2 = s1 ∪ {f } for some design signal f , then it measures

the observability improvement achieved by augmenting s1 with f . Algorithm 1 is a greedy

algorithm that uses this metric to iteratively grow the set S of currently selected signals. At

each iteration, it (1) performs a new simulation for c cycles using a random input vector I ,

(2) computes the restoration difference between S and S ∪ {f } for each design signal f , and

(3) augments S with the signal that maximizes the restoration difference. If two or more
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signals have identical restoration difference, then the tie is broken in favor of the signal that

has the highest connectivity.1 The process is continued until w signals have been selected.

3.1.2 ILP Optimization

Experiments show that most of the selected trace signals are identical in different runs of

our signal selection. However, in any simulation-based signal selection approach, signals may be

different in different runs depending on generated random input vector seed. The goal of our

refinement algorithm is to eliminate the influence of randomness and also to cover more states

of the circuit through selected signals. To do so, we use multiple runs of the signal selection

algorithm which are then processed by ILP to select the best signal set among all outcomes.

Data: circuit, w, c, p
Result: The matrices associated to the ILP problem
Create S[1..p][1..w] and R[1..p][1..w] ;
Create k and j, initialize to 1 ;
Create list of all selected signals A . initially empty ;
Create list of selected signals S . initially empty ;
while k <= p do

T = Signal selection algorithm with (circuit, w, c) ;
Generate a random input vector I ;
j = 1 ;
foreach flip-flop f in the T do
S [k ][j ] = f ;
A = A ∪ {f } ;
RDf = RD(T ,T − {f }, I , c) ;
R[k ][j ] = RDf ;
j + + ;

end
k + + ;

end
return A, S, and R ;

Algorithm 2: InitializeMatrices Procedure

1 The connectivity of a flip-flop is the number of flip-flops connected to it through other
combinational gates in both backward and forward directions.
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To perform the refinement, we first create ILP formulation matrices from the signal

selection algorithm. Algorithm 2 outlines the steps involved. The inputs of the algorithm

are the circuit, trace buffer width (w), the number of cycles in mock simulations (c), and

refinement precision (p). The refinement precision specifies the number of runs of the signal

selection algorithm used in the refinement process. The algorithm returns two matrices S and

R, and a set A, which are then used as the basis of the ILP optimization. A is the set of all

flip-flops selected in the p runs of our selection algorithm. The matrices S and R record the

importance of the selected flip-flops in state reconstruction: S [k ][j ] records the j-th selected

flip-flop in the k-th run of our selection algorithm; R[k ][j ] records the number of states that is

lost in the mock simulation corresponding to the k-th run if S [k ][j ] is removed from the final

selected set. The algorithm executes p runs of our selection algorithm, filling out the entries

S [k ][j ] and R[k ][j ] at the k-th run. Recall that the perturbation caused to the selection set

is typically small. Thus, for the set T of flip-flops computed in the k-th run and any f ∈ T ,

most of the signals in T − {f } end up in the final selected signal set; thus, the value of R[k ][j ]

is a reliable estimate of the importance of flip-flop S [k ][j ].

Once the required matrices are initialized, we can model our refinement process as an

ILP optimization problem in a fairly standard manner. For each flip-flop in A, we create a

variable which can be 0 or 1. Ai = 1 indicates that Ai is eliminated; Ai = 0 indicates that it

is not removed and therefore exists in final trace signals set. Note that since A is a cumulative

superset of all selected flip-flops during p runs, for each 1 ≤ i ≤ p and 1 ≤ j ≤ w , we have

S [i ][j ] ∈ A. Equation 3–1 shows the objective function which should be minimized. Li is

the number of states that is lost in ith run, based on signal assignments in A. The aim is to

minimize the total number of lost states in all the runs.

min :

p∑
i=1

Li (3–1)

Equation 3–2 shows how Li is calculated. Recall that S [i ][j ] is the assignment of signal j

in A (which is 0 or 1), and R[i ][j ] is the number of states that is lost in i -th run if j-th signal
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is removed (i.e., is equal to 1). Therefore, Li is the total number of states that is lost due to

removed flip-flops of i -th run.

L1 =

w∑
i=1

S [1][i ] ∗ R[1][i ] ..., Lp =

w∑
i=1

S [p][i ] ∗ R[p][i ] (3–2)

The constraints of ILP optimization problem are shown in Equation 3–3. Recall that A

is the superset of all selected signals in different runs. However, |A| may be larger than w as

some selected signals may be different during signal selection runs. It means |A| − w signals

must be removed from A. These signals are removed in such a way that the total number of

lost states in all runs is minimized. The remaining w flip-flops in A which are assigned to 0

correspond to the final trace signals set.

|A|∑
i=1

Ai = |A| − w

A1,A2, ...,A|A| ∈ {1, 0} (3–3)

3.1.3 Complexity and Scalability

Simulation of large industrial designs incurs high cost in running time. Indeed, simulation

time is the primary bottleneck in the usability of simulation-based signal selection on large-scale

designs. Therefore, a good metric of the complexity of such algorithms is the number of mock

simulations required in the computation. Note that although our approach involves ILP-based

optimization, the running time for solving the ILP in practice is still negligible compared to the

time for mock simulations. The reason is that the perturbation caused by randomization in

simulations in practice to the selected set of signals is small, so that there is a large overlap

between the signals selected at different runs. Thus, the selected set A of flip-flops over all

the different runs in our ILP-based refinement is of the order of the width of the trace buffer,

independent of the number p of iterations of the selection algorithm actually performed.

Consequently, we compute the complexity of our algorithm in terms of the number of required

mock simulations.
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Assume that there are N flip-flops in the circuit and the trace buffer width is w . Number

of needed simulation in each run of signal selection algorithm is N + (N − 1)+...+(N − w + 1).

Note that N >> w for large circuits, since the trace buffer size is bounded by the observability

limitations. The complexity of Algorithm 1 is thus θ(Nw). Algorithm 2 consists of a main

loop which runs signal selection algorithm followed by w additional simulations to fill in matrix

R. Consequently, each iteration needs θ(Nw) + θ(w) = θ(Nw) simulations. Therefore,

the complexity of our algorithm is p ∗ θ(Nw) = θ(Npw). However, our experiments show

that in practice p << N is enough to cover most of the input vectors. Consequently, in

most cases, our algorithm requires fewer simulations than the previous simulation-based

approach of Chatterjee et al. [7], which has a complexity of O(N2) — with the lower bound of

Ω(N2/dstep) which is still computationally expensive since N >> dstep in large industry-scale

circuits (dstep = 50 in their experiments). On the other hand, the hybrid approach [25] uses

simulation/restoration computation only for top k% of the candidate signals, (where k = 5 in

their experiments). The complexity of their approach is O(kwN) where w is the trace buffer

width. Note that once the parameters are fixed, both our approach and the hybrid approach

have the same asymptotic complexity θ(N)), with different constant coefficients.

In addition, not only all the simulations in each iteration of our selection algorithm are

independent, but the iterations of initialization algorithm are also independent tasks. This

makes our approach scalable for very large industry-level circuits by running them in parallel in

a multi-processor environment.

3.2 Experiments

3.2.1 Experimental Setup

In order to investigate the effectiveness of our proposed approach, we have developed a

cycle-accurate simulator for ISCAS’89 benchmarks using C++. Our simulator also conducts

restoration in both forward and backward directions. The simulator iterates on the unknown

signals queue and attempts to restore them leveraging both forward and backward techniques.

This process terminates when it is not possible to restore any more states. In addition, we
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checked the correctness of our simulator by comparing its output with the output of Verilog

simulation of the identical circuits using Icarus Verilog [70]. We also used lp solve 5.5 [71] to

solve the ILP optimization part of our approach.

In the results reported below, the comparisons with related work [7, 25] are based on

our implementation of their results. The reason is that their reported results used their own

synthesized/optimized version of the ISCAS’89 benchmarks, while we used the standard,

publicly available versions. Moreover to make the comparison fair for comparing restorability,

identical input vectors should be used in all the approaches. We used the same parameters

c = 64 and PT = 95% as reported in Chatterjee et al. [7]. In addition, we used the same

parameters M = 64, k = 5%, and an initialization simulation of 10K cycles as reported in

Li et al. [25]. We also used c = 32 and p = 6 for our approach in our experiments. Our

experiments demonstrate that restoration ratio shows no improvement for p > 6 in the set

of used benchmarks. After signal selection and for reporting the restoration ratios, we fed the

simulator with 100 sets of random input vectors and noted the average restoration ratios for

the selected set of signals. However, we forced the circuits to operate in their normal mode by

fixing the relevant control (reset) signals, while assigning random values to all the other inputs.

The control signals include active low reset signals RESET in s35932 and g35 in s38584 which

was set to 1 in our experiments. To make the comparison fair, these random input vectors are

different from those which are used in signal selection process.

3.2.2 Results

3.2.2.1 Restoration quality

Table 3-5 presents the restoration ratios of our approach compared with previous

techniques [7, 25] using the ISCAS’89 benchmarks. The trace buffer sizes used in our

experiment are 8 × 4k , 16 × 4k , and 32 × 4k . The corresponding restoration ratio for each

technique is reported. The last column indicates the percentage of improvement using our

approach compared with the best (shown in bold) result provided by existing approaches. The

results indicate that our approach performs significantly better in most cases; in particular we
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Table 3-5. Restoration ratios using our approach compared with existing selection approaches

Circuit Flip-flops
Buffer
Width

Simulation-based
[7]

Hybrid [25]
Our Ap-
proach

Improvement
over the best

s5378 179
8 13.41 13.32 14.63 9.1%
16 7.35 7.26 9.26 26.0%
32 4.47 4.27 5.11 14.3%

s9234 228
8 13.98 14.58 15.97 9.5%
16 8.30 8.55 9.32 9.0%
32 4.46 4.46 5.53 24.0%

s15850 597
8 26.33 27.38 45.89 67.6%
16 19.89 20.65 25.82 25.0%
32 13.19 13.19 13.97 5.9%

s13207 669
8 35.52 39.21 52.22 33.2%
16 20.13 22.47 34.89 55.3%
32 11.25 12.52 16.37 30.8%

s38584 1452
8 19.73 25.87 159.1 515.0%
16 28.39 29.01 48.39 66.8%
32 32.45 34.62 44.46 28.4%

s38417 1636
8 29.23 51.01 53.47 4.8%
16 17.02 19.22 26.87 39.8%
32 15.14 13.25 17.22 13.7%

s35932 1728
8 132.00 139.52 185.1 32.7%
16 67.45 71.36 93.2 30.6%
32 34.63 35.08 47.13 34.4%

achieve improvement in restoration performance is up to 515% (in s38584). Note however that

the restoration ratio is heavily dependent on the circuit structure, and such high restoration in

isolated cases may be an anomaly. Nevertheless, our approach performs better on most cases,

with an improvement of 51.23% in restoration quality. Compared to original simulation-based

signal selection [7], our fine-grained pruning reduces the chance of removing effective flip-flops

prior to selection itself. On the other hand hybrid selection [25] incorporate simulations for only

top 5% of the candidate flip-flops, which sacrifices the precision of the selection process; our

approach performs better by addressing this weakness through refinement.

3.2.2.2 Selection time

In addition to restoration ratio, we compared the runtime between our approach and

Chatterjee et al. [7]. Figure 3-3 illustrates the selection time of our approach compared and

normalized to [7] using different ISCAS’89 benchmarks. Since selection complexity of [7] is
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Figure 3-3. Selection times of our approaches compared and normalized to Chatterjee et al. [7]

O(N2) (Ω(N2/50) in the best case) and ours is θ(Npw), as expected, for smaller benchmarks

where pw is comparable to or larger than N our approach takes comparable time or longer

than [7] (for example s5378 benchmark and buffer width of 16 and 32 respectively). However,

our approach demonstrates consistent speed-up for larger benchmarks (s15850, s13207, s38584,

s38417, and s35932). The reason is that even after pruning phase of [7], number of conducted

simulations in [7] is significantly larger than our approach. In fact, once p and w are fixed, our

approach grows linearly with respect to number of flip-flops in circuit. In short, our approach

not only produces better restoration quality, but also it is more feasible in terms of selection

runtime in large circuits. This makes our approach a better fit for large-scale industry circuits

where N >> pw . Our signal selection time speed-up is up to 127.6X (in s38417 with buffer

width of 8) and 12.9X on average. Note however that the hybrid approach of Li et al. [25] also

reports significant speed-up over simulation-based techniques. However, their runtime results

are reported for a multi-threaded implementation running on a specific quad-core machine, and

are difficult to reproduce in our framework to provide a fair comparison.
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3.3 Summary

Post-silicon validation is an expensive phase in the production of integrated circuits, and

crucially depends on signal selection to effective use of the limited available observability.

Thus it is critical to develop signal selection techniques that provide high state reconstruction

and can scale to large industrial designs. Existing metric-based signal selection techniques

are computationally efficient, but often yield signals with poor restorability; simulation-based

techniques, while superior in restoration quality suffer from major computational drawbacks.

We presented a simulation-based signal selection technique that yields signals with

higher restorability than current approaches while still being computationally efficient. Our

key contribution is the observation that simulation-based signal selection can be significantly

improved by augmentation through ILP-based refinement, together with the insights to

smoothly integrate the augmentation phase into the selection framework resulting in a unified

scalable infrastructure. Our experiments demonstrate that our approach provides up to 515%

(51.23% on average) improvement in restoration ratio compared to existing signal selection

techniques.
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CHAPTER 4
EFFICIENT COMBINATION OF TRACE AND SCAN SIGNALS

To improve the observability in post-silicon debug further, various approaches [10, 11]

explored a profitable combination of trace and scan signals. The idea is to divide the trace

buffer (width) into two parts. The first part stores the trace signals and the second part stores

the scan signals. There is a very small set of important control signals that would be traced

every cycle. The remaining slots of the trace buffer will be filled with a portion of a large

set of scan signals that would be dumped across several cycles. Existing approaches divide

signals into two extreme categories - very important and less important. They lose opportunity

from scenarios where some other partitioning is useful such as very important, important, less

important, and so on.

It would be beneficial if we divide the signals in a large number of categories in terms of

dumping period. This enables us to select a promising signal with a profitable dumping period.

In this chapter, we propose an efficient fine-grained architecture that shares the trace buffer

bandwidth between several scan chains with different dumping periods. We also propose two

different signal selection algorithms which can be used based on hardware constraints. Our

signal selection algorithms assign the signals to different scan chains in order to maximize the

number of states that can be restored.

Figure 4-1 shows a simple circuit with 8 flip-flops [11] with associated shadow flip flops.

Shadow flip-flops are shown in shades. For example, DS is the shadow flip-flop for D. In

addition, proposed debug architecture is shown using two scan chains. Shadow flip-flops of an

identical scan chain are shown in same pattern. For example, AS and FS create a scan chain

of length 2 which is shown in dotted pattern. We use this example to show the benefit of using

different fine-grained scan chains.

Let us assume that the trace buffer width is 2 which means state of only two signals can

be stored in each clock cycle. Table 4-1 shows the signal states that can be restored using

the selected signals by [11]. Traced signals are shown in shades/bold. Signal C is traced every
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Figure 4-1. Simple circuit to illustrate restorability used in Basu et al. [3]

cycle whereas A and F are dumped in alternate cycles. Although scan signals are dumped in

alternate cycles, the table shows states for both A and F in cycle 1, cycle 3, and so on. This

is because in cycle 1 the state of signal A is dumped whereas in cycle 2 the state of signal F

is dumped. However, the scan chain (i.e., A and F shadow flip-flops) holds the state for the

same cycle, although different parts were dumped in different cycles. In other words, the signal

state of F captured at cycle 1 is dumped in cycle 2. Forward and backward restoration are

used to reconstruct the values for the signals that were not traced. For example, the entry

corresponding to D in cycle 2 will be ‘0’ because C was ‘0’ in cycle 1 (forward restoration).

The symbol ‘X’ represents the state that cannot be restored using known signal states. It can

be seen that in this case a total number of 36 states can be restored and a total number of 16

states are traced. Therefore the restoration ratio is 2.25.

We now show how different scan chains can help in signal restoration using the same

circuit. Figure 4-2 shows an illustrative example of our proposed partitioning of trace buffer

of width 2 for the same circuit. It can be observed that trace buffer width is shared between
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Table 4-1. Restored signals for the circuit shown in Figure 4-1

Signal Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
A 0 X 1 X 0 X 1 X
B 0 X X X 1 X X X
C 0 0 1 1 1 1 1 1
D X 0 0 1 X 0 X 1
E X 0 0 X X 1 X X
F 0 X 0 0 1 X 1 X
G X 0 X 0 0 0 X 1
H X 0 X 0 0 1 X X

Table 4-2. Trace buffer slots and shadow flip-flops values in our proposed debug architecture in
Figure 4-2

Buffer Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
CS C1 A1 C3 A3 C5 A5 C7 A7
AS A1 A1 A3 A3 A5 A5 A7 A7
ES E1 B1 B1 E4 B4 B4 E7 B7
DS D1 E1 B1 D4 E4 B4 D7 E7
BS B1 B1 B1 B4 B4 B4 B7 B7
T1 C1 A1 C3 A3 C5 A5 C7 A7
T2 D1 E1 B1 D4 E4 B4 D7 E7

two different scan chains of length 2 and length 3 showed in dotted and grid patterns. In this

case there are no trace signals and the buffer width is partitioned between two scan chains. We

apply our method to select efficient signals of the sample circuit for this debug architecture.

Consequently, we assign signals A and C to the first scan chain while signals B, D, and E

to the second scan chain. Scan chains consist of corresponding shadow flip-flops of selected

signals. Table 4-2 shows the values of trace buffer and shadow flip-flops in each cycle. The

subscript indicates the value in that clock cycle. For example, A3 implies the value of flip-flop

A in cycle 3. It can be observed that signals A and C are stored in trace buffer in alternate

cycles whereas B, D, and E are dumped in every third cycle. In other words, signals A and C

are dumped with period (T) equals to 2 while dumping period for signals B, D, and E is equal

to 3.

Table 4-3 shows the signal states that can be restored using the signals chosen by our

method (described in Section 4.1). It can be seen that a total number of 55 states can be
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Figure 4-2. Proposed debug architecture for example circuit in Figure 4-1

Table 4-3. Restored signals using our proposed debug architecture in Figure 4-2

Signal Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8
A 0 X 1 X 0 1 1 X
B 0 X 1 1 1 1 0 X
C 0 0 1 1 1 1 1 1
D 0 0 0 1 X 0 1 1
E 0 0 0 1 1 1 1 0
F X 0 0 0 1 1 1 1
G X 0 0 0 0 0 1 1
H X 0 0 0 0 1 1 0

restored and a total number of 17 states are traced. The restoration ratio is 3.24 which is

higher than 2.25 [11]. Thus, more states give a more detailed view of the internal state of the

circuit.

The primary problem of using different scan chains is to determine the length of scan

chains and signals to select for each scan chain. Signals should be chosen such that more

important signals are assigned to smaller scan chains with small dumping period. Less

important signals on the other hand, should be distributed among the scan chains with larger

dumping periods. In addition, minimizing the overlaps between the states that can be restored
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Figure 4-3. Spectrum of existing and proposed debug architectures

by different scan chains should be considered in selection algorithm in order to maximize the

restoration ratio in a debug scenario. In this chapter, we propose two algorithms to select

profitable signals for each scan chain.

4.1 Fine-grained Combinations

In this section, we first propose our fine-grained debug architecture. Next, we present

signal selection algorithms for constrained and flexible debug architectures. In constrained

debug architecture, the length of each scan chain is determined prior to the signal selection

process. This approach is used when the designer fixes the scan chains lengths or there

is hardware constraints in the system. The goal of constrained hardware signal selection

algorithm is to assign the best possible signals to each scan chain. On the other hand, in

flexible hardware architecture there are no constraints on the and types (length) of scan chains.

Therefore, the primary objective of flexible selection algorithm is to maximize the restorability,

regardless of scan chains lengths. Figure 4-3 illustrates the spectrum of existing and proposed

architectures. It can be observed that trace only and flexible hardware architectures are two

extremes of this spectrum. Trace only is the simplest with less complexity, while flexible

hardware architecture is more efficient in terms of observability but may introduce minor

hardware overhead.

4.1.1 Debug Architecture

Our fine-grained architecture is motivated by the coarse-grained design of [10, 11]. They

proposed an architecture that divides the trace buffer into two parts, one for trace signals and

the other one for scan signals. However, this partitioning is coarse-grained. Very important
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signals are traced every cycle whereas the less important ones are assigned to a scan chain.

The dumping period for scan signals depends on trace buffer width and number of signals in

the scan chain. Putting more signals in scan chain increases the dumping period for signals.

On the other hand, putting less signals may not be desirable as it decreases the coverage of the

circuit. As discussed earlier, the limitation of the existing approaches is to consider only two

extremes and losing the opportunity for not considering in-between scenarios. We consider a

fine-grained approach by allowing multiple partitions of trace buffer width.

Figure 4-4 illustrates our proposed fine-grained architecture. It can be observed that

width bw of the trace buffer is partitioned for ω trace signals and n different scan chains i.e.,

bw = ω + n. Each of these scan chains comprises of different number of signals denoted

by identical color which determines the dumping period for those signals. In each cycle, the

shadow flip-flops of a particular scan chain capture the value of their corresponding flip-flops.

It has to be noted that if a particular scan chain contains only one signal it is essentially a

trace signal that is traced every cycle. These different signal chains provide more fine-grained

dumping periods. Thus, each signal can be assigned to the appropriate scan chain based on its

importance. These fine-grained scan chains enable us to dump larger number of signals which

improves the observability in the circuit compared with coarse-grained scan signals. The next

two sections describe two variations (constrained and flexible) of our proposed algorithms which

try to select the best signal in each iteration considering all the signals that have been selected

before.

4.1.2 Constrained Signal Selection (CSS)

In this section, we propose a greedy heuristics for constrained selection algorithm which

selects profitable signals for each scan chain of determined length in order to maximize the

observability. We define P0(f ) and P1(f ) for flip-flop f in the circuit that define the probability

of its value being 0 and 1, respectively. These values can be calculated by feeding the simulator

with circuit graph and random input vectors and running it for numerous times. We also

use connectivity information similar to [11]. The connectivity of a flip-flop is the number of
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Figure 4-4. Proposed debug architecture

flip-flops connected with it through other combinational gates in both backward and forward

directions.

In order to partition the trace buffer in different scan chains we define buffer width (bw),

trace signals (ω), partition factor (α), and step function (φ). The buffer is divided into two

parts. First part consists of ω trace signals that are dumped every cycle. The remaining bw − ω

buffer entries are further divided into α partitions. Each partition consists of (bw − ω)/α scan

chains with identical length. The step function determines the length of scan chains in each

partition. In other words, assume li and li+1 are the lengths of scan chains in two successive

partitions, then we would have: li+1 = φ(li). It has to be noted that l0 is equal to initial value

of 1.

Figure 4-5 illustrates an example of trace buffer partitioning in a debug architecture

with bw = 8,ω = 2,α = 3, and φ(i) = φ(i − 1) + 1. It can be seen that there are two

trace signals that are dumped every cycle. The rest of the trace buffer is shared between
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Figure 4-5. An example of trace buffer partitioning

fine-grained scan chains. For example, first partition consists of two scan chains each of them

with identical length of 2. In other words, two signals that are assigned to scan chain 1 will be

dumped in alternate cycles. We also define dumping period (T) for each scan chain. Clearly,

dumping period for a particular scan chain is equal to its length. For example, four signals

are assigned to last scan chain in Figure 4-5. Each of these signals will be dumped every four

cycles. Fine-grained partitioning enables us to assign signals to different dumping periods based

on their importance. For example in Figure 4-5, important (control) signals are assigned to

trace slots (T=1). On the other hand, less important signals are assigned to scan chains with

larger lengths (T=2, T=3, and T=4), based on their impact on the restoration performance.

We use restoration power (RP) as a selection metric in our algorithm. Assume S is the

current set of assigned flip-flops to scan chains. In addition, fT implies that flip-flop f is

dumped every T cycles. We show the dumped values of f using v that can be either 0 or 1.We

define δ(S ∪ {fT}, v) as the number of additional states that can be restored using S ∪ {fT}

(compared to restored stated using only S) over a window of c cycles when we dump f each

T cycles with the assumption that the value of f is fixed to v throughput the dumping cycles.

δ(S ∪ {fT}, v) is calculated for both v = 0 and v = 1. These values are then weighted averaged
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based on the probabilities of being 0 or 1 in flip-flop f and are used in the selection metric

of our algorithm. Clearly, larger c is more desirable as it yields more precise result. However,

large c in real scenarios is not practical as there are numerous number of flip-flops that make

the restoration process computationally expensive. Our experimental results demonstrate that

c = LCM(l0, l1, ...ln−1) is large enough where li is the length of scan chain i and LCM is least

common multiple. The reason is that restoration pattern in whole circuit is repeated over each

c = LCM(l0, l1, ...ln−1) cycles. For example, in Figure 4-5 c = LCM(1, 2, 3, 4) = 12 is used in

our algorithm. For a particular flip-flop f with a dumping period of T (fT ), RP is defined as

follows.

RP(fT ) = T ∗ (P0(f ) ∗ δ(S ∪ {fT}, 0) + P1(f ) ∗ δ(S ∪ {fT}, 1))

In other words, RP is the number of probable additional states that can be restored by adding

fT to the S. There is a multiplication by T in RP because we would like to take into account

the resources that fT uses for these additional restored states. Larger T means smaller

resource usage. In fact, the intuition of RP is that in each iteration we try to choose a flip-flop

that makes the best trade-off between the maximum newly restored states and minimum

resource usage.

Algorithm 3 outlines the major steps in our constrained signal selection algorithm. First,

we create a graph of flip-flops using the same methodology described in [3]. This graph is

used to compute the connectivity of each flip-flop. Next, we calculate P0 and P1 for each

flip-flop, and partition the trace buffer using input parameters. We create an empty list S

to hold the list of selected flip-flops. In each iteration, RP is calculated for all the remaining

flip-flops (flip-flops that are not in S). If two or more flip-flops have equal RP we choose the

one with higher connectivity. This increases the chance of restoring more states during the real

debug scenario as it is connected to more flip-flops. We continue assigning one flip-flop in each

iteration until all the scan chains get full.

We now show how our algorithm works for the example circuit in Figure 4-1. Assume

that trace buffer width is 2. We partition the trace buffer using bw = 2,ω = 0,α = 2, and
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Data: circuit, bw ,ω,α,φ
Result: The set of selected signals
Create a graph model of the circuit ;
Calculate P0 and P1 for all the flip-flops ;
Create list of selected signals S . initially empty ;
Partition trace buffer using (bw ,ω,α,φ) ;
while there is an available scan chain do

foreach flip-flop f that is not in the S do
foreach available scan chain of length T do

Calculate RP for fT using S ∪ {fT} ;
end

end
Find flip-flop f with dump period T (fT ) that has the maximum RP. If two or more
flip-flops have same RP, find the one with higher connectivity assign f to a scan
chain with length T ;
Add fT to the list S ;

end
return S ;

Algorithm 3: Constrained Signal Selection (CSS)

φ(i) = 1 + φ(i − 1). In other words, we have two scan chains of length 2 and 3, respectively.

Hence, from our algorithm we would have c = LCM(2, 3) = 6, which is used in restoration

power calculation. Table 4-4 summarizes intermediate results of our algorithm in each iteration.

First column is the candidate flip-flops from the example circuit. Second and third columns are

P0 and P1 of each flip-flop which are calculated by feeding our simulator with 100 different

random inputs. The rest of the columns are the restoration power of flip-flops in each iteration.

Each cell in these columns contains two rows which are the RP values if we assign the flip-flop

to the scan chain of length 2 (T=2) or length 3 (T=3), respectively. In the first iteration,

signal C has the highest RP for T=2 and is assigned to the first scan chain of length 2 (the

RP value for the selected signal in each iteration is shown in bold). In the second iteration,

both signals A and B yield the maximum RP when they are assigned to scan chain of length

2. In addition, since both of them have same connectivity (3), our algorithm selects one of

them (signal A) randomly. Till now, signals A and C are assigned to first scan chain of length

2. Using the same procedure, signals B, D and E are assigned to second scan chain of length 3

in the remaining iterations.
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Table 4-4. Different restoration power values of our algorithm in example circuit of Figure 4-1

Signal P0 P1 RP (I1) RP (I2) RP (I3) RP (I4) RP (I5)

A 0.5 0.5
15.00 10.00 - - -
15.00 6.00 - - -

B 0.5 0.5
15.00 10.00 - - -
15.00 6.00 13.50 - -

C 0.29 0.71
21.19 - - - -
19.15 - - - -

D 0.6 0.4
14.70 4.37 - - -
11.93 8.37 10.20 4.20 6.00

E 0.6 0.4
14.68 4.37 - - -
11.92 8.37 13.18 7.18 -

F 0.45 0.55
14.99 6.49 - - -
14.09 5.70 10.35 3.00 3.00

G 0.68 0.32
9.80 2.63 - - -
8.85 4.90 9.00 3.00 3.00

H 0.68 0.32
9.81 2.63 - - -
8.86 4.90 9.95 3.95 3.00

From Table 4-4, it can be observed that our algorithm covers a large part of the circuit

by assigning more resources to important signals. This procedure continues by assigning less

resources to signals that can cover other parts of the circuit. As a result, it gets benefit of both

spatial and temporal observability of fine-grained sets of signals.

4.1.3 Flexible Signal Selection (FSS)

In this section, we describe our flexible signal selection algorithm which is used when there

are no pre-defined architectural constraints on scan chains. FSS starts with initially empty scan

chains. In each iteration, a flip-flop is added to one of the scan chains. This process stops

once adding more flip-flops is not profitable anymore. Algorithm 4 outlines the major steps of

proposed flexible selection algorithm. The inputs of the algorithm are the circuit, trace buffer

width (w), and the number of cycles in mock simulations (c). To understand the workings of

the algorithm we need a key concept: restoration impact.

Given a scan chain configuration s , an input vector I , and the number of mock simulation

cycles c , we define the restoration impact RI(s, I , c), as the total number of states that can

be restored if we do a mock simulation over c cycles using input vector I and the scan chain
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configuration s. For a given scan chain configuration s and flip-flop f , s ∪ {fk} is a new

configuration which is same as s except that flip-flop f is added to kth scan chain of s .

Data: circuit, bw , c
Result: The set of selected signals
Create a graph model of the circuit ;
Create initial configuration S . empty scan chains ;
continue = true ;
while continue do

Generate a random input vector I ;
currentImpact = RI of (S , I , c) ;
foreach each flip-flop f that is not in the S do

for kth scan chain; 1 ≤ k ≤ w do
Calculate RI of (S ∪ {fk}, I , c) ;

end

end
Find fk with maximum RI. If two or more flip-flops have same RI, find the one with
higher connectivity ;
if RI of S ∪ {fk} > currentImpact then

Add f to kth scan chain of S ;
continue = true ;

end
else
continue = false ;

end

end
return S ;

Algorithm 4: Flexible Signal Selection (FSS)

Informally, for a given c-cycle mock simulation on I , the restoration impact shows how

scan chain configuration s is profitable in terms of observability performance. In particular,

if s2 = s1 ∪ {fk} for some design signal f , then RI (s2, I , c) − RI (s1, I , c) measures the

observability improvement achieved by augmenting kth scan chain of s1 with f . Algorithm 4

is a greedy heuristics that uses this metric to iteratively grow the set S of current scan chain

configuration. At each iteration, it (1) performs a new simulation for c cycles using a random

input vector I and computes the restoration impact of current configuration S, (2) computes

the restoration impact of S ∪ fk for each design signal f which is not selected before when f is

added to kth scan chain, and (3) augments kth scan chain of S with the signal that maximizes
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Figure 4-6. Sample circuit to illustrate our flexible selection algorithm

the restoration impact, if it increases the restoration impact of current configuration. If two

or more signals have identical restoration impact, then the tie is broken in favor of the signal

that has the highest connectivity. The process is continued until augmenting scan chains is not

profitable anymore.

We now show how our algorithm works for the example circuit in Figure 4-6. Assume

that trace buffer width is 2 and c = 32 cycles is used in mock simulations of the algorithm.

Table 4-5 summarizes intermediate results of our algorithm in each iteration. Second row shows

the current configuration S in each iteration and third row demonstrates the corresponding

restoration impact. The remaining rows are the restoration impact values of the circuit

flip-flops in each iteration. Each cell in these rows contains two numbers which are the

RI values if we add the flip-flop to the first or second scan chain of current configuration,

respectively. In the first iteration, signal L has the highest RI and is added to the first scan

chain (the RI value for the selected signal in each iteration is shown in bold). Using the

same procedure, signals A, D, B, and C are added to the second scan chain in the following

iterations. It can be observed that in the last iteration adding a new flip-flop to any of the scan

chains is not profitable anymore. In other words, none of the RI values is greater than the RI of
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Table 4-5. Restoration impact values of our flexible selection algorithm in example circuit of
Figure 4-6

Variable Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5 Iteration 6

S
{} {L} {L} {L} {L} {L}
{} {} {A} {A,D} {A,D,B} {A,D,B,C}

currentImpact 0 84 123 130 142 144

A
32 64 - - - -
32 127 - - - -

B
32 60 117 128 - -
32 122 129 142 - -

C
81 78 119 136 142 -
81 121 123 137 149 -

D
60 61 114 - - -
60 118 141 - - -

E
32 66 92 105 125 130
32 122 119 133 133 134

F
32 60 127 103 116 123
32 116 122 123 146 128

K
66 84 115 125 148 144
66 113 114 131 140 133

L
96 - - - - -
96 - - - - -

M
80 77 97 130 149 144
80 88 98 131 140 131

current configuration S. The algorithm stops with L assigned to the first scan chain and A,D,B,

and C assigned to the second scan chain.

It can be observed that our flexible selection algorithm is different from constrained

selection in terms of selection goal and time. The flexible selection continues augmenting scan

chains with new flip-flops until adding new flip-flops degrades restoration performance. In

other words, there are no constraints on scan chain lengths as they can grow when profitable.

On the other hand, the goal of the constrained selection (discussed in Section 4.1.2) is to

find the best possible fit for a fixed hardware architecture. In other words, lengths of various

scan chains are fixed in constrained selection. The constrained hardware may degrade the

restoration performance compared to flexible hardware as we put constraint on scan chain
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lengths. However, constrained signal selection can reduce the selection time and hardware

overhead.

4.2 Experiments

4.2.1 Experimental Setup

In order to investigate the effectiveness of our proposed approach, we have developed

a cycle-accurate simulator for ISCAS’89 benchmarks using C++. Our simulator conducts

restoration in both forward and backward directions following the mechanism outlined in [4].

The simulator iterates on the unknown signals queue and tries to restore them using both

forward and backward directions. This process terminates when it is not possible to restore any

more states. In addition, we checked the correctness of our simulator by comparing its output

with the output of Verilog simulation of the same circuits using Icarus Verilog [70].

We fed the simulator with 100 sets of random values and noted the average restoration

ratios. However, we forced the circuits to operate in their normal mode by fixing the relevant

control (reset) signals, while assigning random values to all the other inputs. The control

signals include active low reset signals RESET in s35932 and g35 in s38584 which was set to

1 in our experiments. Table 4-6 shows the set of parameters that we used for each benchmark

and different trace buffer widths for constrained signal selection algorithm.

In addition, we used c = 64 cycles in mock simulations of flexible signal selection

algorithm. Our experiments show that by using c = 64, relative restoration performance is

consistent between different set of trace signals and input vectors. In other words, c = 64 is

enough to remove the random behaviors from our selection process. Important signals always

perform better compared to other signals (for almost all random input vectors). Therefore,

these signals are always selected in final result. We use different random signals to make sure

that different states of the circuits are covered (different areas enabled). These random signals

may affect borderline signals in the final result. However, the effect on restoration performance

in borderline signals is negligible.
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Table 4-6. Different parameters used in CSS

Circuit Buffer Width ω α φ

s5378
8 4 1 φ(i) = 1 + φ(i − 1)
16 8 4 φ(i) = 2 ∗ φ(i − 1)
32 8 3 φ(i) = 1 + φ(i − 1)

s9234
8 4 4 φ(i) = 2 ∗ φ(i − 1)
16 8 4 φ(i) = 2 ∗ φ(i − 1)
32 12 4 φ(i) = 2 + φ(i − 1)

s15850
8 2 3 φ(i) = 2 ∗ φ(i − 1)
16 2 7 φ(i) = 1 + φ(i − 1)
32 8 6 φ(i) = 1 + φ(i − 1)

s38584
8 2 3 φ(i) = 2 + φ(i − 1)
16 4 3 φ(i) = 2 + φ(i − 1)
32 8 3 φ(i) = 1 + φ(i − 1)

s38417
8 2 3 φ(i) = 2 ∗ φ(i − 1)
16 8 4 φ(i) = 2 ∗ φ(i − 1)
32 16 4 φ(i) = 2 + φ(i − 1)

s35932
8 4 1 φ(i) = 1 + φ(i − 1)
16 8 1 φ(i) = 1 + φ(i − 1)
32 16 1 φ(i) = 1 + φ(i − 1)

We used the original reported restoration quality numbers in [5] and [3]. We did not use

the reported numbers of [25] and [7] as they used modified (performed some optimizations)

version of ISCAS89 benchmarks. To perform a fair comparison, we tried to obtain the

executables of [25] and [7]. Li et al. [25] provided us with their signal selection framework

and we used it for the selection process in this revision. Unfortunately we were not able

to get the implementation of [7] and we used our implementation of their approach in this

revision. It should be noted that we used our framework for simulations and restoration quality

calculations.

4.2.2 Restoration Quality

Table 4-7 compares the restoration ratios of our approach with several previous trace

only techniques [3, 5, 7, 25] using different ISCAS’89 benchmarks. The trace buffer used in

our experiment are 8 × 4k , 16 × 4k , and 32 × 4k . The corresponding restoration ratio for

each technique (if available) is reported. Seventh and ninth columns indicate the percentage

improvement using CSS and FSS techniques respectively, compared with the best (shown in
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Table 4-7. Restoration ratios of different trace only approaches compared with our proposed
architecture

Circuit
Buffer
Width

Ko et
al. [5]

Basu et
al. [3]

Chatterjee
et al. [7]

Li et al.
[25]

CSS
CSS Im-
prv.(%)
over best

FSS
FSS Im-
prv.(%)
over best

FSS Im-
prv.(%)
over CSS

s5378
8 14.67 - 13.24 14.35 14.65 0 14.84 1 1
16 8.99 - 7.83 8.36 8.64 -4 9.33 4 8
32 4.72 - 4.89 4.99 5.00 0 5.30 6 6

s9234
8 4.76 - 10.68 9.25 20.43 91 24.28 127 19
16 7.18 - 7.16 6.13 12.31 71 12.93 80 5
32 4.67 - 4.18 4.38 6.78 45 6.92 48 2

s15850
8 19.93 - 39.54 21.90 47.35 20 50.96 29 8
16 24.22 - 24.85 14.78 26.00 5 26.87 8 3
32 13.30 - 13.60 10.88 14.71 8 15.23 12 4

s38584
8 19.23 78.00 84.10 27.00 146.64 74 159.65 90 9
16 13.96 40.00 47.04 13.97 80.85 72 85.90 83 6
32 8.68 20.00 26.97 7.50 43.22 60 45.00 67 4

s38417
8 18.63 55.00 45.21 37.71 55.40 1 56.41 3 2
16 18.62 29.00 30.77 23.80 33.41 9 33.73 10 1
32 14.20 16.00 20.25 11.83 21.33 5 22.11 9 4

s35932
8 64.00 95.00 96.12 144.00 178.51 24 186.60 30 5
16 38.13 60.00 67.45 72.00 89.25 24 94.80 32 6
32 21.06 35.00 43.23 36.00 45.01 4 47.85 11 6

bold) result provided by existing approaches. The improvement in restoration performance

is up to 91% in s9234 (28% on average) for constrained selection algorithm. Likewise, this

improvement is up to 127% in s9234 (36% on average) for flexible selection algorithm. It

can be observed that our approach performs significantly better because existing trace only

approaches only take advantage of temporal observability of a small set of signals while miss

the opportunity of both spatial and temporal observability of a large set of signals. The last

column shows the percentage improvement by relaxing the scan chain lengths (FSS) over

constrained hardware approach (CSS). As expected, FSS outperforms CSS approach as there is

no constraints on scan chains hardware. This improvement is up to 19% in s9234 and 5% on

average.

We also compared our approach with the existing trace+scan approach proposed by Basu

et al. [11] in Table 4-8. It is important to note that we did not compare with other trace+scan

approaches (such as [10]) since [11] has shown to perform better than other approaches. It can

be observed that our approach outperforms [11] consistently. The improvement in restoration

performance is up to 116% in s38584 (54.7% on average) for CSS, and up to 125% in s38584
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Table 4-8. Restoration ratios using our approach compared with Basu et al. [3]

Circuit
Buffer
Width

Basu et al.
[11]

CSS
CSS Im-
prv.(%)

FSS
FSS Im-
prv.(%)

s38584 32 20.00 43.22 116 45.00 125
s38417 32 18.00 21.33 19 22.11 23
s35932 32 35.00 45.01 29 47.85 37

(61.7% on average) for FSS. The reason for significant improvement is that their approach is

limited by coarse-grained partitioning (two fixed partitions) of signals.

4.2.3 Selection Time

Table 4-9 presents the runtime of our approach compared with previous simulation-based/hybrid

techniques [7, 25] using different ISCAS’89 benchmarks. The reported runtime format is

‘hour:minute:second’. For this comparison, we used an Ubuntu 12.04.5 machine with a

64-Core AMD Opteron 6378 (1400 MHz) processor and 189 GB of physical memory. We

measured the runtime of Li et al. [25] using their provided multi-thread binary file. In addition,

to make the comparison fair, we used a multi-thread implementation of both [7] and our

approach. It can be observed that compared to [7], our approach reduces the selection runtime

significantly. Compared to [25], our approach demonstrated significant improvement in

restoration quality, the runtime (of CSS, more specifically) is still comparable. In addition,

since CSS enforces constraints on scan chain lengths, as expected, it demonstrates consistent

speed-up compared with FSS approach. In short, although FSS outperforms CSS in terms

of restoration performance, it needs more time to run the signal selection. CSS is beneficial

when there is constraints on hardware architecture or selection time. On the other hand, FSS

is beneficial when the restoration quality is the primary objective. In addition, in each step

of our approach all the evaluations (RP in CSS and RI in FSS) can be done simultaneously.

This makes our approach scalable for large industrial designs by using MapReduce or similar

programming models.

4.2.4 Hardware Overhead

In order to investigate the hardware overhead of our approach, we developed Verilog

Register-Transfer Level (RTL) design for each of the profitable scan-trace configurations
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Table 4-9. Runtime comparison of different approaches

Circuit Buffer Width Chatterjee et al. [7] Li et al. [25] CSS FSS

s5378
8 00:00:14 00:00:04 00:00:01 00:00:04
16 00:00:14 00:00:08 00:00:19 00:00:33
32 00:00:13 00:00:11 00:00:17 00:00:55

s9234
8 00:01:06 00:00:07 00:00:15 00:00:28
16 00:01:05 00:00:19 00:00:29 00:00:51
32 00:01:01 00:00:22 00:00:44 00:01:06

s15850
8 00:28:01 00:01:40 00:00:45 00:01:17
16 00:28:00 00:01:58 00:04:11 00:07:02
32 00:27:57 00:02:07 00:05:32 00:06:00

s38584
8 03:20:22 00:01:20 00:02:57 00:06:45
16 03:20:17 00:05:40 00:06:29 00:15:08
32 03:19:52 00:08:30 00:13:47 00:31:59

s38417
8 02:49:00 00:07:10 00:01:42 00:24:03
16 02:49:00 00:33:30 00:09:25 00:21:18
32 02:49:00 00:35:30 00:11:55 00:13:22

s35932
8 01:27:27 00:01:21 00:01:28 00:09:04
16 01:27:23 00:03:36 00:03:14 00:10:31
32 01:27:15 00:04:47 00:05:59 00:15:48

(shown in Table 4-10) and performed logic synthesis. For each benchmark design, we selected

the most profitable scan-trace combinations for different trace buffer widths. We fixed the

trace buffer depth to 128 for all the experiments. The RTL design has been developed as a

standalone module that accepts the scan-trace configuration as a parameter. In each scan

chain, shadow flip-flops are connected through a chain and are stored in the trace buffer. For

example, Figure 4-7 shows a sample configuration for a trace buffer of width 4. In this example,

each entry of the trace buffer is connected to a specific scan chain. The first entry is connected

to a scan chain of length 1 consisting of only one flip-flop (A). Similarly, the second entry is

connected to a scan chain consisting of a flip-flop (B). In other words, A and B are essentially

trace signals that are traced every cycle. The third entry is connected to a scan chain of

length 2 consisting of flop-flops C and D that are traced in alternate cycles. The last entry

is connected to a scan chain of length 3 consisting of flip-flops E, F and G that are traced in

every third cycles. This configuration can be termed as 2T-1S2-1S3 to indicate that it consists

of two trace signals (2T), one scan chain of two flip-flops (1S2) and one scan chain of three

flip-flops (1S3).
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Figure 4-7. Sample scan-trace configuration

Table 4-10. Configurations for fine-grained architectures
Circuit Buffer Width Fine-grained Architecture

s5378
8 7T-1S5
16 10T-1S2-4S3-1S4
32 21T-4S2-6S3-1S6

s9234
8 6T-1S3-1S5
16 12T-3S2-1S10
32 26T-4S2-2S3

s15850
8 3T-4S2-1S4
16 9T-4S2-3S3
32 29T-2S2-1S3

s38584
8 7T-1S2
16 15T-1S2
32 30T-2S2

s38417
8 2T-3S2-1S3-2S4
16 11T-4S2-1S5
32 30T-2S2

s35932
8 6T-2S3
16 13T-3S2
32 30T-2S2

Table 4-10 shows the profitable configurations used in different benchmarks. The first

column indicates the benchmark. The second column provides different trace buffer widths.

The last column lists the configurations. For example, consider the configuration 21T-4S2-6S3-

1S6 for benchmark s5378 with buffer width 32. This configuration consists of 21 trace signals

(21T), 4 scan chains each having 2 flip-flops (4S2), 6 scan chains each having 3 flip-flops (6S3)

and 1 scan chain of 6 flip-flops (1S6).
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We present both area and power overhead for performing fine-grained signal selection

compared to existing trace-only approaches in Table 4-11 and 4-12, respectively. The area

overhead computation includes the area of all the required scan registers (shadow flip-flops

that capture the state of the signals) as well as the necessary logic to control the timing of the

signal storage for each scan chain. Scan control logic in this case is essentially a counter for

dumping the values of each scan chain by generating suitable control signals to enable shift

operation in each cycle. In order to synthesize the designs, we used Synopsys Design Compiler

version F-2011.09 and FreePDK45 target library (45 nm technology) [1].

Table 4-11 presents the hardware area overhead of our approach for different benchmarks

and trace buffer widths. The first and second column indicate the benchmarks and trace buffer

widths, respectively.

The third column presents the area (in µm2) for the circuit including the trace buffer.

The fourth column presents the area (in µm2) of the circuit with trace buffer including our

fine-grained trace controller. The last column indicates the percentage of area overhead which

is calculated as 100 ×(column 4 - column 5) / column 4. It can be observed that in most

of the cases the area overhead of our approach is negligible. This overhead is up to 1.49%

in s9234 and 0.57% on average. It can also be observed that the area overhead is more

noticeable in smaller circuits (s5378, s9234, and s15850). This can also be seen in Figure 4-8

which shows the area overhead (in percentage) of different circuit sizes (in terms of number

of flip-flops) for different trace buffer widths. The reason is that the size of the trace buffer is

dominant in these scenarios. However, the area overhead is much smaller for larger benchmarks

where the circuit area is dominant compared to the trace buffer area. Therefore, area overhead

of our approach would be negligible when fine-grained signal selection is applied on large

industrial designs with larger trace buffers.

Table 4-12 presents the power overhead of our approach for different benchmarks and

trace buffer widths. Power numbers include both dynamic and leakage power. Dynamic

power is computed assuming frequency of 500 MHz. The first and second column indicate
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Table 4-11. Area overhead of fine-grained signal selection compared to trace-only approach
Circuit Buffer Width Circuit with Trace Buffer Circuit + Fine-grained Area Overhead (%)

s5378
8 21699.96 21906.92 0.95
16 39215.17 39639.42 1.08
32 72404.07 73121.63 0.99

s9234
8 20819.56 21128.83 1.49
16 38334.77 38770.28 1.14
32 71523.67 71811.35 0.40

s15850
8 28475.25 28779.82 1.07
16 45990.46 46331.17 0.74
32 79179.36 79331.88 0.19

s38584
8 49496.60 49556.67 0.12
16 67011.81 67063.44 0.08
32 100200.71 100248.58 0.05

s38417
8 49038.57 49491.44 0.92
16 66553.78 66871.50 0.48
32 99742.68 99790.55 0.05

s35932
8 45900.83 46068.37 0.37
16 63416.04 63522.57 0.17
32 96604.94 96652.81 0.05
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Figure 4-8. Area overhead of our approach for different circuit and trace sizes, benchmarks are
ordered based on the number of flip-flops (shown in brackets)

the benchmarks and trace buffer widths, respectively. The third column presents the power

(in mW) for the circuit including the trace buffer. The fourth column presents the power

(in mW) of the circuit with trace buffer including our fine-grained trace controller. The last

column indicates the percentage of power overhead which is calculated as 100 ×(column 4 -

column 5) / column 4. It can be observed that in most of the cases the power overhead of our

approach is negligible (1% or less). It can also be observed that the power overhead is more

noticeable in smaller circuits (s5378, s9234, and s15850). The reason is that the size of the
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Table 4-12. Power overhead of fine-grained signal selection compared to trace-only approach
Circuit Buffer Width Circuit with Trace Buffer (mW) Circuit + Fine-grained (mW) Power Overhead (%)

s5378
8 9.35 9.50 1.60
16 16.88 17.20 1.90
32 31.92 32.50 1.82

s9234
8 8.79 9.01 2.50
16 16.32 16.65 2.02
32 31.32 31.58 0.83

s15850
8 12.05 12.30 2.07
16 19.58 19.90 1.63
32 34.62 34.80 0.52

s38584
8 21.45 21.50 0.23
16 28.98 29.04 0.21
32 44.02 44.10 0.18

s38417
8 22.15 22.50 1.58
16 29.68 30.00 1.08
32 44.72 44.80 0.18

s35932
8 25.55 25.70 0.59
16 33.08 33.20 0.36
32 48.12 48.20 0.17
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Figure 4-9. Power overhead of our approach for different circuit and trace sizes, benchmarks
are ordered based on the number of flip-flops (shown in brackets)

trace buffer is dominant in these scenarios. However, the power overhead is much smaller for

larger benchmarks where the circuit area is dominant compared to the trace buffer area, which

is the case in real industrial designs. This can also be seen in Figure 4-9 which shows the power

overhead (in percentage) of different circuit sizes (in terms of number of flip-flops) for different

trace buffer widths. In summary, our promising fine-grained architecture proposes significant

improvement in restoration quality with minor area and power overhead.
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4.3 Summary

Signal selection is an important part of post-silicon debug. Existing techniques mainly

focused on trace only signal selection. Recent techniques employed coarse-grained combination

of trace and scan signals and showed limited effectiveness. In this chapter, we presented

a debug architecture consisting of fine-grained combination of trace and scan signals. We

developed efficient algorithms to select most profitable signals based on the proposed

architecture. Our experimental results using ISCAS’89 benchmarks demonstrated that our

approach shows up to 127% (36% on average) higher restoration compared to existing trace

only approaches. Our approach produces up to 125% improvement (61.7% on average)

compared with the state-of-the-art approaches that consider a combination of trace and scan

signals. We have also demonstrated that our approach introduces minor (less than 1%) area

and power overhead compared to existing trace only approaches.
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CHAPTER 5
SCALABLE TRACE SIGNAL SELECTION USING MACHINE LEARNING

A common class of signal selection techniques involves defining a metric based on the

design structure, which is then used in a (typically greedy) selection process to evaluate

a candidate signal set [3–5]. These approaches are fast but provide a low value of state

restoration. Recent work on simulation-based signal selection [7] provides superior restoration

quality but incurs prohibitive computation overhead. A hybrid signal selection approach [25]

has been proposed which incorporated a combination of metric-based and simulation-based

signal selection approaches. However, using less simulation to save selection time sacrifices the

restoration performance. In this chapter, we propose two novel selection techniques that uses

machine learning to provide high restoration quality. Our proposed techniques are scalable -

making them applicable for very large industry-scale circuits.

5.1 Learning-based Signal Selection

The key contribution of this section is a novel signal selection technique that retains (and

improves upon) the restoration quality of simulation-based signal selection while achieving

faster or comparable selection time complexity. Our approach is characterized by two key

components: (1) for the first time to our knowledge, a machine learning technique is applied to

model the restoration strength of the signals; and (2) the raw machine learning algorithm has

been augmented with a compound back-end selection technique to find the most profitable set

of signals using the circuit model. The basic idea is to run only a small number of simulations

to train the machine learning framework. Subsequently, our approach will utilize the predication

capability of the machine learning replacing the need for costly simulation runs. Our proposed

approach address three important challenges in using machine learning for signal selection.

First, we have to identify a machine learning algorithm that is suitable for signal selection. We

also need to determine the minimum number (as well as specific types) of training vectors

(simulation runs) that will provide an effective trade off between the cost (time) and prediction
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accuracy. Finally, we need to develop a signal selection algorithm that utilizes the best use of

our model to select the best set of signals.

Fig. 5-1 shows the overview of our approach and its relation to existing simulation based

approaches [7, 25]. Both elimination-based [7] and hybrid augmentation-based [25] approaches

use mock simulations to evaluate the quality of candidate signals. However, using mock

simulations is expensive and it can limit the search space exploration. Our approach makes use

of machine learning techniques to meliorate the cost of mock simulations. In particular, we first

model the circuit using machine learning techniques and bounded mock simulations. After that,

the model can be used to explore a bigger search space as we are replacing mock simulations

with fast predictions. This allows us to run both elimination-based and augmentation-based

algorithms as well as our newly proposed random initial set selection technique. Running all

these techniques together expands our search space and increase the chance of finding a better

global solution.

In order to reduce the number of mock simulations and also increasing the accuracy in

modeling, we propose a two-step signal selection approach using supervised learning: in the

first (pre-processing) step, a small number of mock simulations is used as a training set to

build a linear model of the circuit and eliminate non beneficial signals; in the second (selection)

step, we use a non-linear and more accurate prediction model to find the final selected signals

using different selection techniques.

5.1.1 Problem Formulation

The goal of a selection algorithm is to construct a set S of w flip-flops (out of N flip-flips

in the circuit) so that restoration ratio during post-silicon debug is maximized. Here w is the

width of the trace buffer and is a parameter to the algorithm. To motivate our approach, we

first provide a rigorous formulation of signal selection as a constrained optimization problem.

Note that the selected signal set S can be mapped to a feature vector v = 〈f1, f2, ..., fN〉, with

fi ∈ {0, 1}. Informally, fi = 1 if and only if the i -th flip-flop is selected in S , otherwise 0. Note

that v completely identifies the set S and vice versa; we will refer to S as the candidate signal
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Figure 5-1. Overview of our approach and its relation to existing simulation based approaches

set of v and v as the candidate feature set of S . We then define rm(v) to be the number

of signal states that can be restored over a window of m cycles by tracing the candidate

signal set of v . We then formulate the problem of signal selection as the following constrained

optimization problem.

maximize rm(v)

under constraint
N∑
k=1

fk = w (5–1)

The problem as posed above includes both the trace buffer width (w) and simulation

window (m) as parameters. Clearly, a larger value of m yields more accurate restoration

estimation, and consequently, higher restoration ratio during debug. However, previous work [7]

showed that even choosing a small value of m (e.g., for m = 64), there is a strong correlation

between the restoration quality in m cycles and that in a real post-silicon debug scenario. Thus,

for the rest of this chapter, we treat m as a small constant.

5.1.2 Overview and Motivation

Solving the above optimization problem requires an estimation of rm(v) given a feature

vector v . Indeed, both metric-based and simulation-based selection approaches can be seen as

65



approaches to estimate this function, through structural analysis of the circuit, and applying

mock simulation with restoration, respectively. The lower restoration quality of metric-based

approaches are attributed to the fact that extracting this function from circuit structure alone

is often infeasible due to complicated overlaps between restorable states of different flip-flops.

On the other hand, simulation-based techniques are expensive for industrial circuits, even for a

small simulation window, since the circuit size (and therefore the size of the feature vector v ) is

large.

Our approach uses regression supervised machine learning techniques to estimate rm(v).

Supervised learning algorithm is inferring a function from training data. Training data is a set

of input vector and the desired output which is number of restored states in our case. Once

the model is trained using training examples, it can be used to predict the output value of any

new input vector. In our case, the training vectors come from restoration estimates obtained

from mock simulations for given feature vectors. If the training set is selected carefully to be

effective and small (i.e., only a small set of mock simulations is necessary), and the predicted

model is accurate, then the technique can provide high restoration quality at low computation

cost. Regression analysis techniques are effective in predicting the parameter estimates in cases

where (1) the number of parameters is large, and (2) estimation through exhaustive (or even

significant) simulation of all the parameters is infeasible. Thus these techniques are appropriate

for solving the signal selection problem as posed in our formulation.

Nevertheless, applying these techniques directly on the problem is challenging. In

particular, regression analysis techniques require generation of training vectors such that

(1) generation time is reasonable, and (2) a reasonable number of vectors is generated to avoid

deviation of the estimated model of the function from the (unknown) actual model. Note that

having too few vectors can lead to underfitting, and too many vectors can lead to overfitting.

Underfitting happens when the model is too simplistic (generalized), resulting in a low accuracy

in both training and new data. On the other hand, overfitting happens when the model is too

specific to the training data, resulting in a high accuracy in training data and low accuracy in
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Figure 5-2. Real values of rm(v) versus predicted values for different random vectors in s38417
benchmark

new data. Thus both overfitting and underfitting lead to high prediction error for unknown

input vectors. Furthermore, the class of regression model being used is another important

factor. There are many regression models that each of them are a good fit for a particular

application or domain. For example, linear fitting may not be a good choice for modeling the

complicated nonlinear relationships between the flip-flops of the circuit.

Fig. 5-2 shows the relationship between the real value of rm(v) (calculated using

simulation) and the predicted value for different random vectors where m = 64 in s38417

benchmark. Each random vector represents a set of randomly selected trace signals and is

represented by a circle in the graph. The cubist model (a rule based regression model) from

caret package in R [72] is used for modeling the circuit in this experiment. It should be noted

that the vectors used for training the model were all different from the one used for this
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Figure 5-3. Proposed signal selection process

experiment. It can be observed that if the right model and training vectors are used, there is

a high accuracy in prediction and strong correlation between predicted and real values. This

permits the use of predicted values instead of the real ones without significant loss in quality.

The same high accuracy was observed for other benchmarks as well which is discussed in

Section 5.3 in details.

5.1.3 Signal Selection Algorithm

In order to increase the accuracy of the prediction while simultaneously reducing the

runtime of modeling/prediction in large circuits, we propose a two-step modeling scheme.

Fig. 5-3 illustrates the framework. In the first step, a linear model is applied to eliminate less

important flip-flops and reduce the size of feature vector. Although the accuracy of linear

modeling is low, it is fast and can be used to quickly prune out the non-beneficial signals and

determine top candidates using simple calculations. In the second step, a non-linear regression

is applied on the reduced set to produce a finer model of the remaining flip-flops. The reduced

number enables us to use a more accurate non-linear model with fewer training vectors for

selecting the final set of signals.

Since we are replacing the expensive mock simulation/restoration with prediction, we

can explore a larger search space compared to existing approaches [7, 25]. Fig. 5-4 illustrates

the search space exploration using different techniques. The horizantal axis is the number

of signals being traced and the vertical axis is the number of restored states. The circle

is an initial state of the selection approach and the square is the end state. Note that the

elimination-based technique [7] (shown in green) starts with all the flip-flops and stops when
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number of remaining flip-flops is equal to the trace buffer width w ; the hybrid augmentation

approach [25] (shown in red) starts with no flip-flops and stops when w signals are selected. It

can be observed that these are just two ways of exploring the search space and they will end

up in a local maximum. We propose a new way of exploration - random initial set - which can

help to explore significantly larger search-space. In our approach, we start with a random set

of w signals and in each iteration we remove the least beneficial flip-flop and add the most

beneficial flip-flop to the candidates set. This process terminates once it is not beneficial to

do this removal-addition anymore. This process is shown by blue in the Fig. 5-4. It can be

observed that running all these techniques at the same time explores more of search space and

increases the chance of finding a better local maximum which yields to a better set of selected

signals.

Algorithm 5 outlines the major steps involved in our proposed learning-based signal

selection technique. First, we start by pruning the set of candidate signals. In this step,

most of the non-beneficial flip-flops (in term of restorability effectiveness) are identified

and removed using a linear model. Next, an accurate model of the rm(v) is created using

the remaining signals. Once the final model is created, we run both elimination-based and

69



augmentation-based techniques to generate two sets of final candidate signals and choose

the one with better result. Finally, we run our proposed random initial set technique r times

(r = 10 in our experiments 1 ) and return the best result of these runs, elimination-based,

and augmentation-based techniques as the selected signals. It should be noted that each run

of random initial set algorithm starts from a completely random initial set. Combining all the

techniques along with multiple run of our proposed random initial select approach can increase

the explored search space which will boost the final result. Next, we will explain each step of

our approach in more details.

Data: circuit,m, tpruning , p, r , tselection,w , candidateModels

Result: The set of selected signals
Prune the least useful signals by calling LinearPruning ;
Create the final model of the circuit by calling SelectFinalModel ;
Set v as the selected signals by calling EliminationBased ;
maxRestorability = r̂m(v) ;
Set vnew as the selected signals by calling AugmentationBased ;
if r̂m(vnew) > r̂m(v) then
v = vnew ;
maxRestorability = r̂m(v) ;

end
for i = 1; i <= r ; i + + do

Set vnew as the selected signals by calling RandomInitialSet ;
if r̂m(vnew) > r̂m(v) then
v = vnew ;
maxRestorability = r̂m(v) ;

end

end
return v ;

Algorithm 5: Learning-based Signal Selection

1 In our experiments, we did not see any new end state that further expands the search
space for r bigger than 10. In addition, this is a tunable parameter of our approach and
depending on the time/performance constraints can be tuned during the signal selection.
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5.1.3.1 Linear pruning

In order to improve the prediction accuracy and also decrease the runtime of simulation/modeling,

we apply a pruning phase which is equivalent to feature selection in machine learning. In this

step, a linear modeling is used to quickly eliminate most of the non-beneficial flip-flops (in

term of restorability effectiveness). For our explanation here, we use support vector regression

with linear kernel which is the simplest form of this well-known model. However, any other

linear regression technique can be used as well. Given the training set 〈vi , rm(vi)〉, the support

vector regression solution is a set of j support vectors which is used for predicting new vectors.

Denoting the predicted rm(v) as r̂m(v), we have the following equation:

r̂m(v) = ŵ0 +

j∑
k=1

αkk(vk , v) (5–2)

In Equation 5–2, v is the vector whose restorability we wish to predict, vk is the k th

support vector, and αk is the corresponding coefficient. In addition, k(vk , v) is the output of

the kernel function used in support vector regression. In linear mode, the kernel function is of

the form k(vk , v) = vTk .v , where vTk is the transpose of vk . Then we can rewrite Equation 5–2

as follows.

r̂m(v) = ŵ0 +

j∑
k=1

αkv
T
k .v (5–3)

⇒ r̂m(v) = ŵ0 + ŵT .v (where ŵ =

j∑
k=1

αkvk) (5–4)

Equation 5–4 illustrates the simplified version of the prediction formula when a linear

kernel is used. In fact, the model is a simple hyperplane which has the minimum error amongst

all the hyperplanes over the training set. Although this linear model may not be the best fit

for the non-linear function rm(v), it can be used to quickly detect and eliminate non-beneficial

flip-flops as those will get a smaller coefficient in the ŵ vector. Algorithm 6 outlines the linear

pruning process. First, a set of training vectors is generated followed by a linear modeling using
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support vector regression. Next, the weight vector ŵ of predicted function is calculated as

illustrated in Equation 5–4. The flip-flops with most effect on restorability have largest values

in corresponding index of weight vector. Therefore, the index of p × N largest values in weight

vectors are kept as most useful flip-flops in terms of restorability and the rest is removed. Here,

N is the number of flip-flops in the circuit and p is the pruning factor. Smaller p means less

features in next step which leads to a more accurate and faster non-linear model. However, due

to lower accuracy of linear model, lower value of p will also increase the chance of eliminating a

useful flip-flop by mistake. The output of the process is the preserved flip-flops set S .

The linear model has a higher prediction error; however, we compensate for this by

selecting a bigger set (compared to the buffer width) of the top signals in the pruning phase.

The more accurate non-linear model in the second step enables us to pick the most profitable

signals from this set with a more accurate and fine-grained selection. To illustrate the fact

that top signals are not removed in the linear pruning, Figure 5-5 shows how many of the 32

top signals are kept when we keep reducing the p value for benchmark S38417. As we can see

that even for p = 0.05, we have most of the profitable signals left. In our experiments, we set

p = 0.15.

Data: circuit,m, t, p
Result: The pruned set of signals
Create selected features set S ;
trainVectors =GenerateVectors(circuit,m, t) ;
Model r̂m(v) using support vector regression with trainVectors and linear kernel ;

Calculate the weight vector ŵ =
j∑
k=1

αkvk ;

S = the index of top p × N values in vector ŵ ;
return S ;

Algorithm 6: Linear Pruning Algorithm

5.1.3.2 Generating training vectors

Algorithm 7 outlines the pseudo-code for training vector generation used in both pruning

and final model. Our implementation entails an X-simulator in C++ which can conduct the

simulation as well as forward/backward restoration in the circuit. To consider the effect of
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Figure 5-5. Number of profitable signals remaining after linear pruning

each flip-flop on total restorability, two vectors are generated. First a vector in which only a

particular flip-flop is selected, and second a vector in which all the flip-flops are selected except

that particular flip-flop. In addition, to include the vectors with different number of flip-flops,

N − 1 vectors with 2, 3, ... ,N randomly chosen flip-flops are generated. This process continues

until a total number of t vectors are generated. This unbiased random vector can model

the correlation between the effect of different flip-flops. After generating training vectors,

in order to calculate the corresponding rm(v), we first run a mock simulation over m cycles

assuming that the signals in training vector are being traced. We then apply forward/backward

restoration techniques to get the total number of restored states. Finally, we have t pairs

〈vi , rm(vi)〉 that are used as training vectors for the regression technique. The set of generated

vectors trainingSet and corresponding restorability R are returned as the output of algorithm.

5.1.3.3 Final model selection

The reduced number of flip-flops in feature vector enables us to create a more accurate

non-linear model of the circuit with significantly less number of training vectors. The effective

number of required training vectors in this step is reduced by 1 − p, where p is the pruning

factor. There are several nonlinear models available to use, each of which can be a good fit
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Data: circuit,m, t
Result: The set of training vectors
Create training vectors set trainingSet ;
Create restoration power set R ;
totalGenerated = 0 ;
foreach flip-flop f in circuit do

Add a vector to trainingSet in which only f is selected ;
Add a vector to trainingSet in which only f is omitted ;
totalGenerated=totalGenerated+2 ;

end
for i = 2; i <= N; i + + do

Add a vector to trainingSet in which exactly i random flip-flops are chosen ;
totalGenerated + + ;

end
while totalGenerated < t do
length= a random number between 1 and N ;
randomVector=a vector in which exactly length random flip-flops are chosen ;
if randomVector 6∈ trainingSet then

Add randomVector to trainingSet ;
totalGenerated + + ;

end

end
foreach vector trainingVector in trainingSet do
R(trainingVector) = Restoration power of trainingVector using a mock simulation
followed by a restoration process over m cycles ;

end
return trainingSet, R ;

Algorithm 7: Training Vector Generation

in a specific domain. Mean Prediction Error (MPE) can be used to measure the quality of a

model on a test vector set of size n, is defined as below.

MeanPredictionError = 1/n ∗
n∑
k=1

|r̂m(vk)− rm(vk)| (5–5)

Algorithm 8 outlines the final model selection process after the pruning. First, a set

of tselection training vectors is generated for final model training. In order to find the best

non-linear model in the candidateModels set, we do a quick training followed by an MPE

calculation on a small set of vectors randomly selected from the bigger training vectors set.

It should be noted that we do not use the same set of vectors for quick training and testing
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(MPE calculation); this makes our model selection unbiased and yields a better result for new

input vectors. After choosing the best model with minimum MPE, we retrain it with all the

training vectors and return it as the result.

Data: circuit,m, tselection,w , candidateModels
Result: The best training model
trainVectors = GenerateVectors(circuit,m, tselection) ;
quickTrainVectors =10% of trainVectors randomly selected ;
quickTestVectors =10% of trainVectors randomly selected, exclusive with
quickTrainVectors ;
foreach model model in candidateModels do

Model r̂m(v) with pruned features using model and quickTrainVectors ;
Calculate MPE for r̂m(v) on quickTestVectors ;

end
bestModel = model with minimum MPE result = Model r̂m(v) with pruned features
using bestModel and trainVectors return result ;

Algorithm 8: Final Model Selection Algorithm

5.1.3.4 Elimination-based signal selection

Now that we have the final model of the circuit, we can use it to select the final set

of signals. Algorithm 9 outlines the steps involved in selecting the signals using the circuit

model and elimination-based technique described by Chatterjee et al. [7]. After the pruning

and modeling phases, all the remaining flip-flops are set to be selected in signals vector v

(i.e., are set to 1). In each iteration of the algorithm, a signal which has the minimum impact

on restoration performance of the v is eliminated from the vector (i.e., is set to 0). Here,

instead of evaluating rm(v) using mock simulations, the predicted value r̂m(v) is used. This

enables the algorithm to proceed very fast, while utilizing the high prediction accuracy of a

non-linear model. This process continues until the number of remaining flip-flops is equal

to trace buffer width w . The set of selected signals S is returned as the algorithm output.

It should be noted that our approach is not identical to Chatterjee et al.’s [7]. Because of

computational limitation, they use a coarse-grained pruning pre-processing to remove most

of the signals from the candidates set which can degrade the performance of the final set of
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signals. Our approach does not have this limitation as we use quick predictions instead of

expensive simulation/restorations.

Data: circuit, r̂m(v),w
Result: The set of selected signals
Create selected signals set S ;
Create initial vector of v =< 1, 1, ..., 1 >, |v | = N × p ;
remainedSignals = N × p ;
while remainedSignals > w do
maxRestorability = −∞ ;
maxIndex = −1 ;
for i = 1; i <= N × p; i + + do

if v [i ] = 1 then
v [i ] = 0 ;
if r̂m(v) > maxRestorability then
maxRestorability = r̂m(v) ;
maxIndex = i ;

end
v [i ] = 1 ;

end

end
v [maxIndex ] = 0 ;
remainedSignals = remainedSignals − 1 ;

end
for i = 1; i <= N × p; i + + do

if v [i ] = 1 then
Add i to S ;

end

end
return S ;

Algorithm 9: Elimination-based Signal Selection

5.1.3.5 Augmentation-based signal selection

Algorithm 10 outlines the steps involved in selecting the signals using the circuit model

and augmentation-based technique similar to the approach described by Li et al. [25]. In

this technique, instead of removing the least profitable flip-flop in each iteration, we add the

most beneficial one and continue the process until total number of w flip-flops are selected.

The set of selected signals S is returned as the algorithm output. Our approach is slightly
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different than Li et al. [25], as they use simulation only for top 5% of the candidates, which

can degrade the selection performance of their approach.

Data: circuit, r̂m(v),w
Result: The set of selected signals
Create selected signals set S ;
Create initial vector of v =< 0, 0, ..., 0 >, |v | = N × p ;
for selected = 1; selected <= w ; selected + + do
maxRestorability = −∞ ;
maxIndex = −1 ;
for i = 1; i <= N × p; i + + do

if v [i ] = 0 then
v [i ] = 1 ;
if r̂m(v) > maxRestorability then
maxRestorability = r̂m(v) ;
maxIndex = i ;

end
v [i ] = 0 ;

end

end
v [maxIndex ] = 1 ;

end
for i = 1; i <= N × p; i + + do

if v [i ] = 1 then
Add i to S ;

end

end
return S ;

Algorithm 10: Augmentation-based Signal Selection

5.1.3.6 Signal selection using random initial set

Algorithm 11 outlines the steps involved in our proposed random initial set selection

technique. First we start with a random set of w selected signals. In each iteration, we remove

the least beneficial signal and add the most profitable one. We continue this process until

removing a signal and adding back another one does not improve the predicted restoration in

r̂m(v). The random initial set can expand our search space and helps us finding a better global

maximum point.
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Data: circuit, r̂m(v),w
Result: The set of selected signals
Create selected signals set S ;
Create initial vector of v =< 0, 0, ..., 0 >, |v | = N × p ;
Randomly set w elements of v to 1 ;
Set vnew as v ;
do

Set v as vnew ;
Find the signal in vnew which its removal has the minimum effect on r̂m(vnew) and
set it to 0 ;
Find the signal in vnew which its addition has the maximum effect on r̂m(vnew) and
set it to 1 ;

while r̂m(vnew) > r̂m(v);
for i = 1; i <= N × p; i + + do

if v [i ] = 1 then
Add i to S ;

end

end
return S ;

Algorithm 11: Signal selection using random initial set

5.2 Feature-based Signal Selection

In previous section, a learning-based signal selection approach [73] has been proposed

where it applies a learning technique to the circuit under test to reduce the overhead of O(N2)

simulations, where N is the number of signals. However, it still needs O(N) simulations,

typically thousands or millions of simulations of the design, to train the selection model, which

limits its applicability on large industry scale circuits. The key contribution of this section

is a novel feature-based signal selection technique that retains or improves the restoration

quality of our approach outlined in Section 5.1 while achieving significantly faster selection

time by drastically reducing training complexity. To the best of our knowledge, our approach

is the first attempt in creating an automated signal selection technique that is applicable on

billion-gate designs while providing the best possible restoration performance. Our approach

is characterized by three key components: (1) simulation-based techniques are applied to a

set of few small training circuits; and (2) a proper feature vector is created to apply machine

learning techniques to learn the criteria for good trace signals; and (3) apply the model to the
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Table 5-1. Time complexity of our approach and existing signal selection techniques

Technique Mock Simulations Other Computations

Simulation-based [3] O(N2) None
Hybrid [3] O(N) Fast metric evaluations
Learning-based [73] O(N) Fast model training and predictions
Feature-based None Fast (one time) model training and predictions

larger circuit under test. The basic idea is to run only a small number of simulations to train

the machine learning framework with a set of small circuits (one time process). Subsequently,

our approach will utilize the prediction capability of the machine learning replacing the need for

costly simulation runs in the larger circuits. Table 5-1 summarizes the time complexity of our

approach compared to the existing state-of-the-art signal selection techniques for a circuit with

N flip-flops.

Figure 5-6 shows the overview of our approach and its relation to existing simulation

based approaches [7, 25]. First, we choose a set of small training circuits to build the selection

model. For each training circuit, we apply a modified version of both elimination-based

(Section 5.1.3.4) and augmentation-based (Section 5.1.3.5) approaches and select the best

result. The difference is that in order to run the algorithms in sections 5.1.3.4 and 5.1.3.5, we

needed simulation of actual design to generate the model, whereas here, we run simulations on

a set of small circuits. We then generate a set of training vectors and add it to the training

vectors set. Next, we use this training set to create a selection model using different machine

learning regression techniques and pick the one with best accuracy. In this step, we train a

model that learns the criteria of a good candidate signal and the relation with its properties.

This model can then be used to select trace signals on any design under signal selection

without expensive mock simulations involved. It should be noted that the selection model

training is a one time process. Once it is done the model can be used to select trace signal on

any other circuits.

5.2.1 Selection Model Generation

The core part of our approach is the training model generation and how to best choose

the feature vectors. The model should be generic enough so that it can be applied to the
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Figure 5-6. Overview of our proposed approach and its relation to existing simulation based
approaches

circuit under test and accurate enough to produce hig quality result. Before going into details

of our proposed modeling technique, we would like to define few terms and functions for a

circuit with N flip-flops and mock simulation window m.

ForwardNeighborsg(x) for flip-flop f is defined as the number of gates of type g connected to its

output.

BackwardNeighborsg(x) for flip-flop f is defined as the number of gates of type g connected to its

inputs.

Connectivity(x) for flip-flop f is defined as the number of flip-flops connected to it through other

combinational gates in both backward and forward directions.

InputDistance(x) for flip-flop f is defined as the minimum distance of the flip-flop from the input

signals (in terms of number of gates).

OutputDistance(x) for flip-flop f is defined as the minimum distance of the flip-flop from the output

signals (in terms of number of gates).
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ZeroProbability(x) for flip-flop f is defined as the percentage of 0 values for the flip-flop in a mock

simulation over m cycles.

SingleRestoration(x) for flip-flop f is defined as the number of restored states in a mock simula-

tion/restoration process over m cycle if f is the only trace signal.

SelectionOrderg(x) for flip-flop f is defined as the sequence number of selection when technique g is

applied. This number is 1 for the first (best) selected signal and N for the last selected signal.

Rank(g(x)) for flip-flop f is defined as the number of flip-flops with g(x) ≤ g(f) divided by N. In

other words, it is the normalized relative rank of applying function g to flip-flop f compared to

the other flip-flops. This value would be 1 and 1/N for the flip-flops with the maximum and

minimum value of g(f), respectively.

5.2.1.1 Feature selection

Selecting the right features is the most important part of any machine learning problem as

it directly impacts the quality of the model and solution. In our case, the features should be

selected such that it can model the true correlation between structural properties of a signal

and its performance in state restoration. In addition, it should be independent of the circuit

size and structure. This is crucial as we want to train our model using a set of small circuits

and apply the learning to the bigger circuit under test. Lastly, the generation of feature vectors

should not be computationally expensive so it can easily scale while selecting signals in large

industry-scale circuits. In order to address all these requirements, we define feature vector v for

flip-flop f in circuit c to have the following components.

Rank(ForwardNeighborsg(f)) for all gates of type g.

Rank(BackwardNeighborsg(f) for all gates of type g.

Rank(Connectivity(f)) for flip-flop f.

Rank(InputDistance(f) for flip-flop f.

Rank(OutputDistance(f)) for flip-flop f.

Rank(ZeroProbability(f)) for flip-flop f.

Rank(SingleRestoration(f)) for flip-flop f.
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It can be seen that we have chosen features that are mostly based on the circuit structure

and fast to evaluate. In addition, we are applying rank function to all the features to make

them relative values instead of using the absolute values. This makes the features independent

of the circuit size and number of gates. Intuitively, our feature vector captures the fan-in and

fan-out of the signal, its relative position and depth in the circuit, and its impact on restoring

its neighbors when selected as a trace signal. Our experiments have shown that there is a high

correlation between these features and the restoration performance of a flip-flip.

5.2.1.2 Model selection

In this step, we generate a selection model by applying simulation based techniques on a

small set of training circuits. Intuitively, the model learns the criteria of a good trace signal and

the relation with its feature vector described before. Algorithm 12 outlines the steps involved

in creating our selection model from a set of small training circuits. For each circuit, we apply

both augmentation and elimination based techniques and pick the one with better result (the

one with better average restoration ratio for trace buffer widths 8, 16, and 32). Next, for each

flip-flip f in the circuit we add a pair of feature vector v and selection order rank r to the

training vectors set. Choosing selection order rank helps to normalize the training data across

all the circuits and makes it independent of number of flip-flops in the circuit. We then apply

different techniques in regression models set to the training vectors and return the best one

as the result. To measure the quality of a model on a test vector set of size n, we use Mean

Prediction Error defined in Section 5.1.3.3. In order to avoid overfitting in our model training,

we use 5-fold cross-validation technique where we use 20% of the vectors as test (validation)

vectors and 80% as the the training vectors.

5.2.2 Signal Selection

Once we have our selection model trained, it can be used on any circuit for selecting trace

signals. To motivate our approach, we have used the smallest circuits in ISCAS’89 benchmarks
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Data: trainingCircuits, regressionModels, m
Result: Trained selection model
Create training vectors set trainingVectors ;
for each circuit c in trainingCircuits do

n = number of flip-flops in c ;
apply AugmentationBased(c,n,m) and EliminationBased(c,1,m) to c and pick the
best one as g ;
for each flip-flop f in c do

Add < v , r > to trainingVectors where v is the feature vector for the flip-flop
and r is Rank(SelectionOrderg(f)) ;

end

end
apply all the models in regressionModels to trainingVectors ;
return model m with minimum MPE ;

Algorithm 12: Model Generation Algorithm

2 to train our model using cubist regression technique. Figure 5-7 shows the actual versus

predicted selection ranks (using the trained model) on a set of flip-flops in s38584 benchmarks

(in this example, s38584 is assumed as the actual design under signal selection). It can be

seen that there is a high correlation between the real and predicted values. This is significant

as it enables us to select high quality trace signals in the circuit under test using very fast

predication to generate the selection ranks based on the feature vectors, instead of expensive

mock simulations.

Algorithm 13 outlines our proposed selection technique. We first generate feature vectors

for all the flip-flops in the circuit. We then use these vectors to predict the selection sequence

rank for the flip-flops using the given selection model m. We return the top w (trace buffer

width) flip-flops with the highest value of predicted selection sequence rank as the result.

5.3 Experiments

In order to investigate the effectiveness of our proposed approaches, we have developed a

cycle-accurate simulator for ISCAS’89 benchmarks using C++. Our simulator also conducts

restoration in both forward and backward directions. The simulator iterates on the unknown

2 s1494, s1488, s713, s1238, s1196, and s838.
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Figure 5-7. Actual versus predicted values of selection ranks in s38584 benchmark

Data: circuit, m, w
Result: Set of selected signals
Initialize predictionMap as an empty map ;
for each flip-flop f in circuit do

v = feature vector of f ;
r = m(v), the predicted value of selection sequence rank of f using model m ;
Add < f , r > to predictionMap ;

end
Sort predictionMap based on r values ;
return top w flip-flops with the highest values of r ;

Algorithm 13: Signal Selection Algorithm

signals queue and attempts to restore them leveraging both forward and backward restoration

techniques. This process terminates when it is not possible to restore any more states. In

addition, we checked the correctness of our simulator by comparing its output with the output

of Verilog simulation of the identical circuits using Icarus Verilog [70].

In our experiments, we did not use the reported numbers of Li et al. [25] and Chatterjee

et al. [7], since they used modified versions of ISCAS’89 benchmarks (with some specific

84



optimizations). To perform a fair comparison, we tried to obtain the executables of [25] and [7].

Li et al. [25] provided us with their signal selection framework and we used it for the selection

process. Unfortunately we were not able to get the implementation of Chatterjee et al. [7]

and we used our own implementation of their approach in this revision, but used the same

parameters c = 64 and PT = 95% as they reported. We also used m = 32 as simulation

window. For reporting the restoration ratio, we fed the simulator with 100 sets of random input

vectors and noted the average restoration ratios for the selected set of signals. However, we

forced the circuits to operate in their normal mode by fixing the relevant control (reset) signals,

while assigning random values to all the other inputs. The control signals include active low

reset signals RESET in s35932 and g35 in s38584 which was set to 1 in our experiments. In

this section, we present the experimental result of both learning-based (5.1) and feature-based

(5.2) signal selection techniques.

5.3.1 Learning-based Signal Selection

5.3.1.1 Experimental setup

In order to investigate the effectiveness of our proposed approach, we used the set of

largest circuits in ISCAS’89 as has been studied by previous works. We used caret package

in R [72] as the modeling/prediction tool. In addition, we used 10-fold cross validation and

normalization and scaling while training our models.

5.3.1.2 Model selection

In order to choose the best non-linear after pruning model for the benchmarks, we

explored several models available in caret package [72]. Fig. 5-9 illustrates Mean Prediction

Errors of different models on the set of our benchmarks caluculated using Equation 5–5. It can

be observed that cubist is the best model in our experiments with minimum prediction error.

This can be also clearly seen in Fig. 5-8 which illustrates the real versus predicted restoration

states for different models in S38584 benchmark. It should be noted that the MPE is bigger

for larger benchmarks in cubist; however, it still maintains the relative relationship between the

restoration values. In other words, the percentage of error (|Predicted − Actual |/Actual) will
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Figure 5-8. Real versus predicted restoration states for different models in S38584 benchmark

not grow linearly as the actual restoration absolute value grows in larger benchmarks. For this

experiment, we used 80% of our training vector for actual training and the other 20% for the

testing. This can prevent us from biasing while training the models. We selected cubist model

as our non-linear model for the rest of our experiments. Cubist is a non-linear model, simpler

that neural network, and designed to anaylyze millions of records which makes it a good fit

for our large scale applciation [74]. The predicted values in cubist match the real values in

most of the cases. This enables us to have high quality signal selection without any further real

simulation.

5.3.1.3 Restoration quality

Table 5-2 presents the restoration ratios of our approach compared with previous

techniques [7, 25] using different ISCAS’89 benchmarks. The trace buffer sizes used in our

experiment are 8 × 4k , 16 × 4k , and 32 × 4k . The corresponding restoration ratio for

each technique is reported. The letters in parentheses for learning-based numbers show

the algorithm that yielded the best result for our run. E stands for elimination based, A for

86



cubist earth gaussprLinear glm svmLinear svmPoly treebag

s38584 1275 5202 4960 4889 4674 1382 3297

s38417 556 1693 1279 1259 1246 580 1968

s35932 1956 6640 6453 6645 6432 3599 3928

s15850 436 922 832 862 818 637 985

s13207 332 1298 1184 1303 1253 463 1250

s9234 81.5 291 280 428 318.53 190.6 292

s5378 115.8 545.36 515 540.19 463.72 177 290.6
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Figure 5-9. Mean prediction errors (MPE) of different models on the set of our benchmarks

augmentation-based, and R for random-initial set. The last column indicates the percentage

of improvement using our approach compared with the best (shown in bold) result provided

by existing approaches. The results indicate that our approach performs significantly better

compared to existing approaches. Compared to Chatterjee et al. [7], our fine-grained pruning

reduces the chance of removing effective flip-flops prior to selection itself. Similarly, Li et

al. [25] incorporated simulations for only top 5% of the candidate flip-flops, which sacrifices the

precision of the selection process. In addition, replacing mock simulations with fast predictions

allows us to run all the selection techniques (elimination based, augmentation-based, and

random-initial set) at the same time and pick the best one as the final result. It can be

observed that the best approach depends on the benchmark structure and also the buffer width.

For example, elimination-based yields the best result for s9234 benchmark with buffer width of

8. However, random-initial set yields the best result for the same benchmark and buffer widths

of 16 and 32. Running all these techniques together increases the chance of having a better

local maxima and consequently having a better restoration ratio. It can also be observed that
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Table 5-2. Restoration ratios using our approach compared with existing selection approaches
Circuit #Flip-flops Buffer Width Simulation-based [7] Hybrid [25] Learning-based Imp. over the best

s5378 179
8 13.41 14.35 14.20 (E) -1.0%
16 7.35 8.36 8.40 (E) 0.5%
32 4.47 4.99 4.93 (R) -1.2%

s9234 228
8 13.98 9.25 15.33 (E) 9.7%
16 8.30 6.13 8.76 (R) 5.5%
32 4.46 4.38 4.84 (R) 8.5%

s15850 597
8 26.33 21.90 44.03 (E) 67.2%
16 19.89 14.78 23.13 (E) 16.3%
32 13.19 10.88 13.92 (A) 5.5%

s13207 669
8 35.52 33.60 47.18 (E) 32.8%
16 20.13 23.22 29.00 (A) 24.9%
32 11.25 13.64 15.42 (R) 13.0%

s38584 1452
8 19.73 27.00 54.25 (A) 100.1%
16 28.39 13.97 69.03 (R) 143.1%
32 32.45 7.50 43.66 (R) 34.5%

s38417 1636
8 29.23 37.71 52.33 (E) 38.8%
16 17.02 23.80 27.12 (R) 13.94%
32 15.14 11.83 16.73 (R) 10.5%

s35932 1728
8 132.00 144.00 186.8 (E) 29.7%
16 67.45 72.00 93.60 (E) 30.0%
32 34.63 36.00 46.98 (A) 30.5%

our newly introduced random initial set selection technique yielded the best result in several

benchmarks. The improvement in restoration performance is up to 143.1% in s38584 and

29.2% on average. In summary, our approach not only produces better restoration quality, but

also it is significantly faster than [7] and has a comparable runtime to [25].

5.3.1.4 Selection time, complexity, and scalability

Simulation of large industrial designs incurs high cost in running time. Indeed, simulation

time is the primary bottleneck in the usability of simulation-based signal selection on large-scale

designs. Therefore, a good metric of the complexity of such algorithms is the number of

mock simulations and restoration processes required in the computation. Assume that there

are N flip-flops in the circuit. In our approach, mock simulations are required in generating

the training vectors, including pruning and the selection steps. Therefore, a total number of

tpruning + tselection simulations are conducted. Based on the selected variables in our experiments,

the total number of mock simulations in our approach is 3.75 × N, which is much less than

Ω(N2/dstep) reported in previous work [7], where dstep = 50 in their experiments. On the other

hand, the hybrid approach [25], uses simulation/restoration computation only for top k% of

the candidate signals, where k = 5% in their experiments. The complexity of their approach

is O(kwN) where w is the trace buffer width. Once the parameters are fixed, the asymptotic
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Table 5-3. Runtime comparison of our approach compared with existing selection approaches
Circuit #Flip-flops Buffer Width Simulation-based [7] Hybrid [25] Learning-based

s5378 179
8 00:01:53 00:00:08 00:01:46
16 00:01:52 00:00:10 00:01:52
32 00:01:48 00:00:16 00:02:09

s9234 228
8 00:08:52 00:00:32 00:00:10
16 00:08:43 00:00:40 00:00:10
32 00:08:10 00:00:50 00:00:10

s15850 597
8 03:44:12 00:05:20 00:04:20
16 03:44:04 00:06:00 00:04:35
32 03:43:39 00:06:36 00:05:04

s13207 669
8 01:21:41 00:01:36 00:03:45
16 01:21:35 00:02:00 00:04:01
32 01:21:13 00:02:40 00:04:12

s38584 1452
8 28:43:02 00:05:28 00:16:52
16 28:42:16 00:06:06 00:17:09
32 28:38:59 00:09:02 00:17:35

s38417 1636
8 196:51:50 00:22:42 00:20:23
16 196:50:44 00:33:04 00:21:07
32 196:48:27 00:34:28 00:23:55

s35932 1728
8 11:39:36 00:04:28 00:16:49
16 11:39:09 00:05:56 00:17:33
32 11:38:01 00:08:38 00:18:21

complexity of our approach is θ(N) and θ(wN) for [25], with potentially different constant

coefficients.

To compare the runtime in practice, we used a Octa-Core AMD Opteron 6378 (1400

MHz) machine with 188GB of memory for all the experiments. The runtime is calculated

as the summation of required time for generating training vectors (simulations), modeling,

and signal selection process itself. Table 5-3 presents the runtime of our approach compared

with previous techniques [7, 25] using different ISCAS’89 benchmarks. The reported runtime

format is ‘hour:minute:second’. As expected, our approach is significantly faster than pure

simulation-based approach presented in [7]. Moreover, our approach runtime is comparable to

hybrid approach [25], specially for the larger trace buffer widths. The reason is that once the

circuit is modeled, the selection process can be done in negligible time using simple calculations.

This makes our approach runtime independent of the trace buffer width. In contrast, for [25]

the runtime grows linearly with the buffer width.

Finally, iterations in pure simulation-based and hybrid approaches are interdependent

and cannot be executed concurrently. In contrast, all the simulations needed for generating

the training vectors in our approach are independent and can be conducted at the same time

using industry techniques like MapReduce. In addition, industry level scalable machine learning
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modelings are available, e.g., Amazon Machine Learning framework. Therefore, we expect that

our approach would be faster if a parallel implementation is incorporated (for example, using

Amazon Machine Learning and Amazon EC2).

5.3.2 Feature-based Signal Selection

5.3.2.1 Experimental setup

In order to investigate the effectiveness of our proposed approach, we used the set

of largest circuits in ISCAS’89 as has been studied by previous works. We also used the

largest circuits in ITC’99 benchmarks. We used a set of regression techniques (cubist, earth,

gaussprLinear, glm, svmLinear, svmPoly, and treebag) in caret package in R [72] as the

modeling/prediction tool. In addition, we used 5-fold cross validation while training our models.

We used a set of smallest ISCAS’89 benchmarks (s1494, s1488, s713, s1238, s1196, and s838)

to train our selection model.

5.3.2.2 Model Selection

In order to choose the best regression model for our signal selection application, we

explored several models available in caret package [72] in R. Figure 5-10 illustrates real versus

estimated values of selection rank on S38584 benchmark using training circuits set of s1494,

s1488, s713, s1238, s1196, and s838. It can be observed that cubist is the best model in

our experiments with minimum prediction error and highest correlation between the real and

estimated value. In fact, cubist outperformed other models consistently for other benchmarks

as well. For this experiment, we used 80% of our training vector for actual training and the

other 20% for the testing. This can prevent us from biasing while training the models. We

selected cubist model as our regression model for the rest of our experiments.

5.3.2.3 Restoration quality

Table 5-4 presents the restoration ratios of our approach compared with previous

state-of-the-art techniques [7, 25, 73] using different ISCAS’89 and ITC’99 benchmarks.

The trace buffer sizes used in our experiment are 8 × 4k , 16 × 4k , and 32 × 4k . The

corresponding restoration ratio for each technique is reported. The ones shown as ‘N/A’ for
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Figure 5-10. Real versus estimated values of selection rank on S38584 benchmark

[7] and [73] means that their technique was not able to finish within 24 hour of runtime. In

addition, unfortunately we were not able to get the result of [25] for ITC’99 benchmarks as

their binary failed to parse the benchmarks. The last column indicates the percentage of

improvement using our approach compared with the best (shown in bold) result provided

by the existing approaches. The results indicate that our approach consistently performs

comparable or better compared to existing approaches. The improvement in restoration

performance is up to 135.4% in s38584 and 8.8% on average. Compared to Chatterjee et

al. [7], we run the elimination-based technique on training circuits without any pruning which

reduces the chance of removing effective flip-flops prior to selection itself. Similarly, Li et

al. [25] incorporated simulations for only top 5% of the candidate flip-flops, which sacrifices

the precision of the selection process. In addition, building the selection model using small

training circuits, allows us to run both elimination-based and augmentation-based techniques

at the same time and pick the best one for each circuit. Compared to Rahmani et al. [73],

we train the selection model based on the training circuits structure and the best result of
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Table 5-4. Restoration ratios using our approach compared with existing selection approaches

Circuit
#Flip-
flops

Buffer
Width

Simulation-based
[7]

Hybrid
[25]

Learning-based
[73]

Our Approach
Imp. over the
best

s5378 179
8 13.41 14.35 14.20 14.13 -1.5%
16 7.35 8.36 8.40 8.92 6.1%
32 4.47 4.99 4.93 5.12 2.6%

s9234 228
8.0 13.98 9.25 15.33 15.82 3.2%
16 8.30 6.13 8.76 9.10 3.9%
32 4.46 4.38 4.84 5.11 5.6%

s15850 597
8 26.33 21.90 44.03 45.12 2.5%
16 19.89 14.78 23.13 24.37 5.4%
32 13.19 10.88 13.92 13.82 -0.7%

s13207 669
8 35.52 33.60 47.18 49.30 4.5%
16 20.13 23.22 29.00 31.21 7.6%
32 11.25 13.64 15.42 16.13 4.6%

s38584 1452
8 N/A 27.00 54.25 127.72 135.4%
16 N/A 13.97 69.03 79.09 14.6%
32 N/A 7.50 43.66 44.02 0.8%

s38417 1636
8 N/A 37.71 52.33 53.27 1.8%
16 N/A 23.80 27.12 26.97 -0.5%
32 N/A 11.83 16.73 17.10 2.2%

s35932 1728
8 132.00 144.00 186.80 186.90 0.1%
16 67.45 72.00 93.60 93.42 -0.1%
32 34.63 36.00 46.98 47.15 0.4%

b15 449
8 5.99 N/A 6.15 7.18 16.7%
16 3.56 N/A 4.83 4.98 3.1%
32 34.63 N/A 3.31 3.46 4.53%

b17 1415
8 N/A N/A 14.12 14.43 2.1%
16 N/A N/A 13.19 13.31 0.9%
32 N/A N/A 7.93 8.77 10.6%

b18 3320
8 N/A N/A N/A 25.12 N/A
16 N/A N/A N/A 21.60 N/A
32 N/A N/A N/A 12.49 N/A

b19 6642
8 N/A N/A N/A 32.00 N/A
16 N/A N/A N/A 24.64 N/A
32 N/A N/A N/A 18.11 N/A

simulation-based techniques, whereas they use machine-learning to just reduce the number

of mock simulation on the circuit under test. In addition, our model is trained using the best

result of simulation-based techniques on a set of training circuits (instead of just one), which

provides a more globally optimized selection model. Finally, although our model is trained using

small circuits in ISCAS’89 benchmarks, it still outperforms [73] in ITC’99 benchmarks (b15 and

b17). This shows that the proposed feature vector and selection model is generic enough that

can be applied to the designs that are not even related to the training circuits.

5.3.2.4 Selection time and scalability

To compare the runtime of different approaches, we used an Octa-Core AMD Opteron

6378 (1400 MHz) machine with 188GB of memory for all the experiments. The runtime for

our approach is calculated as the summation of required time for generating training vectors
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on the training circuits, modeling, generating the feature vectors for the circuit under test, and

the signal selection process itself. Table 5-5 presents the runtime of our approach compared

with the previous techniques [7, 25, 73] using different ISCAS’89 and ITC’99 benchmarks.

The reported runtime format is ‘hour:minute:second’. The ones shown as ‘N/A’ for [7] and

[73] means that their technique was not able to finish within 24 hour of runtime. In addition,

unfortunately we were not able to get the result of [25] for ITC’99 benchmarks as their binary

failed to parse the benchmarks. As expected, our approach is significantly faster than the

existing approaches. The speed-up is up to 37X in s38417 and b17 for buffer width of 32

and 17.6X on average. This is because in our approach we need mock simulations only on a

set of small training circuits. Once the model is created, there is no need for any simulations

on the circuit under test as the selection process just uses fast predictions instead of actual

simulations. Moreover, model creation is a one time pre-process in our approach. Once it is

created using the training circuits, it can be used to select trace signals in any industry-scale

large circuits. This makes our approach significantly more scalable and practical compared

to the existing ones. In summary, our approach not only produces comparable or better

restoration quality, but it is also significantly faster than the existing approaches.

5.4 Summary

Post-silicon validation is an expensive phase in designing integrated circuits. Success in

post-silicon validation and debug crucially depends on effective signal selection that makes

effective use of the limited available observability. Thus it is critical to develop effective signal

selection techniques that provide high state reconstruction and can scale to large industrial

designs. Existing metric-based signal selection techniques are computationally efficient, but

often yield signals with poor restorability. Simulation-based techniques, while superior in

restoration quality, suffer from major computational drawbacks. We presented signal selection

techniques using machine learning which provides comparable or better restorability while

providing drastic reduction in selection selection time, making it applicable for industry-scale

circuits.
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Table 5-5. Runtime comparison of our approach compared with existing selection approaches

Circuit
Buffer
Width

Simulation-
based [7]

Hybrid [25]
Learning-
based [73]

Our Approach Speedup

s5378
8 00:01:53 00:00:08 00:01:46 00:00:11 0.7X
16 00:01:52 00:00:10 00:01:52 00:00:11 0.9X
32 00:01:48 00:00:16 00:02:09 00:00:11 1.5X

s9234
8 00:08:52 00:00:32 00:00:10 00:00:11 1.0X
16 00:08:43 00:00:40 00:00:10 00:00:11 1.0X
32 00:08:10 00:00:50 00:00:10 00:00:11 1.0X

s15850
8 03:44:12 00:05:20 00:04:20 00:00:1 20.1X
16 03:44:04 00:06:00 00:04:35 00:00:13 21.2X
32 03:43:39 00:06:36 00:05:04 00:00:13 23.4X

s13207
8 01:21:41 00:01:36 00:03:45 00:00:13 7.4X
16 01:21:35 00:02:00 00:04:01 00:00:13 9.2X
32 01:21:13 00:02:40 00:04:12 00:00:13 12.3X

s38584
8 N/A 00:05:28 00:16:52 00:00:36 9.1X
16 N/A 00:06:06 00:17:09 00:00:36 10.2X
32 N/A 00:09:02 00:17:35 00:00:36 15.1X

s38417
8 N/A 00:22:42 00:20:23 00:00:39 31.4X
16 N/A 00:33:04 00:21:07 00:00:39 32.5X
32 N/A 00:34:28 00:23:55 00:00:39 36.8X

s35932
8 11:39:36 00:04:28 00:16:49 00:00:37 7.2X
16 11:39:09 00:05:56 00:17:33 00:00:37 9.6X
32 11:38:01 00:08:38 00:18:21 00:00:37 14.0X

b15
8 06:12:09 N/A 00:06:49 00:00:12 34.1X
16 06:09:55 N/A 00:07:03 00:00:12 35.3X
32 06:06:40 N/A 00:07:11 00:00:12 35.9X

b17
8 N/A N/A 00:19:10 00:00:35 32.9X
16 N/A N/A 00:20:30 00:00:35 35.1X
32 N/A N/A 00:21:40 00:00:35 37.1X

b18
8 N/A N/A N/A 00:06:11 N/A
16 N/A N/A N/A 00:06:11 N/A
32 N/A N/A N/A 00:06:11 N/A

b19
8 N/A N/A N/A 00:21:09 N/A
16 N/A N/A N/A 00:21:09 N/A
32 N/A N/A N/A 00:21:09 N/A
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CHAPTER 6
CONCLUSIONS AND FUTURE WORK

Post-silicon validation and debug is a challenging step in chip design methodology. A

fundamental challenge in post-silicon validation is limited observability. This dissertation

proposed efficient and scalable techniques to enhance the observability during post-silicon

debug to reduce overall validation effort. This chapter concludes the dissertation and outlines

future research directions.

6.1 Conclusions

Due to limitations in the number of output pins as well as area and power overhead of

internal trace buffer, only a small percentage of internal signals in the design can be observed

during silicon execution. Furthermore, in order for a signal to be observed, the design must be

instrumented a priori with appropriate control hardware that routes a signal to an observation

point. It is therefore crucial to identify trace signals to maximize design visibility and debug

information under the observability constraints. To improve observability, this dissertation made

several important contributions as summarized below.

In chapter 3, we presented a simulation-based signal selection technique that yields

signals with higher restorability than current approaches while still being computationally

efficient. Our key contribution is the observation that simulation-based signal selection can

be significantly improved by augmentation through ILP-based refinement, together with the

insights to smoothly integrate the augmentation phase into the selection framework resulting in

a unified scalable infrastructure.

To improve the observability in post-silicon debug further, various approaches explored

a profitable combination of trace and scan signals where they divided signals into two

coarse-grained categories, trace and scan signals. In chapter 4, we presented a novel debug

architecture consisting of fine-grained combination of trace and scan signals. We also

developed efficient algorithms to select most profitable signals based on the proposed
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architecture. Our experimental results show significantly higher restoration quality compared to

existing approaches.

Existing trace signal selection are either metric-based or simulation-based. Metric-based

signal selection techniques are computationally efficient, but often yield signals with poor

restorability. Simulation-based techniques, while superior in restoration quality, suffer from

major computational drawbacks. To address this, we presented two novel signal selection

techniques based on machine learning in Chapter 5 which retains or improves the restoration

quality of simulation-based signal selection while achieving significantly faster selection time,

making it practical for billion-gate industry-scale circuits.

6.2 Future Research Directions

Post-silicon validation and debug has been and will continue to be a critical step in silicon

design cycle. The research presented in this dissertation can be extended in the following

possible directions:

Existing trace buffers mostly store the value of the signals in every cycle. Recent works

[34, 35] are based on the idea that it is not necessary to store all the cycles, specially for those

signals that can be restored using simulation or those that are most likely from a non-buggy

cycle. In fact, during the debug session we may not know which cycles are the erroneous ones

to store and we have to rely on a multiple-step off-line software analysis to find those based on

the input. This thesis can be further extended by exploring an anomaly detection technique.

Figure 6-1 illustrates the steps involved in this approach. First, we need to build a time series

anomaly detection model where the feature vector consists of the cycle number and the values

of trace signals. This model then can be mapped to a hardware similar to [75]. This hardware

then can be integrated into the chip and works as our trigger logic. In each cycle, we store or

skip the trace signal values based on the anomaly detector output. This means, we only store

the signals if there is a high chance that they are buggy. Depending on the anomaly detector

accuracy, this helps us to compress the data and increase the effective visibility window in trace
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Figure 6-1. Overview of our proposed anomaly-based debug architecture

buffer. In addition, this can help in early detection of erroneous state where an error occurs,

which can take several hundred cycles to manifest in output signals.

There are existing works on compression-enabled trace buffers which try to increase the

effective size of trace buffer in the circuit. In order to achieve the maximum observability,

our signal selection techniques can be further extended by modifying them such that the

compression is incorporated as a selection metric. In addition, our proposed techniques can

be further extended to incorporate multiple clock domain systems such as SoCs where each

subsystem might operate on a different frequency. Furthermore, a generic selection technique

needs to be developed that can take into account the fact that each subsystem in SoCs can

have their own local trace buffer that is used for global system-level state restoration.

To summarize, in this dissertation I have developed several signal selection techniques to

improve the observability of the signals during post-silicon validation. Our proposed selection

techniques maintain a high restoration quality while scalable for large industry scale circuits.

Our proposed techniques can be further extended by applying them to other domains such as

trace buffer compression, multi clock systems, and distributed trace buffers in SoCs.

97



APPENDIX: LIST OF PUBLICATIONS

Journal Articles

1. Kamran Rahmani, Sandip Ray, and Prabhat Mishra Post-silicon Trace Signal Selection Using Machine
Learning Techniques, IEEE Transactions on VLSI (TVLSI), 25(2), 570-580, 2017.

2. Kamran Rahmani, Sudhi Proch, and Prabhat Mishra, Efficient Selection of Trace and Scan Signals for
Post-Silicon Debug, IEEE Transactions on VLSI (TVLSI), 24(1), 313-323, 2016.

3. Hadi Hajimiri, Kamran Rahmani, and Prabhat Mishra, Compression-Aware Dynamic Cache Reconfig-
uration for Embedded Systems, Elsevier Sustainable Computing: Informatics and Systems (SUSCOM),
2(2), 71-80, 2012.

Conference Papers

1. Kamran Rahmani, and Prabhat Mishra, Feature-based Signal Selection for Post-silicon Debug Using
Machine Learning, Under Review in International Test Conference (ITC), 2017.

2. Hadi Hajimiri, Kamran Rahmani, and Prabhat Mishra, Efficient Peak Power Estimation using
Probabilistic Cost-Benefit Analysis, 28th International Conference on VLSI Design, 369-374, 2015.

3. Kamran Rahmani, Prabhat Mishra, and Sandip Ray, Efficient Trace Signal Selection using Augmenta-
tion and ILP Techniques, 15th ISQED, 148-155, 2014.

4. Kamran Rahmani, Prabhat Mishra, and Sandip Ray, Scalable Trace Signal Selection using Machine
Learning, IEEE 31st International Conference on Computer Design (ICCD), 384-389, 2013.

5. Kamran Rahmani, and Prabhat Mishra, Efficient Signal Selection using Fine-grained Combination of
Scan and Trace Buffers, 26th International Conference on VLSI Design, 308-313, 2013.

6. Kamran Rahmani, Prabhat Mishra, and Swarup Bhunia, Memory-based Computing for Performance
and Energy Improvement in Multicore Architectures, ACM Great Lakes Symposium on VLSI (GLSVLSI),
287-290, 2012.

7. Kamran Rahmani, Hadi Hajimiri, Kartik Shrivastava, and Prabhat Mishra, Synergistic Integration
of Code Encryption and Compression in Embedded Systems, ACM Great Lakes Symposium on VLSI
(GLSVLSI), 363-368, 2012.

8. Hadi Hajimiri, Kamran Rahmani, and Prabhat Mishra, Synergistic Integration of Dynamic Cache
Reconfiguration and Code Compression in Embedded Systems, IEEE International Green Computing
Conference (IGCC), 1-8, 2011.

98



REFERENCES

[1] A. Nahir, A. Ziv, R. Galivanche, A. J. Hu, M. Abramovici, A. Camilleri, B. Bentley,
H. Foster, V. Bertacco, and S. Kapoor, “Bridging pre-silicon verification and post-silicon
validation,” in DAC, 2010, pp. 94–95.

[2] S. Yerramilli, “Addressing post-silicon validation challenge: Leverage validation and test
synergy,” in Keynote, Intl.Test Conf, 2006.

[3] K. Basu and P. Mishra, “Rats: Restoration-aware trace signal selection for post-silicon
validation,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 21,
no. 4, pp. 605–613, 2013.

[4] X. Liu and Q. Xu, “Trace signal selection for visibility enhancement in post-silicon
validation,” in Design, Automation Test in Europe Conference Exhibition, 2009. DATE
’09., april 2009, pp. 1338 –1343.

[5] H. F. Ko and N. Nicolici, “Algorithms for state restoration and trace-signal selection for
data acquisition in silicon debug,” Computer-Aided Design of Integrated Circuits and
Systems, IEEE Transactions on, vol. 28, no. 2, pp. 285 –297, feb. 2009.

[6] S. Prabhakar and M. Hsiao, “Using non-trivial logic implications for trace buffer-based
silicon debug,” in Asian Test Symposium, 2009. ATS ’09., nov. 2009, pp. 131 –136.

[7] D. Chatterjee, C. McCarter, and V. Bertacco, “Simulation-based signal selection for state
restoration in silicon debug,” in Computer-Aided Design (ICCAD), 2011 IEEE/ACM
International Conference on, nov. 2011, pp. 595 –601.

[8] G. Van Rootselaar and B. Vermeulen, “Silicon debug: scan chains alone are not enough,”
in Test Conference, 1999. Proceedings. International, 1999, pp. 892 –902.

[9] R. Datta, A. Sebastine, and J. Abraham, “Delay fault testing and silicon debug using scan
chains,” in Test Symposium, 2004. ETS 2004. Proceedings. Ninth IEEE European, may
2004, pp. 46 – 51.

[10] H. F. Ko and N. Nicolici, “Combining scan and trace buffers for enhancing real-time
observability in post-silicon debugging,” in Test Symposium (ETS), 2010 15th IEEE
European, may 2010, pp. 62 –67.

[11] K. Basu, P. Mishra, and P. Patra, “Efficient combination of trace and scan signals for
post silicon validation and debug,” in ITC, 2011, pp. 1–8.

[12] O. Caty, P. Dahlgren, and I. Bayraktaroglu, “Microprocessor silicon debug based on failure
propagation tracing,” in IEEE International Conference on Test, 2005., Nov 2005, pp. 10
pp.–293.

[13] F. Koushanfar, D. Kirovski, and M. Potkonjak, “Symbolic debugging scheme for optimized
hardware and software,” in IEEE/ACM International Conference on Computer Aided

99



Design. ICCAD - 2000. IEEE/ACM Digest of Technical Papers (Cat. No.00CH37140), Nov
2000, pp. 40–43.

[14] F. M. D. Paula, M. Gort, A. J. Hu, S. J. E. Wilton, and J. Yang, “Backspace: Formal
analysis for post-silicon debug,” in 2008 Formal Methods in Computer-Aided Design, Nov
2008, pp. 1–10.

[15] N. Nataraj, T. Lundquist, and K. Shah, “Fault localization using time resolved photon
emission and stil waveforms,” in International Test Conference, 2003. Proceedings. ITC
2003., vol. 1, Sept 2003, pp. 254–263.

[16] A. DeOrio, I. Wagner, and V. Bertacco, “Dacota: Post-silicon validation of the memory
subsystem in multi-core designs,” in 2009 IEEE 15th International Symposium on High
Performance Computer Architecture, Feb 2009, pp. 405–416.

[17] G. J. V. Rootselaar and B. Vermeulen, “Silicon debug: scan chains alone are not enough,”
in International Test Conference 1999. Proceedings (IEEE Cat. No.99CH37034), 1999, pp.
892–902.

[18] D. Josephson and B. Gottlieb, “The crazy mixed up world of silicon debug [ic validation],”
in Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat.
No.04CH37571), Oct 2004, pp. 665–670.

[19] M. Abramovici, P. Bradley, K. Dwarakanath, P. Levin, G. Memmi, and D. Miller, “A
reconfigurable design-for-debug infrastructure for socs,” in Design Automation Conference,
2006 43rd ACM/IEEE, 0-0 2006, pp. 7 –12.

[20] K. Basu and P. Mishra, “Efficient trace signal selection for post silicon validation and
debug,” in VLSI Design (VLSI Design), 2011 24th International Conference on, Jan 2011,
pp. 352–357.

[21] K. Rahmani, P. Mishra, and S. Ray, “Scalable trace signal selection using machine
learning,” in Computer Design (ICCD), 2013 IEEE 31st International Conference on, Oct
2013, pp. 384–389.

[22] K. Rahmani, P. Mishra, and S. Ray, “Efficient trace signal selection using augmentation
and ilp techniques,” in Quality Electronic Design (ISQED), 2014 15th International
Symposium on, March 2014, pp. 148–155.

[23] K. Basu and P. Mishra, “Test data compression using efficient bitmask and dictionary
selection methods,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
vol. 18, no. 9, pp. 1277 –1286, sept. 2010.

[24] K. Rahmani and P. Mishra, “Efficient signal selection using fine-grained combination
of scan and trace buffers,” in VLSI Design (VLSI Design), 2013 26th International
Conference on, jan. 2013.

[25] M. Li and A. Davoodi, “A hybrid approach for fast and accurate trace signal selection for
post-silicon debug,” in Design, Automation, and Test (DATE), 2013, pp. 485–490.

100



[26] S. Ma, D. Pal, R. Jiang, S. Ray, and S. Vasudevan, “Can’t see the forest for the trees:
State restoration’s limitations in post-silicon trace signal selection,” in Proceedings of
the IEEE/ACM International Conference on Computer-Aided Design, ser. ICCAD ’15.
Piscataway, NJ, USA: IEEE Press, 2015, pp. 1–8.

[27] C. S. Zhu, G. Weissenbacher, and S. Malik, “Coverage-based trace signal selection for
fault localisation in post-silicon validation,” in Proceedings of the 8th International
Conference on Hardware and Software: Verification and Testing, ser. HVC’12. Berlin,
Heidelberg: Springer-Verlag, 2013, pp. 132–147.

[28] S. BeigMohammadi and B. Alizadeh, “Combinational trace signal selection with improved
state restoration for post-silicon debug,” in 2016 Design, Automation Test in Europe
Conference Exhibition (DATE), March 2016, pp. 1369–1374.

[29] S. Prabhakar and M. S. Hsiao, “Multiplexed trace signal selection using non-trivial
implication-based correlation,” in 2010 11th International Symposium on Quality
Electronic Design (ISQED), March 2010, pp. 697–704.

[30] X. Liu and Q. Xu, “On multiplexed signal tracing for post-silicon debug,” in 2011 Design,
Automation Test in Europe, March 2011, pp. 1–6.

[31] K. Basu, P. Mishra, P. Patra, A. Nahir, and A. Adir, “Dynamic selection of trace signals
for post-silicon debug,” in 2013 14th International Workshop on Microprocessor Test and
Verification, Dec 2013, pp. 62–67.

[32] K. Han, J.-S. Yang, and J. Abraham, “Dynamic trace signal selection for post-silicon
validation,” in 26th International Conference on VLSI Design and 12th International
Conference on Embedded Systems (VLSID), 2013, pp. 302–307.

[33] C. S. Zhu and S. Malik, “Optimizing dynamic trace signal selection using machine
learning and linear programming,” in 2015 Design, Automation Test in Europe Conference
Exhibition (DATE), March 2015, pp. 1289–1292.

[34] J. S. Yang and N. A. Touba, “Expanding trace buffer observation window for in-system
silicon debug through selective capture,” in VLSI Test Symposium, 2008. VTS 2008. 26th
IEEE, April 2008, pp. 345–351.

[35] E. Anis and N. Nicolici, “Low cost debug architecture using lossy compression for silicon
debug,” in Design, Automation Test in Europe Conference Exhibition, 2007. DATE ’07,
April 2007, pp. 1–6.

[36] E. Anis and N. Nicolici, “On using lossless compression of debug data in embedded logic
analysis,” in 2007 IEEE International Test Conference, Oct 2007, pp. 1–10.

[37] J. S. Yang and N. A. Touba, “Improved trace buffer observation via selective data capture
using 2-d compaction for post-silicon debug,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 21, no. 2, pp. 320–328, Feb 2013.

101



[38] S. S. Muthyala and N. A. Touba, “Improving test compression with scan feedforward
techniques,” in 2014 International Test Conference, Oct 2014, pp. 1–10.

[39] T. C. May and M. H. Woods, “Alpha-particle-induced soft errors in dynamic memories,”
IEEE Transactions on Electron Devices, vol. 26, no. 1, pp. 2–9, Jan 1979.

[40] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and L. Alvisi, “Modeling the
effect of technology trends on the soft error rate of combinational logic,” in Proceedings
International Conference on Dependable Systems and Networks, 2002, pp. 389–398.

[41] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim, “Robust system design with
built-in soft-error resilience,” Computer, vol. 38, no. 2, pp. 43–52, Feb 2005.

[42] M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue nanometer
technologies,” in Proceedings of the 1999 17TH IEEE VLSI Test Symposium, ser. VTS
’99. Washington, DC, USA: IEEE Computer Society, 1999, pp. 86–.

[43] A. Sanyal, S. M. Alam, and S. Kundu, “A built-in self-test scheme for soft error rate
characterization,” in 2008 14th IEEE International On-Line Testing Symposium, July 2008,
pp. 65–70.

[44] A. Sanyal, K. Ganeshpure, and S. Kundu, “On accelerating soft-error detection by
targeted pattern generation,” in 8th International Symposium on Quality Electronic
Design (ISQED’07), March 2007, pp. 723–728.

[45] A. Rubio, J. Pons, and R. Anglada, “A crosstalk tolerant latch circuit design,” in
Proceedings of the 33rd Midwest Symposium on Circuits and Systems, Aug 1990, pp.
653–656 vol.2.

[46] S. Kundu, S. T. Zachariah, Y.-S. Chang, and C. Tirumurti, “On modeling crosstalk
faults,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 24, no. 12, pp. 1909–1915, Dec 2005.

[47] H. Takahashi, K. J. Keller, K. T. Le, K. K. Saluja, and Y. Takamatsu, “A method for
reducing the target fault list of crosstalk faults in synchronous sequential circuits,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 2,
pp. 252–263, Feb 2005.

[48] W.-Y. Chen, S. K. Gupta, and M. A. Breuer, “Test generation for crosstalk-induced
faults: framework and computational results,” in Proceedings of the Ninth Asian Test
Symposium, 2000, pp. 305–310.

[49] A. Sanyal, K. Ganeshpure, and S. Kundu, “Test pattern generation for multiple aggressor
crosstalk effects considering gate leakage loading in presence of gate delays,” IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 20, no. 3, pp. 424–436,
March 2012.

102



[50] S. Chun, T. Kim, and S. Kang, “Atpg-xp: Test generation for maximal crosstalk-induced
faults,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 28, no. 9, pp. 1401–1413, Sept 2009.

[51] X. Shi and N. Nicolici, “On-chip generation of uniformly distributed constrained-random
stimuli for post-silicon validation,” in 2015 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Nov 2015, pp. 808–815.

[52] X. Shi and N. Nicolici, “On-chip cube-based constrained-random stimuli generation for
post-silicon validation,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 35, no. 6, pp. 1012–1025, June 2016.

[53] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, and A. Ziv,
“Genesys-pro: innovations in test program generation for functional processor verification,”
IEEE Design Test of Computers, vol. 21, no. 2, pp. 84–93, Mar 2004.

[54] L. Liu and S. Vasudevan, “Efficient validation input generation in rtl by hybridized source
code analysis,” in 2011 Design, Automation Test in Europe, March 2011, pp. 1–6.

[55] M. Chen and P. Mishra, “Functional test generation using efficient property clustering and
learning techniques,” IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 29, no. 3, pp. 396–404, March 2010.

[56] F. Farahmandi and P. Mishra, “Automated test generation for debugging arithmetic
circuits,” in 2016 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2016, pp. 1351–1356.

[57] H. Mangassarian, A. Veneris, S. Safarpour, M. Benedetti, and D. Smith, “A
performance-driven qbf-based iterative logic array representation with applications
to verification, debug and test,” in 2007 IEEE/ACM International Conference on
Computer-Aided Design, Nov 2007, pp. 240–245.

[58] B. Le, H. Mangassarian, B. Keng, and A. Veneris, “Non-solution implications using reverse
domination in a modern sat-based debugging environment,” in 2012 Design, Automation
Test in Europe Conference Exhibition (DATE), March 2012, pp. 629–634.

[59] J. Lv, P. Kalla, and F. Enescu, “Efficient groebner basis reductions for formal verification
of galois field arithmetic circuits,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 32, no. 9, pp. 1409–1420, Sept 2013.

[60] F. Farahmandi, Y. Huang, and P. Mishra, “Trojan localization using symbolic algebra,”
in 22nd Asia and South Pacific Design Automation Conference, ASP-DAC 2017, Chiba,
Japan, January 16-19, 2017, 2017, pp. 591–597.

[61] D. Lin, S. Eswaran, S. Kumar, E. Rentschler, and S. Mitra, “Quick error detection tests
with fast runtimes for effective post-silicon validation and debug,” in Proceedings of the
2015 Design, Automation & Test in Europe Conference & Exhibition, ser. DATE ’15. San
Jose, CA, USA: EDA Consortium, 2015, pp. 1168–1173.

103



[62] D. Lin, E. Singh, C. Barrett, and S. Mitra, “A structured approach to post-silicon
validation and debug using symbolic quick error detection,” in 2015 IEEE International
Test Conference (ITC), Oct 2015, pp. 1–10.

[63] A. Vali and N. Nicolici, “Satisfiability-based analysis of failing traces during post-silicon
debug,” in 2015 IEEE 24th North Atlantic Test Workshop, May 2015, pp. 17–22.

[64] P. Taatizadeh and N. Nicolici, “Automated selection of assertions for bit-flip detection
during post-silicon validation,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 35, no. 12, pp. 2118–2130, 2016.

[65] A. Vali and N. Nicolici, “Bit-flip detection-driven selection of trace signals,” in 2016 21th
IEEE European Test Symposium (ETS), May 2016, pp. 1–6.

[66] K. Goossens, B. Vermeulen, R. v. Steeden, and M. Bennebroek, “Transaction-based
communication-centric debug,” in First International Symposium on Networks-on-Chip
(NOCS’07), May 2007, pp. 95–106.

[67] A. M. Gharehbaghi and M. Fujita, “Transaction-based post-silicon debug of many-core
system-on-chips,” in Thirteenth International Symposium on Quality Electronic Design
(ISQED), March 2012, pp. 702–708.

[68] M. Dehbashi and G. Fey, “Transaction-based online debug for noc-based multiprocessor
socs,” in 2014 22nd Euromicro International Conference on Parallel, Distributed, and
Network-Based Processing, Feb 2014, pp. 400–404.

[69] H. Zheng, Y. Cao, S. Ray, and J. Yang, “Protocol-guided analysis of post-silicon traces
under limited observability,” in 2016 17th International Symposium on Quality Electronic
Design (ISQED), March 2016, pp. 301–306.

[70] Stephen Williams, “Icarus Verilog,” http://iverilog.icarus.com/.

[71] lp solver. Http://lpsolve.sourceforge.net/5.5.

[72] Max Kuhn, “The caret Package,” http://topepo.github.io/caret/index.html.

[73] K. Rahmani, S. Ray, and P. Mishra, “Postsilicon trace signal selection using machine
learning techniques,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. PP, no. 99, pp. 1–11, 2016.

[74] “Cubist Regression Model,” https://www.rulequest.com/cubist-info.html.

[75] T. Zhang, X. Zhuang, S. Pande, and W. Lee, “Anomalous path detection with hardware
support,” in Proceedings of the 2005 International Conference on Compilers, Architectures
and Synthesis for Embedded Systems, ser. CASES ’05. New York, NY, USA: ACM, 2005,
pp. 43–54.

104



BIOGRAPHICAL SKETCH

Kamran Rahmani received his B.Sc. degree in computer engineering from Sharif University

of Technology, Tehran, Iran and the M.S. and Ph.D. degrees from the Department of

Computer and Information Science and Engineering, University of Florida, Gainesville, FL,

USA. He is a Staff Software Engineer at Medallia Inc., Palo Alto, CA, USA. His current

research interests include post-silicon debug and validation, and reliable embedded systems. He

received multiple travel grant awards from CISE department (2012, 2014) and University of

Florida Office of Research (2012). He has served as a reviewer of several premier international

conferences and journals.

105


	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 Signal Restoration in Post Silicon Validation
	1.2 Challenges
	1.3 Research Contributions
	1.4 Dissertation Organization

	2 BACKGROUND AND RELATED APPROACHES
	2.1 Trace Signal Selection
	2.2 Dynamic Signal Selection
	2.3 Supervised Learning and Prediction
	2.4 Trace Data Compression
	2.5 Observability-Aware Test Generation
	2.6 Post-silicon Debug Techniques
	2.7 Combination of Trace and Scan Signals

	3 TRACE SIGNAL SELECTION USING AUGMENTATION AND ILP TECHNIQUES
	3.1 Augmentation-based Selection
	3.1.1 Augmentation-based Signal Selection
	3.1.2 ILP Optimization
	3.1.3 Complexity and Scalability

	3.2 Experiments
	3.2.1 Experimental Setup
	3.2.2 Results
	3.2.2.1 Restoration quality
	3.2.2.2 Selection time


	3.3 Summary

	4 EFFICIENT COMBINATION OF TRACE AND SCAN SIGNALS
	4.1 Fine-grained Combinations
	4.1.1 Debug Architecture
	4.1.2 Constrained Signal Selection (CSS)
	4.1.3 Flexible Signal Selection (FSS)

	4.2 Experiments
	4.2.1 Experimental Setup
	4.2.2 Restoration Quality
	4.2.3 Selection Time
	4.2.4 Hardware Overhead

	4.3 Summary

	5 SCALABLE TRACE SIGNAL SELECTION USING MACHINE LEARNING
	5.1 Learning-based Signal Selection
	5.1.1 Problem Formulation
	5.1.2 Overview and Motivation
	5.1.3 Signal Selection Algorithm
	5.1.3.1 Linear pruning
	5.1.3.2 Generating training vectors
	5.1.3.3 Final model selection
	5.1.3.4 Elimination-based signal selection
	5.1.3.5 Augmentation-based signal selection
	5.1.3.6 Signal selection using random initial set


	5.2 Feature-based Signal Selection
	5.2.1 Selection Model Generation
	5.2.1.1 Feature selection
	5.2.1.2 Model selection

	5.2.2 Signal Selection

	5.3 Experiments
	5.3.1 Learning-based Signal Selection
	5.3.1.1 Experimental setup
	5.3.1.2 Model selection
	5.3.1.3 Restoration quality
	5.3.1.4 Selection time, complexity, and scalability

	5.3.2 Feature-based Signal Selection
	5.3.2.1 Experimental setup
	5.3.2.2 Model Selection
	5.3.2.3 Restoration quality
	5.3.2.4 Selection time and scalability


	5.4 Summary

	6 CONCLUSIONS AND FUTURE WORK
	6.1 Conclusions
	6.2 Future Research Directions

	APPENDIX: LIST OF PUBLICATIONS
	REFERENCES
	BIOGRAPHICAL SKETCH

