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Abstract—Surface codes provide a promising path towards
large-scale fault-tolerant quantum computers. However, outside
the difficulty in engineering qubits, their theoretical realization
is hindered by a number of technical implementation details,
including the initialization of an encoded quantum state on
contemporary quantum computers. We propose a solution to
overcome these challenges by utilizing recent theoretical devel-
opments in measurement-induced quantum steering. An encoded
quantum state is prepared by repeatedly performing the following
steps: (1) entangling qubits via a specifically chosen operation, (2)
performing measurement on some of the qubits, and (3) resetting
the measured qubits’ states. We demonstrate our results using
numerical simulations of surface codes, noting convergence of
state fidelity, and commenting on choices for parameter selection.

I. INTRODUCTION

Quantum computers can solve a number of key problems
exponentially faster than their classical counterparts. Examples
include the famous Shor’s algorithm for factoring prime num-
bers [1], Grover’s search for finding a needle in a haystack
[2], as well as the quantum algorithm for solving a system
of linear equations [3]. Qubits (quantum bits) can be in an
arbitrary combination of states (superposition), and entangled
states can not be expressed in terms of individual qubit states.
The enhanced computational ability is driven by the key
quantum mechanical property of entanglement. Unfortunately
in reality, qubits also entangle with unwanted degrees-of-
freedom (the environment), leading to decoherence and a loss
of information [4], [5]. In other words, the quantum computer
must satisfy two conflicting requirements. Qubits need to be
externally controlled, measured, and entangled. On the other
hand, qubits must be isolated from their environment to avoid
unwanted entanglement. As a result of these conflicts, quantum
computers will be noisy, where errors propagate and grow
during the execution.

A. State-of-the-Art

Fortunately, the invention of quantum error-correcting codes
(ECC) provides a realistic path towards fault-tolerant quantum
computing. ECC have three main requirements: (1) provide an
encoding of physical qubits to logical qubits, (2) the ability
to detect when an error has occurred, and (3) a mechanism
to correct the logical qubit. In other words, by creatively
entangling several physical qubits as one logical qubit, errors
can be detected and corrected. As a particular promising
example, surface codes (Figure 1) build logical qubits by
assuming topological features of physical qubits [6], [7].
Specifically, surface codes assume the physical layout of qubits
is given by a lattice. Experimentally realizing an engineered
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Fig. 1: The surface code is defined on a square lattice. Two key
operators, Av and Bp, define the codespace of the lattice. A
logical qubits is encoded by spreading the information across
all the qubits on the lattice. Logical gates XL and ZL are
defined as non-trivial loops around the lattice, and act on the
protected logical qubits.

system that satisfies the surface code is a difficult and ongo-
ing problem. However, recent experiments have successfully
demonstrated surface code implementation by “simulating”
the code on programmable quantum processors, such as on
Rydberg atoms [8] and superconducting qubits [7]. Two key
steps are performed to prepare the computer for surface code
simulation. The first step is to reset the computer to a fiducial,
all-zeros, state – either by waiting for the qubits to naturally
decay, or by measuring, classically reading, and correcting
the qubits. The second key step is to apply highly calibrated
(single and entangling) gates to the all-zeros state to prepare
the simulated state of a surface code. Specifically, a quantum
circuit Uprep is applied to n-qubits in the fiducial state |0⟩
which then simulates a surface code state |G⟩ = Uprep |0⟩⊗n.
Throughout this paper, we will refer to these initial steps as
preparing the surface code. Existing approaches – including
“repeat until success” [9] – have two practical limitations:
(i) they require many gates (area overhead) to initialize the
surface code, and (ii) they require many measurements (timing
overhead) to ascertain high fidelity of the initial state.

B. Research Contributions

We propose a mechanism to prepare the surface code by
exploiting the behavior that arise from quantum measure-
ment. Quantum Steering (QS), as first coined by Schrödinger,
is a puzzling phenomenon in quantum mechanics whereby
measurements on one system influences the state of another
entangled system [6]. Recent works theoretically define under
which physical conditions a quantum-mechanical system may
be steered [10] and experimentally demonstrated on contempo-
rary quantum computers [11]. We utilize these advancements
to construct a steering protocol that prepares a surface code.
As a brief visualization, Figure 2 represents the steering proto-
col as a quantum circuit, where a special entangling operation



U is repeatedly applied alongside measurement. The end result
is that from an arbitrary initial state, a desired state is prepared.
In this paper, we develop the necessary ingredients to realize
the steering protocol and prepare surface codes. Specifically,
this paper makes the following major contributions:

1) Proposes an algorithm that can generate quantum cir-
cuits U to satisfy conditions for quantum steering.

2) Presents two methods to construct the groundstate of the
surface code (quantum steering and hybrid approach).

The rest of the paper is organized as follows. Section II
provides the relevant background on quantum steering and
surface codes. Section III provides the problem formulation.
Section IV describes our proposed framework for quantum
steering of surface codes. Section V presents the experimental
results. Finally, Section VI concludes the paper.

II. THEORETICAL BACKGROUND

In this section, we first introduce quantum computing and
noise models. Next, we provide background on quantum error
correction and surface codes.

A. Quantum Computing

Qubits are the fundamental building blocks of quantum
computers. The state |ψ⟩ of a qubit lives in a 2-dimensional
complex-Hilbert space and can be expressed as |ψ⟩ = α |0⟩+
β |1⟩ where |α|2 + |β|2 = 1. Measuring a qubit yields “0” or
“1” with probability |a|2 or |b|2 respectively. Several qubits
may be combined to form a larger state space of size 2n

where n is the number of qubits. A quantum gate U (and in
general a quantum circuit U) acts on a collection of qubits to
transform it to another state U |ψ⟩ (U |ψ⟩). The Solovay-Kiteav
theorem guarantees that any (ϵ-close) quantum circuit can be
built using a small set of universal quantum gates [12]. The
main challenge, unfortunately, is that real quantum computers
are prone to noise that scales with the number of qubits –
resulting in unreliable physical qubits and gates [13].

B. Noise Models

Quantum noise can be generally labeled as either coherent,
incoherent, or decoherent. Coherent noise occurs when an
intended gate U is perturbed, resulting in Ũ = U · U where
U is a small unitary offset. Similarly, incoherent noise occurs
when the intended gate U is stochastically perturbed, resulting
in many possibilities for Ũ = {U · U0, U · U1, · · · , U · Un}
depending on a classical probability distribution governing the
chance of U i occurring. Both coherent and incoherent noise
can be mitigated using advanced (optimal) control techniques,
such as dynamical decoupling [14]. Decoherent noise, how-
ever, occurs when information is lost to the environment,
making the error irreversible. Unlike coherent and incoher-
ent noise, decoherent noise requires advanced techniques to
mitigate the errors, i.e. quantum error correction.

To represent a general quantum process, including the
effect of noise, it is convenient to use the density matrix
representation of quantum states:

ρ =
∑
i

pi |ψi⟩ ⟨ψi| ,

where pi gives the probability of |ψi⟩ occurring. A general
quantum process (e.g. quantum noise), E , is then given as a
map on density matrices ρ′ = E(ρ). As an example, in this
formalism a quantum gate U acting on a density matrix ρ is
expressed as E(ρ) = UρU†.

C. Quantum Error Correction

Two key facts make traditional classical codes inapplicable
for quantum computers: (a) measurement collapses the state of
a qubit, and (b) by the no-cloning theorem, information cannot
be copied. Instead, quantum error correcting codes spread the
information of one logical qubit across many high-entangled
physical qubits. Errors are detected using syndrome measure-
ments, where many-qubit measurements are performed such
that it does not destroy the information encoded in the logical
qubit. If an error is detected, operations corresponding to
the type of error is used to revert the error. In other words,
an error-correcting code E, will ideally undo the action of
a noisy process E and return the original density matrix:
E(ρ′) = E ◦ E(ρ) = ρ.

Quantum error correcting codes depend on a number of key
parameters, such as: the number of physical qubits necessary,
the number of encoded logical qubits, and the maximum
physical error rates threshold [15], [16]. It is an open and
active area of research to find the optimal set of parameters
needed for error correction – particularly with respect to
optimizing the physical error rate thresholds. Currently, surface
codes are considered as an uncontested leader in terms of error
correction [17].

D. Surface Codes

Surface codes are defined on a plane lattice. As depicted
in Figure 1, qubits are placed on each edge of a square
in the lattice. The encoding of logical qubits are based on
two important operators that perform simple local operations.
These are known as vertex and plaquette operators, and are
defined as follows:

Av =
∏
i∈v

Zi and Bp =
∏
i∈p

Xi,

where Av enacts the Pauli-Z rotation on each qubit around a
vertex v, and Bp enacts the Pauli-X rotation on each qubit that
make up a plaquette p. All these terms mutually commute,
[As, Bp] = 0, and so a state |ψ⟩ can be defined to be a
simultaneous eigenstate of both terms

∀s : As |ψ⟩ = |ψ⟩ ∀p : Bp |ψ⟩ = |ψ⟩ .

The state |ψ⟩ defines the codespace of the code. Logical
operators are then defined to operate within the codespace,
and hence logical qubits are realized.

To complete the description of logical states, we can inspect
the surface code in a physical sense. The Hamiltonian for a
surface code is defined as

Ĥsurface = −
∑
i∈v

Ai −
∑
i∈p

Bi. (1)



The purpose of the Hamiltonian is to measure the energy of
a system. The groundstate |G⟩, which has the lowest energy,
can be defined in terms of projection operators

|G⟩ = 1

4

∏
i∈v

(I+Ai) +
∏
i∈p

(I+Bi)

 |ψ⟩ . (2)

This tells us that for any state |ψ⟩ we may bring the system
to the groundstate by appropriately applying the projection
operators (I+Ai) and (I+Bi). By definition, the groundstate
is an encoding for a logical qubit. The space of the logical
qubits is then defined as

|00⟩L = |G⟩ , |01⟩L = X̄1 |00⟩L (3)
|10⟩L = X̄2 |00⟩L , |11⟩L = X̄1X̄2 |00⟩L (4)

where X̄1 and X̄2 are logical operators which are defined
in terms of non-trivial “cycles” on the lattice as depicted in
Figure 1.

III. PROBLEM FORMULATION

We first describe the theory of measurement-induced quan-
tum steering. Next, we discuss how to apply quantum steering
for error correction using surface codes.

A. Measurement-induced Quantum Steering

One of the key features of quantum mechanics is entan-
glement. An interesting situation occurs when two particles
are maximally entangled and one of the particles is measured.
The result of measuring the second particle is then predictable.
Bell’s inequality gives a mathematical constraint to how the
outcomes of the two measurements are correlated [18]. Quan-
tum steering refers to a situation where measurements are
conducted on part of an entangled state, and steer the other
part of the state [19]. The theory of measurement-induced
quantum steering specifies the form of entanglement necessary
to prepare a state through measurements of another system
[10], [20], [21].

n = 1 n = 2 n = N

1

|0⟩
1

|0⟩
. . . 1

|0⟩

. . .

D: |0⟩
U U U

|0⟩

S: ρS |ψ⊕⟩

Fig. 2: The circuit visualization of the quantum steering
protocol. Detectors are prepared in a fixed state, |0⟩, and
system qubits may be in arbitrary (mixed) states. Repeatedly
applying an operation U , measuring, and resetting the detector,
causes the system qubit to converge to a desired state |ψ⊕⟩.

Figure 2 shows the measurement-induced quantum steer-
ing protocol as a circuit. Suppose we have detector qubits
initialized to the state |0⟩ and system qubits in an arbitrary
state ρS . We wish to steer ρS to a desired state, particularly
the groundstate of a surface code |G⟩. Measurement-induced
quantum steering involves the following:

1) Couple the detector qubits and system qubits with a
composite unitary operator U . The state of the detector-
system after the n-th application of the unitary evolution
is ρn+1 = U (|0⟩ ⟨0| ⊗ ρnS)U†.

2) The detector qubits are then decoupled from the system
– the statistics of measurement are averaged out – giving
the density state of the system as:

ρn+1
S = TrA

[
ρn+1

]
= TrA

[
U (|0⟩ ⟨0| ⊗ ρnS)U†] (5)

3) The detector qubits are reinitialized to their initial states,
|0⟩, and the steps are repeated.

The goal is to steer the system state to a desired state |ψS⊕⟩,
and hence the dynamics of U should be chosen such that with
each iteration the state moves closer to the desired state:

⟨ψS⊕| ρn+1
S |ψS⊕⟩ ≥ ⟨ψS⊕| ρnS |ψS⊕⟩ (6)

Throughout this paper we will be deriving U such that in-
equality is satisfied to steer to the groundstate |G⟩.

B. Preparation of Surface Codes using Quantum Steering

As outlined in Section II-D, the groundstate of the surface
code Hamiltonian defines the encoding of our logical qubits.
As shown in Equation 2, the groundstate may be initialized by
applying projection operators to an arbitrary state. However,
the realization of these projection operators is not so clear. A
straightforward approach is to assume that qubits are already
initialized to |0⟩⊗n. Then Equation 2 simplifies to

|G⟩ =
∏
i∈p

I+Bi√
2

|00 . . . 0⟩ =
∏
i∈p

Ui|00 . . . 0⟩.

In other words, we now have a unitary operator Ui which
can be performed on a quantum computer, to prepare the
groundstate for a surface code – and importantly, encode our
logical qubits. To visualize the action of Ui, consider a single
group of four qubits, hence the groundstate is

U |0⟩⊗4
=

(I+X1X2X3X4)√
2

|0⟩⊗4
=

1√
2

(
|0⟩⊗4

+ |1⟩⊗4
)
.

This generalized Greenberger–Horne–Zeilinger (GHZ) state
can be generated using Hadamard and CNOT gates. However,
this only works if the initial state of the quantum computer is
known, i.e. the initial state is |0000⟩. In general this condition
may not be true, hence requiring careful initialization of the
quantum computer. In other words, if a quantum computer is in
some arbitrary state |ψ⟩, then the steps necessary to prepare the
surface code looks like: |ψ⟩ reset−−−→ |0⟩⊗n Ui−→ |G⟩. We show in
Section IV a method for performing groundstate initialization
by going directly from |ψ⟩ steer−−−→ |G⟩, without relying on the
condition that the initial state is known.

IV. QUANTUM STEERING OF SURFACE CODES

Figure 3 provides an overview of our proposed approach
compared to the existing approach. Our objective is to im-
plement a mechanism to prepare the groundstate |G⟩ which
defines the logical state |00⟩L. Our implementation consists of
two major tasks. The first task is outlined in Algorithm 1 that



performs detector initialization. Line 1-4 compute an orthogo-
nal space to the surface code’s groundstate |G⟩⊥. Subsequently
lines 5-11 produce projection operators that connect to the
orthogonal groundstate and are used to derive the quantum
circuit to implement the steering. The second task performs
quantum steering to prepare the groundstate |G⟩, as outlined
in Section III-A. In a repeated fashion, detector and system
qubits are acted upon by the quantum circuit, detector qubits
are measured, and then the detector qubits are reinitialized.

Qubit 
Reset

Hadamard
Gates CNOT Gates

Detector
Initialization

Steering
Operation 

Proposed Quantum Steering

Existing Approach

Prepared
Surface Code 

Detector
Initialization

Steering
Operation CNOT Gates

Proposed (Hybrid)

Fig. 3: Surface code preparation using the existing approach
versus our proposed quantum steering approach. We also
explore a hybrid approach that requires only two qubits for
steering followed by application of CNOT gates.

We investigate two different approaches of applying the
Quantum Steering (QS) implementation. The first implemen-
tation is a hybrid approach, utilizing QS to steer a single qubit
into a superposition and then applying traditional CNOT gates
to obtain |G⟩. Our second implementation directly applies QS
to all the qubits of the surface code to prepare the groundstate.

A. Hybrid Quantum Steering Protocol

We begin by investigating the simplest form of quantum
steering which consists of two qubits: the detector qubit and
the system qubit. Unlike the existing approach, where the
qubits are prepared to |0⟩ followed by an application of a
Hadamard gate and CNOT gates, our simple protocol replaces
the |0⟩ initialization and Hadamard gate but still relies on a
subsequent application of CNOT gates.

The target state for the system qubit is |+⟩ = 1√
2
(|0⟩+ |1⟩).

We utilize active reset to prepare the detector qubit in the
state |0⟩. To construct the steering Hamiltonian, we (a) have
the operator U†

s |+⟩ = |−⟩ = 1√
2
(|0⟩ − |1⟩) that maps to the

orthogonal space of |+⟩ and (b) the operator Od |0⟩ = |1⟩ that
maps to orthogonal space of the detector’s state |0⟩. Now, the
two operators U†

s = |−⟩ ⟨+| and Od = |1⟩ ⟨0| produce

Ĥ = |1⟩ ⟨0| ⊗ |+⟩ ⟨−|+ h.c.. (7)

The Hamiltonian describes the dynamics of the two-qubit
system and, in this case, is swapping the detector’s qubit
space with the system’s qubit space. The two-qubit quantum

circuit is then given as a matrix-exponential of the Hamiltonian
U = exp

(
−iJĤ

)
for some coupling strength J .

We are now ready to prepare the groundstate of the surface
code. First, we employ quantum steering, which consists of:
(a) entangling a detector and system qubit with the quantum
circuit U , (b) measuring the detector qubits, and (c) re-
initializing the detector qubit. After N repetitions, the state
of the system qubit converges, yielding the final detector-
system state as |0⟩D |+⟩S . Because only two qubits are used,
we can simultaneously prepare several qubits on the surface
code via QS, and therefore, prepare a general state in the
form |ψsurface⟩ = |0⟩ |+⟩ ⊗ |0⟩ |+⟩ . . . |0000⟩. After several
qubits are prepared, we apply a sequence of CNOT gates
to entangle all qubits on the surface code to obtain the
groundstate |ψsurface⟩ = |G⟩.

B. Proposed Quantum Steering Protocol

In the previous section, we replaced the Hadamard gate
and initial state preparation of |0⟩⊗n by a simple two-qubit
quantum steering protocol. However, we still required CNOT
gates to finish the entanglement. In this section, we develop
the steering protocol that removes the explicit CNOT step, and
instead inherently entangles the system and directly prepares
the groundstate |G⟩ . The target state for the surface code is
the generalized GHZ state:

|ψ⊕⟩ = |G⟩ = 1√
2

(
|0⟩⊗n

+ |1⟩⊗n
)
.

The states orthogonal to the target state are represented as
|G⟩⊥, which is a subspace of dimension 2n − 1. Similar to
the previous section, we utilize active reset to prepare detector
qubits in the state |0⟩. To construct the Hamiltonian we have
the following: (a) operators Uk†

s that connect the desired
groundstate |G⟩ to a k-th state in the orthogonal subspace
|G⟩⊥, and (b) the operator Od |0⟩ = |1⟩ that connects the
detector’s state to the orthogonal state. The Hamiltonian is

Ĥ =
∑
k

|1⟩ ⟨0| ⊗ Uk
s + h.c.. (8)

Consequently, the unitary operator is given as U =

exp
(
−iJĤ

)
, which is compiled into a quantum circuit U

using standard techniques such as [22].
To prepare the groundstate of the surface code we now have

a straightforward procedure: (a) perform the quantum circuit
U , (b) measure the detector qubits, and (c) reinitialize the
detector qubits to |0⟩ via active reset. After N repetitions
the overall state of the surface code will converge to the
groundstate, |ψsurface⟩ → |G⟩.

V. EXPERIMENTS

In this section we experimentally investigate our approach
in preparing the groundstate |G⟩ of the surface code. We first
outline the experimental setup. Next, we present the results.

A. Experimental Setup

We explore the two implementations via simulations of
surface codes, one with 17 qubits, and one with 4 qubits.
Modern quantum toolchains, particularly Qiskit [23] and Cirq



Fig. 4: Utilizing single-qubit quantum steering, and applying CNOT gates after, we prepare the groundstate |G⟩ of the surface
code. (a) The qubits in the surface code are given in a random initial state. (b) Three steps in the steering are shown where
the qubits in the surface code converge to a superposition 1√

2
(|0⟩+ |1⟩). (c) Entangling CNOT gates are applied to finalize

the groundstate of the surface code.

Algorithm 1: Steering Circuit
Output: Quantum circuit U
Input: Surface code groundstate |G⟩
Input: Detector state: |D⟩

1 Find |G⟩⊥:
2 Prepare projection operator: P = I− |G⟩ ⟨G|
3 Define the space: S = I− P

4 Solve for the nullspace: |G⟩⊥ = null(S)

5 Prepare U:
6 Find operators that connect to orthogonal spaces
7 for k = 1 to dim(|G⟩⊥) do
8 Ok

d = |D⟩⊥ ⟨D|
9 Uk

s = |G⟩
〈
Gk

∣∣⊥
10 Ĥ =

∑
k O

k
d |D⟩ ⟨D| ⊗ Uk

s + h.c.

11 Solve for U = exp
(
−iJĤ

)
12 Done

[24], are used to prepare the quantum circuits U for steering,
as well as to conduct simulations. Full state-vector simulations
are performed, correctly evolving density matrices through
measurement and state re-initialization.

The groundstate of a surface code is such that the expecta-
tion values of all vertex and plaquette operators equal to one,
⟨Av⟩ = ⟨Bp⟩ = 1. Hence, we calculate the expectation values
of all the operators and record them to track the evolution
throughout simulation. ReCirq [25] is used to visualize the
expectation values on a surface code.

B. Results for Two-Qubit Protocol

We construct a surface code with 2 rows and 3 columns,
consisting of 17 qubits. Representative qubits are chosen, as
done in [7], to be prepared into the state |+⟩. Neighboring
qubits to the representative qubits are selected to act as
detectors. Equation 7 is used to construct a quantum circuit
that will steer the representative qubits to |+⟩ with the help of
the detector qubits. All the representative qubits are steered
simultaneously. Figure 6a visualizes the convergence of a
single steered qubit on the Bloch sphere.

Figure 4 visualizes the expectation value of the surface code
throughout the steering procedure. The initial state of all the

qubits on the surface code is chosen at randomly (Haar ran-
dom), and therefore may contain both separable and entangled
states. The steering procedure is then invoked, preparing all
the representative qubits to the state |+⟩. Finally, CNOT gates
are applied to complete the surface code initialization.

C. Results for Many-Qubit Protocol

To showcase the steering of many qubits, we simulate
a four-qubit surface code. The quantum circuit that drives
the steering is defined by several operators as shown in
Equation 8, and steer the overall state of the surface code to
the groundstate. The orthogonal space, |G⟩⊥, has dimension
24−1 = 15, and hence we require 15 Us operators to connect
the state |G⟩ to each of the 15 states in the orthogonal space.
We prepare a random four-qubit mixed state and simulate the
state until it convergences to the groundstate. Figure 5a shows
the evolution of a mixed state, where the elements in the
orthogonal space vanish, and the groundstate is maximized.
Figure 5b visualizes the expectation values of the surface code.
Figure 5c showcases the convergence of the diagonal elements
of the density matrix, ⟨G| ρ |G⟩.

For various number of qubits, Figure 6b shows the number
of iterations necessary to obtain a fidelity of F > 0.999 given
the coupling strength J . Because the desired groundstate is
pure, the fidelity is computed as Tr(ρ · |G⟩ ⟨G|) for a given ρ.
We note that the fastest convergence occurs when J = π/2,
requiring only one iteration of the protocol. However, we
note that the number of iterations is correlated with the
strength of entanglement induced by the circuit U . Therefore,
depending on the underlying quantum hardware, it may be
beneficial to lower the entanglement strength and perform
several repetitions of U . Examples would include photonic-
based quantum computers where entangling operations are
difficult to implement, but qubits have long coherence times
[26], [27].

D. State Preparation Time

The time it takes to run K circuits and gather N shots
(experiment repetitions) for each circuit is [28]

τ (x) = NK
(
τ
(x)
reset + τ

(x)
delay + ⟨τcirc⟩+ τmeas

)
,

where τ (x)reset and τ
(x)
delay are reset and post-measurement delay

times. The superscript (x) indicates standard (s) or quantum



(a) Density Matrix

(b) Surface code visualization

(c) Evolution
Fig. 5: Subsystem of four qubits that are steered directly to
the groundstate |G⟩. (a) The density matrix of the four qubits
in the basis spanned by the desired groundstate |G⟩ and the
orthogonal complement |G⟩⊥ as a colormap. The orthogonal
elements decay, while the groundstate is maximized. (b) Vi-
sualization of the corresponding expectation values of Av and
Bp for the four-qubit surface code. (c) The evolution of the
diagonal elements of the density matrix shows convergence to
the groundstate |G⟩.

(a) (b)
Fig. 6: (a) Bloch sphere visualization of a single qubit starting
in random initial states (black) and converging to |+⟩. (b)
Number of iterations, N , needed to achieve fidelity of F >
0.999 given coupling strength J for various number of qubits.

steering (qs) approach. The speedup is therefore calculated as
τ (s)/τ (qs) which is independent on K and N .

We use data given by IBM Quantum to approximate the
associated times respectively. The standard reset time is ap-
proximated as τ (s)reset = 0µs, whereas τ (qs)reset = 4µs since we
utilize an active-reset to reset a qubit. The repetition delay
is τ (s)delay = 250µs, which is the default value that is roughly
twice the lifetimes of qubits. For the quantum steering, we
approximate the waiting time as τ

(qs)
delay = 1µs. Using these

approximations, Figure 7 approximates the time necessary to
initialize the groundstate |G⟩. The simple quantum steering
protocol based on two qubits has slightly shorter time com-
pared to the existing approach. Most of the overhead in time
arises from the post-application of CNOT gates. The proposed
steering protocol is expensive at first, but begins to outperform
the existing approach for larger quantum computers. This is
due to the fact that existing approach requires many CNOT

gates to initialize the surface code, while the QS approach
directly applies the steering operation in one direct step
(we assume the fastest version with N=1). Furthermore, the
existing approach requires many measurements to ascertain
high fidelity in the initial state |0⟩⊗n.

Fig. 7: Comparison of the three different approaches to
initializing the surface code. The existing approach utilizes
expensive resets, Hadamard gates, and CNOT gates. The two-
qubit quantum steering (hybrid) slightly reduces the cost of
reset, and replaces the Hadamard gate. Finally, the proposed
quantum steering directly prepares the state.

VI. CONCLUSION AND FUTURE WORK

While surface codes are a promising error correcting code
for large-scale fault-tolerant computation, their encoding heav-
ily relies on fine-tuned calibrations of a quantum computer
to correctly orchestrate the state. This directly translates to
significant area (requires many CNOT gates) and timing over-
head (requires a computer reset). We proposed two quantum
algorithms for initializing the states in a surface code via
quantum steering. Both algorithms prepare the groundstate
and logical states of a surface code irrespective on the
initial quantum computer’s state. Experimental results using
simulations of surface codes, and starting in random initial
states, demonstrated that our approach is scalable and correctly
prepares the encoding for logical qubits. This work can be used
as a stepping stone for preparing key states in other quantum
error correction schemes for reliable quantum computing.

In the future, we aim to refine these algorithms, boost their
efficiency and reduce overheads. We plan to widen the scope
of our research to explore the application of quantum steering-
based algorithms across various types of error-correcting
codes, thus broadening our methodology’s potential. Addition-
ally, we are keen on assessing the viability of implementing
these algorithms on actual quantum hardware. An exciting
possibility we foresee is leveraging steering as a new quantum
error-correcting code, much like the Petz fully recovery map
[29]. This could even extend to the implementation of quantum
gates via steering across a parameter space [30]. We plan to
delve deeper into the theoretical basis of our approach, with the
aim of better understanding the quantum dynamics involved
and unearthing more avenues for optimization.
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