
SYSTEM-LEVEL VALIDATION OF MULTICORE ARCHITECTURES

By

XIAOKE QIN

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2012

c© 2012 Xiaoke Qin

2

I dedicate this to my family.

3

ACKNOWLEDGMENTS

First of all, I truly appreciate the effort of my Ph.D. adviser Prof. Prabhat Mishra.

He not only guided me to overcome challenging problems, but also taught me how

to explore new directions. More importantly, he is always considerate to me and has

helped me building my career. He is the person who made this dissertation come true.

I would like to thank my other Ph.D. committee members: Prof. Sartaj Sahni, Prof.

Jih-Kwon Peir, Prof. Greg Stitt and Prof. Ann Gordon-Ross for their valuable comments

and suggestions. I also thank my lab-mates, Mingsong Chen, Kanad Basu, Weixun

Wang, Chetan Murthy, Kartik Shrivastava, Hadi Hajimiri and Kamran Rahmani. It was

my great pleasure to work with them. I really enjoyed our friendship and I hope it will last

forever.

Last but not least, I sincerely thank my family for their love and support. They

encouraged me to pursue my dreams and become a good person. I would like to give

the most special thanks to my girlfriend, Jie. Her love and devotion paved the road to my

doctoral degree.

This work was partially supported by grants from National Science Foundation

(NSF) CAREER Award 0746261.

4

TABLE OF CONTENTS

page

ACKNOWLEDGMENTS . 4

LIST OF TABLES . 8

LIST OF FIGURES . 9

ABSTRACT . 11

CHAPTER

1 INTRODUCTION . 12

1.1 Functional Validation of Multicore Architectures 13
1.2 Validation of Non-functional Requirements 15
1.3 Research Contributions . 16
1.4 Dissertation Organization . 19

2 RELATED WORK . 20

2.1 Test Generation for Architecture Validation 20
2.2 Validation of Cache Coherence Protocols 24
2.3 Task Schedulability under Constraints . 25

3 SYNCHRONIZED GENERATION OF DIRECTED TESTS 28

3.1 Background . 29
3.1.1 Conflict clause forwarding . 29
3.1.2 Property clustering . 29

3.2 Synchronized Test Generation . 31
3.2.1 Correctness of the Proposed Approach 37
3.2.2 Implementation Details . 38

3.3 Experiments . 39
3.3.1 A Stock Exchange System . 39
3.3.2 A VLIW MIPS Processor . 42
3.3.3 Circuit Test Generation . 45

3.4 Summary . 46

4 EFFICIENT TEST GENERATION FOR MULTICORE ARCHITECTURES . . . 48

4.1 Test Generation for Multicore Architectures 49
4.1.1 Correctness of Our Proposed Approach 55
4.1.2 Implementation Details . 56
4.1.3 Heterogeneous Multicore Architectures 58

4.2 Experiments . 60
4.2.1 Experimental Setup . 60
4.2.2 Results . 60

5

4.3 Summary . 64

5 VALIDATION OF CACHE COHERENCE PROTOCOLS 66

5.1 Background and Motivation . 67
5.2 Test generation for Transition Coverage 69

5.2.1 SI Protocol . 70
5.2.2 MSI Protocol . 73
5.2.3 MESI Protocol . 76
5.2.4 MOSI Protocol . 76

5.3 Experiments . 78
5.4 Summary . 81

6 SCALABLE DIRECTED TEST GENERATION 82

6.1 Directed Test Generation by Interleaving Concrete and Symbolic Execution 84
6.1.1 Illustrative Example . 84
6.1.2 System Model . 87
6.1.3 Instrumentation . 88
6.1.4 Concrete Simulation . 90
6.1.5 Path Constraint Generation . 91
6.1.6 Test Generation . 92
6.1.7 Constraint Solving Optimization . 93

6.2 Implementation Details . 94
6.2.1 Design Flattening . 94
6.2.2 Clock Cycle Population . 95
6.2.3 Dynamic Array Reference Disambiguation 95

6.3 Experiments . 96
6.3.1 Designs without Dynamic Array References 97
6.3.2 Designs with Dynamic Array References 97
6.3.3 SAT-based BMC versus Our Approach 99

6.4 Summary . 101

7 TEMPERATURE- AND ENERGY-CONSTRAINED SCHEDULING IN REAL-TIME
SYSTEMS . 102

7.1 Background and Problem Formulation . 102
7.1.1 Thermal Model . 102
7.1.2 Energy Model . 103
7.1.3 System Model . 103
7.1.4 TCEC problem . 104

7.2 Overview . 106
7.3 Approximation Algorithm for TCEC Scheduling 107

7.3.1 Notations . 107
7.3.2 TCEC as MCP . 108
7.3.3 An Exact Algorithm for MCP . 111
7.3.4 Approximation Algorithm . 114

6

7.4 Problem Variants . 122
7.5 Experiments . 124

7.5.1 Experimental Setup . 124
7.5.2 TCEC versus TC or EC . 124
7.5.3 TCEC using Approximation Algorithm 126

7.6 Summary . 129

8 SCHEDULABILITY VALIDATION FOR MULTICORE ARCHITECTURES 130

8.1 Background and Problem Formulation . 130
8.1.1 Processor Thermal Model . 130
8.1.2 Energy Model . 131
8.1.3 System Model . 131
8.1.4 Multicore DVS Schedule . 131
8.1.5 Problem Formulation . 132

8.2 Optimal Algorithm for TECS . 132
8.3 Approximation Algorithm . 138
8.4 Problem Variants . 148

8.4.1 Task Set with Dependence . 148
8.4.2 Hard Energy Constraint . 149

8.5 Experiments . 149
8.6 Summary . 153

9 CONCLUSIONS AND FUTURE WORK . 154

9.1 Conclusions . 154
9.2 Future Research Directions . 156

REFERENCES . 158

BIOGRAPHICAL SKETCH . 167

7

LIST OF TABLES

Table page

3-1 Test generation time comparison for OSES . 40

3-2 Test generation time comparison for MIPS . 44

3-3 Test generation time comparison for circuits . 46

4-1 Test generation time for 8 core system . 62

4-2 Detailed test generation information . 62

5-1 Statistics of our test generation algorithm for different protocols 79

6-1 Verilog instrumentation code . 89

6-2 Comparison with HYBRO [56] . 97

6-3 Comparison with random testing . 98

6-4 Comparison with BMC [22] . 100

7-1 Running time comparison on different task sets 127

8

LIST OF FIGURES

Figure page

1-1 Simulation effort growth with design complexity 14

1-2 Design validation models, requirements and techniques 17

1-3 Dissertation outline . 17

2-1 Directed test generation flow . 20

3-1 Synchronized Test Generation . 31

3-2 Different incremental SAT solving techniques 32

3-3 Synchronized test generation for multiple properties 36

3-4 Test generation for OSES using different cluster size. 43

3-5 Test generation for MIPS using different cluster size. 45

3-6 Test generation for circuits using different cluster size. 47

4-1 Abstracted architecture of a two core system 49

4-2 Incremental SAT solving technique [79] . 50

4-3 Test generation for multicore architectures . 50

4-4 FSM representation of Figure 4-1 at time step i 51

4-5 Test generation for multicore architectures . 54

4-6 Multicore system with different types of cores 59

4-7 Multicore system with different types of execution units 59

4-8 Test generation time with different number of cores 61

4-9 Test generation time with different interactions 63

4-10 Test generation time with heterogeneous cores 64

5-1 State transitions for a cache block in MSI protocol 68

5-2 Global FSM state space of SI protocol with 3 cores 71

5-3 State space of MSI protocol with 3 cores. For the clarity of presentation, the
transitions to global modified states (IIM, IMI, MII) are omitted, if the transition
in the opposite direction does not exist. 74

5-4 State space of MESI protocol with 3 cores . 77

9

5-5 State space of MOSI protocol with 3 cores . 78

5-6 Transition coverage vs. cost for different test generation methods on MESI
protocol with 8 cores . 80

5-7 Transition coverage vs. cost for different test generation methods on MOSI
protocol with 8 cores . 80

6-1 The workflow of our approach . 85

6-2 Counter.v . 86

6-3 Sample Trace . 86

6-4 Sample Path Constraints . 86

6-5 Chronological Back Tracking . 87

6-6 Path constraint file structure . 91

6-7 The MIPS architecture [22] . 99

7-1 Overview of our TCEC schedulability framework. 107

7-2 Job execution graph . 108

7-3 JEG of TCEC. The values next to each edge are corresponding time and energy
consumption. 110

7-4 Possible false negative region. ε = 0.1 . 122

7-5 EC vs TCEC. EC finishes at A. TCEC(< 80◦C) finishes at B. Both TCEC(<
78◦C) and TCEC(< 76◦C) finish at C. 125

7-6 EC vs TCEC. Both TC and TCEC(< 14000mJ) finish at A. TCEC(< 13700mJ)
finishes at B. TCEC(< 12500mJ) finishes at C. 126

7-7 Running time with different job set size and ε. 127

7-8 Accuracy of EBFε. 128

8-1 State exploration in Algorithm 9 . 136

8-2 Precedence relations among tasks. 142

8-3 Temperature and energy constrained scheduling. 151

8-4 Actual time consumption of DPRAε. 152

8-5 Actual energy consumption of DPRAε. 152

8-6 Running time with different job set size and ε. 152

10

Abstract of dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

SYSTEM-LEVEL VALIDATION OF MULTICORE ARCHITECTURES

By

Xiaoke Qin

May 2012

Chair: Prabhat Mishra
Major: Computer Engineering

Multicore processors are widely used in today’s servers, desktop and embedded

systems. It is a major challenge to verify functional correctness as well as non-functional

requirements of multicore architectures. Direct application of existing functional

validation approaches usually consumes too much time to reach the coverage goal due

to the complexity of multicore designs. Escaped bugs can lead to serious consequences

in many scenarios. Due to parallel execution of task sets, existing approaches are

also insufficient to validate whether applications in such systems can be scheduled

within the given temperature, energy, and timing constraints. If these constraints are

violated, it can lead to performance degradation or even catastrophic consequences

in safety-critical systems. This dissertation presents novel techniques to address

validation challenges of both functional and non-functional requirements in modern

multicore architectures. My research has made four major contributions: i) it proposes

efficient directed test generation techniques that exploit symmetry in multicore designs;

ii) it proposes a novel test generation approach for state- and transition- coverage in

a wide variety of cache coherence protocols; iii) it proposes a scalable directed test

generation technique based on interleaved concrete and symbolic execution; and iv) it

proposes schedulability validation approaches for task sets in multicore architectures

under temperature and energy constraints. Extensive experimental results demonstrate

significant improvement in overall validation effort.

11

CHAPTER 1
INTRODUCTION

Multicore architectures are widely used in todays desktop, server, and embedded

systems. Due to the existence of power wall, conventional single core architectures

can no longer deliver the required performance improvement by increasing frequency.

Instead, architects integrate more and more cores into the same chip to boost the

throughput. By operating multiple cores at a lower frequency, multicore architectures can

achieve the same performance with significantly less power consumption compared with

a high clock rate monolithic core. For desktop-based systems and servers, the multicore

architectures deliver the required throughput keeping pace with today’s applications

with increasing computation complexity. Due to successful deployment of dual-core and

quad-core processors, the next generation processors will have 32, 64 or even hundreds

of cores. For embedded systems, the energy efficiency of multicore architectures

allows devices to operate for longer time with the same battery capacity. Besides, since

multiple cores are sharing the same die, the Printed Circuit Board (PCB) size is also

reduced. With the growing demand for green data-centers, long-life computers and

handhold devices, multicore architectures will continue to dominate the design of next

generation System-on-Chip (SoC) architectures.

Successful multicore designs must satisfy both functional and non-functional

requirements. Functional requirements ensure that the processor performs all logical

functions as specified by the design specification. Non-functional requirements are

imposed to make the design satisfy various design constraints such as area, power,

energy, temperature, and performance. Clearly, functional requirements are important,

because a buggy (erroneous) design leads to unreliable systems. Depending on

application domains, unreliable systems can cause loss of vital information or even

disaster. Non-functional requirements are also equally important, because violation

of non-functional requirements can also lead to serious consequences. For example,

12

due to uneven activities on different cores, the die temperature of busy cores can easily

reach 120◦C [16]. If the high die temperature is not well controlled, the transient error

occurs more frequently and the device is less reliable. Also, devices that always operate

in high temperature usually have much shorter lifespan as shown in industrial studies

[82]. To avoid these unwanted scenarios, both functional and non-functional validation

must be performed to ensure the success of modern multicore designs.

The rest of this chapter is organized as follows. Section 1.1 and Section 1.2

describe existing validation techniques and associated challenges for validation of

functional and non-functional requirements, respectively. Section 1.3 summarizes the

contribution of this dissertation. Finally, Section 1.4 outlines the organization of this

dissertation.

1.1 Functional Validation of Multicore Architectures

While multicore architectures are very successful to boost the throughput, their

increasing complexity also introduces significant validation challenges. Most widely

used functional validation techniques are based on simulation using random and

constrained-random tests [93] [1] [83]. The multicore design is placed within a simulation

environment and a test generator feeds random tests into the design. The behavior

of the design under test is compared with the golden reference model to detect any

functional errors.

As illustrated in Figure 1-1 [77], the verification complexity has grown tremendously

in last two decades. For example, in 2007 a typical SoC design (with 100 million gates)

used one trillion test vectors for simulation. Due to the increasing complexity of multicore

architectures, even trillions of simulation vectors may not be inadequate to achieve

the required coverage goal within ever decreasing time-to-market window. Since

simulation vectors are generated randomly, it is quite difficult for random tests to activate

coverage holes. Directed tests [22] are promising to address this problem. By analyzing

the logical structure of the design, a small number of directed tests can activate the

13

Simulation Vectors

1995

2001

2007

2013

1M 10M 100M Billion?

Logic Gates

Trillions?

1000B

10B

100M

Figure 1-1. Simulation effort growth with design complexity

desired behavior of the system. They can be applied in addition to the random tests

to reach the coverage goal with much less time. Unfortunately, most directed tests are

manually written, which is time consuming and error-prone. Fully automatic directed

test generation schemes are desired to accelerate the verification process of multicore

architectures. There are two major objectives in directed test generation. First, the

overall validation effort should be minimized by reducing the total number of tests

required to achieve the coverage goal. Secondly, test generation time should also be

small.

Model checking [13, 28] is promising for automated generation of directed tests.

To activate a particular scenario, we can feed the negated version of a property to

the model checker, and use the resultant counterexample as a directed test. Due to

the state space explosion problem, such a process is usually very time consuming.

Since different cores in a multicore design usually contain similar structure, their formal

descriptions (such as CNF in SAT-based model checking) also exhibit significant

symmetry. We believe such symmetry can be exploited to accelerate the model

checking process, because the information we learn from one core may be applied

directly to other cores. Unfortunately, this intuitive reasoning is hard to implement

14

because it is very difficult to reconstruct the symmetry from the CNF formula. The

high level information is lost during CNF synthesis, and it is inefficient as well as

computationally expensive to recover through “reverse engineering” methods.

An important requirement of functional validation is to achieve certain state or

transition coverage of the state space of the design. Simulation using random tests

is widely used in industry to fulfill this goal. However, due to the symmetric nature of

multicore architectures, its state space contains some unique features, which can be

utilized to reduce the test length or testing time required to reach the required coverage

goal. Although the FSM of each cache controller is easy to understand, the structure of

the product FSM for modern cache coherence protocols usually have obscure structures

that are hard to analyze. Besides, modern processors usually contain multiple cache

levels, which greatly complicates the global state space. Even if the global state space

can be described, it is still difficult to find an efficient way to perform traversal in it. In

other words, the test generation algorithm must activate all states and transitions with

limited number of unnecessary transitions. Moreover, since the state space is very large,

the tests usually introduce a large storage overhead. Therefore, it is desirable that the

test can be generated on the fly.

1.2 Validation of Non-functional Requirements

So far we have described the importance of ensuring functional correctness and

challenges associated with verifying multicore architectures. It is also equally important

to ensure that all the non-functional requirements are met. One of the key challenges is

to find whether a given task set can be scheduled on the processor(s) without violating

the required temperature and energy constraints. This kind of validation is important

to ensure the reliability of multicore designs, because high die temperature leads to

more frequent transient errors as well as shorter processor lifespan [82]. Besides, the

management of overall energy consumption is also crucial to the success of embedded

systems. Since many handheld devices are equipped with multicore processors but still

15

battery-powered, we need to validate that all important tasks are finished with limited

energy consumption.

It is usually very costly to perform such validation, because the manufacturer need

to build the full system and test the design by executing real task sets. Detection of

failures at this stage is expensive, since it will lead to re-design of the system. Since the

worst case behavior of real-time systems usually can be obtained by offline analysis, we

believe it is possible to predict the system behavior based on the information collected

via static analysis of task sets and execution environment. In other words, in various

cases, non-functional validation can be performed without running the actual system

in real environments. The major challenge in this field comes from the NP-hard nature

[103] [100] [86] of the schedulability problem. In fact, it is NP-hard even to verify the

schedulability of a task set under temperature and energy constraints in a single core

processor. The problem is more complex when the system contains multiple cores.

1.3 Research Contributions

My research proposes novel techniques to address challenges in both functional

and non-function validation of multicore systems. The objective of my research is to

develop efficient test generation approaches and validation algorithms for modern

multicore architectures.

Figure 1-2 presents the scope of this dissertation. The proposed research develops

efficient validation techniques to address different functional and non-functional

requirements using a wide variety of design models including system-level models,

formal models as well as RTL models.

Figure 1-3 outlines the four major research contributions of this dissertation that

are summarized as follows. The first three are related to verifying functional correctness

whereas the last one ensure that the non-functional requirements are satisfied.

Directed test generation for multicore architectures: This work proposes a novel

technique that exploits temporal, structural, and spatial symmetry in multicore designs

16

Schedulablity

Functional Correctness

Techniques

Approaximation Algorithms

Interleaved Concrete/Symbolic execution

Model Checking

RTL Implementation

Requirements Models

Thermal Model

Formal Model

Transition Coverage

Figure 1-2. Design validation models, requirements and techniques

(Chapter 7 and 8)

Multicore System Validation Challenges

BMC−based Directed Test Generation

Cache Protocol

Scalable Test Generation

Functional Requirements Non−functional Requirements

Schedulablity Validaition
Under Energy and

Temperature Constraints

(Chapter 3 and 4)

(Chapter 5)

(Chapter 6)

Transition Coverage

Figure 1-3. Dissertation outline

at the same time. Our proposed technique enables the reuse of the knowledge learned

from one core to the remaining cores in multicore architectures (structural symmetry),

from one bound to the next for a given property (temporal symmetry), as well as from

one property to other properties (spatial symmetry). Our experimental results on both

hardware and software designs demonstrate an order-of-magnitude reduction in overall

test generation time.

Efficient test generation for state and transition coverage in cache coherence

protocols: This work proposes an efficient test generation approach for a wide variety

17

of cache coherence protocols. Based on detailed analysis of the space structure,

our approach creates efficient test sequences for different parts of the global FSM

state space to achieve 100% state and transition coverage for each cache coherence

protocol. We develop a graphical description of the state space structure of several

commonly used cache coherence protocols and present an on-the-fly directed test

generation algorithm based on the Euler tour of hypercubes. The experimental results

on different cache coherence protocols show the effectiveness of our approach on

systems with many cores.

Scalable directed test generation for real HDL designs: This work develops a

scalable technique to enable directed test generation of HDL models by incorporating

static analysis and simulation based validation. By performing interleaved concrete and

symbolic execution, our approach avoids the error-prone design translation process and

enables directed test generation for real designs. Compared with existing approaches

based on combined concrete and symbolic execution, our approach is capable of

analyzing real processor designs with dynamic array references. The experimental

results illustrate that our proposed technique is scalable, and enables directed test

generation for real designs.

Temperature- and energy-constrained scheduling for multicore architectures:

This work explores the DVS scheduling problem on multicore systems under both

temperature and energy constraints. We show that this problem is NP-hard even when

the steady state temperature is considered. We also present an exact algorithm and a

polynomial time approximation scheme for the problem. When the original problem is

schedulable, our approximation algorithm is guaranteed to generate a solution, which

will not violate the temperature constraint, and consume no more time or energy than

a specified approximation bound, e.g., within 1% of the optimal time consumption and

energy constraints. The experimental results demonstrate that our technique is able

18

to produce schedules close to optimal solution with reasonable execution time on real

benchmarks.

1.4 Dissertation Organization

This dissertation is organized as follows. Chapter 2 introduces relevant existing

research works. Chapter 3 and Chapter 4 describe proposed directed test generation for

the functional validation of multicore architectures. Chapter 5 discusses proposed test

generation approaches for transition coverage in cache coherence protocols. Chapter 6

describes our scalable directed test generation approach for HDL designs. Chapter 7

describes our schedulability validation approaches under energy and temperature

constraints. Chapter 8 presents our schedulability validation technique for multicore

processors. Chapter 9 concludes this dissertation.

19

CHAPTER 2
RELATED WORK

This chapter surveys existing system-level validation techniques. For ease of

presentation, we have divided the existing approaches into three categories. First, we

describe the test generation approaches for architecture validation. Next, we discuss

existing techniques for validation of cache coherence protocols. Finally, we present

techniques for validation of non-functional requirements.

2.1 Test Generation for Architecture Validation

Model checking techniques are promising for functional verification and test

generation of complex systems [39, 50, 51, 64]. Figure 2-1 shows the general

Design Specification

Formal Model
Property

Generation

Directed Tests

Model Checker

Fault Model

Figure 2-1. Directed test generation flow

framework for directed test generation using model checking. In order to create

directed tests, the formal model of the design specification and a suitable fault model

are provided as input. Then a set of properties are generated for the desired behaviors

(faults) that should be activated in the simulation based validation stage. For example,

when a graph model of the design and a functional coverage fault model is provided,

20

a coverage-driven property generation can be used. Similarly, in case of circuits with

stuck-at fault model, the property will be in the form of G(a = 1) or G(a = 0). Next, a

model checker is employed to check whether there exists some states which violate

the negated version of the property. If the model checker finds a violation, it reports

a counterexample. This counterexample contains a sequence of input information

which will drive the system from an initial state to a state that does not satisfy the

negated version of the property, or in other words, which satisfies the original property.

Therefore, we can use it as a test to activate the corresponding property or behavior

during simulation-based validation.

Although model checking is effective for directed test generation, the capacity

of the conventional symbolic model checking is usually limited. Bounded model

checking (BMC) was proposed to address this problem by checking whether there is

a counterexample for the property within a given bound [13] [28]. Given a design D, a

safety property p, and a bound k, BMC will unroll the design k times and encode it using

the following formula:

BMC(M, p, k) = I(s0) ∧
k−1∧
i=0

R(si, si+1) ∧
k∨
i=0

¬p(si) (2–1)

where I(s0) is the initial state of the system, R(si, si+1) represents the state transition

from state si to state si+1, and p(si) checks whether property p holds on state si. The

formula is then transformed to CNF and checked by a SAT solver. If the SAT solver finds

some assignment which makes the CNF true, it implies that the property does not hold

at bound k, i.e., M 2k p. Otherwise, if no such assignment is found, we conclude that the

property holds up to k, or M �k p.

BMC cannot prove the validity of a safety property to hold globally when no

counterexample is found within a specific bound, but it is quite effective to falsify a

design when the bound is not large. The reason is that SAT solvers usually require

less space and time than conventional Binary Decision Diagram (BDD) based model

21

checkers [65]. Therefore, SAT-based BMC is suitable for directed test generation [64],

where a counterexample typically exists within a relatively small bound. To generate the

directed test, the negated version of the property is checked by BMC. The SAT solver

will find an assignment of all input and state variables, which satisfies Equation (2–1).

As a result, we can extract the assignment sequence of input variables and use it as a

test to activate the desired property in the system.

A great deal of work has been done to reduce the SAT solving time during BMC

[22–25, 43, 52, 79, 91]. The basic idea is to exploit the regularity of the SAT instances

between different bounds. For example, incremental SAT solvers [43, 91] reduce the

solving time by employing the previously learned conflict clauses. Generated conflict

clauses are kept in the database as long as the clauses which led to the conflicts are

not removed. Strichman [79] proposed that if a conflict clause is deduced only from

the transition part of a SAT instance, it can be safely forwarded to all instances with

larger bounds, because the transition part of the design will still be in the SAT instance

when we unroll the design for more times. Besides, the learned conflict clauses can

also be replicated across different time steps. However, the existing approaches did not

exploit the symmetric structure within the same time step. In directed test generation

for multicore architectures, same knowledge about the core structure needs to be

re-discovered for each core independently, which can lead to significant wastage of

computational power.

When BMC is applied in circuits, Kuehlmann [53] proposed that the unfolded

transition relation can be simplified by merging vertices that are functionally equivalent

under given input constraints. In this way, the complexity of transition relation is greatly

reduced. Since this technique is based on the AIG representation of logic designs,

it is difficult to use for accelerating the solving process of CNF instances, which are

directly created from high level specifications. Functional validation based on high level

specification is very effective in many scenarios. For example, Bhadra et al. [45] used

22

executable specification to validate multiprocessor systems-on-chip designs. Chen et al.

[22] proposed directed test generation based on high level specification. To accelerate

the test generation process, conflict clauses learned during checking of one property are

forwarded to speed up the SAT solving process of other related properties, although the

bound is required as an input. Similarly, the simultaneous SAT solver [49] enabled the

learned clauses to be reused by properties. Decision ordering was also studied in [23] to

reduce the SAT solving time. These approaches did not take the advantage of structural

symmetry in multicore architectures.

When SAT instance contains symmetric structure, symmetry breaking predicate

[3, 5, 30, 62, 80] can be used to speed up the SAT solving by confining the search to

non-symmetric regions of the space. By adding symmetry breaking predicates to the

SAT instance, the SAT solver is restricted to find the satisfying assignments of only one

representative member in a symmetric set. However, this approach cannot effectively

accelerate the directed test generation for multicore processors, because the properties

for test generation are usually not symmetric with respect to each core. Thus, the

symmetric regions in the entire space are usually small despite the fact that the structure

of each core is identical. Biere et al. [14] proposed that each component can be solved

individually to accelerate the solving process. However, the symmetric structure is not

used at the same time for further speedup.

During the validation process, it is also very important to generate assertions

effectively. One important work in this direction is GoldMine [81], which automatically

uses data mining and formal verification to generate assertions for real hardware

designs. Using the simulation trace of RTL designs, GoldMine employs decision tree

based supervised learning algorithms to mine potential assertions from the simulation

data. Liu et al. [54] also proposed a methodology, which utilizes GoldMine to achieve

coverage closure during design validation. Once the assertion is generated, automatic

test generation approaches can be employed to generate the tests, which can be used

23

to activate the desired behavior of the system. For example, test generation tools based

on interleaved concrete and symbolic execution, such as DART [40], CUTE [72], and

Apollo [7], are promising in capturing important bugs in large software systems. STAR

[55] and HYBRO [56] are proposed to generate tests by combining static and dynamic

analysis for hardware validation. Due to the effective utilization of the CFG, HYBRO

[56] demonstrated remarkable improvement over previous path-based test generation

technique [55]. However, HYBRO cannot be applied on real-life designs containing

dynamic array references.

2.2 Validation of Cache Coherence Protocols

Verification of cache coherence protocols for multicore and multiprocessor systems

has been widely studied in both academia and industry. Existing studies can be broadly

grouped into two categories: formal verification [27, 33, 36] and simulation based

validation [2, 83, 93]. Formal methods using model checking can prove mathematically

whether the description of certain cache coherence protocol violates the required

property. For example, Murϕ [33] was designed and used to verify various cache

coherence protocols based on explicit model checking. Counter-example guided

refinement [27] is employed to verify complex protocols with multilevel caches. Besides,

symbolic model checking tools are also developed for coherence verification. For

example, Emerson et al. [36] investigated the verification problem with parameterized

cache coherence protocol using BDDs. Although formal methods can guarantee the

correctness of a design, they usually require that the design should be described in

certain input languages. As a result, model checking usually cannot be applied to

implementations directly.

Simulation based approaches, on the other hand, are able to handle designs at

different abstraction levels and therefore more widely used in practice. For example,

Wood et al. [93] used random tests to verify the memory subsystem of SPUR machine.

Successive loads and stores to the same location are employed as test template to

24

expose possible errors. Genesys Pro test generator [2] from IBM extended this direction

with more complex and sophisticated test templates. To reduce the search space,

Abts et al. [1] introduced space pruning technique during their verification of the Cray

processor. Wagner et al. [83] designed the MCjammer tool which can get higher state

coverage than normal constrained random tests. Existing random test generation tools

are proven to be effective to discover potential bugs. However, due to their random

nature, it is very hard to achieve full state and transition coverage in a reasonable

time. Since an uncovered transition can only be visited by taking a unique action at a

particular state, it may not be feasible for a random test generator to eventually cover

all possible states and transitions. To address this problem, some random testers are

equipped with small amount of memory, so that the future search can be guided to the

uncovered regions. Unfortunately, unless the memory is large enough to hold the entire

state space, it is still quite hard to achieve full coverage by such guided random testing.

2.3 Task Schedulability under Constraints

Energy-aware scheduling techniques for real-time systems have been widely

studied to reduce energy consumption. While several works employed dynamic cache

reconfiguration [87] [85], most of them are based on Dynamic Voltage Scaling (DVS).

Aydin et al. [9] addressed both static and dynamic slack allocation problems for periodic

task sets, while Shin et al. [73] also considered aperiodic tasks. Jejurikar et al. focused

on energy-aware scheduling for non-preemptive task sets [47] and leakage power

minimization [48]. Zhong et al. [103] solved a system-wide energy minimization problem

with consideration of other components. Wang et al. [85] proposed a leakage-aware

energy saving technique based on DVS as well as cache reconfiguration. As shown

in [100], applying DVS in real-time systems is a NP-hard problem. Optimal and

approximation algorithms are given in [103] [100] [86], while other works proposed

heuristics. A survey on recent works can be found in [21]. However, these techniques

are not aware of controlling the operating temperature.

25

Temperature-aware scheduling in real-time systems has drawn significant research

interests in recent years. Wang et al. [84] introduced a simple reactive DVS scheme

aiming at meeting task timing constraints and maintaining processor safe temperature.

Zhang et al. [101] proved the NP-hardness of temperature-constrained performance

optimization problem in real-time systems and proposed an approximation algorithm.

Yuan et al. [97] considered both temperature and leakage power impact in DVS problem

for soft real-time systems. Chen et al. [20] explored temperature-aware scheduling for

periodic tasks in both uniprocessor and homogeneous multiprocessor DVS-enabled

platforms. Liu et al. [57] proposed a design-time thermal optimization framework which

is able to solve problem variants energy-aware (EA), temperature -aware (TA) and

temperature-constrained energy-aware (TCEA) scheduling in embedded system with

task timing constraints. Jayaseelan et al. [46] exploited different task execution orders,

in which each task has distinct power profile, to minimize peak temperature. However,

none of these techniques solves temperature-constrained and energy-constrained

(TCEC) problem. Moreover, they all make certain assumptions on system characteristics

that limits their applicability.

Existing research formulated the voltage/frequency assignment problems in

different models. For example, Integer Linear Programming (ILP) has been widely

applied to many voltage/frequency assignment problems without the temperature

constraint [94, 102]. Chantem et al. [19] also used ILP to model scheduling problem

with steady-state temperature constraints. Unfortunately, when transient temperature

is considered, the full expansion of the temperature constraint introduces a large

number of product terms, which prevent us to solve the problem efficiently using

ILP solvers. Coskun et al. [29] circumvented this problem using an iterative ILP and

thermal simulation approach, although the convergence to the optimal solution is not

guaranteed.

26

Another important modeling technique is timed automata [6]. Norstorm et al. [66]

first extended timed automata with the notion of real-time tasks and showed that the

traditional schedulability analysis can be transformed to a decidable reachability problem

in timed automata, which can be solved using model checking tools. Fersman et al. [37]

further generalized this approach with asynchronous processes and preemptive tasks

in continuous-time model. However, none of these techniques considered energy or

temperature related issues.

There are several studies on Dynamic Power Management (DPM) using formal

verification methods for embedded systems [74] and multiprocessor platforms [58].

Shukla et al. [74] provided a preliminary study on evaluating DPM schemes using an

off-the-shelf model checker. Lungo et al. [58] tried to incorporate verification of DPM

schemes in the early design stage. They showed that tradeoffs can be made between

design quality and verification efforts. None of these approaches considers temperature

management in such systems. Moreover, they did not account for energy and timing

constraints, which are important in real-time embedded systems. Wang et al. [88]

discussed the application of timed automata in schedulability problem with both energy

and temperature constraints. Nevertheless, due to the capacity limit of model checker,

the proposed technique can only be applied to small task sets.

Temperature- or energy-constrained scheduling problems are also related to

the multi-constrained path (MCP) problem for Quality of Service (QoS). MCP was

extensively studied by network community. For example, Chen et al. [26] designed an

approximation algorithm for MCP with two constraints. [76] and [98] studied the efficient

heuristics for MCP problems. Xue et al. [96] proposed polynomial time approximation

algorithms, which can be applied for more than two constraints. However, since the

QoS costs are usually modeled as additive constants, these existing methods cannot

be applied directly to solve TCEC problem due to the fact that the computation of the

temperature is not additive.

27

CHAPTER 3
SYNCHRONIZED GENERATION OF DIRECTED TESTS

Model checking is promising for automatic generation of directed tests [39, 64],

because the counterexample of the negated version of a property can be used as a test

to activate the property. Existing test generation techniques using SAT-based bounded

model checking (BMC) [67] can be divided into two categories based on whether it

addresses one property or multiple properties. The first category is applicable for test

generation for one design and one property with varying bounds [78, 79]. However,

the knowledge obtained are not shared when solving for other properties on the same

design. In contrast, the methods in the second category tries to accelerate the test

generation for multiple properties with known bounds [63]. They first group similar

properties into clusters. Then, the knowledge are shared by all properties in the same

cluster. This approach exploit the fact that although each test generation instance is

created for a different property, these instances still have a large overlap, because the

design remains unchanged. The major drawback of this solution is that it assumes that

the bound is known. In general, it is very difficult to determine the bound upfront without

actually solving the SAT instance, which limits the applicability of this solution.

In this work [68], we combine the advantages of both approaches by developing

a novel BMC based test generation technique for multiple properties of the same

design, which enables the reuse of learned knowledge across different bounds as

well as across properties in the same cluster. The basic idea of our approach is to

synchronize the solving process of multiple properties for different bounds, so that the

utilization of learned knowledge can be maximized. One may think that solving many

SAT instances together can be dramatically complex than solving one instance, and

therefore may be impractical. On the contrary, since all these instances are generated

by unrolling the same design for several times, we successfully developed a simple but

effective approach to significantly reduce the overall SAT solving time by forwarding

28

knowledge among different solving processes. Our experimental results demonstrate an

order-of-magnitude reduction in overall test generation time.

The rest of the chapter is organized as follows. Section 3.1 briefly discusses the

background on SAT-based BMC. Section 3.2 describes our test generation methodology

for multiple properties and bounds. Section 3.3 presents our experimental results.

Finally, Section 3.4 concludes this chapter.

3.1 Background

This section briefly describes the basic concepts of existing acceleration techniques

for directed test generation using BMC.

3.1.1 Conflict clause forwarding

Many techniques and heuristics are employed in SAT solvers to accelerate the

solving process. Modern SAT solvers such as zChaff [38] and GRASP [59] adopt

the Davis-Putnam-Logemann-Loveland (DPLL) [31, 32] algorithm and conflict-driven

non-chronological backtracking. The basic idea behind these techniques is to save the

knowledge learned during resolving current conflict to avoid the same conflict in the

future [99]. A conflict occurs, when the current assignment of some variables, through a

set of clauses, implies that one variable must be true and false at the same time. In this

case, conflict analysis will trace back along the implication relations and find the closest

assignment of variables that led to the conflict. We can forbid such assignment from

occurring again by adding a carefully designed clause, i.e., conflict clause, to the original

CNF. Generally, conflict clauses are only meaningful within the same SAT instance.

However, when the set of clauses that led to the conflict clause are shared by multiple

SAT instances, we can also forward conflict clauses across instances.

3.1.2 Property clustering

Property clustering is another important technique to reduce the total test

generation time with BMC. As indicated in Figure 2-1, for a given design and fault

model, we first generate a set of properties, which can be used to activate all the faults.

29

Then, different SAT instances for these properties are solved to obtain the tests. Since

sharing of knowledge among similar properties usually reduces the overall solving time,

we can cluster properties into different groups and solve all the properties in the same

group together.

Although the intention behind property clustering is intuitive, the challenge here

is to determine the proper number of clusters and which properties should be in the

same cluster. On one extreme, one can group all properties into a single cluster and

solve them together. Although this approach maximizes the sharing of knowledge

among properties, it also increases the possibility that too many conflict clauses are

accumulated in the solver’s database, which hampers the overall performance of the

SAT solver. On the other extreme, we can also let each cluster have only one property,

which is actually the approach adopted by Strichman et al. [79]. In this way, only

knowledge relevant to the properties will be explored. However, it is also possible that

the same knowledge will be discovered again and again for different properties, which

is a significant overhead, when the number of similar properties is large. Therefore, it is

desirable to strike a balance between the knowledge sharing and overhead introduced

by irrelevant conflict clauses.

Our property clustering approach for designs given in graph models is similar to

[63]. The properties are grouped together by their similarity on structural or textual

overlap. The properties in the same cluster are describing behaviors of the same

functional unit or component. In this way, it is likely that the knowledge or conflict

clauses that we obtained during solving one property will be helpful to other properties

in the same cluster. For circuits with stuck-at fault model, we perform the clustering of

properties based on the cone-of-influence (COI). Output signals with large overlap in

their COIs are grouped into the same cluster.

30

3.2 Synchronized Test Generation

Figure 3-1 shows the framework of our synchronized test generation approach.

In order to create directed tests, the formal model of the design, a set of properties for

the desired behaviors (faults) that should be activated, and the corresponding cluster

information are accepted as input. Next, the SAT instances for each property are

grouped into different clusters based on their similarity and then solved simultaneously

to create the test suite, which can be used to trigger the desired behaviors during

simulation-based validation. Algorithm 1 outlines the key steps in our directed test

generation framework. The contribution is the synchronized test generation for

properties in a cluster, which will be explained in details in Algorithm 2.

Formal
Model

Synchronized
Test

Generation

Clustering

Properties

Directed
Tests

Property
Clusters

Clustering
Information

Figure 3-1. Synchronized Test Generation

To highlight the contribution of our work, Figure 3-2 compares our approach with

two closely related techniques: i) incremental SAT for single property with unknown

bound [79] and ii) test generation for multiple properties with known bounds [63]. In this

example, there are three properties p1, p2, and p3 with bounds 3, 2, and 1 respectively.

We use solid dots to represent different SAT instances and lines to indicate the conflict

clause forwarding paths. Strichman et al. [79] solved each property separately, and

31

Algorithm 1: Test generation framework
Input: i) Design D, ;

ii) Properties P for fault activation ;
Output: Tests for corresponding faults
Cluster similar properties into groups.;
TestSuite = ∅;
for each property cluster PC do

Perform Synchronized Test Generation on PC.;
Add generated tests into TestSuite.;

end
return TestSuite

A B

C D

Figure 3-2. Different incremental SAT solving techniques. A) Strichman [79]. B) Mishra
and Chen [63]. C) A naive combination of [79] and [63]. D) Tentative
assignment of variables during checking p1 at k = 3.

32

passed the knowledge (deduced conflict clauses) “horizontally” within instances for the

same property (Figure 3-2A). In contrast, Mishra et al. [63] solved one “base” property

first, (e.g., p2 in this case), then forward the learned clause “vertically” between other

SAT instances for different properties, as shown in Figure 3-2B.

Clearly, it should be profitable if we can appropriately forward conflict clauses

“vertically” between properties while solving for each property “horizontally”. In this way,

the knowledge learned during checking a property for a specific bound can benefit itself

with larger bounds as well as across other properties. One intuitive way to combine

the two approaches, as shown in Figure 3-2C, is to choose some property as based

property (p2 in Figure 3-2C), check this property for different bounds, and then forward

the learned conflict clauses to other SAT instances for other properties. Unfortunately,

this naive combination has three problems. First, it is very hard to choose the base

property, that should yield a large number of conflict clauses which can be shared by

other properties. Unlike [63], where each property has only one SAT instance, we do not

know how many SAT instances we have to solve. As a result, it is impossible to apply

the clustering technique proposed in [63], to determine the base property. Secondly,

even if we correctly find the optimal base property, it is still difficult to choose the

suitable bound of the receiving property to forward clauses, because SAT instances with

inappropriate bounds may be solved trivially. Moreover, the learning during checking

non-base properties is wasted. For example, in Figure 3-2D, suppose (¬ai ∨ bi ∨ ci+1),

(ai ∨ ¬di+1) and (ai ∨ ¬ei+1) are clauses within the transition constraint of the system at

time step i+ 1.

In the SAT solving process of p2 with bound k = 2, a conflict clause (b0 ∨ c1 ∨ ¬d1) is

deduced based on (¬a0 ∨ b0 ∨ c1) and (a0 ∨ ¬d1) to prevent the assignment {b0, c1, d1} =

{0, 0, 1}, which will result in a conflict on a0. During the solving process of p1 with bound

k = 2, the SAT solver may explore the assignment {b0, c1, d1} = {0, 0, 1} if Strichman’s

approach [79] is employed. Such assignment can be avoided by using [63] (as shown

33

in Figure 3-2B and Figure 3-2C), because the learned conflict clause (b0 ∨ c1 ∨ ¬d1) is

forwarded to p1.

However, learned clauses are only allowed to be forwarded from the base property

(p2 in this case). The knowledge learned during solving non-base properties will not be

reused. As indicated in Figure 3-2D, conflict clause (b0 ∨ c1 ∨ ¬e1) is deduced based

on (¬a0 ∨ b0 ∨ c1) and (a0 ∨ ¬e1) during the solving process of p3 with bound k = 1.

Since p3 is not a base property, this information will not be reused by p1. Therefore,

during the solving process of p1 with bound k = 2, the SAT solver will still try to make

the assignment {b0, c1, e1} = {0, 0, 1}. When the number of properties is large, this may

cause a great waste of computational power, because we have to explore the same

search space for many times, if the space is not visited during the solving process of the

base property.

Our approach to solve this problem is based on the effective identification of conflict

clauses that can be shared by other SAT instances across properties and bounds. In

fact, for any bound k0 ≥ 0, all SAT instances generated during BMC (Equation 2–1)

with k ≥ k0 clearly share the transition clauses I(s0) ∧
∧k0−1
i=0 R(si, si+1), although their

property terms
∨k
i=0 ¬p(si) are different. This observation implies that all conflict causes

deduced based on these common clauses during solving process of any SAT instance

can be forwarded to any other SAT instances with k ≥ k0, because all of them have the

same set of clauses that led to the conflict clause. Therefore, if we check all properties

together for k = 0, 1, 2, ..., i.e., “synchronously”, all conflict clauses can be safely shared

by all subsequent SAT instances.

Algorithm 2 outlines our synchronized test generation method for clustered

properties. It accepts each property cluster and the design of the system as input

and produces corresponding tests. As indicated before, this algorithm will check all

properties synchronously for each bound. In each iteration, we first generate the

transition clause set CSkT (corresponding to I(s0) ∧
∧k−1
i=0 R(si, si+1)) using BMC(D,true,k),

34

Algorithm 2: Synchronized Test Generation For Properties in a Cluster
Input: i) Design D, ;

ii) Properties P , ;
iii) Maximum bound Kmax

Output: Test Set TS
Bound k ←− 0;
Common Conflict Clause Set CCS ←− ∅;
TS ←− ∅;
while P 6= ∅ and k ≤ Kmax do

Clause Set CSkT ←− BMC(D, true, k);
for p ∈ P do

Clause Set CSkp ←− BMC(D, p, k);
Step1: In CSkp , mark all clauses that also exist in CSkT ;
Step2: (ConflictC, testp)←− SAT(CCS

⋃
CSkp);

Step3: CCS ←− CCS
⋃

CheckMark (ConflictC);
if testp 6= null then

remove p from P ;
TS ←− TS

⋃
testp;

end
end
k ←− k + 1;

end
return TS

then randomly choose a property p from the property set P , and create its own clause

set CSkp (corresponding to I(s0) ∧
∧k−1
i=0 R(si, si+1) ∧

∨k
i=0 ¬p(si)). Next, we perform

following 3 steps.

1. Mark all clauses in CSkp which are also in CSkT . Since CSkT remains same for
all properties at k, this step can be implemented efficiently by table lookup, as
described in Section 3.2.2.

2. Use a SAT solver to solve the CNF formula CCS
⋃
CSkp , which contains not only

CSkp , but also all previously learned conflict clauses in CCS.

3. For new conflict clauses ConflictC learned by SAT solver, merge the clauses
deduced purely by marked clauses into CCS. This step is similar to the isolation
technique proposed in [78] and [63].

If the satisfied assignment, or a counterexample testp is found in step 2, we record

it in test set TS and remove p from P. This process repeats until tests for all properties

35

are found or the maximum bound Kmax is reached. Finally, the algorithm returns all

generated tests.

k=0 k=1 k=2 k=3

p1

p2

p3

Figure 3-3. Synchronized test generation for multiple properties

We use the same example in Figure 3-2 to illustrate the flow of Algorithm 2. The

clause forwarding path are shown in Figure 3-3. In the first iteration for k = 0, suppose

we randomly pick p2 from the property set. At the beginning, the common conflict

clause set CCS is empty. Thus, p2 is solved directly. Since the bound of p2 is 2, the

SAT instance is not satisfiable and no test is generated. However, all conflict clauses

deduced based on clauses in CS0
T are now recorded in CCS, and will be used to

accelerate the solving process of both p1 and p3 at bound 0. Similarly, the conflict

clauses generated during solving p1 at k = 0 will be used to speed up p3 at k = 0

(assumes p3 is solved last). In the next iteration, all instances will be solved with the

help of conflict clauses learned by all three SAT instances at k = 0, because all conflict

clauses are recorded in CCS. Eventually, three tests will be generated at bound 3, 2,

and 1 for p1, p2 and p3 respectively. In the case of Figure 3-2D, since both (¬a0 ∨ b0 ∨ c1),

(a0 ∨ ¬d1) and (a0 ∨ ¬e1) are clauses from the transition constraint of the system, both

(b0 ∨ c1 ∨ ¬d1) and (b0 ∨ c1 ∨ ¬e1) will be recorded in CCS based on Algorithm 2.

Therefore, during the solving process of p1 with bound k = 2, the SAT solver will skip the

assignment {b0, c1, d1} = {0, 0, 1} and {b0, c1, d1} = {0, 0, 1}. In this way, the unnecessary

waste of time is avoided.

36

Note that our algorithm does not require the SAT instances to be preprocessed

using Cone-Of-Influence (COI) optimization as in [79] and [63], because original

SAT instances have more overlapped clauses, which are effectively exploited by our

approach to accelerate the overall solving process. Our experimental results in Section

3.3 show that our approach (without COI) outperforms [79] and [63] that use COI

optimization.

In the remainder of this section, we prove the correctness of our approach and

discuss the implementation details of our synchronized test generation algorithm.

3.2.1 Correctness of the Proposed Approach

To show the correctness of our test generation approach, we need to show that in

Algorithm 2, solving CCS
⋃
CSkp is equivalent to solving CSkp . Formally, let ϕkp and ψ be

the CNF formulae formed by clause set CSkp and CCS respectively, we need to prove

that ϕkp is satisfiable iff ϕkp ∧ ψ is satisfiable using the following lemma.

Lemma 1. ϕkp ` ψ for all p ∈ P and k ≥ 0.

Proof. Let ϕkT be the CNF formula formed by CSkT . We first show that

ϕkT ` ψ (3–1)

for k ≥ 0 by induction on the size of ψ. In the basis step, formula 3–1 obviously holds

because ψ is empty.

Considering the moment before a new conflict clause π is added to ψ in some

iteration when the bound k′ ≤ k, π must be deduced from ϕk
′
T ∧ ψ, i.e., ϕk′T ∧ ψ ` π. By

induction hypothesis, ϕkT ` ψ before π is added into ψ. We also know that ϕkT ` ϕk
′
T ,

because their original forms satisfy

I(s0) ∧
k−1∧
i=0

R(si, si+1) ` I(s0) ∧
k′−1∧
i=0

R(si, si+1)

37

Hence, ϕkT ` ϕk
′
T ∧ ψ. As a result, we have ϕkT ` π and ϕkT ` ψ ∧ π, which means

formula 3–1 still holds, after any new clause is added to ψ, as long as k′ ≤ k.

On the other hand, we notice that

I(s0) ∧
k−1∧
i=0

R(si, si+1) ∧
k∨
i=0

¬p(si) ` I(s0) ∧
k−1∧
i=0

R(si, si+1)

or

ϕkp ` ϕkT

Therefore, we conclude that

ϕkp ` ψ

for all p ∈ P and k ≥ 0.

Since ϕkp ` ψ, we have ϕkp ↔ ϕkp ∧ ψ. In other words,

Theorem 3.1. ∀p ∈ P ϕkp is satisfiable iff ϕkp ∧ ψ is satisfiable.

The correctness of our approach is therefore justified.

3.2.2 Implementation Details

Our synchronized test generation algorithm is built around zChaff SAT solver [38],

which provides clause management scheme to support incremental SAT solving. zChaff

maintains all input clauses and generates conflict clauses within an internal clause

database DB. When invoked, it will solve the CNF formed by all clauses currently in

DB. The management of clauses within database DB is based on “group”. For each

clause, zChaff assigns a 32-bit group ID. Each bit identifies whether that clause belongs

to a certain group or not. When a conflict clause is deduced by clauses from multiple

groups, its group ID is a “OR” product of the group ID of all its parent clauses, i.e., this

clause belongs to multiple groups. zChaff also allows user to add or remove clauses

by group ID between successive solving processes. If one clause belongs to multiple

groups, it is removed when any of these groups are removed.

38

With these utilities, the step 1 and 3 in Algorithm 2 can be implemented efficiently

as follows:

1. In the clause marking step, add all clauses in CSkT
⋂
CSkp into DB with group ID 1.

2. Add other clauses in CSkp into DB with group ID 2.

3. After solving all clauses in DB with zChaff, remove clauses with group ID 2.

In this way, CCS is implicitly maintained within DB, because only conflict clauses

generated purely based on clauses in CCS
⋃
CSkT are kept after each iteration.

There is another potential overhead in step 1. Before we mark it in CSkp , we have to

identify whether it is in CSkT . Since CSkT remains same for all properties at k, we build

a hash table to record all clauses in CSkT . It takes O(1) time to determine whether a

clause from CSkp is in CSkT . Therefore, the overall time consumption of steps 1 and 3 in

Algorithm 2 is negligible compared to the SAT solving time.

3.3 Experiments

We have evaluated our test generation approach using different software and

hardware designs. In this section, we compare our approach with existing methods

[79] and [63] in three scenarios: a stock exchange system, a VLIW implementation of

the MIPS architecture, and ISCA’89 benchmark circuits. In the first two scenarios, the

systems and properties are described in SMV language and converted to CNF clauses

(DIMACS files) using NuSMV [18]. We used zChaff [38] as our SAT solver to implement

our test generation algorithm. The experiments were performed on a PC with 3.0GHz

AMD64 CPU and 4GB RAM.

3.3.1 A Stock Exchange System

The design in our first case study simulates the behavior of a common online

stock exchange system (OSES). It can accept, check and execute the customers

orders (market order and limit order). The system is specified using UML activity

diagram and implemented in JAVA. Its UML behavior specification has 27 activities,

29 transitions and 18 key paths. The specification is translated into NuSMV input to

39

generate corresponding SAT instances. Then we apply our synchronized SAT solving

approach to find the satisfiable assignments, which can be used as tests. We compared

our approach with Strichman’s approach [79] and a naive combination of [79] and [63]

on different properties with unknown bounds. For Strichman’s approach [79], we use it

to solve a sequence of SAT instances for the same property with varying bounds until

a satisfiable instance is found. The naive combination of [79] and [63] is developed as

described in Section 3.2. After SAT instance generation, we applied cone of influence

(COI) to speed up Strichman’s approach. When our approach was applied, we did not

use COI as indicted in Section 3.2.

Table 3-1. Test generation time comparison for OSES
Prop. Bound Our [79] vs ours [79] + [63]* vs ours

Approach [79] Speed- [79] + [63] Speed-

Time (s) Time (s) up Time (s) up

1 15 2.94 180.31 61.24 67.58 22.96
2 14 2.55 150.49 59.06 57.70 22.64
3 14 3.12 149.89 48.04 61.11 19.59
4 15 10.54 139.56 13.25 42.53 4.04
5 14 19.38 130.58 6.74 55.74 2.88
6 14 2.97 107.13 36.09 61.66 20.77
7 16 6.61 101.67 15.39 35.86 5.43
8 16 3.54 89.31 25.20 3.76 1.06
9 15 1.73 84.19 48.72 38.97 22.55

10 12 1.96 84.07 42.80 5.51 2.80
11 13 1.21 83.94 69.48 22.54 18.66
12 15 2.83 83.80 29.59 39.77 14.04
13 15 5.60 83.01 14.81 23.49 4.19
14 14 1.34 80.25 59.88 22.60 16.86
15 14 11.16 79.79 7.15 22.53 2.02
16 15 0.85 78.72 92.39 10.94 12.85
17 15 0.88 78.28 88.95 14.51 16.49
18 15 0.86 78.19 90.49 12.60 14.58
19 12 79.40 74.96 0.94 75.10 0.95
20 12 1.38 73.46 53.23 5.43 3.93

Total - 160.87 2011.62 12.50 679.93 4.23

* This is an intuitive combination of [79] and [63] (Fig-
ure 3-2C). We have shown these results to demonstrate
how our approach is superior than any naive combina-
tion of existing methods [79] and [63].

40

Table 1 shows the results of 20 most time consuming properties using Strichman’s

approach [79]. The first column shows the properties used for test generation. The

second column indicates corresponding bounds of each property. The third column

shows the test generation time (in seconds) for each property using our approach. The

time consumed by steps 1 and 3 in Algorithm 2 is also counted in this column. The

fourth column indicates the time required by Strichman’s approach [79] to generate

the test for the same property. The time is calculated as the summation of the time to

solve all the SAT instances from k = 0 to the bound of the property. The fifth column

shows the speedup1 of our approach over [79]. The last two columns present the

test generation time using the naive combination of [79] and [63] and the speedup

of our approach. It can be seen that our approach can produce more than 10 times

improvement compared to [79], because many more conflict clauses are reused by

subsequent iterations. This is especially important for “hard” SAT instances, which have

to explore a potentially large assignment space. For example, the “hardest” property

p1 for [79] actually consumes less than 3 seconds in our approach. Clearly, the time

consumption for solving multiple SAT instances using our approach is significantly

smaller than the summation of time to solve each instances independently. The

overall time consumption is reduced by knowledge sharing during solving all properties

synchronously.

One interesting observation is that the most time consuming property p19 in our

approach has a bound of only 12. The reason for this is that the clauses learned during

the solving process of easier properties like p19 eliminated some useless searching

attempts for the solution of harder properties like p1. More importantly, these clauses

are more effective than the conflict clauses learned during solving SAT instances of the

same property with smaller bounds. Although p19 itself, which was solved first, did not

1 calculated as (previous column / third column)

41

benefit from other properties, the overall time consumption was dramatically reduced.

As a result, our approach outperforms [79], which only forwards clauses within SAT

instances of the same property.

For the naive combination of [79] and [63], we chose p19 as the base property and

forwarded the clauses learned during solving it to other properties at bound 11. These

parameters are selected to illustrate the best possible performance of the combination.

It is remarkably faster compared to Strichman’s approach [79], although it is still 4 times

slower than our approach. It should be noted that in reality, it is impossible to choose

the optimal parameter for this combination because the bounds are unknown for all

properties. In other words, the performance of the naive combination of [79] and [63]

will be much worse than we illustrated here. Thus, our approach will outperform it more

significantly in practical scenarios.

We also investigated the impact of cluster size on the overall solving time. The

total 135 properties are clustered into groups with different size. The results are

shown in Figure 3-4. Figure 3-4A presents the overall solving time with respect to

different average cluster size. Figure 3-4B shows the corresponding average number of

forwarded clauses per cluster (solid curve) and the total number of conflicts encountered

for different cluster size (dotted curve). Their values can be found on the left and right

Y-axis respectively. The result suggests that larger clustering is generally helpful to

reduce the overall solving time. The reason is that the number of forwarded clauses

usually increases with the average cluster size, which can effectively reduce the total

number of conflict encountered during the solving process.

3.3.2 A VLIW MIPS Processor

We also applied our test generation approach to a single-issue MIPS processor

[42], [64]. There are five pipeline stages: fetch, decode, execute, memory access,

and writeback. The execute stage has four parallel execution paths: integer ALU, 7

42

 A

 B

0

500

1000

1500

2000

2500

3000

3500

4000

1 10 20 50 70 90 All

TI
m

e
 (

s)

Average Cluster Size

0

200000

400000

600000

800000

1000000

1200000

1400000

0

50000

100000

150000

200000

250000

300000

350000

1 10 20 50 70 90 All

To
ta

l E
n

co
u

n
te

re
d

 C
o

n
fl

ic
ts

Fo
rw

ar
d

e
d

 C
la

u
se

s
p

e
r

C
lu

st
e

r

Average Cluster Size

Encountered Forwarded

Figure 3-4. Test generation for OSES using different cluster size. A) Time consumption.
B) Forwarded clauses and encountered conflicts.

stage multiplier (MUL1 -MUL7), four stage floating-point adder (FADD1 - FADD4), and

multi-cycle divider (DIV).

We translated the design into the NuSMV input and used the three approaches

to solve the generated SAT instances for different properties and bounds. For the

combination of [79] and [63], we chose p17 as the base property and forwarded learned

clauses to bound 7. The results are given in Table 2. We only show the results on 20

most time consuming properties using Strichman’s approach. It can be seen that our

43

approach outperforms both Strichman’s approach [79] and the naive combination of [79]

and [63] by 15 and 3 times respectively.

Table 3-2. Test generation time comparison for MIPS
Prop. Bound Our [79] vs ours [79] + [63]* vs ours

Approach [79] Speed- [79] + [63] Speed-

Time (s) Time (s) up Time (s) up

1 8 0.78 139.29 179.48 18.66 24.04
2 8 0.74 132.07 178.46 19.45 26.29
3 8 0.76 125.18 164.70 18.18 23.93
4 8 0.76 120.02 158.74 18.45 24.40
5 8 0.76 115.84 151.61 27.14 35.53
6 9 0.86 111.13 129.81 58.26 68.06
7 8 0.81 108.09 133.76 26.63 32.95
8 9 0.95 104.56 110.29 53.59 56.52
9 8 0.75 96.25 128.67 16.77 22.41

10 8 0.77 87.24 113.00 16.47 21.33
11 8 0.76 87.23 114.77 17.37 22.85
12 8 0.77 84.98 110.64 16.45 21.42
13 7 0.65 81.08 125.11 13.35 20.60
14 9 32.31 80.25 2.48 31.61 0.98
15 8 0.76 75.47 99.30 7.25 9.54
16 8 0.76 72.05 94.30 20.63 26.99
17 7 76.54 71.72 0.94 72.30 0.94
18 8 1.00 70.05 70.33 19.46 19.53
19 8 0.76 69.85 91.90 6.98 9.19
20 8 0.76 65.80 87.03 11.08 14.65

Total - 122.99 1898.13 15.43 490.06 3.98

The impact of cluster size on the overall solving time are shown in Figure 3-5. There

are 170 properties in total. It can be observed that the overall solving time becomes

constant after the average cluster size is more than 50 (Figure 3-5A). At the same

time, the number of forwarded clauses per cluster is not increasing, as indicated by the

dotted curve in Figure 3-5B. This phenomenon can be explained by the fact that once

the clusters are large enough to include all the similar properties, the overall solving time

will not be further improved and the number of forwarded clauses becomes stable.

44

A

B

0

500

1000

1500

2000

2500

1 10 20 50 70 90 120 All

Ti
m

e
 (

s)

Average Cluster Size

0

50000

100000

150000

200000

250000

300000

350000

400000

450000

0

2000

4000

6000

8000

10000

12000

14000

16000

1 10 20 50 70 90 120 All

To
ta

l E
n

co
u

n
te

re
d

 C
o

n
fl

ic
ts

Fo
rw

ar
d

e
d

 C
la

u
se

s
p

e
r

C
lu

st
e

r

Average Cluster Size

 Encountered Forwarded

Figure 3-5. Test generation for MIPS using different cluster size. A) Time consumption.
B) Forwarded clauses and encountered conflicts.

3.3.3 Circuit Test Generation

We applied our test generation approach to activate stuck-at fault using ISCA 89

benchmark. For each circuit, we search for input sequences, which can generate 0

and 1 on each output port. Benchmark circuits are translated into CNF using standard

formulae in zChaff. The results are given in Table 3. The solving time limit for each

property is 100 seconds. We only show the results on 5 circuits with maximum total

45

test generation time using Strichman’s approach. It can be seen that our approach

outperforms both Strichman’s approach [79] especially for complex circuits like s38584.

Table 3-3. Test generation time comparison for circuits
Circuit #Prop. Our [79] vs ours

Approach [79] Speed-
Time (s) Time (s) up

s13207 304 481 568 1.18
s15850 300 241 270 1.13
s35932 640 220 232 1.05
s38417 212 167 210 1.25
s38584 606 2543 3377 1.32

Total - 3652 4657 1.28

In order to investigate the impact of cluster size on the overall solving time, we also

applied our test generation technique on circuit s3854 with different cluster size. There

are 606 properties to be checked on the design. The results are shown in Figure 3-6.

It can be seen that although the solving time still decreases at the beginning when

larger cluster size is used, it might not always be optimal to cluster all properties into

a single group. The reason is that too large cluster size may cause many forwarded

clauses to be accumulated in the SAT solver’s database, as indicated by the solid curve

in Figure 3-6B. Too many forwarded clauses can mislead the searching process of the

SAT solver, which will eventually increase the overall solving time.

3.4 Summary

Automatic generation of directed tests is promising for simulation based functional

validation because it requires less number of test vectors to achieve the same coverage

requirement. However, its applicability is limited due to the capacity restriction of current

model checking tools. Existing incremental SAT approaches are suitable only for a

single property with unknown bound or for multiple properties with known bounds.

We presented an efficient technique for test generation by reusing learned knowledge

across multiple properties and different bounds. To enable knowledge sharing among

properties as well as bounds, we presented a synchronized test generation technique

46

 A

 B

0

500

1000

1500

2000

2500

3000

3500

4000

1 10 20 50 90 120 150 200 300 All

Ti
m

e
 (

s)

Average Cluster Size

0

20000

40000

60000

80000

100000

120000

140000

160000

180000

0

100000

200000

300000

400000

500000

600000

700000

800000

1 10 20 50 90 120 150 200 300 All

To
ta

l E
n

co
u

n
te

re
d

 C
o

n
fl

ic
ts

Fo
rw

ar
d

e
d

 C
la

u
se

s
p

e
r

C
lu

st
e

r

Average Cluster Size

 Encountered Forwarded

Figure 3-6. Test generation for circuits using different cluster size. A) Time consumption.
B) Forwarded clauses and encountered conflicts.

for multiple properties with different bounds. SAT instances for different properties are

solved together, so that the discovery and utilization of the common conflict clauses

can be maximized. The overall time consumption of checking multiple properties using

our approach is remarkably smaller than the summation of time to check each property

independently. Our experimental results on both hardware and software designs

demonstrated an order-of-magnitude reduction in overall test generation time.

47

CHAPTER 4
EFFICIENT TEST GENERATION FOR MULTICORE ARCHITECTURES

Chapter 3 explored how to reuse the knowledge during test generation in single-core

deisgns. When SAT-based BMC is applied to generate directed tests for multicore

architectures, there are two different categories of symmetry in the corresponding SAT

instances. The first category is the “temporal” symmetry. It occurs because the SAT

instance is encoded by unrolling the same architecture for multiple times. This regularity

has already been exploited by existing research [79] to accelerate the SAT solving

process. On the other hand, the structural similarity of multiple cores also introduces

a second category of symmetry or “spatial” symmetry. This symmetry appears among

the CNF clauses for different cores at the same time step. Intuitively, we can also exploit

spatial symmetry by reusing the knowledge obtained from one core to other cores.

Unfortunately, this intuitive reasoning is hard to implement because it is very difficult to

reconstruct the symmetry from the CNF formula. The high level information is lost during

CNF synthesis, and it is inefficient as well as computationally expensive to recover

through “reverse engineering” methods.

In this work [69], we address the directed test generation for multicore architectures

by developing a novel BMC based test generation technique, which enables the reuse

of learned knowledge from one core to the remaining cores in the multicore architecture.

Instead of direct synthesis of the CNF for the multicore design, we compose the

CNF description of the entire design using CNF formulae for cores and the memory

subsystem. Since the CNF representation of cores are generated by performing variable

substitution of the CNF for one of them, the correct mapping information is easily

obtained. In this way, we are able to translate and reuse the conflict clauses learned on

any core to other cores. We prove that the CNF description generated by our approach

has the same satisfiability as original methods. Our experimental results demonstrate

that our approach can remarkably reduce the overall test generation time.

48

The rest of the chapter is organized as follows. Section 2 describes our test

generation methodology for multicore architectures. Section 3 presents our experimental

results. Finally, Section 4 summarizes the chapter.

4.1 Test Generation for Multicore Architectures

Our work is motivated by previous works on incremental SAT-based BMC [79].

Based on the temporal symmetry between different bounds, these methods accelerate

the SAT solving process by passing the knowledge (deduced conflict clauses) in the

temporal direction. Nevertheless, the SAT instances generated by multicore designs

also exhibit remarkable spatial symmetry. Figure 4-1 depicts the high level structure of

a system with 2 cores. Both cores are identical1 and connected to memory subsystem

with a bus. Figure 4-2 shows the SAT solving process when we perform BMC for bounds

0, 1, 2, and 3 on this multicore architecture using the technique proposed in [79]. We

use solid dots to represent different SAT instances and lines to indicate the conflict

clause forwarding paths. Although different cores have identical structures, this spatial

symmetry is not exploited.

Memory

Memory Subsystem Cores Bus

Core1

Core2

Figure 4-1. Abstracted architecture of a two core system

Intuitively, it should be beneficial if the knowledge or conflict clauses can also

be shared “vertically” among different cores as shown in Figure 4-3, because the

1 We first discuss our approach in the context of homogeneous cores. The application
of our approach on heterogeneous cores will be presented in Section 4.1.3.

49

solving effort spent on a single core can be reused by other cores to save overall time

consumption. Unfortunately, the spatial symmetry is difficult to recover from the CNF

representation of the SAT instance. The reason is that most clauses contain auxiliary

variables introduced during the CNF encoding process. Since these auxiliary variables

are unlabeled, the correspondence between clauses from different cores cannot be

established directly. Although the spatial symmetry can be partially recovered by solving

a graph automorphism problem [3, 5, 30], it may require impractical time for large

designs, because no polynomial time solution is found for graph automorphism problem.

The underlying reason for this dilemma is that the high level information is lost after the

CNF encoding. In other words, a single flattened CNF SAT instance is not suitable to

exploit the spatial symmetry.

k=0 k=1 k=2 k=3

Core1

Memory

Core2

Bus

Figure 4-2. Incremental SAT solving technique [79]

k=0 k=1 k=2 k=3

Core1

Memory

Core2

Bus

Temporal direction

Spatial direction

SAT instance

Figure 4-3. Test generation for multicore architectures

50

Instead of using a monolithic CNF as input, our approach solves this problem by

composing the CNF description of the system using CNF formulae for one core, bus and

the memory subsystem. Since the cores are identical, their CNF representations are

identical as well. We just need to perform variable name substitution to obtain the CNF

for all other cores. As shown in Theorem 4.1, when the state variables are substituted by

the correct names, the system CNF composed by these replicated CNF for cores, bus

as well as memory subsystem will have the same satisfiability behavior as the original

monolithic CNF representation. Since both the state variables and auxiliary variables in

replicated cores are assigned by our algorithm, it is easy to obtain the correct mapping

between variables and clauses in different cores. The spatial symmetry can then be

effectively exploited during the SAT solving process. Before we describe our algorithm in

details, we first introduce some notations.

Definition 1. Symmetric Component (SC) is a set of identical finite state machines

(FSM). For the jth FSM within a SC, we denote its initial condition and transitional

constraints as I(sis0,j) and R(sisi,j, s
in
i,j, s

is
i+1,j, s

out
i+1,j) (0 ≤ i ≤ k − 1), where sini,j, souti+1,j, s

is
i,j are

its input variables, output variables, and internal state variables at the ith (i + 1th) time

step. It should be noted that a symmetric component itself can also be viewed as FSM,

whose input and output variables are the collection of all the input and output variables

of FSMs within it.

 Core 1

Core 2

Bus and Memory

Figure 4-4. FSM representation of Figure 4-1 at time step i

51

In a multicore system with NS identical cores, we model the set of all cores as a

symmetric component F S. Other asymmetric components, such as bus and memory

subsystem, are modeled as a single finite state machine FA. We also map the input

and output of FA to the output and input of F S so that different cores can perform

communication through bus and memory subsystem. Formally, we denote the initial

condition and transition constraints of FA as I(sA0) and R(sAi , s
Sout
i , sAi+1, s

Sin
i+1) (0 ≤ i ≤ k −

1), where sAi represent internal state variables in bus and memory subsystem at the ith

time step. Moreover, sSini = {sini,j|1 ≤ j ≤ NS} and sSouti = {souti,j |1 ≤ j ≤ NS} are the input

and output variables of the symmetric component F S, which is the combination of the

inputs and outputs of all cores. For example, Figure 4-4 shows the FSM representation

of the system in Figure 4-1. The symmetric component F S is composed of core 1 and

core 2. The rest of the system is represented by FA. In the ith time step, the internal

state variable of F S are {sisi,1, sisi,2} and sAi . The input and output variables of F S (also the

output and input variable of FA) are sSini = {sini,1, sini,2} and sSouti = {souti,1 , s
out
i,1 }, respectively.

The BMC formula of the multicore system can be expressed as

BMC(M, p, k) = I(s0) ∧
k−1∧
i=0

R(si, si+1) ∧
k∨
i=0

¬p(si)

=I(sA0) ∧
NS∧
j=1

I(sis0,j) ∧
k−1∧
i=0

(R(sAi , s
Sout
i , sAi+1, s

Sin
i+1)

∧
NS∧
j=1

R(sisi,j, s
in
i,j, s

is
i+1,j, s

out
i+1,j)) ∧

k∨
i=0

¬p(si)

The basic idea of our approach is to generate CNF formula

BMC ′(M, p, k) = CNFA
I ∧

NS∧
j=1

CNF S
I (j)

∧
k−1∧
i=0

(CNFA
R (i) ∧

NS∧
j=1

CNF S
R(i, j)) ∧ CNF p(k)

52

Algorithm 3: Test Generation for Multicore Architectures
Input: CNF formulae CNFA

I , CNF S
I (1), CNFA

R (i), CNF S
R(i, 1), CNF p(k),

Number of cores NS, Maximum bound Kmax,
Output: Test testp
Bound k ←− 0;
Initialize variable mapping table T ;
Common Clause Set CCS ←− ∅;
Generate CNF S

I (j) using CNF S
I (1) for 1 < j ≤ NS;

Add Clauses in CNF S
I (j) to CCS for 1 ≤ j ≤ NS;

Update T ;
Add Clauses in CNFA

I to CCS;
while k ≤ Kmax do

Generate CNF S
R(k, j) using CNF S

R(k, 1) for 1 < j ≤ NS;
Add Clauses in CNF S

R(k, j) to CCS 1 ≤ j ≤ NS;
Update T ;
Add Clauses in CNFA

R (k) to CCS;
Step1: (ConflictC, testp)←− SAT(CCS

⋃
CNF p(k),T);

Step2: CCS ←− CCS
⋃

Filter(ConflictC);
if testp 6= null then return testp;
k ←− k + 1;

end

and perform SAT solving on BMC ′(M, p, k) instead of solving the CNF formula directly

synthesized from BMC(M, p, k), where CNFA
I , CNF S

I (j), CNFA
R (i), CNF S

R(i, j)

and CNF p(k) are the CNF representations of I(sA0), I(sis0,j), R(sAi , s
Sout
i , sAi+1, s

Sin
i+1),

R(sisi,j, s
in
i,j, s

is
i+1,j, s

out
i+1,j) and

∨k
i=0 ¬p(si), respectively.

Algorithm 3 shows our test generation method for multicore architectures. It

accepts the CNF representation of one core, bus, the memory subsystem as well as the

properties at different time steps as inputs and produces corresponding directed tests.

As indicated before, we first generate the CNF representations of the initial condition

and transition constraints of all other FSMs in F S based on the input CNF formulae

CNF S
I (1) and CNF S

R(i, 1), which are the initial condition and transition constraints of the

first FSM (Core 1). It is accomplished by replacing variable in CNF S
I (1) and CNF S

R(i, 1)

with corresponding variables for other FSMs (cores). At the same time, we maintain a

53

table T 2 to record the symmetric set of variables for both state variables and auxiliary

variables. After that, we invoke the SAT solving process on the conjunction of clauses

in CCS and CNF p(k), which is equivalent to BMC ′(M, p, k) defined above. Next, we

perform the following 2 steps.

1. During SAT solving, analyze any conflict clause cls found by the SAT solver. If
cls is purely deduced by the clauses which belong to a single FSM, replicate and
forward cls to all other FSMs. This is implemented by substituting the variables in
cls by their counterparts for each FSM in F S based on table T . At the same time,
we also replicate the cls in temporal direction, as discussed in [79].

2. After the solving process, only keep new conflict clauses that are deduced
independent of CNF p(k), and merge them into CCS.

If the satisfied assignment, or a counterexample testp is found in step 1, the

algorithm returns it as a test. Otherwise, the algorithm repeats for each bound k until the

maximum bound is reached.

Time step i

Core 1

Core 2

Replication
Learned Conflict Clause

Avoided by Spatial Forwarding

Figure 4-5. Test generation for multicore architectures

We use the same example in Figure 4-1 to illustrate the flow of Algorithm 1. The

two different clause forwarding paths employed in our approach are shown in Figure 4-5.

Suppose (¬ai ∨ bi ∨ ci+1) and (ai ∨ ¬di+1) are two clauses within CNF S
R(i, 1) (transition

2 As discussed in Section 4.1.2, a physical table is not required, instead a mapping
function is used in our framework.

54

constraint of Core 1), in the first iteration for k = 0, two clauses (¬a′i ∨ b′i ∨ c′i+1)

and (a′i ∨ ¬d′i+1) will be produced during the generation of CNF S
R(i, 2) (transition

constraint of Core 2). In the subsequent SAT solving process, suppose a conflict clause

(bi ∨ ci+1 ∨ ¬di+1) is deduced based on (¬ai ∨ bi ∨ ci+1) and (ai ∨ ¬di+1), it will be

forwarded to Core 2, because its two parent clauses are all from the CNF formula for

Core 1. Therefore, (b′i ∨ c′i+1 ∨ ¬d′i+1) can now be used by Core 2 to prevent the partial

assignment {b′i, c′i+1, d
′
i+1} = {0, 0, 1}, which will result in a conflict on a′i. Such forwarding

of conflict clauses is not possible using Strichman’s approach [79], which only considers

temporal symmetry but not spatial symmetry.

In the remainder of this section, we prove the correctness of our approach and

discuss the implementation details of our directed test generation algorithm for multicore

architectures.

4.1.1 Correctness of Our Proposed Approach

To prove the correctness of our test generation approach, we need to ensure that

the produced CNF formula BMC ′(M, p, k) in Algorithm 3 has the same satisfiability as

BMC(M, p, k).

Theorem 4.1. BMC(M, p, k) and BMC ′(M, p, k) have the same satisfiability.

Proof. Clearly, we have

BMC(M, p, k) = I(s0) ∧
k−1∧
i=0

R(si, si+1) ∧
k∨
i=0

¬p(si)

=I(sA0) ∧
NS∧
j=1

I(sis0,j) ∧
k−1∧
i=0

(R(sAi , s
Sout
i , sAi+1, s

Sin
i+1)

∧
NS∧
j=1

R(sisi,j, s
in
i,j, s

is
i+1,j, s

out
i+1,j)) ∧

k∨
i=0

¬p(si)

By their definitions, CNF formulae CNFA
I , CNF S

I (j), CNFA
R (i), CNF S

R(i, j) and

CNF p(k) are CNF representation of propositional formulae I(sA0), I(sis0,j), R(sAi , s
Sout
i , sAi+1, s

Sin
i+1),

R(sisi,j, s
in
i,j, s

is
i+1,j, s

out
i+1,j) and

∨k
i=0 ¬p(si), where 0 ≤ i ≤ k − 1 and 1 ≤ j ≤ NS.

55

Therefore, BMC(M, p, k) has the same satisfiability as

BMC ′(M, p, k) =CNFA
I ∧

NS∧
j=1

CNF S
I (j)

∧
k−1∧
i=0

(CNFA
R (i) ∧

NS∧
j=1

CNF S
R(i, j)) ∧ CNF p(k)

because the auxiliary variables introduced during CNF conversion do not change

the satisfiability. In other words, BMC(M, p, k) and BMC ′(M, p, k) have the same

satisfiability.

In fact, the value of state variables in a satisfying assignment of BMC ′(M, p, k) also

satisfy BMC(M, p, k) and therefore can be used as a counterexample of the property p.

The reason is that the value of the variables in a satisfying assignment of BMC ′(M, p, k)

will also satisfy all CNF formulae CNFA
I , CNF S

I (j), CNFA
R (i), CNF S

R(i, j) and

CNF p(k). Thus, the value of the state variables will satisfy corresponding propositional

formulae I(sA0), I(sj0), R(sAi , s
A
i+1), R(sji , s

j
i+1) and

∨k
i=0 ¬p(si). Hence, they together will

satisfy BMC(M, p, k), which is a conjunction of above propositional formulae. Therefore,

the correctness of our algorithm is justified.

4.1.2 Implementation Details

Our test generation algorithm for multicore architectures is built around NuSMV

model checker [18] and zChaff SAT solver [38]. We first model the system using SMV

language, then use NuSMV to generate the CNF formulae CNFA
I , CNF S

I (1), CNFA
R (i),

CNF S
R(i, 1) and CNF p(k) in DIMACS format as the input of Algorithm 3. zChaff is

employed as the internal SAT solver. In this section, we briefly explain CNF generation

process and the implementation of Step 1 and Step 2 in Algorithm 3.

The generation of CNF descriptions for a single core, bus and memory subsystem

using NuSMV is straight forward. The only practical consideration is that all variables

are represented by their indices in CNF clauses. As a result, it is important to avoid

the same index to be used by two different variables. Since NuSMV does not offer any

56

external interface to control the index assignment, we modified the source code to make

the index space suitable for our purpose. The basic idea is to make the assignment of

indices satisfy the following two constraints: 1) the indices of variables from the same

core at the same time step are assigned continuously; 2) the indices of variables of

the same time step across cores are assigned continuously as well. For example, in

a 2-core system with each core having 100 variables, in time step 1 for core 1 we can

use indices from 1-100 (controlled by the first constraint) whereas the second constraint

indicates that the variables for core 2 at time step 1 should be 101-200. Therefore,

201-300 can be used to represent variables of core 1 in time step 2, and so on. Based

on these two constraints, the computation of the indices of symmetric variables can be

efficiently implemented as increasing or decreasing by a certain offset.

During SAT solving, we also need to track the dependency of generated conflict

clauses to determine whether they can be forwarded to other cores. This can be easily

implemented within zChaff, which provides clause management scheme to support

incremental SAT solving. For each clause in its clause database DB, zChaff uses a

32-bit group ID to track the dependency. Each bit identifies whether that clause belongs

to a certain group. When a conflict clause is deduced based on clauses from multiple

groups, its group ID is a “OR” product of the group ID of all its parent clauses, i.e., this

clause belongs to multiple groups. zChaff also allows user to add or remove clauses

by group ID between successive solving processes. If one clause belongs to multiple

groups, it is removed when any of these groups are removed.

With these mechanisms, the step 1 and 2 in Algorithm 3 can be implemented

efficiently as follows:

1. Add clauses in CNF S
I (j) and CNF S

R(i, j) with group ID j, 1 ≤ j ≤ NS

2. Add clauses in CNFA
I , CNFA

R (i)with group ID NS + 1.

3. Add clauses in CNF p(k) with group ID NS + 2.

57

4. When a new conflict clause is obtained during SAT solving, if it only belongs to a
single group with ID smaller than NS + 1, replicate this clause to all other cores with
proper group ID.

5. After solving all clauses in DB with zChaff, remove clauses with group ID NS + 2.

The overhead introduced by dependency identification and tracking in our algorithm

is negligible compared to the improvement in SAT solving time. At the same time, since

the indices of variables in symmetric cores are carefully assigned, the mapping table T is

not maintained explicitly, but implemented as a simple mapping function, which is used

to generate forwarding clauses for different cores. In that way, we avoid the potential

caching overhead which may deteriorate the performance of the SAT solver.

4.1.3 Heterogeneous Multicore Architectures

So far, we discussed our algorithm using homogeneous cores. This section

describes the application of our approach in the presence of heterogeneous cores.

In a heterogeneous multicore system, if any two cores are completely different, it is

not possible to reduce the test generation time by exploiting the symmetry. However,

most real systems usually employ a cluster of identical cores for same computational

purpose. In this case, we can first group them into symmetric components based on

their types, then apply our algorithm to each symmetric component. For example, in

the 5-core system shown in Figure 4-6, core 5 is used for monitoring and core 1-4 are

identical cores for computation. We can define core 1-4 as the symmetric component

and apply our algorithm on them. In general, we can apply our algorithm on each cluster

of identical cores in a system.

However, when the heterogeneous cores are not completely different, i.e., only

some functional units in them are different, our proposed algorithm can be employed in

a more efficient way. Recall that the FSMs in a symmetric component are not restricted

to cores. We can actually define the symmetric component in such a way that it includes

only the identical functional units in different cores. For example, Figure 4-7 shows a

system with heterogeneous cores. Both of the cores are pipelined with five stages:

58

Memory

Memory Subsystem

Cores

Bus

Symmetric
Component

#5 #1 #2 #3 #4

Figure 4-6. Multicore system with different types of cores

fetch, decode, execute, memory access, and writeback. The only difference is that

they have different implementation in the execute stage EX. In this case, we define

our symmetric component F Sas the set of all functional units in two cores except EX.

These two execution stages as well as bus and memory subsystem are modeled in the

asymmetric part FA. Of course, the input and output of F S here will include not only the

input and output variable of the cores, but also all the interface variables between EX

and other stages. In this way, the information learned on all other stages of one core

can still be shared by the other core. Clearly, the correctness of our approach is still

guaranteed, because the selection of the symmetric component satisfies its definition.

Memory

Bus Symmetric
component

IF IS EX MEM WB Core1

Core2 IF IS EX MEM WB

Figure 4-7. Multicore system with different types of execution units

59

4.2 Experiments

We have evaluated the applicability and usefulness of our test generation technique

on different multicore architectures.

4.2.1 Experimental Setup

As described in Section 4.1.2, the designs and properties are described in SMV

language and converted to required CNF formulae (DIMACS files) using modified

NuSMV [18]. We used zChaff [38] as our SAT solver to implement our test generation

algorithm. Experiments were performed on a PC with 3.0GHz AMD64 CPU and 4GB

RAM.

First, we present results of our approach using a multicore design that is composed

of different number of identical cores, one bus, and memory subsystem. The pipeline

inside each core has five stages: fetch, decode, execute, memory access, and

writeback. Besides, each core has its own cache, which is connected with the memory

through the bus. Next, we will present (in Figure 4-10) the applicability of our approach

on heterogeneous multicore architectures.

In order to activate the desired system behaviors, we used different number of

properties on designs with different complexity. For instance, we used 375 properties

in case of 16 core design that trigger two simultaneous activities between cores. We

have also used several properties that involves multicore interactions. For example,

one test will activate the following scenario: “if the value in a memory location which is

initialized as one by core 1, is increased by one by all other cores, it should be equal

to the number of cores when it is readback by core 2”. It should be noted that the

corresponding property is not symmetric with respect to all cores.

4.2.2 Results

We compared our approach with Strichman’s approach [79] and original BMC [28].

Each approach was used to solve a sequence of SAT instances for the same property

with varying bounds until a satisfiable instance is found. The input SAT instances for

60

Strichman’s approach and the original BMC was directly synthesized from BMC(M, p, k)

to improve their performance. When our approach was applied, we performed the SAT

solving on BMC ′(M, p, k) as indicated in Section 4.1. We also tried to compare with

[3]. Unfortunately, the implementation [4] failed to produce the symmetry breaking

predicates due to the large size of our input CNF (more than 600k clauses).

Figure 4-8. Test generation time with different number of cores

Figure 4-8 presents the average test generation time for different number of cores.

The original BMC failed to produce results within 3000 seconds on several properties for

the 16 core system. Therefore, its time is omitted. As expected, the time consumption

increases with the number of cores. Both our approach and Strichman’s approach [79]

are remarkably faster than original BMC [28]. By effective utilization of both spatial and

temporal symmetry, our approach outperforms [79] (which only considers temporal

symmetry) by nearly 2 times.

Table 4-1 shows a more detailed comparison of different approaches on the 8 core

system for 10 most time consuming properties. The first column represents the names

of properties used. The second column shows the corresponding bounds or time steps

to activate each property. The next three columns present the test generation time (in

seconds) for each property using the original BMC [28], Strichman’s approach [79],

61

Table 4-1. Test generation time for 8 core system
Prop. Bound [28] [79] Our Speedup Speedup

Time(s) Time(s) Approach over [28] over [79]
1 28 79 56 25 3.16 2.24
2 22 67 44 21 3.19 2.10
3 32 93 62 30 3.10 2.07
4 28 208 94 17 12.24 5.53
5 33 * 342 148 - 2.31
6 20 413 124 47 8.79 2.64
7 20 * 125 48 - 2.60
8 23 883 140 63 14.02 2.22
9 25 2106 157 128 16.45 1.23

10 25 1991 106 101 19.71 1.05
Total - 5840 1250 628 9.30 1.99

* represent run times exceeding 3000 sec.

Table 4-2. Detailed test generation information
k [79] Our approach

#Cls in DB #Decision #Fwd Cls Time(s) #Cls in DB #Decision #Fwd Cls Time(s)
19 721427 40045 25608 2.4 756149 21231 4441 1.2
20 762855 71854 27329 3.6 857103 30049 26685 2.7
21 827272 56692 22824 3.4 900428 35687 24534 3.1
22 893382 203112 102202 15.4 965925 30873 6834 1.9
23 954998 2652411 142585 97.3 1029266 1228603 261989 52.8

Total - 3024114 320548 122.1 - 1346443 324483 61.7

and our approach, respectively. The time is calculated as the summation of the time to

solve all the SAT instances from k = 0 to the bound of the property. The time calculation

also includes the time consumed by non-SAT-solving steps in Algorithm 3. The last two

columns indicate the speedup of our approach over [28] and [79]. It can be seem that

our approach outperforms [79] by two times and [28] by an order of magnitude.

To inspect the reason of our improvement over [79], we analyze the behavior of the

SAT solver. Table 4-2 shows details of the last five SAT instances immediately before

the bound was found during the BMC of property 8 on the 8-core system (highlighted

entry in Table 4-1). The first column in Table 4-2 is the time step of each SAT instance.

The next four columns contain the real size of the clause database before the solving

process, the number of decisions made by zChaff, the number of forwarded conflict

62

clauses and the time consumption in [79]. Similar information of our approach is

represented in the last four columns. Compared to [79], the total number of decisions

made by the SAT solver is much smaller when our approach is applied. At the same

time, the number of forwarded clauses are comparable. In other words, our approach

saves the time to rediscover the same knowledge for each core, without the overhead of

forwarding too many conflict clauses.

Figure 4-9. Test generation time with different interactions

We also investigated the impact of different number of cores involved in the

interaction on the test generation time. In this experiment, we use a processor with eight

3-stage cores. They are connected to the memory subsystem using snoopy protocol.

The desired test should trigger all cores perform read and write operation on the same

shared memory variable in certain order. The results are given in Figure 4-9. When the

interaction involves only a small number of cores, the difference in test generation time

of [28], [79], and our approach is quite small. However, when more and more cores are

involved, our approach outperforms both [28] and [79] remarkably, due to the usage of

symmetry information.

63

Figure 4-10. Test generation time with heterogeneous cores

Finally, to illustrate the effectiveness of our approach in a more general scenario, we

measure the test generation time on a system with heterogeneous cores. We use cores

with different implementations in their fetch, issue, execution stages, and repeat the

previous test generation experiment. As discussed in Section 4.1.3, we only replicate

learned conflict clauses within the symmetric components. Figure 4-10 shows the result.

The “fetch” curve corresponds to a system where the 8 cores are identical except their

fetch stages. Similarly, curves marked as “Issue” and “Execution” represent cores with

different issue and execution stages, respectively. We also show the test generation

time for homogeneous cores using our approach (“None”) and [79] as reference. It

can be observed that due to less scope of knowledge reuse, the time consumption of

our approach for heterogeneous cores are generally larger than homogeneous cores.

Nevertheless, our approach still outperforms [79] especially for complicated interactions

involving many cores.

4.3 Summary

Functional verification of multicore architectures is challenging due to the increased

design complexity and reduced time-to-market. Existing incremental SAT approaches

64

have only exploited the symmetry in BMC across different time steps. We presented a

novel approach for directed test generation of multicore architectures that exploits both

spatial and temporal symmetry in SAT-based BMC. The CNF description of the design is

synthesized using CNF for cores, bus and memory subsystem to preserve the mapping

information between different cores. As a result, the symmetric high level structure

is well preserved and the knowledge learned from a single core can be effectively

shared by other cores during the SAT solving process. The experimental results using

homogeneous as well as heterogeneous multicore architectures demonstrated that the

test generation time using our approach is remarkably smaller (2-10 times) compared to

existing methods.

65

CHAPTER 5
VALIDATION OF CACHE COHERENCE PROTOCOLS

Caching has been the most effective approach to reduce the memory access time

for several decades. When the same data is cached by different processors, cache

coherence protocols are employed to coordinate the accesses and guarantee that

the most recent written data is returned. As the protocols are growing more and more

complex, the verification teams are facing significant challenges to achieve the required

coverage within tight time-to-market window.

Since all possible behaviors of the cache blocks in a system with n cores1 can be

defined by a global finite state machine (FSM), the entire state space is the product of

n cache block level FSMs. Intuitively, full state or transition coverage can be achieved

by performing a breadth first search (BFS) on this product FSM. The path that leads

to each distinct state from the initial state can be used as a test case for that state.

Unfortunately, since each test is used to activate only one transition, a large number of

transitions may be unnecessarily repeated, if they are on the shortest path to many

other transitions. Therefore, it is desirable to replace BFS with another efficient

algorithm, which creates an input sequence that covers all transitions with minimum

transition overhead. Since the number of directed tests can be quite large in many

practical scenarios,it may be beneficial to generate the directed tests on-the-fly, so that

the created tests can be directly fed to the simulator or the device under test without

extra storage requirement. Clearly, the development of such algorithms requires a

clear understanding of the state space of the complex global FSM. Although the FSM

of each cache controller is easy to understand, the structure of the product FSM for

1 In this chapter, we use the term “core” to refer to each single processing units in
multicore or multiprocessor systems.

66

modern cache coherence protocols can have quite obscure structure that can be hard to

analyze.

In work [70], we propose an on-the-fly test generation for cache coherence

protocols by analyzing the state space structure of their corresponding global FSMs.

Instead of using structure-independent BFS to obtain the directed tests, we show that

the entire complex state space can be decomposed into several components with simple

structures. Since the activation of state and transition can be viewed as a path searching

problem in the state space, these decomposed components with known structures can

be exploited for efficient test generation. Our contributions are:

1. We develop a graphical description of the state space structure of several
commonly used cache coherence protocols that can be viewed as a composition
of simple structures.

2. We present an on-the-fly directed test generation algorithm based on the Euler
tour of hypercubes. Our approach only requires linear space requirement with
respect to the number of cores. The generated test forms a tour in the state space
of corresponding global FSM, which activates all possible transitions of the global
FSM with small overhead.

The rest of this chapter is organized as follows. Section 5.1 provides related

background information. Section 5.2 describes our contributions in details. Experimental

results are presented in Section 5.3. Finally, Section 5.4 concludes the chapter.

5.1 Background and Motivation

In modern computer systems, since the latency to transfer data from the main

memory to processing units is much larger than the time consumption for computation,

each processing unit usually maintains its local copy of the main memory, or cache

for fast access. One major problem of caching is that when the same data, memory

block, is cached in two or more different places, any future modification to it should

be propagated to all the cached copies. Otherwise, it can lead to incorrect functional

behaviors. Cache coherence protocols are therefore proposed to define the correct

67

behavior of each cache controller, when different processing units issue loads and

stores to the same memory location.

One of the simplest cache coherence protocol is the MSI snoopy protocol [42].

The behavior of the cache controller in a processing unit is modeled as a finite state

machine (FSM). Figure 5-1 shows the state transition diagram of MSI protocol. The

state of a cache block (line) can be either “Invalid”(I), “Modified”(M), or “Shared”(S).

At the beginning, all cache blocks are in the invalid state. When a load request arrives

from the core side (Self LD), the cache controller will request the data from the main

memory and switch to shared state. When the core issues a store request (Self ST), the

cache controller will first broadcast an invalidated request on the bus and then change to

modified state. Such an invalidate request will inform all other cache controllers that are

in shared or modified states to change to invalid state. A cache block may also change

to invalid state, when it is evicted by another cache block which is mapped to the same

location in the cache, or other cores issue store requests (Other ST).

I S

M

Self LD

Self ST
Self ST

Other LD

Eviction

Eviction
Other ST

Other ST

Self LD
ST=Store
LD=Load

Self LD
Other LD

Figure 5-1. State transitions for a cache block in MSI protocol

Although MSI protocol is enough to guarantee the coherence of the cache system,

it causes some unnecessary delay and traffic on the communication channels. Many

variants of the MSI protocols are invented to further improve its performance. For

example, “Exclusive” (E) state is introduced in MESI protocol to avoid the traffic when a

68

cache block is only used by one core. “Owned” (O) state is used in MOSI and MOESI

protocol to reduce the delay when a modified block is loaded by other cores.

As cache coherence protocols are becoming more and more complex, it is getting

harder to verify their implementations. From the validation perspective, it is always

desirable to activate all possible state transitions of the entire multicore cache system.

In other words, it is necessary to have a high state and transition coverage (100%, if

possible) in the global FSM of the entire memory (cache) subsystem.

5.2 Test generation for Transition Coverage

Our approach is motivated by the basic Breadth First Search (BFS) in the state

space of a global FSM. Given the FSM description of any cache coherence protocol, it is

possible to compose a test suite which can activate all states and transitions using two

steps: 1) for each state, we find out the instruction sequences to reach it by performing

a BFS on the global FSM; and 2) for each transition, we create the test by appending

the required instructions after the instruction sequences to reach the initial state of this

transition. However, such a naive approach has two problems. First, transitions close

to the initial state are visited for many times. Thus, a large portion of the overall test

time is wasted. Secondly, it is difficult to generate tests on-the-fly, because the memory

requirement to run the BFS routine is quite large. Since we have to remember all visited

states in BFS process, its runtime memory requirement also grows exponentially.

To address these challenges, our approach needs to satisfy two requirements: 1)

we should reduce the number of transitions as much as possible without sacrificing the

coverage goal; and 2) the space requirement for the test generation algorithm should

be small. Fortunately, due to the highly symmetric and regular structure of the state

space, it is possible to design a deterministic test generation algorithm, which can

efficiently activate all states and transitions of popular cache coherence protocols. The

basic idea is to divide the complex state space into several large hypercubes and other

69

small components. Since hypercubes can be traversed with no extra overhead, a large

number of unnecessary transitions can be avoided during activating all transitions.

In the rest of this section, we first describe how to generate tests to activate all

transitions of a simplified cache coherence protocol: SI protocol. Next, we discuss our

test generation techniques for a variety of popular protocols including MSI, MESI, MOSI,

MOESI, and MESIF. In this work, we focus on the transition between two stable states.

We assume that the transition between stable states to transient state are correct.

5.2.1 SI Protocol

SI protocol is a trimmed version of MSI protocol, in which we do not allow cores

to issue store operation. For a system with n cores, a valid global state of the system

allows the cache blocks in any m cores in I state and cache blocks in the other n − m

cores in S state. Thus, there are 2n valid global states. Besides, since any core in I (or

S) state can be converted to S (or I) state within one transition, there are n outgoing

and n incoming edges. It is easy to see that the entire state space of SI protocol with n

cores is a n dimensional hypercube2 . Figure 5-2 shows such a state space with three

cores. Since all edges are bidirectional for state transitions, we do not show transition

directions explicitly. For example, state III can be transformed to IIS when the first core

loads the cache block. Similarly, state IIS can also be transformed to III, when the first

core evicts this cache block.

To achieve full state and transition coverage of the state space, we need to traverse

each edge of the hypercube at least once in both directions. Since each global state has

2 There are many transitions that start and end in the same states. For example, the
global state will not change if a core in S state issues a load operation. Usually, these
transitions are easier to cover, because they can be activated by appending one more
operation at the end of existing tests, which are used to activate corresponding initial
states. As a result, we omit them in the state space structure description in this section.
However, all possible transitions are considered in the actual implementation of our test
generation approach as well as in the experimental results.

70

IIS

SSS

III

ISS

SIS

SII

ISI

SSI

Figure 5-2. Global FSM state space of SI protocol with 3 cores

the same number of incoming and outgoing edges, it is possible to form an Euler tour

[35] of the state space, which visits each edge exactly once in both directions.

Algorithm 4: Test generation for SI protocol with n cores
CreateTestsSI(n)

1: for i = 0 to n− 1 do
2: Output “load(i)”
3: V isitHypercube(1, n− 1, i)
4: Output “evict(i)”
5: end for

V isitHypercube(id,m, shift)

1: for i = 1 to m do
2: newid = id+ 2i

3: p = (i+ shift) mod n
4: Output “load(p)”
5: if i > 1 then
6: V isitHypercube(newid, i− 1, shift)
7: end if
8: Output “evict(p)”
9: end for

10: return ;

Algorithm 4 shows our test generation algorithm for SI protocol, which performs

an Euler tour on a n dimensional hypercube. Here, load(p)/evict(p) means the pth

core performs a load/evict operation in a particular cycle, while all other cores remain

idle. We use the state space in Figure 5-2 to show the execution of Algorithm 4. The

algorithm starts by calling CreateTestsSI(n). All cores are in I state at the beginning.

71

In the first round of the for loop in line 2, the system first perform transition III-IIS by

executing load(0). During V isitHypercube, we will first visit transition IIS-ISS and

ISS-IIS for i = 1 and IIS-SIS for i = 2. Since i > 1, we invoke V isitHypercube at

line 6, which activates two transitions: SIS-SSS and SSS-SIS. Next, transition SIS-IIS

is covered by executing evict(2) in line 7 of V isitHypercube. Finally, the global state

goes back to III via transition IIS-III after evict(2) in line 5 of CreateTestsSI. In the next

two rounds of the for loop in CreateTestsSI, we are essentially performing a “rotated”

version of the previous traversal, which are going to cover all transitions in paths

III-ISI-SSI-ISI-ISS-SSS-ISS-ISI-III and III-SII-SIS-SII-SSI-SSS-SSI-SII-III. Eventually, all

transitions in the hypercube are covered by the generated test sequences.

Although the execution of Algorithm 4 seems to be complicated for larger n,

the basic idea of this algorithm is quite easy: the hypercube is actually partitioned

into n isomorphic trees with no overlapping edges. Once the hypercube is correctly

partitioned, an Euler tour is performed on trees, because all edges are bidirectional. The

correctness of our algorithm can be proved as follows.

First, we show that the total number of transitions in an SI protocol with n cores is

n ∗ 2n. Notice that an n dimensional hypercube has n ∗ 2n−1 edges. Since each edge

corresponds two transitions in the SI protocol, the total number of transitions becomes

n ∗ 2n.

Next, we prove that Algorithm 4 traverses all these transitions by constructing a test

sequence of length n ∗ 2n.

Lemma 2. The length of the test sequence generated by Algorithm 4 is n ∗ 2n.

Proof. Clearly, V isitHypercube in CreateTestsSI for n times. Since each different value

of id is associated with 2 transitions and id grows from 1 to 2n−1 − 1, we can conclude

that each invocation of V isitHypercube in CreateTestsSI will produce 2n − 2 transitions.

Therefore, the total number of transitions are n ∗ (2n − 2 + 2) = n ∗ 2n.

72

Finally, we show that no transition is covered twice. Due to the “shift” operation

and the structure of “id”, it can be verified that the global state will never repeat before

the execution of the test sequence produced by each V isitHypercube with same m.

Therefore, it is guaranteed that every load or evict operation in Algorithm 4 always

drives the system through a uncovered transition. In other words, the test sequence

constructed by Algorithm 4 does perform an Euler tour of entire state space.

The space complexity of Algorithm 4 is linear with the number of cores n. The

reason is that the function V isitHypercube(id,m, shift) can be recursively called for at

most n− 1 times. The algorithm therefore requires a stack that with at most n− 1 levels.

As a result, the space complexity is O(n).

5.2.2 MSI Protocol

The difference between MSI protocol and SI protocol is that a cache block can be

changed to the modified (M) state, when it receives a store request. For the ease of

discussion, we define the following terms.

Definition 2. Global shared state is a global state within which cores are in either

shared or invalid states (e.g, IIS, ISI, ISS, SII, SIS, SSI, and SSS in Figure 5-3).

Definition 3. Global invalid state is a global state within which all cores are in the

invalid state (e.g, III in Figure 5-3).

Definition 4. Global modified state is a global state within which one core is in the

modified state (e.g, IIM, IMI, and MII in Figure 5-3).

Figure 5-3 shows the state space of MSI protocol with three cores. Since only one

core can be in the modified state for MSI protocol, there are n global modified states

in the state space of a system with n cores. Global modified states are reachable from

any other global states by store requests from corresponding cores. Besides, a global

modified state can also be converted to the global invalid state or global shared states.

For example, global modified state IMI can be converted to global invalid state III by

evict(1), or global shared states ISS and SSI by load(0) or load(2), respectively.

73

ISI

MII

SII

IIS

SSI

ISS

IMI

IIM

SIS
SSS

III

Figure 5-3. State space of MSI protocol with 3 cores. For the clarity of presentation, the
transitions to global modified states (IIM, IMI, MII) are omitted, if the
transition in the opposite direction does not exist.

Clearly, all n global modified states form a clique, because there are two transitions

with opposite directions between each pair of them. As a result, these transitions can

be covered with an Euler tour. Unfortunately, it is not possible to cover all transitions

in the state space of MSI by a single Euler tour. The reason is that for some global

shared state like IIS, there are only outgoing transitions to global modified states,

but no incoming transitions from them. Therefore, outgoing transitions are twice of

incoming transitions. The similar scenario can also be observed for global modified

states, which have more incoming transitions than outgoing transitions. To cover

all transitions, some of them must be reused. In fact, the problem to minimize the

number of reused transitions is called Chinese Postman Problem (CPP) [35], which

can be solved by calculating the min-cost max-flow. Since we need to perform the test

generation on-the-fly, we decided not to obtain the optimal solution by solving CPP,

because the state space can be too large to fit into memory when there are many cores

in the system. Instead, we visit the uncovered transition to global modified state one by

74

one and use the shortest path to link the end state of the previous transition and start

state of the next transition.

Algorithm 5: Test generation for MSI protocol with n cores
CreateTestsMSI(n)

1: CreateTestsSI(n) /* Invoke Algorithm 1 */
2: V isitClique(0)
3: for each global shared state s do
4: for i = 0 to n− 1 do
5: Output “store(i)”
6: Output the shortest path from current state to s
7: end for
8: end for

V isitClique(p)

1: Output “store(p)”
2: Output operations to visit all bidirectionally reachable global shared states
3: for i = p+ 1 to n− 1 do
4: Output “store(i)”
5: if i = p+ 1 then
6: V isitClique(i)
7: end if
8: Output “store(p)”
9: end for

10: return

Algorithm 5 presents the test generation algorithm for MSI protocol. We first

invoke CreateTestsSI(n) in Algorithm 4 to cover all transitions that also exist in SI

protocol. Next, V isitClique will recursively perform an Euler tour in the clique of all

global modified states. For example, when we execute V isitClique in the state space

shown in Figure 5-3, we are first going to cover transition IIM-IMI. In the recursive call

of V isitClique in line 6, transition IMI-MII and MII-IMI are visited. After that, transition

IMI-IIM is covered by execution of line 7. In the next round of iteration, IIM-MII and

MII-IIM are visited. To improve the efficiency, we also traverse all global shared states

that are bidirectionally reachable from current global modified state. Finally, in line 3-6 of

CreateTestsMSI(n) we are visiting all uncovered transitions from global shared states

75

to global modified states. Notice that we do not need to run Dijkstra’s algorithm to find

shortest path in line 6, because we must be in a global modified state after executing the

store operation in line 5. The target global shared state can be reached by issuing load

and evict requests based on the position of “S” in its state vector.

5.2.3 MESI Protocol

In MESI protocol, a cache block goes to exclusive (E) state when it is the first one,

which loads a memory address. In a system with n cores, there are n global exclusive

states3 . Figure 5-4 shows the state space with three cores. Unlike global modified

states, global exclusive states cannot be converted to each other directly. Therefore,

the test generation algorithm CreateTestsMSI for MSI protocol needs to be modified to

create tests for MESI protocol. We can add n groups of operations to cover transitions

from the global invalid state to global exclusive states as well as transitions from global

exclusive states to global modified states. Notice that the CreateTestsSI routine, which

is used to visit all transitions between global shared states, also needs to be modified

slightly. The reason is that in MESI protocol, the global invalid state will be converted to

global exclusive states after any load request (III goes to IIE instead of IIS when the first

core issues a load request).

5.2.4 MOSI Protocol

The MOSI protocol contains a new state “owned” (O), which can be used to avoid

unnecessary writeback to memory. A cache block in the modified state is converted

to the owned state, when other cores are trying to load the same cache block. The

owned state can coexist with shared and invalid states. As a result, for a system with

3 A global exclusive state is a global state with a cache block in exclusive state (e.g,
IIE, IEI, and EII in Figure 5-4).

76

III

MII

SII

IIS

SSI

ISI

ISS

IMI

IIM

SIS
SSS

IEI

EII

IIE

Figure 5-4. State space of MESI protocol with 3 cores

n cores, there are n ∗ 2n−1 global owned states4 . Considering the fact that there are

only n + 2n global states in MSI protocol with n cores, the state space of MOSI is much

larger. Despite the large number of states, the state space structure of MOSI protocol

is not complex. The entire space can be divided into three components. The first and

second parts are the hypercube of global shared states and the clique of global modified

states, respectively. They are identical to corresponding structures in MSI protocol. The

third part is a set of n hypercubes with dimension n − 1. Each of the n − 1 dimensional

hypercubes consists of 2n−1 global owned states, whose state vectors have “O” in the

same position. For example, Figure 5-5 shows the state space with three cores. It is

easy to see that states (IOI,IOS,SOS,SOI) (IIO,SIO,SSO,ISO) and (OII,OSI,OSS,OIS)

are composed of three 2-d hypercubes (squares).

One nice property of this state space structure is that there is no transition between

the n hypercubes of global owned states. Therefore, a large number of transitions

4 A global owned state is a global state with a cache block in owned state (e.g, IOI,
IOS, ... , OSS in Figure 5-5).

77

SII
SSI

ISI

ISS

SSS

SOI

IOS

SOS
IMI

MII

IIM SIO

SSO

IIO

OSI
OIS

OSS

OII

ISO
III

IIS

SIS
IOI

Figure 5-5. State space of MOSI protocol with 3 cores

between global owned states can be efficiently covered. We can perform an Euler tour

in each n−1 dimensional hypercube by invoking routine CreateTestsSI on global owned

states like IIO, IOI and OII, where all but one core are in invalid state. In order to cover

transitions from global owned states to global shared states, like IOS-IIS, we have to use

a similar technique which was used in CreateTestsMSI(n) to cover the store transitions.

5.3 Experiments

To analyze the performance of our proposed test generation framework, we

conducted a number of experiments using M5 simulator [15]. M5 is a full system

simulator, which implements a MOESI cache coherence protocol. In order to verify

that our generated tests can achieve all transitions, we modify the cache subsystem

in M5 slightly to allow different processes to access the same physical block. The load

and store operations in the generated tests are translated into corresponding ALPHA

instructions, while evict operation is achieved by loading a different memory address

which is also mapped to the same location in the cache as the cache block under test.

We use the load-linked and store-conditional instruction pairs to ensure the execution

order of instructions in different cores.

78

Table 5-1. Statistics of our test generation algorithm for different protocols
BFS Our approach

States # Transitions Total cost Average cost Total cost Average cost Improv. Test generation
(transition) per transition (transition) per transition factor time (sec)

MSI 8 cores 264 5256 36896 7.0 14664 2.8 60.3% < 1

MESI 8 cores 272 5392 37712 7.0 15312 2.8 59.4% < 1

MOSI 8 cores 1288 26248 196400 7.5 100807 3.8 48.7% 6.2
MOESI 8 cores 1296 26384 197216 7.5 101455 3.8 48.6% 6.2
MSI 16 cores 65552 2621968 29100096 11.1 11567888 4.4 60.2% 54.4

MESI 16 cores 65568 2622496 29103264 11.1 11570464 4.4 60.2% 54.5
MOSI 16 cores 589840 23855632 275254368 11.5 131122063 5.5 52.4% 586

Since M5 only supports MOESI cache coherence protocol, we also developed a

protocol simulator, which can be configured to simulate the state transition of a multicore

system using MSI, MESI and MOSI protocols. We used this simulator to validate the

performance of our test generation approach on other protocols.

In the first experiment, we compared the efficiency of our test generation method

with the tests generated by performing breadth first search (BFS) directly on the global

FSM on different cache coherence protocols with various number of cores. Since tests

generated by BFS are the shortest tests to drive the system from the global invalid

state to the required transition, we use additional operations to reset the global state

after execution of each test. Table 5-1 gives the results. Column “Total cost” presents

the total number of transitions traversed to activate all transitions. Column “Average

cost per transition” gives the average number of transitions we need to traverse in

order to activate an uncovered transition. It can be observed that the total size of the

tests generated by our approach is 50%-60% smaller than the ones generated directly

by BFS. This result can be explained by the fact that the Euler tour exploited in our

algorithm typically covers load and evict transitions on global shared state. The store

transitions on the other hand, are covered in a similar way as the BFS approach. Since

the numbers of allowed load and evict transitions for any global state are equal, we can

save around half of the tests by exploiting the space structure.

We also compared the state and transition coverage of our test generation

approach with a directed random test generator, MCjammer [83]. Figure 5-6 and

79

0%

20%

40%

60%

80%

100%

0 20000 40000 60000 80000

Tr
an

si
tio

n
co

ve
ra

ge

Cost (Total transitions)

Our approach

BFS

MCjammer

Random

Figure 5-6. Transition coverage vs. cost for different test generation methods on MESI
protocol with 8 cores

0%

20%

40%

60%

80%

100%

0 150000 300000 450000 600000

Tr
an

si
tio

n
co

ve
ra

ge

Cost (Total transitions)

Our approach

BFS

MCjammer

Random

Figure 5-7. Transition coverage vs. cost for different test generation methods on MOSI
protocol with 8 cores

80

Figure 5-7 show the relation between transition coverage and testing cost on the same

system. It can be seen that MCjammer is very efficient at the beginning. Actually,

it is more efficient than BFS to achieve 70% coverage. However, it becomes much

slower to cover all transitions. The reason is that it is very unlikely for the algorithm with

randomness to cover remaining uncovered transitions among all allowed transitions. On

the other hand, our proposed test generation approach can always achieve 100% state

and transition coverage with stable higher coverage speed than the BFS based tests.

Based on our experimental results, we can also estimate the overhead of our

approach. Although we described our algorithm in recursive forms to simplify the

presentation, they can also be implemented as iterative routines. As discussed in

Section 5.2.1, our algorithms have linear space complexity with the number of cores.

Since our tests can be generated on-the-fly, its overall space requirement is very small.

The test generation time in Table 5-1 suggests that the runtime of our algorithms is

reasonable. For MOSI protocol with 23 million transitions, we can create all the tests

within 10 minutes, which indicates that our algorithm is quite light-weighted for entire

simulation based verification phase.

5.4 Summary

We proposed an efficient test generation approach for a wide variety of cache

coherence protocols. Based on detailed analysis of the space structure, our approach

creates efficient test sequences for different parts of the global FSM state space

to achieve 100% state and transition coverage for each cache coherence protocol.

Compared with existing approaches based on directed random test generation, our

approach significantly increases the transition coverage metric with linear memory

requirement. Our experimental results on different cache coherence protocols

demonstrated the effectiveness of our approach on systems with many cores, making it

suitable for future multicore architectures.

81

CHAPTER 6
SCALABLE DIRECTED TEST GENERATION

Model checking is a promising technique to automatically generate directed tests.

Model checkers usually accept models presented in special verification languages. It

is not easy to apply them on real implementations. For example, while the Register

Transfer Level (RTL) model of real processors are commonly designed in Verilog or

VHDL, model checking tools like NuSMV only takes SMV models as input. Thus, real

designs must be translated first, which itself can be an error-prone process. Since

model checking is based on static analysis, the complexity of real world designs usually

exceeds the capacity of model checking tools. The solving process may run out of

memory before producing any useful results for real life designs. On the other hand,

random or constrained-random test generation techniques are suitable for real designs,

because they usually perform little reasoning on internal design logic. A large amount

of random stimuli can be generated easily and simulated on real designs. However,

random tests are inefficient to activate specific behaviors. It is therefore desired to have

a test generation approach, which can handle real-life designs, but still able to activate

any required system behavior with a small number of tests.

To bridge the gap between model checking based directed tests and random

tests, various techniques (STAR [55] and HYBRO [56]) combines static and dynamic

analysis. STAR generates tests to activate all control paths of an RTL design, although

it suffers from the path explosion problem. HYBRO addresses this problem using

branch coverage metric in RTL Control-Flow-Graph (CFG). The CFG is “sequentially

unrolled” during the concrete/symbolic simulation to obtain the path constraints and

measure the branch coverage. However, since the CFG and Use-Define chain is

obtained using static analysis, this technique cannot be applied when dynamic array

references [11] are involved. For example, a processor design may write to location

“ram[wb addr]” and read from “ram[ld addr]” in the following cycle, where ram is an

82

array corresponding to the main memory and wb addr and ld addr are two variables. If

ram[wb addr] and ram[ld addr] are referring to the same element during execution and

ram[wb addr] is involved in the control path, all the assignments to ram[ld addr] must

also be considered. However, it is difficult to detect such dependency by static analysis.

As a result, the applicability of [56] is limited, since dynamic array references is widely

used in modern RTL designs to implement register files, buffers, caches and memory.

In this chapter, we address the dynamic array reference problem by making the

array reference concrete. Instead of performing static analysis of the entire design

to get the variable dependency, we compose an instrumented version of the original

design and execute the instrumented design on a Hardware Description Language

(HDL) simulator. During the simulation, the instrumented code will produce a trace file,

which records all the logical operations performed by the design. All dynamic references

to array elements are replaced by their concrete indices in the trace file during the

concrete simulation. Next, the trace is analyzed using a constraint solver. In this way, our

approach is able to analyze real hardware designs with dynamic array references and

detect data dependency through array elements. We also propose several optimization

techniques, which makes our proposed algorithm to have comparable efficiency as

the state-of-art techniques [55][56]. Note that existing techniques [55] and [56] cannot

handle designs with dynamic array references. Our experimental results demonstrate

that our approach is capable of generating directed test efficiently on a variety of

hardware designs. To the best of our knowledge, our approach is the first attempt to

create directed tests for HDL designs with dynamic array references by interleaving

concrete and symbolic simulation.

The rest of the chapter is organized as follows. Section 6.1 describes our test

generation methodology for real HDL designs. Section 6.2 discusses the implementation

details of our approach. Section 6.3 presents our experimental results. Finally,

Section 6.4 concludes the chapter.

83

6.1 Directed Test Generation by Interleaving Concrete and Symbolic Execution

The basic idea of our work is to obtain the logic operations performed by the

design on a single concrete execution path, and perform reasoning on top of it to obtain

new test input. Figure 6-1 shows the key steps in our proposed approach. To explore

different execution behaviors of the design, we first instrument the design with trace

generation code. We also define the input variable set I, which present the input to

the design under test (DUT). Next, we repeatedly simulate the instrumented design as

follows:

1. Use I as input to the DUT.

2. Simulate DUT on a simulator. Collect all the operations performed by the design
and activated path constraints from the trace output.

3. Invoke the constraint solver to check whether the desired behavior p is on current
execution path. If this is the case, record the assignment of I as a test of p.
Otherwise, negate one of the path constraints and use the constraint solver to
obtain the assignment I ′, which forces the design to exercise a different execution
path.

We first explain our test generation workflow using a simple example. Next, we

describe the system model of our target design and several key steps in our workflow.

Finally, we discuss some important optimization techniques to reduce the overall test

generation time.

6.1.1 Illustrative Example

In this section, we use a simple example to show the basic workflow of our

approach. The design is a simple counter module written in Verilog (Figure 6-2). The

test input is the initial value on line 15. Our goal is to let the module execute the code on

line 11 at clock cycle 2.

We first instrument the code and simulate the module for 3 cycles using a random

input value, e.g., out = 0. The output trace is shown in Figure 6-3. The trace is produced

by the instrumented code, which performs the same operations as the original code. In

addition, the instrumented code also prints the performed operation during simulation as

84

Generate Testn+1 from Testn

Instrumented
Design

Instrumentation

Trace

Design under test

Path
Constraints

Testn/Testn+1

Simulation

Generation
Constraint

Generation
Test

Figure 6-1. The workflow of our approach

a trace file. We use (out,0), (out,1), (out,2) and (out,3) to represent each out in different

cycles. Notice that “IF (out,0) == 40 not taken” statement indicates that the if statement

on line 10 is evaluated to be false. Clearly, line 11 is not executed when the initial value

of out is 0.

Since our goal is to let line 11 to be executed at cycle 2, the variable out must have

value 40 at cycle 2. Similarly, (out,0), (out,1), (out,2) and (out,3) must satisfy constraints

in Figure 6-4. Therefore, we can use constraint solvers like Yices [34] to solve these

constraints, and produce the satisfiable assignments to all variables. In this case, the

solver determines (out,0), (out,1), and (out,2) should be 38, 39, and 40, respectively. In

other words, the initial value of (out,0) should be 38 in order to activate line 11 at cycle 2.

This is the intended directed test.

85

1 module counter (out , c lk , rese t) ;
2 parameter WIDTH = 8;
3 output [WIDTH−1 : 0] out ;
4 input c lk , rese t ;
5 reg [WIDTH−1 : 0] out ;
6 wire c lk , rese t ;
7 always @(posedge c l k)
8 begin
9 out <= out + 1 ;

10 i f (out == 40)
11 $display (” Ac t i va ted ”) ;
12 end
13 always @reset
14 i f (rese t)
15 out = 0 ; / / i n i t i a l value
16 endmodule

Figure 6-2. Counter.v

(out , 0) = 0
(out , 1) = (out , 0) + 1
IF (out , 0) == 40 not taken
(out , 2) = (out , 1) + 1
IF (out , 1) == 40 not taken
(out , 3) = (out , 2) + 1
IF (out , 2) == 40 not taken

Figure 6-3. Sample Trace

(out , 1) = (out , 0) + 1
(out , 0) != 40
(out , 2) = (out , 1) + 1
(out , 1) != 40
(out , 3) = (out , 2) + 1
(out , 2) = 40

Figure 6-4. Sample Path Constraints

If we observe the path constraints (Figure 6-4) obtained from trace during

concrete simulation (Figure 6-3), it is easy to see that we are essentially performing

a chronological back tracking in the space of execution paths. By negating the topmost

86

Unreached

Taken

Taken

Taken

NotTaken

NotTaken

NotTaken

a

b

(out,0)==40

(out,1)==40

(out,2)==40

Execution Paths

Figure 6-5. Chronological Back Tracking

constraint 1 in the trace file ((out,2) != 40), we force the design to switch to a different

execution path (transition “a” in Figure 6-5). Sometimes, it is also possible that our

desired path constraints (Figure 6-4) are not satisfiable, i.e., the branch (out,2)==40 in

Figure 6-5 can not be taken. In this case, we can negate the next topmost constraint

((out,1) != 40) and use the constraint solver to check whether the branch at node

(out,1)==40 can be taken. The process is repeated, until the desired test is found, or all

branches are activated.

Although this test generation example is performed on a simple Verilog design, it

illustrates the basic idea of our proposed approach. In the rest of the section, we are

going to discuss how to automate every step during this process, and generate the

entire directed test suite automatically.

6.1.2 System Model

Our approach takes Verilog HDL program as input. Our current implementation

supports most common features of Verilog, such as always@(... sensitive list ...),

continuous assignment, conditional branches (if, case), and different variable types (reg,

1 Due to use of stack in our implementation, the last path constraint is the topmost
constraint.

87

wire). Although our implementation is based on Verilog, the same working principle can

also be applied to VHDL designs, since it also describes concurrent finite state systems.

Our current implementation supports common fault models such as path activation

fault and stuck-at fault. These fault models describe possible faults that can occur during

the execution of the system. The path activation fault model can be used to check

whether there is any unreachable code in the design. The stuck-at fault can be used to

check whether the given variable always has the same value. Based on the given fault

model, our test generation technique will generate the test suite, which can activate all

possible faults of the system under the fault model. It is important to note that these

fault models are by no means the golden model rather it is a representative model.

Various graph-based fault models (including node fault, edge fault, sequence fault and

interactions fault) are explored in Section 6.3.3.

Without loss of generality, we discuss our approach in the context of single clock

domain. We use tuple (name, clk) to index each variable in every cycle. When multiple

clock domains are used, the clk should be the cycle number in corresponding clock

domain.

6.1.3 Instrumentation

The primary purpose of the instrumentation is to use the simulator to produce a

trace file during concrete simulation of the RTL design. The resultant trace file is crucial

to our test generation framework for two reasons. First, the trace file records all logic

operations performed during the concrete simulation, which enables us to perform

symbolic simulation and directed test generation. Besides, the trace file also provides

information about different concrete execution paths. To ensure that each variable is

unique, we need to flatten all module instances before instrumentation. The details are

described in Section 6.2.1.

Table 6-1 shows the instrumentation rules. For ease of presentation, we use Verilog

syntax for illustration. We use variable cc to denote the number of clock cycles from the

88

Table 6-1. Verilog instrumentation code

//Continuous assignment always
clkwidth $display((v, cc) = e);

assign v = e; assign v = e;
//Blocking assignment
v = e; $display((v, cc) = e);

v = e;
//Assignment within
//always@(pos/negedge ...) $display((v, cc+ 1) = e);
v <= e; v <= e;
//Assignment within
//other always blocks $display((v, cc) = e);
v <= e; v <= e;
//If
if(p) if(p)

s; begin $display(IF p taken); s; end
else else

s′; begin $display(IF p not taken); s′; end
//Case case(e)

x:
case(e) begin $display(CASE e = x); s; end
x: s; y:
y: s′; begin $display(CASE e = y); s′; end
default: s′′; default:

begin $display(CASE e! = x, y); s′′; end
//Array index
//b[e] is an array reference $display(...b eval(e)...);
// in a statement
...b[e]...; ...b[e]...;
//Beginning of a cycle $display(New cycle);

cc = cc+ 1;

beginning of the simulation. We use the “display” statement to print the syntactic objects

into the trace file during the simulation of the instrumented code. For normal arithmetic

operations, the instrumented code just record the exact operation that is performed by

89

the design. For example, for continuous assignment (first row in Table 6-1), the original

code is

assign a=b+c ;

The instrumented code is

always

cyc le $display ((x , cc)= (y , cc)+ (z , cc)) ;

assign x=y+z ;

which have the same funtionality as the original code and print (x, cc) = (y, cc) + (z, cc) in

every cycle with corresponding cycle number (cc). In fact, the value of cc are populated

automatically during concrete simulation. The details can be found in Section 6.2.2.

For other assignment statements, the instrumented code also marks whether the

assignment is made within

always@(pos/negedge ...) block. In this way, the trace file records whether the left hand

side variable receives the value of right hand side expression in the same clock cycle.

Our framework enables natural analysis of arrays. To reason with dynamic array

references, we replace the index expression of each array elements into its concrete

value, and treat each array element as an independent variable. During the concrete

simulation, the index expression e is evaluated. The corresponding array element is

refereed by concatenating the concrete results eval(e) to the array name in the trace file.

We discuss the details in Section 6.2.3.

6.1.4 Concrete Simulation

Once the design is flattened and instrumented, we interleave concrete and symbolic

simulation of the design. In each iteration, we perform the concrete simulation of

the instrumented design using a simulator with desired number of cycles. Since the

instrumentation process does not affect the functionality of the design, the behavior

of the instrumented design is identical to the original design. At the same time, the

90

instrumented design produces a trace file, which records every operation performed by

the design in the correct order. This trace file will be used for the symbolic simulation of

the concrete execution path.

6.1.5 Path Constraint Generation

In this step, we convert the trace file into a path constraint file. This step is required

for two reasons. First, the continuous assignments are simulated using always blocks.

As a result, the constraint corresponding to the continuous assignment may be printed

after the trace is produced by the real always block in the same cycle. To simplify

the solving process, we re-arrange the trace file so that all constraints produced by

continuous assignments are placed before the constraints corresponding to normal

always blocks.

The semantics of a register variable requires that if a variable is not updated, it

should keep its value from the previous cycle. However, this property is not enforced by

the constraints in the trace file. Thus, we have to examine that all assignments made

during a cycle, and add additional constraints to ensure that all registers still maintains

their values if they are not updated. The structure of a valid path constraint file is shown

in Figure 6-6.

... ...
Cycle k Continuous Assignments
Cycle k Additional Constraints
Cycle k Always blocks
Cycle k + 1 Continuous Assignments
Cycle k + 1 Additional Constraints
Cycle k + 1 Always blocks
... ...

Figure 6-6. Path constraint file structure

91

6.1.6 Test Generation

First, we discuss the test generation for path activation fault. Since the goal is

to explore unreached execution paths, we can negate a path constraint and use the

constraint solver to create a new input assignment, which will guide the design to a

different path. Currently, we negate the top most path constraint. As a result, we are

essentially performing a depth first search.

Algorithm 6: Test Generation Algorithm
test gen(constr[0, ..., top])

1: for i = top to 0 do
2: if constr[i] is a branch constraint then
3: c = find next(constr[i])
4: while c 6= null do
5: I ′ = satisfy(constr[0, ..., i− 1] ∧ c)
6: if I ′ 6= null then
7: return I ′

8: end if
9: c = find next(constr[i])

10: end while
11: end if
12: end for
13: return null

find next(branch)

1: Add branch into covered
2: if branch is an IF statement then
3: if ¬branch \∈ covered then
4: return ¬branch
5: end if
6: end if
7: if branch is a CASE statement then
8: find and return next uncovered case, if any.
9: end if

10: return null

Algorithm 6 presents our test generation algorithm test gen for path activation fault

in detail. The algorithm takes the path constraint file constr[0, ..., top] as input, where

constr[top] and constr[top] are the first and last constraints in the file, respectively.

92

Function test gen examines all constraints produced by branch conditions in the reverse

order. For every branch constraint, we first mark it as covered, then try to find the next

uncovered branch constraint. For IF statement, we just need to check the negated

version of the branch constraint. For CASE statement, we have to search for the next

uncovered case. After that, the new branch constraint c is added to all previous path

constraints constr[0, ..., i − 1] to form the constraints for the next test. If it is satisfiable,

the assignment I ′ (returned from the constraint solver) will be returned as the next test

input. Otherwise, we examine next uncovered branch, until all branches are checked.

In this way, it is guaranteed that I ′ will force the design to exercise a different execution

path during the next round of simulation. Recall that the design is simulated for a fixed

number of cycles. Our algorithm eventually terminates once all reachable branches

within the given number of cycles are explored.

Each branch is uniquely identified by its line number, flattened instance name, and

cycle number. To avoid the path explosion problem, a covered branch is marked and not

explored again in the following test generation process.

For other fault models (including stuck-at, node, edge, sequence and interaction

fault model), the desired behavior can be checked during the exploration of different

execution paths. Once we obtain a new execution path, the constraint solver is

employed to check whether the desired behavior is possible on the path.

6.1.7 Constraint Solving Optimization

In our current implementation, we employed Yices [34] as our constraint solver.

Since the path constraint usually contains a very large number of constraints, it is very

important to reduce time consumption in constraint solving. Currently, we use three

optimization techniques.

1. Cone-of-influence (COI) reduction: In many designs, a large number of variables
are used for data transfer and not involved in the control path.In other words, they
are not in the cone-of-influence of any branch constraints in current execution
path. It is therefore safe to remove the constraints involving these variables from
the path constraint file without changing its satisfiability. This optimization is

93

similar to the CFG unrolling and UD chain slicing technique proposed in [56]. It
should be noticed that since the variable indices in arrays are replaced by their
concrete values in the trace file, we are able to detect the data dependency
through dynamic array reference.

2. Early unsatisfiable detection: Some variables, like reset signal, are used widely
across the entire design as switch variables. As a result, they appears in the
path constraint for several times in every clock cycle. It is enough to negate the
first occurrence of a recurring path constraint, because the negation of its other
occurrence must be unsatisfiable.

3. Unsatisfiable core detection: Some constraint solver is capable to return the
unsatisfiable core of a unsatisfiable model. Clearly, if all constraints in the
unsatisfiable core remains in the path constraint file, the model must be still
unsatisfiable.This information can be utilized to reduce the number of expensive
constraint solver calls by skipping the negation of some path constraints.

6.2 Implementation Details

6.2.1 Design Flattening

Ideally, we can use an HDL parser to produce a flattened version of the original

design. Unfortunately, modern HDL parsers usually perform some optimizations during

the flattening process. For example, some arithimetic operations may be replaced by

synthesizable components. As a result, it is not easy to map the operation performed by

the flattened design back to the original design. We use a different approach to solve

this problem. Instead of flattening the real design and then performing instrumentation,

we solve the problem from the simulator side.

In modern Verilog simulators, the input Verilog file is usually compiled into a

simulation file before real simulation execution. For some simulators like Icarus Verilog

[92], the compiled simulation file is presented as an assembly code like program.

Suppose the instrumented display statement is

$display("(assert (= need_off 0b0))" ,need_off);}

where “assert (= need off 0b0)” means need off equals to zero in Yices input

language. In this simulation file, the display statement is presented as,

%vpi_call 2 6077 "$display","(assert (=need_off 0b0));", v0x130e570_0;

94

Here, the argument list on the second line is a list of addresses, each of which

corresponds to a register, or wire variable in the Verilog file. For example, v0x130e570 0

is the address of variable need off. We postfix the variable names with their addresses

to remove the ambiguity caused by instantiation of the same module. For example, the

above statement is written as

%vpi_call 2 6077 "$display",";(assert (= need_off130e570 0b0));";

In this way, different instantiation of the same variable is disambiguated within the

trace file. For example, suppose there is another instantiation of variable need off, it

must have a different address other than v0x130e570 0 in the compiled simulation file.

6.2.2 Clock Cycle Population

To differentiate the same variable in different cycles, we concatenate each variable

name with the concrete value of the current clock cycle number. During the concrete

simulation, the value is populated automatically. To accomplish this, we postfix the

variable name with “%0d”. For example,

%vpi_call 2 6077 "$display",";(assert (= need_off130e570c%0d 0b0));",

v0x13233b0_0;

where v0x13233b0 0 is the address of cc. During the concrete simluation, the trace file

automaticly receives the correct cycle count, i.e., the trace output in the second cycle

becomes

(assert (= need_off130e570c2 0b0));

6.2.3 Dynamic Array Reference Disambiguation

As discussed in Section 6, we address variable-indexed elements in the array using

the concrete value of the indices, so that we can reason about dynamic data without

alias analysis. We implement this feature as follows. Suppose the following display

statement is used to assign array element ram[wb adr i] the value 0b.

%vpi_call 2 42 "$display", " ;(assert (= ram[wb_adr_i] 0b0));",

v0x1322030, v0x13221b0_0;

95

Since wb adr i is the index of the element in the array ram, we rewrite the above

statement as

%vpi_call 2 42 "$display", " ;(assert (= ram1322030_%d 0b0));"

,v0x13221b0_0;

Assume ram[wb adr i] refers to the element ram[65535] when the corresponding

assignemnt is made during the concrete simulation, i.e., wb adr i is 65535. Since we

replace wb adr i with its concrete value using%d, the resultant trace output becomes

(assert (= ram1322030_65535 0b0));

Clearly, all references to ram[65535] can be easily identified by checking whether it

refers to variable ram1322030 65535.

6.3 Experiments

We developed a prototype of our directed test generation framework. Our test

generation tool takes a Verilog design as input and iteratively produces new tests. We

have modified Icarus Verilog [92] for instrumentation with approximately 500 lines of

C++ code. We also implemented a test generation engine (approximately 2000 lines of

C++ code) to perform concrete simulation on the HDL simulator, analysis the trace file,

generate path constraints and invoke the SMT solver. Our framework is fully automated

and there is no need to manual intervention at any stage.

In this section, we present the experimental results of our case studies. We

compared our approach with existing methods including HYBRO [56], the random

test technique, and model checking based approach [22]. The experiments are

performed using RTL models from ITC99 and two processor designs. As discussed

in Section 6.2.1, we used Icarus Verilog as Verilog parser and simulator. Yices [34] was

employed for constraint solving. All experiments were performed on 3GHz AMD Opteron

Processor with 10GB memory.

96

6.3.1 Designs without Dynamic Array References

In this section, we compare the performance of our approach with HYBRO [56].

To make fair comparison, we choose the same ITC99 RTL models as [56], with same

number of unrolled cycles and the same SMT solver. We only compare the branch

coverage in our experiments, because the assertions used for functional coverage in

[56] is not available to public.

Table 6-2. Comparison with HYBRO [56]

Bench Unroll HYBRO[56] Our approach
mark Cycles Bran Cov Time Bran Cov Time
b01 10 94.44% 0.07s 96.30% 2.24s
b06 10 94.12% 0.10s 96.30% 2.36s
b10 30 96.77% 52.14s 96.67% 24.61s
b11 10 78.26% 0.28s 82.35% 3.75s
b11 50 91.30% 326.85s 94.44% 270.28s
b14 15 83.50% 301.69s 98.95% 257.59s

Table 6-2 presents the experimental results. The first two columns indicates the

design name and the number of unrolled cycles. The next four columns show the

branch coverage rate and the time consumption of HYBRO [56] and our approach,

respectively. The branch coverage rate is calculated using the same convention in [56],

where unreachable default branches in “case” statement are also included. The results

suggest that our approach has comparable performance with HYBRO [56] on these

benchmarks. Comparable performance is expected because the cone-of-influence

reduction employed in our approach is essentially equivalent to the CFG unrolling and

UD chain slicing optimization in HYBRO [56]. Note that these are 8 ITC99 benchmarks

that have arrays. Since [56] is not applicable on dynamic array references, we do not

present those results.

6.3.2 Designs with Dynamic Array References

This experiment was performed on Zet processor, which is an open source

implementation of the 16-bits x86 instruction set architecture. When synthesized in

97

configurable devices like FPGA, Zet processor can boot MS-DOS 6.22 and run Microsoft

Windows 3.0. The processor is implemented using 5K+ lines of Verilog code, 289

continues assignments, 53 always blocks, 324 register variables and 666 wire variables.

Both the main memory and the registers file are modeled as arrays and addressed with

variables.

Our goal in this experiment is to achieve high branch coverage in source code

level. This is important because there are a large number of conditional branches in

the opcode decode stage. Besides, since x86 instruction set has variable length binary

encoding, it is not easy to invoke all branches in the design. The primary input of the

design is the lowest 4 bytes of the memory space (0x00000-0x00003). Before executing

the test, the processor only executes a jump instruction (to 0x00000) after reset. The

design is simulated for 10 cycles. We compared with random tests since it is the only

test generation technique that supports HDL designs with dynamic array reference.

Table 6-3. Comparison with random testing

Method #Tests Explored Branch Time
Branches Coverage

Random 1000 197 89.95% 366.45s
Random 5000 204 93.15% 1981.73s
Random 10000 208 94.98% 3785.49s
Random 20000 212 96.80% 7386.92s
Random 40000 213 97.26% 14585.83s
Our approach 140 218 99.54% 1320.58s

Table 6-3 shows the experiment result. The first five rows depict the results by using

1000, 5000, 10000, 20000, and 400000 random tests, respectively. The performance of

our approach is shown in the last row. It can be seen that due to the random nature, it is

very time consuming to reach 100% branch coverage even using thousands of random

tests. On the other hand, our directed test generation scheme effectively explored

execution paths by avoiding covered branches. With less than 200 tests, our framework

achieves higher coverage than 40000 random tests.

98

Figure 6-7. The MIPS architecture [22]

6.3.3 SAT-based BMC versus Our Approach

To evaluate the effectiveness of our proposed approach in other fault models,

we compare our approach with the BMC-based test generation technique [22]. The

experiment is performed on the model of a single-issue MIPS processor. Figure 6-7

shows its brief structure. It has five pipeline stages: fetch, decode, execute, memory

(MEM), and writeback. The execute stage has four parallel execution paths: integer

ALU, 7 stage multiplier (MUL1 - MUL7), four stage floating-point adder (FADD1 -

FADD4), and multi-cycle divider (DIV). The SAT-based BMC approach accepts the SMV

description of MIPS as input, where as our approach accepts an equivalent Verilog

description. We use four different fault models from :

1. Node Fault, i.e., a node cannot be activated.

2. Edge Fault, i.e., successive state of a node cannot be activated in certain order.

99

3. Sequence Fault, i.e., the associate nodes and edges cannot be activated in correct
order.

4. Interaction Fault, i.e., a set of nodes cannot be activated at the same time.

Since the faults in are described using LTL properties, we manually translated all

properties into Verilog assertions regarding corresponding registers in different cycles.

The design is simulated for 10 cycles.

Table 6-4. Comparison with BMC [22]

Types #Faults BMC [22] Our approach
Time Time

Node Fault 20 17.53s 22.56s
Edge Fault 25 37.51s 24.27s
Sequence Fault 16 21.10s 20.29s
Interaction Fault 110 375.22s 340.56s

Table 6-4 shows the experimental results. The first two columns present the fault

types and the number of properties to be activated for each fault type. The next two

columns depicts the time consumption of BMC [22] and our proposed technique,

respectively. Although the test generation processes are quite different, the total time

consumption of BMC is close to the time consumption of our approach. Actually, the

trace file generated by our approach can be viewed as a unrolled version of the design

on current execution path, while the BMC-based approach unrolls the SAT presentation

of the transition relation of the design. Therefore, our approach has comparable

performance with SAT-based BMC when a simple design is involved. However, it

should be noticed that it is not always possible to use model checking on real designs

directly. When the design contains many branches and dynamic array references, it

becomes difficult to apply BMC-based approach without translation or abstraction, while

our proposed approach can still be applied as illustrated in Section 6.3.2.

100

6.4 Summary

Functional verification of modern SOC designs is challenging due to increased

design complexity and reduced time-to-market. Directed tests are promising because it

requires significantly less number of tests to achieve the same coverage goal compared

to random tests. Unfortunately, model checkers usually do not accept real hardware

designs or support features such as arrays. Moreover, the real designs usually exceeds

the capacity of model checkers due to the complexity of static analysis. In this chapter,

we presented a novel test generation approach that addresses both of these problems

using interleaved concrete and symbolic execution. The design is first simulated to

generate an execution trace. The constraint solver is then applied to find the test

inputs which can force the real design to exercise the desired behavior. Compared with

existing approaches based on combined concrete and symbolic execution, our approach

is capable of analyzing real processor designs with dynamic array references. The

experimental results demonstrate that our proposed technique is scalable, and enables

directed test generation for real designs.

101

CHAPTER 7
TEMPERATURE- AND ENERGY-CONSTRAINED SCHEDULING IN REAL-TIME

SYSTEMS

Since high on-chip thermal dissipation has severe detrimental impact, we have to

control the instantaneous temperature so that it does not go beyond a certain threshold.

Dynamic voltage scaling (DVS) is acknowledged as one of the most efficient techniques

used in both energy optimization [21] and temperature management [101]. In existing

literatures, temperature (energy)-constrained means that there is a temperature

threshold (energy budget) which cannot be exceeded, while temperature (energy)-

aware means that there is no constraint but maximum instantaneous temperature

(total energy consumption) needs to be minimized. In this chapter, we propose a

formal method based on model checking for temperature- and energy-constrained

(TCEC) scheduling problems in multitasking systems. In this work [71], we present an

approximation algorithm, which effectively addresses the state space explosion problem

caused by model checkers [88]. The approximation scheme will give no false positive

answer, while its possibility to report false negative answer can be small enough for

practical usage.

The rest of the chapter is organized as follows. Section 7.1 provides related

background information. Section 7.2 provides an overview of our framework. Section 7.3

describes our contribution in details. Experimental results are presented in Section 7.5.

Finally, Section 7.6 summarizes the chapter.

7.1 Background and Problem Formulation

This section provides the formal description of the TCEC scheduling problem. Since

many aspects of real-time systems are involved, we first provide some background

information.

7.1.1 Thermal Model

A thermal RC circuit is normally utilized to model the temperature variation behavior

of a microprocessor [101]. We adopt the RC circuit model proposed in [75], which is

102

widely used in recent research [101] [46], to capture the heat transfer phenomena in the

processor. If P denotes the power consumption during a time interval, R denotes the

thermal resistance, C represents the thermal capacitance, Tamb and Tinit are the ambient

and initial temperature, respectively, the temperature at the end of the time interval t can

be calculated as:

T = P ·R + Tamb − (P ·R + Tamb − Tinit) · e
−t
RC

= (1− e
−t
RC)Ts + e

−t
RC Tinit

(7–1)

where t is the length of the time interval, Ts = P ·R+Tamb is the steady-state temperature.

7.1.2 Energy Model

We adapt the energy model proposed in [60]. Processor’s dynamic power can be

represented as

Pdyn = α · C · V 2
dd · f (7–2)

Here Vdd is the supply voltage and f is the operation frequency. C is the total capacitance

and α is the actual switching activity which varies for different applications [8]. In other

words, task’s power profile can be different from each other. Static power is given by

Psta = Vdd · Isubth + |Vbs| · Ij where Vbs, Isubth and Ij denote the body bias voltage,

subthreshold current and reverse bias junction current, respectively. Hence, we have

P = Pdyn +Psta. Our technique is, however, independent of the power model and thermal

model.

7.1.3 System Model

The system we consider can be modeled as:

1. A voltage scalable processor which supports l discrete voltage levels {v1,v2, ... ,vl}

2. A set of m independent tasks {τ1, τ2, ... ,τm}.

3. Each task τi ∈ {τ1, τ2, ... ,τm} has known attributes including worst-case workload,
arrival time, deadline, period (if it is periodic) or inter-arrival time (if it is aperiodic/sporadic).

103

The runtime overhead of voltage scaling is variable and depends on the original and

new voltage levels. The context switching overhead is assumed to be constant. For ease

of discussion, the terms task, job and execution block refer to the same entity in the rest

of this chapter.

7.1.4 TCEC problem

The proposed methodology can be applied to both scenarios in which task set

has a common deadline and each task has its own deadline. For ease of discussion,

the following definition of TCEC problem is constructed for task sets with a common

deadline. The second case will be discussed in Section 7.4.

Given a trace of m jobs {τ1, τ2, · · · , τm}, where task τi+1 is executed after τi (1 ≤

i < m). If tasks are assumed to have the same power profile (i.e., α is constant), the

energy consumption and execution time for τi under voltage level vj, denoted by wi,j

and ti,j respectively, can be calculated based on the given processor model. Otherwise,

they can be collected through static profiling by executing each task under every voltage

level. Let ψi,j and ωi,j denote runtime energy and time overhead, respectively, for scaling

from voltage vi to vj. Since power is constant during an execution block, temperature

is monotonically either increasing or decreasing [46]. We denote T (i) as the final

temperature of τi. If the task set has a common deadline D, the safe temperature

threshold is Tmax and the energy budget is W , TCEC scheduling problem can be defined

as follows.

104

Definition 5. TCEC instance: Is there a voltage assignment {l1, l2, ..., lm}1 such that:

m∑
i=1

(ti,li + ωli−1,li) ≤ D (7–3)

m∑
i=1

(wi,li + ψli−1,li) ≤ W (7–4)

T (i) ≤ Tmax,∀i ∈ 1, ...,m (7–5)

T (i) is calculated based on Equation (7–1) for each i, i.e.,

T (i) = (1− βi)T lis + βiT (i− 1) (7–6)

where βi = e−ti,li/RC (Recall that ti,li is the worst case execution time of task τi under

voltage level li), T (0) = Tinit, and T lis is the steady-state temperature of the system,

when li is applied. Equation (7–3), (7–4) and (7–5) denote the common deadline, energy

and temperature constraints, respectively.

When the workload is periodic, we also require the temperature at the end of the

hyperperiod to be less than or equal to the initial temperature. In this way, the resultant

schedule is guaranteed not to exceed the temperature constraint irrespective of the

length of the execution time (i.e., the hyper-period may repeat many times).. Formally,

suppose there are m tasks within the hyperperiod, and the last task is τm, in addition to

the temperature constraints in (7–5), we also require

T (m) ≤ Tinit (7–7)

More detailed discussion about periodic workload can be found in Section 7.4.

1 li denote the index of the processor voltage level assigned to τi.

105

7.2 Overview

Figure 7-1 illustrates the workflow of our approach, which accepts a task execution

trace as input. The task execution trace can be produced by a scheduler with certain

scheduling policy. The scheduler executes the task set under the highest voltage

level and produces a trace of execution blocks. An execution block is defined as

a piece of task execution in a continuous period of time under a single processor

voltage/frequency level. Each execution block is essentially a whole task instance in

non-preemptive systems. However, in preemptive scheduling, tasks could be preempted

during execution hence one block can be a segment of one task. The scheduler records

runtime information for each block including its corresponding task, required workload,

arrival time and deadline, if applicable.

The task execution trace, along with system specification (processor voltage,

frequency levels, temperature constraints or/and energy budget) and thermal/power

models are fed into the timed automata generator (TAG) that we have developed. TAG

generates two important outputs. One is the corresponding timed automata model [88],

and the other one is properties reflecting the temperature/energy/deadline constraints

defined in system specification. After that, a suitable solver (e.g., a model checker) is

applied to find a feasible schedule of the tasks, or confirm that the required constraints

cannot be met. This methodology is flexible and completely automatic. It is based on

formal technique and suitable in early design stages.

As discussed in [88], model checkers like UPPAAL can be used to verify the

generated model directly. However, when the number of jobs is large, it can be time

consuming to check the properties on the timed automata directly. The reason is that the

underlying symbolic model checker sometimes cannot handle large problems due to the

state space explosion problem. To address the state space explosion problem in model

checking, we propose an approximation algorithm for TCEC scheduling in Section 7.3.

106

We also demonstrate the applicability of our approach to solve other problem variants

including TC, TA, TAEC and TCEA in Section 7.4.

System

Specification

Timed Automata

Description

Temperature/

Power Model

Properties

Result + Solution Trace

Task Execution

Trace

Temperature/

Energy

Constraints

Timed Automata

Generator (TAG)

Problem

Solving Driver
Model Checker

Figure 7-1. Overview of our TCEC schedulability framework.

7.3 Approximation Algorithm for TCEC Scheduling

To alleviate the state explosion problem in TCEC scheduling, we can formulate our

model checking problem as a Multi-Constrained Path problem (MCP). Although MCP

is NP-Complete for more than one constraints, we are able to design polynomial time

approximation scheme which can be tuned with enough accuracy for practical design

usage. In this section, we first explain how to model TCEC problem as MCP. Next, we

discuss the pseudo-polynomial time model checking algorithm based on Bellman-Ford

algorithm. Finally, we present our polynomial time approximation algorithm for TCEC.

7.3.1 Notations

Given a directed graph G = (V,E), a path p = s → n1 → · · · → ni and an

edge ei = (ni, ni+1) ∈ E, where s, n1, · · · , ni ∈ V , the notation p||ei denotes the path

s → n1 → · · · → ni → ni+1. In other words, p can also be expressed as e0||e1|| · · · ||ei,

where e0 = (s, n1), e1 = (n1, n2),· · · ,ei = (ni, ni+1).

107

Given vectors a, b ∈ RN , we say that a is dominated by b, or a ≤ b, iff each

component of a is smaller or equal to the corresponding component in b. For a vector a,

we use a1, a2, a3 to denote the first, second and third component of a.

7.3.2 TCEC as MCP

··
···

· ··
·

s

d

n1,2 n1,L

n2,Ln2,1

n1,1

n2,2

· · ·

nm,1 nm,2 nm,L

Figure 7-2. Job execution graph

An instance TCEC can be reduced to an instance of MCP, if we view the execution

jobs at different voltage levels as a path in job execution graph (JEG). As shown in

Figure 7-2, a JEG contains a source node s, a destination node d, and m layers of

job (task) nodes. In each layer, there are l nodes for each voltage level. Edges only

exist between different layers of job nodes, or job nodes and source/destination nodes.

Formally, we define JEG as follows.

Definition 6. Job execution graph (JEG) is an acyclic directed graph G = (V,E) with

following properties: V = {s, d}
⋃
{ni,j|1 ≤ i ≤ m, 1 ≤ j ≤ l}; E = {(s, n1,j)|1 ≤ j ≤

l}
⋃
{(nm,j, d)|1 ≤ j ≤ l}

⋃
{(ni,j, ni+1,j′)|1 ≤ i < m, 1 ≤ j, j′ ≤ l}.

In order to calculate the values of time, energy and temperature on JEG, we

recursively define path transfer functions for path p = e0||e1|| · · · ||ei−1||ei (1 ≤ i ≤ m) from

s to ni,j as:

108

fpt (t0) = f qt (t0) + ti,j + ω(j′, j) (7–8)

fpw(w0) = f qw(w0) + wi,j + ψ(j′, j) (7–9)

fpT (T0) =β · f qT (T0) + (1− β) · Ts,

β = e−ti,j/RC
(7–10)

where q = e0||e1|| · · · ||ei−1 is a prefix of p, which starts from s and ends at ni−1,j′. For

p = e0 = (s, n1,j),

fpt (t0) = t0 (7–11)

fpw(w0) = w0 (7–12)

fpT (T0) = T0 (7–13)

where t0, w0 and T0 are the time, energy consumption and temperature before the

execution of the task set. Normally, we have t0 = w0 = 0 and T0 = Tinit. We can also

write the path transfer functions in vector form

f p(I) ,


fpt (t0)

fpw(w0)

fpT (T0)

 (7–14)

where I = [t0 w0 T0]T .

Using the above definition, the value of time, energy consumption and temperature

of first i jobs with voltage assignment {j1, j2, · · · , ji} can be expressed as f p(I),

where p = s → n1,j1 → · · · → ni,ji. We use the example in Figure 7-3 to illustrate

such computation in practice. In this case, we have m = 2 jobs and l = 2 voltage

levels. Suppose that the initial temperature T0 = 65◦C and constant RC = 30us.

The design constraints are deadline D = 32us, energy budget W = 55mJ and

109

e1[0us, 0mJ]

d

s

n1,1[70
◦C]

n2,1[70
◦C]

n1,2[80
◦C]

n2,2[80
◦C]

e2[0us, 0mJ]

e3[20us, 30mJ]

e8[9us, 24mJ]e7[12us, 18mJ]

e6[15us, 40mJ]

e5[20us, 41mJ]

e4[21us, 31mJ]

Figure 7-3. JEG of TCEC. The values next to each edge are corresponding time and
energy consumption.

maximum temperature Tmax = 75◦C. Assume that we decide to use voltage level 1

and 2 to execute job 1 and 2 respectively. Based on the definition of JEG, this voltage

assignment corresponds to s− d path p = e1||e4||e8 (highlighted). The time consumption

after the execution of all jobs can therefore be computed as

f
e1||e4||e8
t (0) = f

e1||e4
t (0) + 9us

= f e1t (0) + 21us+ 9us

= 0us+ 21us+ 9us

= 30us

Similarly, we can compute the energy consumption of p as

f e1||e4||e8w (0) = 0mW + 31mJ + 24mJ = 55mJ

and the final temperature of p as

f
e1||e4||e8
T (0) = (e−

9
30 (e−

21
30 · 65◦C + (1− e−

21
30) · 70◦C)

+ (1− e−
9
30) · 80◦C) = 70.8◦C

110

In other words, our schedule or path p satisfies the constraints D = 32us, W = 55mJ

and Tmax = 75◦C.

Clearly, the model checking problem discussed in [88] can be answered by checking

whether there exists a path p, such that f p(I) ≤ C, where C = [D W Tmax]
T . The

formal definition of our MCP problem is as follows.

Definition 7. MCP (G, I,C) instance: Given a job execution graph G, an initial state

vector I = [t0, w0, T0]T , a constraint vector C = [D,W, Tmax]
T , is there an s − d path

p = e0||...||em such that for all 0 ≤ i ≤ m

f e0||···||ei(I) ≤ C

The definition above seems to be tighter than the definition of TCEC given in

Section 7.1.4, because all constraints are enforced after each job, while the deadline

and energy constraint are enforced only after the last job in TCEC. However, they

are essentially equivalent due to monotonic nature of execution time and energy

consumption.

In the rest of the chapter, we will use MCP to present MCP (G, I,C) for ease of

illustration. Our definition of MCP differs from Quality of Service (QoS) MCP problems

[26, 76, 96, 98] in networking, because the computation of the temperature is not

additive. As a result, the existing techniques can not be applied directly to solve our

problem.

7.3.3 An Exact Algorithm for MCP

We have developed Algorithm 7, which is an extended Bellman-Ford (EBF)

algorithm used for computing the exact answer for MCP problem. It is developed based

on the EBF algorithms in [26, 76, 98], which were used to solve MCP with constant

additive constraints. This algorithm accepts an MCP instance, including JEG G, initial

state vector I, constraint vector C, and returns the answer to the MCP problem. The

basic idea of this algorithm is to keep updating a path set Path(v) for each vertex v,

111

Algorithm 7: Extended Bellman-Ford (EBF) Algorithm
EBF (G, I,C)

1: for each v ∈ V do
2: Path(v) = ∅
3: end for
4: for j = 1 to |l| do
5: Path(n1,j) = {(s, n1,j)}
6: end for
7: for i = 2 to |m| do
8: for j = 1 to |l| do
9: for each edge (u, ni,j) ∈ E do

10: Relax(u, ni,j)
11: end for
12: end for
13: end for
14: for each edge (u, d) ∈ E do
15: if Relax(u, d) then
16: return TRUE
17: end if
18: end for
19: return FALSE

Relax(u, v)

1: for each p ∈ Path(u) such that f p||(u,v)(I) ≤ C do
2: Skip = FALSE
3: for each q ∈ Path(v) do
4: if f q(I) ≤ f p||(u,v)(I) then
5: Skip = TRUE
6: Break
7: end if
8: end for
9: if Skip = FALSE then

10: Insert p||(u, v) into Path(v)
11: end if
12: if v = d then
13: return TRUE
14: end if
15: end for
16: return FALSE;

112

which is a subset of all possible s − v paths. By implicitly enumerating all possible

paths between s and t, we just need to check whether there is any path p ∈ Path(d)

that satisfies the constraint vector C. This enumeration is accomplished by calling

function Relax on all edges for |V | times (line 4-7 in EBF). All paths are examined

implicitly because the longest path in acyclic graph G contains |V | edges. To improve

the efficiency, Relax will add a new path p||(u, v) only when it does not dominate any

existing paths in Path(v).

Example 2: We use the same example in Figure 7-3 to demonstrate the execution

of EBF . First, we initialize Path(n1,1) = {e1} and Path(n1,2) = {e2}. Then, we perform

Relax on edges e3 and e4, which start from n1,1 (line 7-8 in EBF). In Relax(e3), we

attempt to create new paths from s to n2,1 by appending e3 to known path from s to n1,1

and n1,2, which are stored in Path(n1,1) and Path(n1,2). Since Path(n1,1) = {e1}, we just

need to check path e1||e3. It is easy to see that f e1||e3(I) = [20 30 67.4]T is dominated by

constraints C = [D W]T = [32 55 75]T , i.e., constraints are not violated. Therefore, path

e1||e3 is inserted into Path(n2,1), which was empty. On the other hand, path e2||e5 will not

be added into Path(n2,1) during Relax(e5), because f e2||e5(I) = [20 41 72.3]T dominates

f e1||e3(I) = [20 30 67.4]T . The reason is that if there exists a path in Path(n2,1) like e1||e3,

which has less time/energy consumption than the new path e2||e5, the new path cannot

be a prefix of the optimal path. We repeat the above process until we reach node d. If

Path(d) contains a path , which satisfies all the constrains like e1||e4||e8, EBF finds the

required schedule and returns true. Otherwise, we conclude that such schedule does

not exist.

Although EBF is guaranteed to find the exact answer to MCP, its time complexity

is quite high. As shown in Algorithm 7, Relax is executed for m · l times, while the

time complexity of Relax can be O(|Pathmax|2), where |Pathmax| = maxv∈V Path(v).

Therefore, the overall complexity of EBF is O(m · l · |Pathmax|2), which is only

pseudo-polynomial, because in the worst case |Pathmax| can be O(lm). Unfortunately,

113

we may not be able to find a solution to MCP in polynomial time. As indicated in [89], we

can reduce the Partition problem to an MCP instance by properly setting ti,j and wi,j. In

other words, MCP is NP-Complete.

7.3.4 Approximation Algorithm

Before we introduce our approximation scheme for MCP , we first present another

problem MCPε, which is closely related to MCP .

Definition 8. MCPε(G, I,C) instance: Given a positive constant ε > 0, a job execution

graph G; an initial state vector I = [t0, w0, T0]T ; a constraint vector C = [D,W, Tmax]
T ,

there exists an s− d path p = em||...||e0 such that for all 0 ≤ i ≤ m

f
e0||···||ei
t (t0) ≤ D

f e0||···||eiw (w0) ≤ (1− ε)W

f
e0||···||ei
T (T0) ≤ (1− ε)Tmax

MCPε is tighter than MCP . Any s − d path that satisfies the constraints in MCPε

also satisfies the constraints in MCP , but not vice versa. In this section, we are going

to develop an approximation algorithm EBFε to MCP , such that 1) EBFε is true implies

MCP is true, and 2) EBFε is false implies MCPε is false. In other words, EBFε gives

no false positive answer to MCP . It may give false negative answer when the exact

answers to MCP and MCPε are true and false respectively (i.e., there are feasible paths

for MCP , but no feasible path for MCPε). Since MCPε becomes MCP when ε = 0,

EBFε will be more and more accurate when ε→ 0.

In a JEG G = (V,E), we define functions h1, h2, h3 on each edge to simplify the

description of our approximation scheme. Here, h1, h2, and h3 corresponds to the

functions related to the functions of time, energy and temperature, respectively. For

114

e = (s, n1,j) ∈ E (1 ≤ j ≤ l), we define

he1(x1) = x1 (7–15)

he2(x2) = x2 (7–16)

he3(x3) = x3 (7–17)

For other e ∈ E,

he1(x1) = x1 + ti,j + ω(j′, j) (7–18)

he2(x2) = x2 + wi,j + ψ(j′, j) (7–19)

he3(x3) = β · x3 + (1− β) · Ts, (7–20)

β = e−ti,j/RC (7–21)

Based on the definition of path transfer functions, it is easy to see that for path p =

e0|| · · · ||ei,

fpt (t0) = hei1 ◦ · · · ◦ he01 (t0)

fpw(w0) = hei2 ◦ · · · ◦ he02 (w0)

fpT (T0) = hei3 ◦ · · · ◦ he03 (T0)

where ◦ is the composition operation for successive invocation functions.

The basic idea of our approximation scheme is to build a table Zn for each node

n. Each cell in this table holds the least value of time consumption among all execution

paths, which have the same energy and temperature value after scaling. In other words,

each cell represents an optimal execution path. Dynamic programming is then applied to

fill each Zn. The approximated solution can be obtained by checking Zd, which holds the

approximated least time consumption of all possible execution paths.

Algorithm 8 shows the details of our approximation algorithm EBFε. Initially, we

compute the table size M and the “step size” ∆k for each constraint based on the value

of ε (line 1 and 2 of EBFε), and then initialize M ∗M tables Zn for each node in G. Here,

115

Algorithm 8: .
EBFε(G, I,C)

1: M = d(m+ 1)/εe
2: ∆k = ε ∗ Ck/(m+ 1), k = 2, 3
3: for each v ∈ G do
4: for each (c2, c3) ∈ {0, 1, ..,M}2 do
5: Zv(c2, c3) =∞
6: πv(c2, c3) = null
7: end for
8: end for
9: Zs(dI2/∆2e, dI3/∆3e) = 0

10: for i = 1 to |m| do
11: for j = 0 to |l| do
12: for each edge (u, ni,j) ∈ E do
13: Relaxε(u, ni,j)
14: end for
15: end for
16: end for
17: for each edge (u, d) ∈ E do
18: if Relaxε(u, d) then
19: return TRUE
20: end if
21: end for
22: return FALSE

Relaxε(u, v)

1: for each (c2, c3) ∈ {0, 1, ..,M} × {0, 1, ..,M} do
2: if h(u,v)

k (ck ∗∆k) ≤ Ck for k = 2, 3 then
3: bk = dh(u,v)

k (ck ∗∆k)/∆ke, k = 2, 3

4: Znew = h
(u,v)
1 (Zu(c2, c3))

5: if Znew < Zv(b2, b3) and Znew ≤ C1 then
6: Zv(b2, b3) = Znew
7: πv(b2, b3) = (u, c2, c3)
8: if v = d then
9: return TRUE

10: end if
11: end if
12: end if
13: end for
14: return FALSE;

116

the “step size” ∆k is used to scale the energy and temperature values as indices in the

table. For example, cell (dI2/∆2e, dI3/∆3e) in Zs holds the time consumption before we

execute any jobs, which is initialized as 0 in line 7. The rest of EBFε is similar to EBF .

We use dynamic programming to fill each Zn by calling Relaxε, which can be viewed

as a scaled version of Relax. In Relaxε(u, v), we traverse Zu to fill Zv by extending

paths in Zu. Since Zu is an M by M table, we use c2 and c3 ∈ {0, 1, ..,M} as index

variables (line 1). As we have discussed previously, each cell Zu(c2, c3) represents an

execution path from s to u with time consumption Zu(c2, c3), energy consumption c2 ∗∆2

and temperature c3 ∗ ∆3
2 . In line 2 of Relaxε, we first check whether the energy and

temperature constraints are violated if the job is executed based on edge (u, v). If no

violation occurs, we calculate the scaled version of the new energy and temperature

values (b2, b3). After that, we compare the new time consumption Znew = h
(u,v)
1 (Zu(c2, c3))

with the current value in Zv(b2, b3) and update Zv when necessary. If we already reach

destination d and the time consumption Znew is still less than the required value C1
3 ,

we have found the required schedule. Compared with Relax, Relaxε does not store the

paths explicitly as Path(v) in Relax, but implicitly in different cells within each table.

EBFε is a polynomial time algorithm for a given ε, because the complexity of Relaxε

is M2 or (m/ε)2. Relaxε is executed for m · l times. Therefore, the overall time complexity

is O(m · l · (m/ε)2). Now, we show that EBFε is a polynomial time algorithm with the

approximation properties as claimed by the following two theorems.

Theorem 7.1. Given an instance of MCP (G, I,C), if EBFε(G, I,C) returns TRUE,

MCP (G, I,C) is true.

2 Recall that indices in table are scaled version of energy and temperature values. We
can obtain the actual energy and temperature values by multiplying table indices with ∆2

and ∆3.

3 C1, C2, and C3 are the constraints for time, energy, and temperature, respectively.

117

Proof. When EBFε returns TRUE, let the path p = e0||...||em be the path constructed

by tracing back using table π. Clearly, p is a s − d path. We need to show that for all

0 ≤ i ≤ m

heik ◦ ... ◦ h
e0
k (Ik) ≤ Ck, k = 1, 2, 3 (7–22)

Clearly, p satisfies Equation (7–22) for k = 1, because the condition on line 5 of

Relaxε guarantees that

hei1 ◦ ... ◦ he01 (I1) ≤ C1, 0 ≤ i ≤ m

Since p is constructed by π, it is easy to see that

Ck ≥ he0k (dIk/∆ke ∗∆k), k = 2, 3

Otherwise, condition on line 2 of Relaxε would not be satisfied during Relaxε(e0), and

line 7 of Relaxε would not be executed. This contradicts the fact that e0 is recorded in π.

Similarly, for 0 ≤ i ≤ m and k = 2, 3, we have

Ck ≥ he1k (dhe0k (dIk/∆ke ∗∆k)/∆ke ∗∆k)

...

Ck ≥ heik (d...dhe0k (dIk/∆ke ∗∆k)/∆ke ∗∆k.../∆ke ∗∆k)

Or

Ck ≥ heik ◦ gk ◦ ... ◦ h
e1 ◦ gk ◦ he0k ◦ gk(Ik)

where gk is a “ceiling” function

gk(x) = dx/∆ke ∗∆k

118

Since heik and gk are monotonically increasing functions and gk(x) ≥ x, we have

following relations

dIk/∆ke ∗∆k = gk(Ik) ≥ Ik

he0k ◦ gk(Ik) ≥ he0k (Ik)

he1k ◦ gk ◦ h
e0
k ◦ gk(Ik) ≥ he1k ◦ h

e0
k (Ik)

...

hemk ◦ gk ◦ ... ◦ h
e0
k ◦ gk(Ik) ≥ hemk ◦ ... ◦ h

e0
k (Ik)

Thus, for 0 ≤ i ≤ m

Ck ≥ heik ◦ gk ◦ ... ◦ h
e1
k ◦ gk ◦ h

e0
k ◦ gk(Ik)

≥ heik ◦ ... ◦ h
e0
k (Ik)

Therefore, Equation (7–22) also holds on p for k = 2, 3. By the definition of MCP ,

MCP (G, I,C) is true.

Lemma 3. Given an instance of MCPε(G, I,C), if there is an s − d path p =

e0||...||em−1||em such that

hei1 ◦ ... ◦ he01 (I1) ≤ C1 (7–23)

heik ◦ gk ◦ ... ◦ h
e0
k ◦ gk(Ik) ≤ Ck, k = 2, 3 (7–24)

holds for 0 ≤ i ≤ m, EBFε will return TRUE.

Lemma 3 can be proven by considering the following fact that if we only perform

Relaxε on edges that are in p, Equation (7–24) and Equation (7–23) guarantees that

the conditions on line 2 and 5 in Relaxε are satisfied and line 6 will be executed in

each round. Eventually, EBFε will return true. If we perform Relaxε on more edges, the

minimal value in Zd will not increase. As a result, EBFε still returns true.

Theorem 7.2. Given an instance of MCPε(G, I,C), MCPε(G, I,C) is true implies

EBFε(G, I,C) returns TRUE.

119

Proof. We just need to show that if there is an s− d path

p = s→ n1,j1 → · · · → nm,jm → d

= e0||...||em−1||em

such that for all 0 ≤ i ≤ m

hei1 ◦ ... ◦ he01 (I1) ≤ C1 (7–25)

hei2 ◦ ... ◦ he02 (I2) ≤ (1− ε)C2, k = 2, 3 (7–26)

it also satisfies Equation (7–23) and (7–24).

Clearly, for any edge e ∈ E

he2(c+ ∆) ≤ he2(c) + ∆

For he3, which represents the temperature constraints, we have

he3(c+ ∆) = he3(c) + ∆ ∗ β ≤ he3(c) + ∆,

β = e
−t
RC

because β ≤ 1.

Using ceiling functions gk(x) = dx/∆ke ∗∆k, k = 2, 3, it is easy to verify

gk(Ik) ≤ Ik + ∆k

By applying heik on its both sides, we have

he0k ◦ gk(Ik) ≤ he0k (Ik + ∆k) ≤ he0k (Ik) + ∆k, k = 2, 3

120

because he0k is a monotonic function. Therefore,

he0k ◦ gk(Ik) ≤ he0k (Ik) + ∆k,

gk ◦ he0k ◦ gk(Ik) ≤ he0k (Ik) + 2∆k,

he1k ◦ gk ◦ h
e0
k ◦ gk(Ik) ≤ he1 ◦ he0k (Ik) + 2∆k

...

hemk ◦ gk ◦ ... ◦ h
e0
k ◦ gk(Ik) ≤ hemk ◦ ... ◦ h

e0
k (Ik) + (m+ 1) ∗∆k

From Equation (7–26), we know that

heik ◦ ... ◦ h
e0
k (Ik) ≤ (1− ε) ∗ Ck, k = 2, 3

Thus, for 0 ≤ i ≤ m k = 2, 3, we have

heik ◦ gk ◦ ... ◦ h
e0
k ◦ gk(Ik) ≤ (1− ε) ∗ Ck + (m+ 1) ∗∆k

≤ (1− ε) ∗ Ck + ε ∗ Ck = Ck

Therefore, p satisfies Equation (7–23) and Equation (7–24). Using Lemma 3, EBFε will

return true.

Now we use Theorem 7.2 to investigate under what constraints EBFε yields false

negative answers. Considering the fact that MCP (G, I,C0) with C0 = [D,W, Tmax]
T and

MCPε(G, I,C
′
0) with C ′0 = [D,W/(1 − ε), Tmax/(1 − ε)]T ≈ [D, (1 + ε)W, (1 + ε)Tmax]

T

(when ε is small) are identical, Theorem 7.2 can also be interpreted as follows.

Corollary 1. For any small ε < 1, MCP (G, I,C0) with C0 = [D,W, Tmax]
T is true implies

EBFε(G, I,C
′
0) with C ′0 = [D, (1 + ε)W, (1 + ε)Tmax]

T returns TRUE.

In other words, EBFε(G, I,C) will not produce a false negative answer, when C

dominates C ′0. For example, Figure 7-4 shows the region where EBFε may produce

false negative answers for different (W,Tmax) pair. In this example, there are two feasible

constraints [D,W1, Tmax1]T and [D,W2, Tmax2]T , which dominates no other feasible

constraints except themselves. It is easy to see that EBFε will generate false negative

121

answers only in the cross-marked region based on Corollary 1. Clearly, the area of the

false negative region is linearly depends on ε. Therefore, when ε is small enough, EBFε

produces false negative answers in rare cases.

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

��
��
��
��

����

O

Feasible

False negative

W

T

(D, 1.1W1, 1.1Tmax1)

(D, 1.1W2, 1.1Tmax2)

(D,W1, Tmax1)

(D,W2, Tmax2)

Figure 7-4. Possible false negative region. ε = 0.1

7.4 Problem Variants

Our approach is also applicable to other problem variants by modifying the property

and making suitable changes to invocation of the problem solving driver in Figure 7-1

(model checker of approximation algorithm).

Task set with individual deadlines: In the scenario where each task has its

own deadline, we have to make sure that the execution blocks finish no later than their

corresponding task’s deadline. Suppose that the deadline of the ith execution block is

D[i]. Equation (7–3) is replaced by following constraints, for all 1 ≤ i ≤ m:

m∑
i=1

ti,li + ωli−1,li ≤ D[i],∀D[i] > 0 (7–27)

The approximation algorithm EBFε can also be modified sightly to the individual

deadline case. We only need to replace C1 (line 5 in Relaxε) with D[i], when node u

represents job i. Since the approximation is applied on the energy and temperature

constraints, all the properties and related proofs of EBFε still hold.

122

Periodic Tasks: We solve the TCEC scheduling of periodic tasks by considering

the scheduling of tasks within a hyperperiod. We have to make sure that a) all tasks

meets their corresponding deadlines in every hyper-period, b) the temperature

constraints are not violated after execution of any hyperperiod. Clearly, the first

requirement can be achieved by adding the deadline constraints as we discussed in

task set with individual deadlines.

The second requirement is satisfied by only choosing the schedules, whose

temperature at the end of the hyper-period is less than or equal to the initial temperature.

As discussed in Section 7.1.4, we enforce this requirement by adding constraint (7–7).

The approximation algorithm EBFε needs to be modified as follows. When Relaxε

is applied to the node corresponding to the last task, we need to ensure that h(u,v)
3 (c3 ∗

∆3) ≤ Tinit (line 2 in Relaxε). In addition, the step size of temperature should be

calculated based on Tinit, i.e., ∆3 = ε ∗ Tinit/(m + 1) (line 2 of EBFε). we verified that all

the properties and related proofs of EBFε still hold.

TC: Temperature-constrained scheduling problem is a simplified version of TCEC. It

only needs to ensure that the maximum instantaneous temperature is always below the

threshold tempmax.

TA: To find a schedule so that the maximum temperature is minimized, we can

employ a binary search over the temperature value range. Each iteration invokes the

problem solving driver to test the current temperature constraint Tmax. Initially, Tmax is

set to the mid-value of the range. If the property is unsatisfied, we search in the range

of values larger than Tmax in the next iteration. If the property is satisfied, we continue

to search in the range of values lower than Tmax to further explore better results. This

process continues until the lower bound is larger than the upper bound. The minimum

Tmax and associated schedule, which makes the property satisfiable during the search,

is the result. Note that the temperature value range for microprocessors is small in

practice, e.g., [30◦C, 120◦C]. Hence, the number of iterations is typically no more than 7.

123

To adopt our approximation scheme in the above cases, we can ignore the energy

constraint.

7.5 Experiments

7.5.1 Experimental Setup

In this section, we describe the experimental setup for evaluation of our approach.

A DVS-capable processor StrongARM [61] is modeled with four voltage/frequency levels

(1.5V-206MHz, 1.4V-192Mhz, 1.2V-162MHz and 1.1V-133MHz). We use synthetic

task sets which are randomly generated with each of them having execution time in

the range of 100 - 500 milliseconds. These are suitable and practical sizes to reflect

variations in temperature, and millisecond is a reasonable time unit granularity [101].

We adopt the thermal resistance (R) and thermal capacitance (C) values from [46],

which are 1.83◦C/Watt and 112.2mJoules/◦C, respectively. The ambient temperature

of the processor is 32◦C. The scheduler and TAG shown in Figure 7-1 are implemented

in C++. The exact algorithm EBF and the approximation algorithm EBFε are also

implemented in C++. All experiments are performed on a computer with AMD64 2GHz

CPU and 16G RAM.

7.5.2 TCEC versus TC or EC

This section demonstrates that existing solutions based on TC or EC are not

sufficient to find TCEC schedules. We compared the schedule generated by energy

constrained scheduling algorithm [95] and our TCEC scheduling for the same set of

jobs under the same energy constraint. We also require that the system temperature

after the execution of task set does not exceed the initial temperature Tinit, so that the

temperature constraint is not violated even if the task set is executed repeatedly. The

results are shown in Figure 7-5.

It can be seen that the schedule generated by [95], which considers only energy

constraint takes less execution time. However, it violates temperature constraint. On

the other hand, the schedules generated by our TCEC approach will not exceed the

124

A

B

C

Figure 7-5. EC vs TCEC. EC finishes at A. TCEC(< 80◦C) finishes at B. Both
TCEC(< 78◦C) and TCEC(< 76◦C) finish at C.

respective temperature constraints (80◦C, 78◦C and 76◦C, respectively), although it takes

a little longer execution time. Therefore, scheduling algorithms that consider only energy

constraint are not suitable, when we want to control the maximum temperature of the

processor during job execution.

We also compared our TCEC scheduling with temperature constrained scheduling

algorithm [101]. The experiments were performed on the same job set with the same

temperature constraints. For TCEC, we applied three different energy constraints. We

also require that the system temperature after the execution of task set does not exceed

the initial temperature Tinit. Figure 7-6 presents the results. Since TC has no constraint

on energy consumption, it always tries to execute jobs with high voltage, which may

lead to peak temperature several times. As a result, TC has the shortest execution time.

However, once we consider energy constraint, it may not be possible to execute some

jobs at high voltage. When the energy budget is very tight, we may not be able to reach

125

A

B

C

Figure 7-6. EC vs TCEC. Both TC and TCEC(< 14000mJ) finish at A.
TCEC(< 13700mJ) finishes at B. TCEC(< 12500mJ) finishes at C.

the maximum temperature during the entire execution, like curve “TCEC(<12500mJ)”

in Figure 7-6. In this case, TC will clearly violate the energy constraint, while our TCEC

obtains a schedule within the energy budget.

7.5.3 TCEC using Approximation Algorithm

We compared the efficiency of conventional symbolic model checker (UPPAAL)

with our approximation algorithm EBFε on task sets with different number of blocks.

Since the TCEC problem can also be modeled using ILP, we include the corresponding

results of ILP formulation. The first and the second column are the index and number of

blocks in each task set, respectively. The next three columns present the temperature

constraint (TC, in ◦C), energy constraint (EC, in mJ), and deadlines (DL, in ms) to be

checked on the model. The sixth column indicates whether there exists a schedule

which satisfies all the constraints. The last three columns of Table 7-1 shows the results

(running time in seconds) of UPPAAL, ILP formulation solved with lpsolve [10], and our

126

approach EBFε. Since UPPAAL failed to produce result for task set 4 and 5, we only

report the running time of EBFε. It can be seen that EBFε outperforms UPPAAL by

more than 10 times on average. Moreover, EBFε can solve much larger problems in

reasonable running time.

Table 7-1. Running time comparison on different task sets
TS #Blk TC EC DL Found? UPPAAL lpsolve EBFε

1 10
85 180000 7000 Y 9.6 30.5 0.2
85 150000 8000 Y 9.9 32.1 0.2
80 140000 8000 N 9.4 29.4 0.2

2 12
85 70000 2500 Y 18.5 190.3 0.3
85 60000 2700 Y 106.6 621.2 0.3
80 60000 2500 N 17.5 282.4 0.3

3 14
90 90000 2600 Y 65.1 - 0.3
85 80000 2800 Y 648.3 - 0.3
90 80000 2700 N 208.6 - 0.3

4 50 85 380000 39500 Y - - 20.2
5 100 85 720000 83800 Y - - 102.5

0

100

200

300

400

500

600

0 20 40 60 80 100

R
un

Ti
m

e
(s

ec
on

ds
)

Task Number

ε = 0.02
ε = 0.04
ε = 0.06
ε = 0.10
ε = 0.20

Exact

Figure 7-7. Running time with different job set size and ε.

We also evaluated the running time of our approximation scheme with different ε.

The results are shown in Figure 7-7. Curve “Exact” represents the execution time of the

127

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

Fa
ls

e
ne

ga
tiv

e

Range

ε = 0.02
ε = 0.03
ε = 0.04
ε = 0.06
ε = 0.1

Figure 7-8. Accuracy of EBFε.

exact algorithm EBF . Other curves present the running time of EBFε with different ε.

As expected EBFε requires more time for smaller ε or larger job set size. But its time

consumption is sill much smaller than the exact algorithm EBF .

To investigate the accuracy of our proposed approximation scheme, we evaluated

the distribution of false negative ratio along different constraint values. In this experiment,

we generated 1500 instance of TCEC problem as the test set. They share the same

deadline and energy budget, while the temperature constraints are uniformly distributed

within 1◦C above the lowest feasible temperature. For each instance, the exact algorithm

EBF is applied first to determine whether the feasible schedule exists. Then we run

EBFε on each instance and check the correctness of the return value. The experimental

results are presented in Figure 7-8. Each point represent the false negative ratio of

TCEC instances in each 0.0625◦C interval. For example, the false negative ratio is

30% for instances with in interval [0.1875 0.25] when ε = 0.06. As we discussed in

Section 7.3.4, the false negative ratio curves behaves as step functions, which fall to

zero when the temperature constraint is slightly larger (0.125◦C for ε = 0.02) than the

128

lowest feasible temperature. In other words, EBFε produces false negative answers in

rare cases.

7.6 Summary

In this chapter, we proposed a flexible and automatic framework to solve the

temperature- and energy-constrained scheduling problem in multitasking systems with

different voltage levels. We modeled the problem using extended timed automata and

translated the energy/temperature constraints into CTL specifications. The user can

employ a suitable model checker to determine whether there exists a schedule that

satisfies the constraints. Due to the capacity limitations of symbolic model checker like

UPPAAL, we also proposed a polynomial time approximation scheme that is guaranteed

to generate results close to optimal value with reasonable running time. We proved

mathematically that our approximation algorithm will give no false positive answer, while

the false negative ratio can be negligibly small in practical scenarios. Our framework

is also applicable to other scheduling problems with different energy/temperature

requirement. Extensive experimental results demonstrated the effectiveness of our

approach. In our future work, we plan to develop approximation algorithms to efficiently

solve both task sequencing and voltage assignment together.

129

CHAPTER 8
SCHEDULABILITY VALIDATION FOR MULTICORE ARCHITECTURES

Chapter 7 described our energy- and temperature-aware scheduling framework

for a single-core processor. In this chapter, we study the DVS scheduling problem on

multicore processors under energy and temperature constraints. Since the task mapping

and sequencing are already discussed in many existing works, we focus on how to

assign clock rate/voltage levels to tasks that are already mapped and sequenced on

different cores, so that the total time consumption is minimized under both temperature

and energy constraints. Our goal is to develop a Temperature and Energy Constrained

Scheduling (TECS) for multicore systems. Due to the NP-hard nature of TECS problem,

it has no polynomial time solution unless P=NP. To avoid the state explosion problem,

we propose an approximation scheme with polynomial time/space complexity based on

the detailed analysis of the problem. To the best of our knowledge, there are no prior

works that consider both energy and temperature constraints in multicore systems and

are guaranteed to produce schedules close to the optimal solution with reasonable

execution time.

The rest of the chapter is organized as follows. Section 8.1 describes related

background information and the MCTCEC problem. Section 8.2 and Section 8.3 discuss

the optimal algorithm and our approximation scheme of the MCTCEC problem in detail.

Experimental results are presented in Section 8.5. Finally, Section 8.6 concludes the

chapter.

8.1 Background and Problem Formulation

8.1.1 Processor Thermal Model

When the execution time of each task is long enough for the processor to reach the

steady state temperature, we can use the matrix model [90] to calculate the steady state

temperature on each core as

T (t) = Tamb ∗ I(t) + C ∗ P (t) (8–1)

130

Here, Tamb is the ambient temperature, C is a n× n constant coefficient matrix, and P (t)

is the power dissipation by each core under the clock rate assignment at time t. Since

we assume that each time slice is large enough for the system to reach steady-state

temperature, T (t) is only determined by Tamb, C and P (t). For a given system, we

derive C using HotSpot [44] as proposed in [90].

8.1.2 Energy Model

We adopt the energy model proposed in [60]. Processor’s dynamic power can be

represented as Pdyn = α ·C · V 2
dd · f . Here Vdd is the supply voltage and f is the operation

frequency. C is the total capacitance and α is the actual switching activity which varies

for different applications [8]. In other words, the power profile of a task can be different

from each other. Static power is given by Psta = Vdd · Isubth + |Vbs| · Ij where Vbs, Isubth and

Ij denote the body bias voltage, subthreshold current and reverse bias junction current,

respectively. Hence, the overall power P = Pdyn + Psta.

8.1.3 System Model

The system we consider can be modeled as:

1. A multicore processor with M cores. Each core supports L discrete clock
rate/voltage levels {f1/v1, f2/v2, ... , fL/vL}, where fmin is the lowest clock rate,
and fmax is the highest.

2. A set of n tasks, which has already been mapped and sequenced on different
cores. We use τij to denote the jth task on core i. Let cij be the worst-case
workload of τij, and ki be the total number of tasks mapped on core i. We also
denote the total workload on core i by wi =

∑ki
j=1 cij.

For ease of discussion, the terms task and job refer to the same entity in the rest of

this chapter.

8.1.4 Multicore DVS Schedule

Since all tasks are already mapped and sequenced, a DVS schedule on a multicore

system with task set {τij|1 ≤ i ≤ M, 1 ≤ j ≤ ki} can be represented as a set of tuples

{(rij, [tij, t′ij])|1 ≤ i ≤ M, 1 ≤ j ≤ ki}}, where (rij, [tij, t
′
ij]) means we execute τij using

clock rate rij during time interval [tij, t
′
ij]. It is easy to see that clock rate switches always

131

happen when some task finishes. When all tasks mapped to a core are finished, a core

is turned off.

8.1.5 Problem Formulation

Given a set of n independent tasks {τij|1 ≤ i ≤ M, 1 ≤ j ≤ ki}, if the safe

temperature threshold is CT and the energy budget is CE, TECS scheduling problem

can be defined as follows.

Definition 9. TECS is formally defined as finding a multicore DVS schedule, Ropt, which

minimize the total execution time, i.e.,

min max
1≤i≤M

t′iki

subject to

cij/rij ≤ t′ij − tij∑
0≤i≤n

P (rij) ∗ (t′ij − tij) ≤ CE

T (t) ≤ CT ,∀t ≥ 0

t′ij ≤ tij+1,∀j < ki

where P (rij) is power dissipation of a single core when task τij is executing using clock

rate rij. It can be proved that TECS problem is NP-hard.

8.2 Optimal Algorithm for TECS

The optimal solution of the TECS problem can be calculated using dynamic

programming. The basic idea is to generate all possible execution paths of the system

from the initial state. Notice that we consider inter-task DVS, i.e., the voltage switches

are only allowed before the beginning of a new task. Any execution path of the system is

uniquely determined by the system states at each possible switching point. Furthermore,

since the number of cycles between two successive possible switching points can be

estimated using remaining task workloads and clock rates on different cores, the state

transition between different switching points can be performed as follows. Given a

132

system state, we first identify the next task that is ready to execute. Next, we compute

the system states at next switching point by executing this task with all possible clock

rates. After that, we mark the estimated state as a valid new state, if it does not violate

the temperature or energy constraints.

Formally, given a task sequence on core i, at any time instant t, we define the

progress of this task sequence as pi = w/wi, where wi =
∑

j cij is the total workload

mapped on core i and w (w ≤ wi) is the completed workload on this core. The system

status can be represented as a tuple s = (<p1, r1>, ..., <pM , rM>, E, t), where pi and ri

are the current progress and clock rate of core i. E and t are the total energy and time

consumption, respectively. The temperature of each core is not explicitly included in the

system state tuple, because they can be calculated using the power of each core Pm

and ambient temperature Tamb using Equation (8–1).

When some cores in the system are about to begin the execution of the next job in

their task sequences, we encounter a potential clock rate switching point, or switching

point for short. Since multiple cores can change clock rate at the same time, e.g., at

t = 0, all possible clock rate assignments for M cores can be represented by a set of

M−dimenional vectors. Formally, we define the set of possible clock Rate Assignment

RA(s) for system state s as the direct product

RA(s) =
M⊗
i=1


{0} if s.pi = 1

{f1, ..., fL} else if Ri(s.pi) = 0

{s.ri} otherwise

(8–2)

133

where

Ri(pi) =



0 if pi = 0∑1
j=1 cij/wi − pi else if

∑1
j=1 cij/wi ≥ pi∑2

j=1 cij/wi − pi else if
∑2

j=1 cij/wi ≥ pi

...∑ki
j=1 cij/wi − pi else if

∑ki
j=1 cij/wi ≥ pi

(8–3)

Ri(pi) is the remaining progress until the beginning of next task on core i. RA(s) returns

a set of possible clock rate choices, which allows the core to choose from L voltage

levels if it is about to start the next task, i.e., Ri(pi) = 0. If all tasks on the same core are

finished, i.e., pi = 1, we shut down the core, by assigning clock rate 0. A core does not

consume any more energy at clock rate 0.

In order to calculate the system state at next switching point, we define the state

transition function s′ = F (s, r) as

s′.pi = s.pi + ri ∗ δ/wi s′.r′i = ri, 1 ≤ i ≤M

s′.E = s.E +
M∑
i=1

P (ri) ∗ δ s′.t = s.t+ δ

where δ = min
1≤i≤M,pi<1

(Ri(s.pi + σ))wi/ri

σ is a very small positive number close to 0.

(8–4)

The state transition function F takes the system state at a switching point s, and

one clock rate assignment vector r as inputs and produces the system state at the next

switching point.

Algorithm 9 shows the Dynamic Programming (DP) algorithm for clock Rate

Assignment (DPRA) to obtain the optimal solution to the TECS problem. Initially, the

set of system states S only contains a single state s1 = (<0, 0>, ..., <0, 0>, 0, 0). During

the DP process, we first pick s ∈ S, which contains at least one incomplete task

sequence with the least progress among all states in S. Suppose that there are m task

134

Algorithm 9: Exact solution to TECS
DPRA

1: S = {s1} = {(<0, 0>, ..., <0, 0>, 0, 0)}
2: while not all states in S are explored do
3: Pick an unexplored state s from S such that s contains at least one incomplete

task sequence with the least progress among all states in S
4: for each r ∈ RA(s) do
5: s′ = F (s, r)
6: if r violates temperature constraint CT or s′.E > CE then
7: continue
8: end if
9: if ∃s0 ∈ S s.t. s0 and s′ agree on all values but time then

10: if s0.t ≤ s′.t then
11: continue
12: else
13: S = S − {s0} /*Remove s0*/
14: end if
15: end if
16: S = S

⋃
{s′} /*Add s′*/

17: end for
18: end while
19: Find the state sopt in S with the least time consumption, such that all tasks are

finished. Construct the corresponding schedlue Ropt by backtracking from sopt to s1.

sequences that are about to start new tasks. We try all possible combinations of clock

rate assignments on these m cores, while keeping the clock rate unchanged on the rest

M −m cores. This will yield a set of assignments RA(s), which contains Lm elements.

Next, we calculate a system state s′ based on s and clock rate assignment r ∈ RA(s)}.

If s′ does not violate any constraints, we add it to S. The above process repeats until

all states in S containing incomplete tasks are explored. Now, we need to find the state

which has the least time consumption in S.

EXAMPLE 1: This example illustrates the flow of Algorithm 9 using a processor with

M = 2 cores. Each of them have L=2 different clock rate levels f1 = 100MHz and

f2 = 200MHz. Their power consumption are P (f1) = 1W and P (f2) = 4W . There are

three tasks τ1,1, τ1,2 and τ2,1 with workloads of 106, 106, and 2 ∗ 106 cycles, respectively.

τ1,1 and τ1,2 are mapped to core 1, while τ2,1 is mapped to core 2. Therefore, we have

135

(f1,f1)
(<0.5,f1><0.5,f1>,2,1) (<1,f1><1,f1>,4,2)

(<0,0><0,0>,0,0)

(<0.5,f1><1,f2>,5,1) . . .

(f1,f2)
(f2,f1)

(<1,f2><0.75,f1>,5.5,1.5) . . .

(<0.5,f2><0.25,f1>,2.5,0.5) . . .

(f1,f1)

(f2,f1)

Figure 8-1. State exploration in Algorithm 9

c1,1 = c1,2 = 106, c2,1 = 2 ∗ 106, w1 = c1,1 + c1,2 = 2 ∗ 106 and w2 = c2,1 = 2 ∗ 106. We

choose the temperature constraint such that only one core can run at 200MHz. We also

choose CE = 10J. When we apply Algorithm 9 to such a TECS instance, S contains

only one element s1=(<0,0>,<0,0>,0,0) at the beginning. Thus, s1 is picked by line 3.

Since we have R1(s1.p1) = R1(0) = 0 and R2(s1.p2) = 0, the clock rates for both cores

can be changed, i.e., RA(s1) = {f1, f2} ⊗ {f1, f2} = {(f1, f1), (f1, f2), (f2, f1), (f2, f2)}

contains LM = 4 elements, which represents four possible clock rate assignments. Next,

we compute new states s′ based on these assignments except (f2, f2), which violate

the temperature constraint. If we pick r = (f1, f1), the new state s2 = F (s1, r) can

be computed as follows. First, we have R1(s1.p1 + σ) = 0.5, which means core 1 is

0.5w1 cycles far from the beginning of the next task τ1,2. Similarly, R2(s1.p2 + σ) = 1.

Therefore, if we use clock rate r = (f1, f1), which makes both cores to run at f1 =

100MHz, δ = min(0.5w1/f1, w2/f1) = 1sec. In other words, the next switching point

will happen after 1sec. At that time, the progress values of core 1 and core 2 will be

s2.p1 = 0 + f1 ∗ 1/w1 = 0.5 and s2.p2 = 0 + f1 ∗ 1/w2 = 0.5, respectively. We also

compute the energy consumption s2.E = 0 + P (f1) ∗ 1 + P (f1) ∗ 1 = 2J and time

consumption s2.t = 1sec. Therefore, the new state is s2 =(<0.5,f1>,<0.5,f1>,2,1). Since

s2 and r = (f1, f1) do not violate any constraint, we add s2 into S.

We repeat above procedure for the other two clock rate assignments and mark

s1 as explored. In the next round, we pick s2 from S on line 3 of Algorithm 9. We have

136

R1(s2.p1) = R1(0.5) = 0, which indicates that we can change the clock rate of core

1, because the previous task just finished. However, R2(s2.p2) = R2(0.5) = 0.5,

which means the current task on core 2 has not finished yet. Therefore, RA(s2) =

{f1, f2} ⊗ {s2.r2} = {(f1, f1), (f2, f1)} only contains two possible clock rate assignments,

because the clock rate of core 2 cannot be changed. These assignments are used

to produce new states and update S. We repeat above procedure until we find a

state in S, within which all tasks are finished with minimum total time consumption.

Through backtracing, we can find the path that generates it: (<0,0>,<0,0>,0,0)→

(<0.5,f1>,<1,f2>,5,1)→ (<1,f2>,<1,f1>,7,1.5). The corresponding scheduling Ropt is

(<f1,0,1>,<f2,1,1.5>,<f2,0,1>), which means τ1,1, τ1,2 and τ2,1 should be executed using

f1, f2, and f2, respectively. �

Clearly, if two system states agree on all values except the time consumption, we

only need to record the one with smaller time consumption, because the one with larger

time consumption will not be a part of the optimal solution. This fact is exploited by line

9 in Algorithm 9 to accelerate the computation. However, it should be noticed that we

must explore the state in certain order, so that the explored state will not be updated in

the future. Our algorithm satisfies such a requirement, because the state that we pick

contains at least one incomplete task sequence, say ith, which has the least progress

among all states in S. There is no way it can be dominated by any new states, because

any new states will have a larger progress on the ith task sequence. Therefore, when we

pick an unexplored state s on line 3, it is guaranteed that s.t will not be updated in the

future.

The time and space complexity of the exact algorithm is O(Ln), because each of

the n tasks can be executed at L different voltage levels, the system has Ln different

execution path in the worst case. Therefore, S will contain up to O(Ln) states, because

we are performing a breadth-first search in the state space. As a result, the overall time

137

and space complexity becomes O(Ln), which is natural considering the NP-hard nature

of TECS problem.

8.3 Approximation Algorithm

Like many previous works, the basic idea of our approximation algorithm is built

on discretization of the state space. The space size is reduced by rounding up all

values in the state vector, and by merging states that agree on all values after rounding.

Unfortunately, in TECS problem, this method cannot be applied directly to progress

values. Recall that we define the progress of a task sequence on each core to represent

how many instruction or workload has already been completed. Rounding up progress

values introduces two problems. First, the switching points, which are defined based

on progress values may be skipped, because they usually do not coincide with the

discretized progress values. Second, the rounding operation essentially means we

skip some instructions without executing them. Therefore, if we apply the obtained

scheduling in reality, the actual progress will not match with the ones we calculated

in dynamic programming. As a result, the temperature or energy constraints may be

violated.

We solve both problems as follows. First, we view a state s ∈ S not as a real

system state, but a pessimistic approximation of a real system state. Second, we insert

a suitable “idle time” at each switching point, so that the difference between the real

execution and estimated value in dynamic programming can be bounded. In this way,

we can obtain an approximated estimation of the actual execution under any clock

rate selections. Before we introduce our approximation scheme, we first introduce the

modified version of the state transition function and clock rate assignment function,

which are used to build the approximation algorithm. The modified state transition

138

function s′ = F∆t(s, r) is defined as

s′.p′i = s.pi if ri = fI ; s.pi + ri ∗ δ/wi,otherwise

s′.r′i = s.ri if ri = fI ; ri,otherwise

s′.E = s.E +
M∑
i=1

P (ri) ∗ (δ + 2∆t)

s′.t = s.t+ δ + 2∆t

where δ = min
1≤i≤M,pi<1

Ri(s.pi + σ) ∗ wi/ri

σ is a very small positive number close to 0

(8–5)

An extra increment (2∆t) is added, which represents the “idle time”. RAε(s) is the

modified version of RA(s), which is defined as

RA(s) =
M⊗
i=1


{0} if s.pi = 1

{f1, ..., fL} else if Ri(s.pi) ≤ ∆P

{s.ri} otherwise

(8–6)

In line 9, h is a partial rounding up function s′ = h(s), which is defined as

s′.pi = ds.pi/∆pe ∗∆p s′.ri = s.ri, i = 1, ...,M

s′.E ′ = ds.E/∆Ee ∗∆E s′.t′ = s.t

(8–7)

Algorithm 10 shows the details of our approximation algorithm DPRAε. We first

compute the “step size” ∆E, ∆P and ∆t for each constraint based on the value of ε. After

that, DPRAε parallels the exact algorithm DPRA except that the progress and energy

values in each new system state s is rounded up to the next available discretized value.

This is achieved by applying function h, which forces the progress and energy value of

the resultant state to be an integer multiple of ∆P or ∆E. For example, suppose we have

∆P = 0.1 and ∆E = 0.2, a new state F∆t(s, r)) =(<0.5,f2>, <0.25,f1>,1,2.5,0.5) will be

139

Algorithm 10: Approximation algorithm of TECS
DPRAε

1: ∆E = ε ∗ CE/4n
2: µ = max1≤i≤M wi/fmin
3: ∆P = min(∆E/µPmax, ε ∗ fmin/(fmax ∗ 2n)). Pmax is the maximum power dissipation of

the entire processor.
4: ∆t = ∆P ∗ µ
5: S = {s1} = {(<0, 0>, ..., <0, 0>, 0, 0)}
6: while not all states in S are explored do
7: Pick an unexplored state s from S such that s contains at least one incomplete

task sequence with the least progress among all states in S
8: for each r ∈ RA(s) do
9: s′ = h(F∆t(s, r))

10: if r violates temperature constraint CT or
s′.E > (1 + ε)CE then

11: continue
12: end if
13: if ∃s0 ∈ S s.t. s′ and s0 agree on all values but time then
14: if s0.t ≤ s′.t then
15: continue
16: else
17: S = S − {s0}
18: end if
19: end if
20: S = S

⋃
{s}

21: end for
22: end while
23: Find the state sapx in S with the least time consumption OPTapx, such that all tasks

are finished. Construct the corresponding schedule Rapx by backtracking from sapx
to s1. If a task is skipped due to rounding, it is scheduled as a part of the previous
task on the same core.

recorded as h(F∆t(s0, r))) =

(<d 0.5/0.1e*0.1,f2>,<d 0.25/0.1 e*0.1 ,f1>,d 2.5/0.2 e*0.2, 0.5)

=(<0.5,f2>,<0.3,f1>,2.6,0.5)

If the optimal scheduling of MCTCEC exists with time consumption OPT , our

approximation algorithm DPRAε will find a schedule such that it will not violate the

temperature constraint and has at most (1 + ε)CE energy and (1 + ε)OPT time

140

consumption respectively. In the rest of this section, we will show that DPRAε is an

approximation algorithm with the claimed properties.

Lemma 4. Given an MCTCEC instance I, if DPRAε(I) finds a schedule of I Rapx

with estimated time consumption OPTapx, Rapx is a feasible of I, whose actual time

consumption does not exceed OPTapx.

Proof. Since Rapx is found by DPRAε(I), S must be a state sapx and a path with K

states s1− > s2− > ...− > sK−1− > sapx. When Rapx is applied in reality, we apply the

clock rates assignment ri at time ti for 1 ≤ i ≤ K. When the current job on a core is

finished, we keep the core running idle job until next switch point. To prove this lemma,

we need to show that 1) all job are indeed finished and 2) all constraints are met.

The first statement can be proved by showing that each job has enough time to run.

Suppose a task τ on core j starts from the ith switch point. If the next task on the same

core starts from the i′th switch point, the time allocated for this task is s′i.t − si.t. Since

we perform i′ − i rounds of computation to obtain s′i from si, there can be at most (i′ − i)

rounding up during the calculation from si.pj to s′i.pj. Therefore,

s′i.t ≥ si.t+ (s′i.pj − si.pj − (i′ − i)∆p)/ri + 2(i′ − i)∆t

s′i.t− si.t ≥ (s′i.pj − si.pj + ∆p)/ri

On the other hand, the total progress of τ can be at most s′i.pj − si.pj + ∆p.

Therefore, all tasks will have enough time for execution when Rapx is applied.

Now we prove the second statement by considering following relations among

different succussive states on path s1− > s2− > ...− > sK−1− > sapx.

s2 = h(F∆t(s1, r1))

s3 = h(F∆t(s2, r2))

...

sapx = h(F∆t(sK−1, rK − 1))

(8–8)

141

Based on the logic of DPRAε(I), the following relations hold for 1 ≤ i ≤M , 1 ≤ k ≤ K

(1 + ε)CE ≥ sk.E

Let the real state transition path produced by Rapx be s1− > s′2− > ...− > s′K−1− >

s′K . Clearly, we have

s′2 = F∆t(s
′
1, r1)

s′3 = F∆t(s
′
2, r2)

...

s′K = F∆t(s
′
K−1, rK−1)

(8–9)

Since components of vector functions h and f are all increasing functions, i.e., s1 ≥

s2 ⇒ h(s1) ≥ h(s2) and f(s1) ≥ f(s2), it is easy to see that s2 ≥ s′2,...,sK−1 ≥ s′K−1 and

sapx ≥ s′K . Therefore,

(1 + ε)CE ≥ sk.E

OPTapx = sapx.t ≥ sK .t

(8–10)

Notice that temperature and energy values changes monotonically between s′k and s′k+1

during real execution. Equation (8–10) ensures that all constraints are met and therefore

concludes the proof.

In order to show the second property of DPRAε(I), we first define precedence

relation between different tasks.

Core M

...

τdτa

τc

τb

τeCore 1

Figure 8-2. Precedence relations among tasks.

Definition 10. Given feasible schedule of a MCTCEC instance I, we define the

precedence relation τi ≺ τj on tasks, which holds if and only if the finishing time of τi

142

is less than the start time of τj under the given schedule. For example, in the schedule

shown in Figure 8-2, we have τa ≺ τd, τb ≺ τc, and τc ≺ τd for τd, because τa, τb and τc

finish before τd starts.

A precedence relation PR can also be represented as a graph GPR, within which

each task is denoted by a vertex, and each precedence relation is shown as a directed

edge. Since all edges are pointing from tasks with larger start time to tasks with smaller

finishing time, there is no cycle in the graph, i.e., GPR is a DAG.

Clearly, for any tasks τ1, ..., τM that execute at the same time on M different cores

under some feasible schedule, there is no precedence relation between any two of

them. Besides, it is also easy to see that if there is no precedence relation between

any two tasks in {τ1, ..., τM}, they must execute at some time t0 simultaneously.

Since the schedule is feasible, the clock rate assignment at t0 does not violate the

temperature constraints on any core. In other words, under steady temperature model,

the combination of the clock rate assignment to τ1, ..., τM will not violate the temperature

constraints on any core.

Now we show that our approximation scheme DPRAε does find a schedule, when

the MCTCEC instance if schedulable.

Lemma 5. Given an MCTCEC instance I, if I is schedulable with optimal time con-

sumption OPT , DPRAε(I) return a schedule Rapx with estimated time consumption

OPTapx ≤ (1 + ε)OPT .

Proof. Let S be the state set constructed by DPRAε(I). We are going to show that there

exists a path p = s1− > s2− > ...− > sK−1− > sK such that

sK .t ≤ (1 + ε)OPT

sK .E ≤ (1 + ε)CE

sK .pj = 1, 1 ≤ j ≤M

(8–11)

143

First, we construct a path p with desired properties. Since I is schedulable, let the

optimal schedule of I be Ropt. We use Ropt to define the precedence relation PR on all

tasks and construct the corresponding graph GPR. We construct path p = s1− > s2− >

...− > sK−1− > sK as follows,

1. For task τ , its corresponding node in GPR has no precedence node, use its clock
rate in Ropt, otherwise, use clock rate f0.

2. Compute the next state si+1 = h(F∆t(si, r)), where r is the clock rate assignment
of corresponding tasks in Ropt. If a task is finished based on the progress in si+1,
remove its corresponding node from GPR.

3. Repeat above steps until all tasks are finished.

Since s0 is the initial state, and the clock rate assignment used to produce s1 is

identical to the ones in Ropt at beginning, s1 will not violate the temperature constraints.

Thus, s1 is in S. Suppose we know si ∈ S as induction hypothesis. Let the clock rate

assignment used to produce si+1 be r. By our construction rules, r is applied on a set

of tasks, which do not have any precedence relation between any two of them in Ropt. In

other words, r will not violate the temperature constraint on any core. Such reasoning

holds for any si, 1 ≤ i ≤ K. Therefore, all states in p do not violate the temperature

constraint.

Next, we show that p also meets the time requirement, i.e.,

sK .t ≤ (1 + ε)OPT

Let task τik be the last task completed in p. Suppose τik start execution at some state

sik and finished at state sK . Since τik is assigned a non-idle clock rate in sik , there must

exist a task τik−1
≺ τik , which just finished in sik . Otherwise, if all τk’s precedence tasks

are finished in sik−1
, τk should start in sik−1

instead of sik based on our construction.

For the same reason, we can find τik−2
, such that τik−2

≺ τik−1
and τik−2

finishes

in the same state from which τik−1
starts execution. Eventually, we can determine a

chain of tasks τi1 ≺ τi2 ≺ ... ≺ τik , where τi1 is the first task on some core. Let time

144

consumption of each task in the chain under Ropt be ti1 , ..., tik respectively. It is easy to

see that

sK .t ≤ sik .t+ tik + 2(K − ik)∆t

because DPRAε(I) adds 2∆t to time consumption for each intermediate state, and

we require at most tik time to finish its progress, because the time consumption of τik

(summation of δ) is estimated using the same clock rate as in Ropt. Similarly, we have

sik .t ≤ sik−1
.t+ tik−1

+ 2(ik − ik−1)∆t

...

si2 .t ≤ si1 .t+ ti1 + 2(i2 − i1)∆t = ti1 + 2i2∆t

By taking the sum of both sides, we have

sK .t ≤ ti1 + ...+ tik + 2K∆t

On the other hand, since τi1 ≺ τi2 ≺ ... ≺ τik , their execution have no overlap under Ropt.

Thus

ti1 + ...+ tik ≤ OPT

Therefore,

sK .t ≤ OPT + 2K∆t ≤ OPT + 2n∆t

≤ OPT + 2n∆Pµ ≤ OPT + 2n
εfmin

fmax ∗ 2n
max

1≤i≤M
wi/fmin

≤ OPT + ε max
1≤i≤M

wi/fmax ≤ (1 + ε)OPT

Finally, we prove that p meets the energy requirement, i.e.,

sK .E ≤ (1 + ε)CE

145

Since sK = h(F∆t(sK−1, r)), we have

sK .E = d(sK−1.E +
M∑
i=1

P (sK .ri) ∗ (δK−1 + 2∆t))/∆Ee∆E

≤ sK−1.E +
M∑
i=1

P (sK .ri) ∗ (δK−1 + 2∆t) + ∆E

(8–12)

We can derive similar relations for sK−1.E, ... ,s1.E and plug all of them into (8–12).

Notice that s1.E = 0, we have

sK .E ≤
M∑
i=1

K∑
j=2

P (sj.ri) ∗ (δj−1 + 2∆t) + (K − 1)∆E

≤
M∑
i=1

K∑
j=2

P (sj.ri)δj−1 + (K − 1)(2Pmax∆t + ∆E)

≤
M∑
i=1

K∑
j=2

P (sj−1.ri)δj−1(1− Idle(i, j))

+
M∑
i=1

K∑
j=2

P (sj−1.ri)δj−1Idle(i, j) + (K − 1)(2Pmax∆t + ∆E)

where

Idle(i, j) =


1 if core i receives f0 in sj

0 otherwise

Intuitively,

EA =
M∑
i=1

K∑
j=2

P (sj.ri)δj−1(1− Idle(i, j))

is the total energy consumption when cores receive clock rates other than f0 and make

progress, while

EI =
M∑
i=1

K∑
j=2

P (sj.ri)δj−1Idle(i, j)

is the total energy consumption when cores receive f0.

Due to the rounding up of progresses, EA should be no more than the real energy

consumption in Ropt, because we apply the same clock rate to execute at most the same

146

amount of progress as Ropt. Since Ropt is a feasible schedule, its energy consumption is

bounded by CE, i.e.,EA ≤ CE

For the second term EI , we claim that for any core i, the total time that tasks receive

clock rate f0

tidlei =
K∑
j=2

δj−1Idle(i, j)

is not more than µ(K − 1)∆P . To see this, let the time consumption of all tasks on core i

be OPTi. Using the same technique we used in the time consumption analysis, we have∑K
j=2 δj ≤ OPTi. On the other hand, the total progress skipped due to rounding up is at

most (K − 1)∆P . The time consumption for execution using clock rate other than f0, i.e.,∑K
j=2 δj−1(1− Idle(i, j)), should be at least OPTi − µk∆P . Therefore,

tidlei ≤ OPTi −
K∑
j=2

δj−1(1− Idle(i, j)) ≤ µ(K − 1)∆P

Thus,

EI =
M∑
i=1

K∑
j=2

P (sj.ri)δj−1Idle(i, j)

≤ Pmax
M

M∑
i=1

tidlei ≤ Pmaxµ(K − 1)∆P

Notice that K ≤ n+ 1, we have

sK .E ≤ EA + EI + (K − 1)(2Pmax∆t + ∆E)

≤ CE + Pmaxµn∆P + 2nPmax∆t + n∆E

≤ CE + εCE/4 + εCE/2 + εCE/4 ≤ (1 + ε)CE

Now we have finally proved that path p satisfies all constraints. Let S be the state

set produced during the execution of DPRAε(I). Since p is constructed using the same

transition function h and F∆t, it is also a valid path in S, unless some states in it have

same progress and energy value as other states in S but more time consumption,

147

and therefore be replaced. In either case, DPRAε(I) will yield a schedule with time

consumption at most (1 + ε)OPT .

Lemma 6. DPRAε is a polynomial time algorithm in n, i.e., the number of tasks.

Proof. We first show that the number of states in S is O((n/ε)M+1). It is easy to see that

the energy value is discretized into 4n/ε different values. For progress values, there are

1/∆P different values allowed for each core. If ∆E/µPmax < ε ∗ fmin/(fmax ∗ 2n),

1

∆P

= µ
Pmax
∆E

= max
1≤i≤M

k∑
j=1

cij
Pmax4n

εCEfmin
≤ 4Pmaxn

Pminε

(8–13)

Otherwise, if ∆E/µPmax ≥ ε ∗ fmin/(fmax ∗ 2n),

1

∆P

=
fmax
fminε

(8–14)

In either case, 1/∆P is no more than n/ε times a constant, because both Pmax/Pmin and

fmax/fmin are normally less than 10. Therefore, there are at most O((n/ε)M+1) states in

S. At the same time, the number of different voltage assignments we can choose, i.e.,

the size of RAε(s), is also no more than (L + 1)M , which is a constant. Therefore, the

overall complexity of DPRAε is O((n/ε)M+1).

As a direct result of Lemma 4, Lemma 5 and Lemma 6, we have

Theorem 8.1. Given an MCTCEC instance I, if I is schedulable with optimal time

consumption OPT , DPRAε(I) will return a schedule in polynomial time, which does not

violate the temperature constraint, while its energy and time consumption are at most

(1 + ε)CE and (1 + ε)OPT , respectively.

8.4 Problem Variants

8.4.1 Task Set with Dependence

So far, we only discussed the application of our approach using independent task

set. When some task depends on other tasks and cannot start before the completion of

148

other tasks, we can naturally add such constraints to the constraint checking statement

(line 6 of Algorithm 9 and line 10 of Algorithm 10), because we allow the dummy clock

rate fI . If the dependence constraint is not met based on the progresses on different

cores, we just drop the new state.

8.4.2 Hard Energy Constraint

When the energy constraint is tight, s′.E > (1 + ε)CE on line 10 of Algorithm 10

should be replaced by s′.E > CE. In this case, our approximation algorithm will find a

schedule such that it will not violate the energy and temperature constraints and has

at most (1 + ε)OPTε time consumption. However, the approximation algorithm is only

guaranteed to find a schedule, when the original TECS problem is schedulable with

energy consumption of (1− ε)CE with optimal time consumption OPTε.

8.5 Experiments

The experiments were conducted on 2 core, 4 core, and 6 core processors. Each

core is abstracted as a 8mm × 8mm square. The cores are arranged in 2 × 1, 2 × 2 and

3× 2 meshes, respectively. We model each core as a DVS-capable processing unit with

three voltage/frequency levels (1.5V-206MHz, 1.1V-133MHz, and 0.8V-103MHz) like

StrongARM [61]. We choose some tasks from the Mibench and obtain the workload

(worst case cycle numbers) from M5 simulator. We also use synthetic task sets

which are randomly generated with each of them having execution time in the range

of 500 - 5000 milliseconds. We adopt the approach in [90] to compute the steady

state temperature. The ambient temperature and initial temperature of the processor

are set to 32◦C and 40◦C, respectively. The exact and approximation algorithms are

implemented in C++. All experiments were performed on 3GHz workstation with 20GB

RAM.

We choose 6 jobs from MiBench [41], including algorithms from communication

(FFT, CRC32), security (sha), sound compression (untoast), and automotive (basic-

math, qsort). The workload of these jobs were in range of 5 ∗ 107 − 3 ∗ 108 cycles. We

149

use the exact algorithm DPRA to schedule these tasks on 2 core processor. CRC32

(τ1,1), qsort (τ1,2), and untoast (τ1,3) are mapped to core 1. sha (τ2,1), FFT (τ2,2), and

basicmath (τ2,3) are mapped to core 2. We depict the temperature curves of each core in

Figure 8-3, when different temperature and energy constraints are applied.

In Figure 8-3a, the temperature constraint is not violated when both cores run at

1.5V. DPRA schedules jobs on different cores to execute using the maximum voltage

level at the same time, i.e., task τ1,1 and τ2,2 , to minimize the time consumption. When

the energy budget reduces, tasks with large workload will be executed using lower

voltage level to save energy as shown in Figure 8-3b. As we can see, τ2,2 is executed

using 1.1V instead of 1.5V, when the energy budget reduces to 22000mJ. Similarly,

when the temperature constraint becomes tighter, less number of tasks are executed

using the maximum voltage level to decrease the peak temperature. As shown in

Figure 8-3c, two cores no longer run using 1.5V at the same time. Although the

energy budget is still sufficient, the time consumption increases slightly compared to

Figure 8-3a.

We evaluated the performance of our approximation scheme using task sets

with different sizes. Figure 8-4 and Figure 8-5 show the actual ratio between the

approximation results and the optimal solution for time and energy consumption,

respectively. It can be seen that the actual ratio is usually smaller than the expected ratio

1 + ε. For example, for ε = 0.02, it is expected to produce results within 2% of the optimal

values. The actual gap between the optimal solution and the approximation scheduling

is significantly less than 2%.

We also evaluated the running time of our approximation scheme with different ε

and number of tasks. The results on 2 core and 4 core systems are shown in Figure 8-6.

Curve DPRA represents the execution time of the exact algorithm DPRA. As expected,

DPRAε requires more time for smaller ε or larger job set size. Its time consumption is sill

150

60

70

80

90

0 500 1000 1500 2000 2500 3000 3500 4000

T
e
m

p
e
ra

tu
re

 (
d
e
g
 C

)

Time(millisecond)

Core 1
Core 2

τ2,3 at 1.5Vτ2,1 at 0.8V

τ1,1 at 1.5V τ1,2 at 1.1V

τ2,2 at 1.5V

τ1,3 at 1.5V

A

60

70

80

90

0 500 1000 1500 2000 2500 3000 3500 4000

T
e
m

p
e
ra

tu
re

 (
d
e
g
 C

)

Time(millisecond)

Core 1
Core 2

τ1,3 at 1.1V
τ1,1 at 1.5V

τ2,3 at 1.5V
τ2,1 at 1.5V

τ2,2 at 1.1V

τ1,2 at 1.1V

B

60

70

80

90

0 500 1000 1500 2000 2500 3000 3500 4000

T
e
m

p
e
ra

tu
re

 (
d
e
g
 C

)

Time(millisecond)

Core 1
Core 2

τ2,3 at 1.5V

τ1,1 at 1.5V τ1,2 at 1.1V
τ1,3 at 1.1V

τ2,1 at 1.1V

τ2,2 at 1.1V

C

Figure 8-3. Temperature and energy constrained scheduling. A) CT = 95◦C and
CE = 23000mJ . B) CT = 95◦C and CE = 22000mJ . C) CT = 85◦C and
CE = 23000mJ .

151

0.9

1

1.1

1.2

1.3

1.4

1.5

15 20 25 30 10 15 10 15

Ti
m

e
co

ns
um

pt
io

n
A

P
X

vs
.

O
P

T

Task Number

6 core2 core 4 core

OPT
ε = 0.05

ε = 0.1
ε = 0.15

ε = 0.2
ε = 0.5

Figure 8-4. Actual time consumption of DPRAε.

0.9

1

1.1

1.2

1.3

1.4

1.5

15 20 25 30 10 15 10 15E
ne

rg
y

co
ns

um
pt

io
n

A
P

X
vs

.
O

P
T

Task Number

6 core2 core 4 core

OPT
ε = 0.05

ε = 0.1
ε = 0.15

ε = 0.2
ε = 0.5

Figure 8-5. Actual energy consumption of DPRAε.

0

100

200

300

400

500

600

0 5 10 15 20 25 30

R
un

Ti
m

e
(s

ec
on

ds
)

Task Number (2 cores)

DPRA
ε = 0.04
ε = 0.06
ε = 0.10
ε = 0.20

0

500

1000

1500

2000

2500

3000

0 5 10 15 20
Task Number (4 cores)

DPRA
ε = 0.04
ε = 0.06
ε = 0.10
ε = 0.20

Figure 8-6. Running time with different job set size and ε.

152

significantly smaller than the exact algorithm DPRA, which grows exponentially with the

number of tasks.

8.6 Summary

In this chapter, we studied task scheduling problem on a multicore processor

with DVS capability under both temperature and energy constraints. We present a

polynomial time approximation scheme. When the original problem is schedulable, our

approximation algorithm is guaranteed to generate a solution, which will not violate the

temperature constraint, and consume no more than a designer specified bound time

and energy compared with the optimal solution. We evaluated our approach using both

real and synthetic benchmarks mapped on real multicore processors. The experimental

results demonstrate that our technique is able to produce schedules close to optimal

solution with reasonable execution time.

153

CHAPTER 9
CONCLUSIONS AND FUTURE WORK

Multicore architectures are widely used in today’s desktop, server and embedded

systems. Increasing complexity of modern multicore architectures introduces unique

validation challenges. This dissertation described a set of novel techniques and

methodologies for system level validation of multicore architectures. This chapter

concludes this dissertation and outlines possible future research directions.

9.1 Conclusions

To design reliable multicore systems, it is crucial to satisfy both functional and

non-functional requirements. The functional requirements ensure that the design

performs all the logical operations as specified. The non-functional requirements

guarantee that the system does not violate various design constraints such as area,

power, energy, and temperature. Increasing complexity of multicore architectures

introduces significant challenges during validation of both functional behavior and

non-functional requirements. This dissertation developed novel techniques to address

these validation challenges. This dissertation’s contributions are summarized as follows.

In Chapter 3 and Chapter 4, we presented directed test generation techniques for

the functional validation of multicore architectures. Although simulation using directed

tests requires significantly less number of tests to achieve the same coverage goal

compared to random tests, it is very time consuming to generate the directed tests

automatically due to the limitation of current model checking tools. While existing works

have exploited the temporal symmetry in bounded model checking (BMC) across

different time steps, we presented a novel approach for directed test generation of

multicore architectures that exploits temporal, structural, as well as spatial symmetry in

SAT-based BMC. The CNF description of the design is synthesized using CNF for cores,

bus and memory subsystem to preserve the mapping information between different

cores. As a result, the symmetric high level structure, i.e., structural symmetry, is well

154

preserved and the knowledge learned from a single core was effectively shared by other

cores during the SAT solving process. The experimental results using homogeneous

as well as heterogeneous multicore architectures demonstrated that our approach is

remarkably faster (3-10 times) compared to existing methods.

Chapter 5 described an efficient test generation approach for a wide variety of

cache coherence protocols. We have performed detailed analysis of the space structure

of several popular protocols, and developed novel techniques to generate efficient test

sequences to achieve 100% state and transition coverage for each cache coherence

protocol. Our approach outperformed existing approaches based on constrained

random tests providing higher transition coverage with linear memory requirement.

We also conducted experiments using a wide variety of cache coherence protocols

to demonstrate the effectiveness of our approach on systems with different number of

cores, making it suitable for future multicore architectures.

In Chapter 6, we addressed a major obstacle in applying directed test generation

technique on real world designs. Since model checkers do not directly accept designs

written in hardware description language or do not support all the features, real designs

must be translated or abstracted before test generation. We presented a novel approach

for directed test generation using interleaved concrete and symbolic execution that

accepts Verilog designs. The design is first simulated to generate an execution trace.

The constraint solver is then applied to find a suitable test pattern which can force

the real design to exercise the desired behavior. Our approach alleviates the design

translation problem by directly recording the logical operations performed during the

concrete simulation. The constraint solving complexity is also reduced, because we only

apply the solver to one execution trace at a time.

Chapter 7 presented a flexible and automatic framework to address the temperature-

and energy-constrained schedulability validation problem in multitasking systems with

different voltage levels. The problem is modeled by extended timed automata, while the

155

energy/temperature constraints are translated into CTL specifications. A model checker

was employed to determine whether the given task set is schedulable. In addition, we

also proposed a polynomial time approximation scheme to circumvent the capacity

limitations of symbolic model checkers. Our approximation algorithm is guaranteed

to generate results close to optimal value with reasonable running time. We proved

mathematically that our approximation algorithm will give no false positive answer,

while the false negative ratio can be negligibly small in practical scenarios. Extensive

experimental results demonstrated the effectiveness of our approach.

Chapter 8 studied task schedulability validation of DVS-enabled multicore

processors. We have designed a polynomial time approximation scheme, such that

when the original problem is schedulable, our approximation algorithm is guaranteed to

generate a solution, which will not violate the temperature constraint, and consume

no more than a specified amount of time and energy compared with the optimal

solution. Both real and synthetic benchmarks are used to evaluate our approach.

The experimental results suggest that our technique is able to produce results close to

optimal solution with reasonable execution time.

In conclusion, this dissertation presented a comprehensive study of the system-level

validation of multicore architectures. We developed a set of efficient validation

techniques and evaluated them on a variety of multicore systems. Our research will

enable designers and validation engineers to significantly improve the quality of future

multicore designs.

9.2 Future Research Directions

The validation of multicore architectures will continue to be one of the most

important challenges in the development of future desktop, server, and embedded

systems. The research described in this dissertation can be extended in the following

directions:

156

The capacity of underlying SAT solvers is an important bottleneck for directed

test generation of multicore architectures.. Although our proposed techniques have

shown significant reduction of the overall solving time, the time consumption needs to

be further reduced to make it applicable on complex industrial designs. Further studies

are required to analyze the SAT solving process and make more efficient learning

techniques to increase the capacity of existing approaches.

We have shown that the state space of many cache coherence protocols in modern

multicore architectures have quite regular structure. We believe that our proposed

techniques can be further extended to effectively analyze the protocol implementation

with large number of cores. Although the full transition coverage may become infeasible

for too many cores, the knowledge about the space structure can be used to effectively

distribute the test vectors within the state space, so that complex bugs can be detected.

Our work in the direction of scalable directed test generation has demonstrated

the effectiveness of the integration of concrete simulation and static analysis. Further

studies can investigate how to support more HDL features and employ more constraint

solving optimizations. The proposed technique can also be incorporated with random

test generation to reduce the overall validation time.

Our validation techniques for task schedulability analysis can be further extended

to support more complex thermal models. Different validation techniques can be

developed for task sets with relatively small execution time. Although polynomial-time

approximation algorithms can provide results with bounded errors, their computational

complexity can be quite high when the system contains many cores. It is therefore

desirable to have fast and efficient heuristic algorithms for schedulability validation in

future multicore and manycore systems.

157

REFERENCES

[1] D. Abts, S. Scott, and D. Lilja. So many states, so little time: verifying memory
coherence in the Cray X1. In Proceedings of International Parallel and Distributed
Processing Symposium,, 2003.

[2] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, and A. Ziv.
Genesys-pro: innovations in test program generation for functional processor
verification. IEEE Design Test of Computers, 21(2):84 – 93, 2004.

[3] F. A. Aloul, I. L. Markov, and K. Sakallah. Shatter: efficient symmetry-breaking for
boolean satisfiability. In Proceedings of Design Automation Conference, pages
836–839, 2003.

[4] F. A. Aloul, I. L. Markov, and K. A. Sakallah. Shatter. University of Michigan, 2003.
Available from: http://www.aloul.net/Tools/shatter/.

[5] F. A. Aloul, A. Ramani, I. L. Markov, and K. Sakallah. Solving difficult SAT
instances in the presence of symmetry. In Proceedings of Design Automation
Conference, pages 731–736, 2002.

[6] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer Science,
126(2):183–235, 1994.

[7] S. Artzi, A. Kiezun, J. Dolby, F. Tip, D. Dig, A. Paradkar, and M. Ernst. Finding
bugs in web applications using dynamic test generation and explicit-state model
checking. IEEE Transactions on Software Engineering, 36(4):474 –494, 2010.

[8] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Determining optimal
processor speeds for periodic real-time tasks with different power characteristics.
In Proceedings of Euromicro Conference on Real-Time Systems, pages 225–232,
2001.

[9] H. Aydin, R. Melhem, D. Mosse, and P. Mejia-Alvarez. Power-aware scheduling for
periodic real-time tasks. IEEE Transactions on Computers, 53(5):584–600, 2004.

[10] M. Berkelaar, K. Eikland, and P. Notebaert. lpsolve. Eindhoven Univeristy of
Technology, 2010. Available from: http://lpsolve.sourceforge.net/.

[11] D. Bernstein, D. Cohen, and D. Maydan. Dynamic memory disambiguation for
array references. In Proceedings of International Symposium on Microarchitec-
ture, pages 105 – 111, 1994.

[12] A. Biere, A. Cimatti, E. M. Clarke, O. Strichman, and Y. Zhu. Bounded model
checking. Advances in Computers, 58:118–149, 2003.

[13] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking without
BDDs. In Proceedings of International Conference on Tools and Algorithms for
Construction and Analysis of Systems, pages 193–207, 1999.

158

http://www.aloul.net/Tools/shatter/
http://lpsolve.sourceforge.net/

[14] A. Biere and C. Sinz. Decomposing SAT problems into connected components.
Journal on Satisfiability, Boolean Modeling and Computation, 2:191–198, 2006.

[15] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S. Reinhardt. The M5
Simulator: Modeling Networked Systems. IEEE Micro, 26(4):52 –60, 2006.

[16] S. Borkar, T. Karnik, S. Narendra, J. Tschanz, A. Keshavarzi, and V. De.
Parameter variations and impact on circuits and microarchitecture. In Proceedings
of Design Automation Conference, pages 338–342, 2003.

[17] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE
Transactions on Computers, 35(8):677–691, 1986.

[18] R. Cavada, A. Cimatti, C. A. Jochim, G. Keighren, E. Olivetti, M. Pistore,
M. Roveri, and A. Tchaltse. NuSMV. ITC-Irst, 2010. Available from:
http://nusmv.irst.itc.it/.

[19] T. Chantem, R. P. Dick, and X. S. Hu. Temperature-aware scheduling and
assignment for hard real-time applications on mpsocs. In Proceedings of the
Conference on Design, Automation and Test in Europe, pages 288–293, 2008.

[20] J.-J. Chen, C.-M. Hung, and T.-W. Kuo. On the minimization fo the instantaneous
temperature for periodic real-time tasks. In Proceedings of IEEE Real Time and
Embedded Technology and Applications Symposium, pages 236–248, 2007.

[21] J.-J. Chen and C.-F. Kuo. Energy-efficient scheduling for real-time systems on
dynamic voltage scaling (dvs) platforms. In Proceedings of IEEE International
Conference on Embedded and Real-Time Computing Systems and Applications,
pages 28–38, 2007.

[22] M. Chen and P. Mishra. Functional test generation using efficient property
clustering and learning techniques. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 29(3):396 –404, 2010.

[23] M. Chen and P. Mishra. Decision ordering based property decomposition
for functional test generation. In Proceedings of the Conference on Design,
Automation and Test in Europe, pages 167–172, 2011.

[24] M. Chen and P. Mishra. Property learning techniques for efficient generation of
directed tests. IEEE Transactions on Computers, 60(6):852–864, 2011.

[25] M. Chen, X. Qin, and P. Mishra. Efficient decision ordering techniques for
sat-based test generation. In Proceedings of the Conference on Design, Automa-
tion and Test in Europe, pages 490–495, 2010.

[26] S. Chen and K. Nahrstedt. On finding multi-constrained paths. In Proceedings of
IEEE International Conference on Communications, volume 2, pages 874 –879,
1998.

159

http://nusmv.irst.itc.it/

[27] X. Chen, Y. Yang, M. Delisi, G. Gopalakrishnan, and C.-T. Chou. Hierarchical
cache coherence protocol verification one level at a time through assume
guarantee. In Proceedings of IEEE International High Level Design Validation
and Test Workshop, pages 107 –114, 2007.

[28] E. Clarke, A. Biere, R. Raimi, and Y. Zhu. Bounded model checking using
satisfiability solving. Formal Methods in System Design, 19(1):7–34, 2001.

[29] A. Coskun, T. Rosing, K. Whisnant, and K. Gross. Static and dynamic
temperature-aware scheduling for multiprocessor socs. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 16(9):1127–1140, 2008.

[30] P. T. Darga, M. H. Liffiton, K. A. Sakallah, and I. L. Markov. Exploiting structure
in symmetry detection for cnf. In Proceedings of Design Automation Conference,
pages 530–534, 2004.

[31] M. Davis, G. Logemann, and D. Loveland. A machine program for
theorem-proving. Communication of ACM, 5(7):394–397, 1962.

[32] M. Davis and H. Putnam. A computing procedure for quantification theory. Journal
of ACM, 7(3):201–215, 1960.

[33] D. Dill, A. Drexler, A. Hu, and C. Yang. Protocol verification as a hardware design
aid. In Proceedings of International Conference on Computer Design, pages
522–525, 1992.

[34] B. Dutertre and L. M. de Moura. A fast linear-arithmetic solver for DPLL(T). In
Proceedings of International Conference on Computer Aided Verfication, pages
81–94, 2006.

[35] J. Edmonds and E. L. Johnson. Matching, Euler Tours, and the Chinese Postman.
Mathematical Programming, 5:88–124, 1973.

[36] E. Emerson and V. Kahlon. Exact and efficient verification of parameterized
cache coherence protocols. In Proceedings of IFIP WG 10.5 Advanced Research
Working Conference on Correct Hardware Design and Verification Methods,
volume 2860, pages 247–262, 2003.

[37] E. Fersman, P. Pettersson, and W. Yi. Timed automata with asynchronous
processes: Schedulability and decidability. In Proceedings of International Con-
ference on Tools and Algorithms for the Construction and Analysis of Systems,
pages 67–82, 2002.

[38] Z. Fu, Y. Mahajan, and S. Malik. zChaff. Princeton University, 2001. Available
from: http://www.princeton.edu/~chaff/zchaff.html.

[39] A. Gargantini and C. Heitmeyer. Using model checking to generate tests from
requirements specifications. In Proceedings of the 7th European Software
Engineering Conference held jointly with the 7th ACM SIGSOFT International

160

http://www.princeton.edu/~chaff/zchaff.html

Symposium on Foundations of Software Engineering, volume 24, pages 146–162,
1999.

[40] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random testing.
In Proceedings of the ACM SIGPLAN conference on Programming language
design and implementation, pages 213–223, 2005.

[41] M. Guthaus, J. Ringenberg, D.Ernest, T. Austin, T. Mudge, and R. Brown.
Mibench: A free, commercially representative embedded benchmark suite. In
Proceedings of IEEE International Workshop on Workload Characterization,
pages 3–14, 2001.

[42] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, 2003.

[43] J. N. Hooker. Solving the incremental satisfiability problem. Journal of Logic
Programming, 15(1-2):177–186, 1993.

[44] W. Huang, K. Sankaranarayanan, K. Skadron, R. J. Ribando, and M. R. Stan.
Accurate, pre-rtl temperature-aware design using a parameterized, geometric
thermal model. IEEE Transactions on Computers, 57:1277–1288, 2008.

[45] M. A. J. Bhadra, E. Trofimova. Validating power architecture technology-based
mpsocs through executable specifications. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 16(4):388–396, 2008.

[46] R. Jayaseelan and T. Mitra. Temperature aware task sequencing and voltage
scaling. In Proceedings of IEEE/ACM International Conference on Computer-
Aided Design, pages 618–623, 2008.

[47] R. Jejurikar and R. Gupta. Energy aware non-preemptive scheduling for hard
real-time systems. In Proceedings of Euromicro Conference on Real-Time
Systems, pages 21–30, 2005.

[48] R. Jejurikar, C. Pereira, and R. K. Gupta. Leakage aware dynamic voltage
scaling for real-time embedded systems. In Proceedings of Design Automation
Conference, pages 275–280, 2004.

[49] Z. Khasidashvili, A. Nadel, A. Palti, and Z. Hanna. Simultaneous SAT-based
model checking of safety properties. In Proceedings of Haifa Verification Confer-
ence, pages 56–75, 2005.

[50] H.-M. Koo and P. Mishra. Functional test generation using property
decompositions for validation of pipelined processors. In Proceedings of the
Conference on Design, Automation and Test in Europe, pages 1240–1245, 2006.

[51] H.-M. Koo and P. Mishra. Test generation using SAT-based bounded model
checking for validation of pipelined processor. In Proceedings of ACM Great Lakes
Symposium on VLSI, pages 362–365, 2006.

161

[52] H.-M. Koo and P. Mishra. Functional test generation using design and property
decomposition techniques. ACM Transactions on Embedded Computing Systems,
8(4):32:1–32:33, 2009.

[53] A. Kuehlmann. Dynamic transition relation simplification for bounded property
checking. In Proceedings of IEEE/ACM International Conference on Computer-
Aided Design, pages 50–57, 2004.

[54] L. Liu, D. Sheridan, W. Tuohy, and S. Vasudevan. Towards coverage closure:
Using goldmine assertions for generating design validation stimulus. In Pro-
ceedings of the Conference on Design, Automation and Test in Europe, pages
173–178, 2011.

[55] L. Liu and S. Vasudevan. Star: Generating input vectors for design validation by
static analysis of RTL. In Proceedings of IEEE HLDVT Workshop, 2009.

[56] L. Liu and S. Vasudevan. Efficient validation input generation in rtl by hybridized
source code analysis. In Proceedings of the Conference on Design, Automation
and Test in Europe, pages 1–6, 2011.

[57] Y. Liu, H. Yang, R. P. Dick, H. Wang, and L. Shang. Thermal vs energy
optimization for dvfs-enabled processors in embedded systems. In Proceed-
ings of International Symposium on Quality Electronic Design, pages 204–209,
2007.

[58] A. Lungu, P. Bose, D. J. Sorin, S. German, and G. Janssen. Multicore power
management: Ensuring robustness via early-stage formal verification. In Proceed-
ings of IEEE/ACM International Conference on Formal Methods and Models for
Co-Design, pages 78–87, 2009.

[59] J. P. Marques-Silva and K. A. Sakallah. GRASP: A Search Algorithm for
Propositional Satisfiability. IEEE Transactions on Computers, 48:506–521,
1999.

[60] S. M. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dynamic voltage
scaling and adaptive body biasing for lower power microprocessors under
dynamic workloads. In Proceedings of IEEE/ACM International Conference
on Computer-Aided Design, pages 721–725, 2002.

[61] Marvell. Marvell StrongARM 1100 processor. Marvell Technology Group Ltd.,
2004.

[62] A. Miller, A. Donaldson, and M. Calder. Symmetry in temporal logic model
checking. ACM Computer Survey, 38(3):8, 2006.

[63] P. Mishra and M. Chen. Efficient techniques for directed test generation using
incremental satisfiability. In Proceedings of International Conference on VLSI
Design, pages 65–70, 2009.

162

[64] P. Mishra and N. Dutt. Graph-based functional test program generation for
pipelined processors. In Proceedings of the Conference on Design, Automation
and Test in Europe, pages 182–187, 2004.

[65] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff:
engineering an efficient SAT solver. In Proceedings of Design Automation
Conference, pages 530–535, 2001.

[66] C. Norström, A. Wall, and W. Yi. Timed automata as task models for event-driven
systems. In Proceedings of International Conference on Real-Time Computing
Systems and Applications, page 182, 1999.

[67] M. Prasad, A. Biere, and A. Gupta. A survey of recent advances in SAT-based
formal verification. International Journal on Software Tools for Technology Transfer
(STTT), 7(2):156–173, 2005.

[68] X. Qin, M. Chen, and P. Mishra. Synchronized generation of directed tests using
satisfiability solving. In Proceedings of International Conference on VLSI Design,
pages 351–356, 2010.

[69] X. Qin and P. Mishra. Efficient directed test generation for validation of multicore
architectures. In Proceedings of International Symposium on Quality Electronic
Design, pages 276–283, 2011.

[70] X. Qin and P. Mishra. Automated generation of directed tests for transition
coverage in cache coherence protocols. In Proceedings of the Conference on
Design, Automation and Test in Europe, pages 3–8, 2012.

[71] X. Qin, W. Wang, and P. Mishra. Tcec: Temperature- and energy-constrained
scheduling in real-time multitasking systems. To appear in IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 2012.

[72] K. Sen and G. Agha. Cute and jcute: Concolic unit testing and explicit path
model-checking tools. In Proceedings of International Conference on Computer
Aided Verfication, pages 419–423, 2006.

[73] D. Shin and J. Kim. Dynamic voltage scaling of periodic and aperiodic tasks
in priority-driven systems. In Proceedings of Asia and South Pacific Design
Automation Conference, pages 653–658, 2004.

[74] S. Shukla and R. Gupta. A model checking approach to evaluating system level
dynamic power management policies for embedded systems. In Proceedings
of IEEE International High-Level Design Validation and Test Workshop, pages
53–57, 2001.

[75] K. Skadron, M. R. Stan, K. Sankaranarayanan, W. Huang, S. Velusamy, and
D. Tarjan. Temperature-aware microarchitecture: Modeling and implementation.
ACM Transactions on Architecture and Code Optimization, 1(1):94–125, 2004.

163

[76] M. Song and S. Sahni. Approximation algorithms for multiconstrained
quality-of-service routing. IEEE Transactions on Computers, 55(5):603 – 617,
2006.

[77] G. S. Spirakis. Designing for 65nm and beyond. In Keynote Address at the
Conference on Design, Automation and Test in Europe, 2004.

[78] O. Strichman. Pruning techniques for the SAT-based bounded model checking
problem. In Proceedings of IFIP WG 10.5 Advanced Research Working Con-
ference on Correct Hardware Design and Verification Methods, pages 58–70,
2001.

[79] O. Strichman. Accelerating bounded model checking of safety properties. Formal
Methods in System Design, 24(1):5–24, 2004.

[80] D. Tang, S. Malik, A. Gupta, and C. N. Ip. Symmetry reduction in SAT-based
model checking. In Proceedings of International Conference on Computer Aided
Verfication, pages 125–138, 2005.

[81] S. Vasudevan, D. Sheridan, D. Tcheng, S. Patel, W. Tuohy, and D. Johnson.
Goldmine: Automatic assertion generation using data mining and static analysis.
In Proceedings of the Conference on Design, Automation and Test in Europe,
pages 626–629, 2010.

[82] R. Viswanath, V. Wakharkar, A. Watwe, and V. Lebonheur. Thermal performance
challenges from silicon to systems. Intel Technology Journal, 4(3):1–16, 2000.

[83] I. Wagner and V. Bertacco. Mcjammer: adaptive verification for multi-core designs.
In Proceedings of the Conference on Design, Automation and Test in Europe,
pages 670–675, 2008.

[84] S. Wang and R. Bettati. Reactive speed control in temperature-constrained
real-time systems. In Proceedings of Euromicro Conference on Real-Time
Systems, pages 10pp.–170, 2006.

[85] W. Wang and P. Mishra. Leakage-aware energy minimization using dynamic
voltage scaling and cache reconfiguration in real-time systems. In Proceedings of
International Conference on VLSI Design, pages 357–362, 2010.

[86] W. Wang and P. Mishra. Predvs: Preemptive dynamic voltage scaling for real-time
systems using approximation scheme. In Proceedings of Design Automation
Conference, pages 705–710, 2010.

[87] W. Wang, P. Mishra, and A. Gordon-Ross. Sacr: Scheduling-aware cache
reconfiguration for real-time embedded systems. In Proceedings of International
Conference on VLSI Design, pages 547–552, 2009.

[88] W. Wang, X. Qin, and P. Mishra. Temperature- and energy-constrained scheduling
in multitasking systems: a model checking approach. In Proceedings of

164

ACM/IEEE International Symposium on Low Power Electronics and Design,
pages 85–90, 2010.

[89] Z. Wang and J. Crowcroft. Quality-of-service routing for supporting multimedia
applications. IEEE Journal on Selected Areas in Communications, 14(7):1228
–1234, 1996.

[90] Z. Wang and S. Ranka. A simple thermal model for multi-core processors and its
application to slack allocation. In Proceedings of IEEE International Symposium
on Parallel and Distributed Processing, pages 1–11, 2010.

[91] J. Whittemore, J. Kim, and K. Sakallah. SATIRE: A new incremental satisfiability
engine. In Proceedings of Design Automation Conference, pages 542–545, 2001.

[92] S. Williams. Icarus Verilog. Icarus Verilog, 2012. Available from: http://
iverilog.icarus.com/.

[93] D. Wood, G. Gibson, and R. Katz. Verifying a multiprocessor cache controller
using random test generation. IEEE Design Test of Computers, 7(4):13 –25, 1990.

[94] F. Xie, M. Martonosi, and S. Malik. Compile-time dynamic voltage scaling settings:
opportunities and limits. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 49–62, 2003.

[95] F. Xie, M. Martonosi, and S. Malik. Bounds on power savings using runtime
dynamic voltage scaling: an exact algorithm and a linear-time heuristic
approximation. In Proceedings of International Symposium on Low Power
Electronics and Design, pages 287–292, 2005.

[96] G. Xue, W. Zhang, J. Tang, and K. Thulasiraman. Polynomial time approximation
algorithms for multi-constrained qos routing. IEEE/ACM Transactions on Network-
ing, 16(3):656 –669, 2008.

[97] L. Yuan and G. Qu. Alt-dvs: Dynamic voltage scaling with awareness of leakage
and temperature for real-time systems. In Proceedings of NASA/ESA Conference
on Adaptive Hardware and Systems, pages 660–670, 2007.

[98] X. Yuan. Heuristic algorithms for multiconstrained quality-of-service routing.
IEEE/ACM Transactions on Networking, 10(2):244–256, 2002.

[99] L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. Efficient conflict
driven learning in a boolean satisfiability solver. In Proceedings of IEEE/ACM
International Conference on Computer-Aided Design, pages 279–285, 2001.

[100] S. Zhang, K. Chatha, and G. Konjevod. Approximation algorithms for power
minimization of earliest deadline first and rate monotonic schedules. In Proceed-
ings of International Symposium on Low Power Electronics and Design, pages
225–230, 2007.

165

http://iverilog.icarus.com/
http://iverilog.icarus.com/

[101] S. Zhang and K. S. Chatha. Approximation algorithm for the temperature aware
scheduling problem. In Proceedings of International Conference on Computer-
Aided Design, pages 281–288, 2007.

[102] Y. Zhang, X. Hu, and D. Z. Chen. Task scheduling and voltage selection for energy
minimization. In Proceedings of Design Automation Conference, pages 183–188,
2002.

[103] X. Zhong and C. Xu. System-wide energy minimization for real-time tasks:
Lower bound and approximation. In Proceedings of International Conference on
Computer-Aided Design, pages 516–521, 2006.

166

BIOGRAPHICAL SKETCH

Xiaoke Qin received the B.S. and M.S. degrees from the Department of Automation,

Tsinghua University, Beijing, China, in 2004 and 2007 respectively. He received his

Ph.D. from the Department of Computer and Information Science and Engineering,

University of Florida, USA, in 2012. His research interests are in the area of code

compression, model checking and system verification.

167

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 INTRODUCTION
	1.1 Functional Validation of Multicore Architectures
	1.2 Validation of Non-functional Requirements
	1.3 Research Contributions
	1.4 Dissertation Organization

	2 RELATED WORK
	2.1 Test Generation for Architecture Validation
	2.2 Validation of Cache Coherence Protocols
	2.3 Task Schedulability under Constraints

	3 SYNCHRONIZED GENERATION OF DIRECTED TESTS
	3.1 Background
	3.1.1 Conflict clause forwarding
	3.1.2 Property clustering

	3.2 Synchronized Test Generation
	3.2.1 Correctness of the Proposed Approach
	3.2.2 Implementation Details

	3.3 Experiments
	3.3.1 A Stock Exchange System
	3.3.2 A VLIW MIPS Processor
	3.3.3 Circuit Test Generation

	3.4 Summary

	4 EFFICIENT TEST GENERATION FOR MULTICORE ARCHITECTURES
	4.1 Test Generation for Multicore Architectures
	4.1.1 Correctness of Our Proposed Approach
	4.1.2 Implementation Details
	4.1.3 Heterogeneous Multicore Architectures

	4.2 Experiments
	4.2.1 Experimental Setup
	4.2.2 Results

	4.3 Summary

	5 VALIDATION OF CACHE COHERENCE PROTOCOLS
	5.1 Background and Motivation
	5.2 Test generation for Transition Coverage
	5.2.1 SI Protocol
	5.2.2 MSI Protocol
	5.2.3 MESI Protocol
	5.2.4 MOSI Protocol

	5.3 Experiments
	5.4 Summary

	6 SCALABLE DIRECTED TEST GENERATION
	6.1 Directed Test Generation by Interleaving Concrete and Symbolic Execution
	6.1.1 Illustrative Example
	6.1.2 System Model
	6.1.3 Instrumentation
	6.1.4 Concrete Simulation
	6.1.5 Path Constraint Generation
	6.1.6 Test Generation
	6.1.7 Constraint Solving Optimization

	6.2 Implementation Details
	6.2.1 Design Flattening
	6.2.2 Clock Cycle Population
	6.2.3 Dynamic Array Reference Disambiguation

	6.3 Experiments
	6.3.1 Designs without Dynamic Array References
	6.3.2 Designs with Dynamic Array References
	6.3.3 SAT-based BMC versus Our Approach

	6.4 Summary

	7 TEMPERATURE- AND ENERGY-CONSTRAINED SCHEDULING IN REAL-TIME SYSTEMS
	7.1 Background and Problem Formulation
	7.1.1 Thermal Model
	7.1.2 Energy Model
	7.1.3 System Model
	7.1.4 TCEC problem

	7.2 Overview
	7.3 Approximation Algorithm for TCEC Scheduling
	7.3.1 Notations
	7.3.2 TCEC as MCP
	7.3.3 An Exact Algorithm for MCP
	7.3.4 Approximation Algorithm

	7.4 Problem Variants
	7.5 Experiments
	7.5.1 Experimental Setup
	7.5.2 TCEC versus TC or EC
	7.5.3 TCEC using Approximation Algorithm

	7.6 Summary

	8 SCHEDULABILITY VALIDATION FOR MULTICORE ARCHITECTURES
	8.1 Background and Problem Formulation
	8.1.1 Processor Thermal Model
	8.1.2 Energy Model
	8.1.3 System Model
	8.1.4 Multicore DVS Schedule
	8.1.5 Problem Formulation

	8.2 Optimal Algorithm for TECS
	8.3 Approximation Algorithm
	8.4 Problem Variants
	8.4.1 Task Set with Dependence
	8.4.2 Hard Energy Constraint

	8.5 Experiments
	8.6 Summary

	9 CONCLUSIONS AND FUTURE WORK
	9.1 Conclusions
	9.2 Future Research Directions

	REFERENCES
	BIOGRAPHICAL SKETCH

