
Robustness Metrics for Evasion Attacks on Neural Networks

Miranda Overstreet
Department of Computer and Information Science and Engineering

University of Florida, USA

Abstract—We use a wide variety of IoT (Internet of Things)
devices to perform our daily activities. IoT devices powered by
neural networks play an increasingly important role in enabling
smart and enjoyable interactions with the computing world.
Neural networks are often used to classify data, such as text
or image, so that a machine can make a decision based on this
classification. With the growing importance and application of
neural networks, the security of this technology is an increasing
concern. This is especially true in safety-critical systems, such
as in biomedical applications or autonomous vehicles, where the
correct functioning of neural networks is critical. The field of
adversarial machine learning has led to many promising ideas
in developing robust neural networks. Unfortunately, there are
very limited studies in evaluating the robustness of machine
learning models. This thesis investigates suitable metrics for
evaluating the robustness of neural networks to evasion attacks.
Specifically, I explore fast heuristics, simulation, and Lipschitz
continuity to develop a useful robustness metric. Experimental
results demonstrate that the proposed metrics are suitable for
popular machine learning data sets.

I. INTRODUCTION

Many innovations in technology have led to the rise of
the “Internet of Things” (IoT) which refers to the pervasive
presence of interconnected technologies in every day life [1].
Today, we have not only smart phones and laptops, but also
smart refrigerators and self-driving cars. With this increase of
smart devices powered by machine learning, there is also a
growing security concern as more and more attack surfaces
are introduced [1].

One area of particular concern within IoT is the increase in
self-driving cars. Many such cars are now under development
and many more already possess full or partial self-driving
abilities. These cars depend on images that are captured of
the world around them and the software that makes decisions
based on these images. Many autonomous driving systems
rely on neural networks to support this computer vision and
pattern recognition [2]. If the system gets infected by an
attacker, it could have catastrophic consequences. Similarly,
many neural networks are now being used to assist medical
practitioners in the diagnosis of illnesses based on images [3].
Here also an adversarial system could cause devastating results
by suggesting an incorrect diagnosis and causing a delay in
the correct treatment of a patient. Clearly, there is a need for
improved security for defending against such attacks on neural
networks.

This security risk has not gone unnoticed by the machine
learning community. Many attacks on neural networks have
been explored and many defense mechanisms have been
developed. However, identification of insecure neural networks

still remains underdeveloped. The focus of this thesis is to
develop effective metrics to measure the robustness of neural
networks against evasion attacks. An evasion attack happens
when a neural network is fed with an “adversarial” example
— a carefully perturbed input that looks and feels exactly
the same as its untampered copy to a human but that leads
to incorrect classification. In this honors thesis, I make the
following contributions:

1) Develop three metrics to measure the robustness of neural
networks to evasion attacks. These metrics provide a
trade-off between evaluation time and accuracy.

2) Train neural networks on two popular data sets
3) Evaluate the effectiveness of the developed metrics using

popular evasion attacks
The remainder of this thesis is organized as follows. Section

II provides an overview of neural networks and adversarial
machine learning. Section III describes related work in the
area of measuring the robustness of neural networks. Section
IV discusses the three metrics that I have developed. Section
V presents the experimental results. Finally, Section VI con-
cludes the thesis and discusses future work.

II. BACKGROUND

Neural networks are a form of supervised machine learning
which are often used for classification tasks. One of the most
common classification tasks that use neural networks is the
classification of images. Many neural networks have been
shown to very successfully classify images in labeled data
sets such as MNIST [4] and CIFAR-10 [5]. However, it has
also been shown that many of these networks suffer from a
vulnerability to evasion attacks. In this section, I will discuss
neural networks, adversarial machine learning, and evasion
attacks for neural networks.

Neuron: A neural network consists of layers of neurons.
Each neuron in a neural network has an activation function.
This activation function takes the various inputs for that neuron
and returns some output based on these inputs. Figure 1 shows
an example of a single neuron in a neural network. Each input
xi is typically multiplied by some weight wi and then a bias
bi is added to this value. These values are then summed and
then the activation function f is applied to this summed value
as shown in Figure 1. Typical examples of activation functions
are Sigmoid [6], Tanh [7], and ReLU [8]. All three of these
activation functions add non linearity to the network.

Neural Network: A neural network’s structure contains
several kinds of layers mainly an input layer, hidden layers,
and an output layer. In the case of images, the pixels of the

Fig. 1: An illustrative example of a single neuron

image are the values for the input layer. The values from the
input layers are sent to one or more hidden layers. Each hidden
layer includes a certain number of neurons that apply some
activation function to the input values and output the result
of the activation function to the next layer. Finally, the output
layer contains the final classification values usually ranging
from 0 to 1 for each class in the labeled data set. A simple
example of a neural network is shown in Figure 2. This neural
network has an input layer, one hidden fully connected layer,
and an output layer.

Fig. 2: An example neural network with three layers

Convolutional Neural Network: Neural networks have
several variations that are more effective on specific domains.
In the case of images, a convolutional neural network is
often used for classification. A convolutional neural network
introduces a new kind of hidden layer called a convolutional
layer. A convolutional layer consists of a set of filters with
some width and height of pixels and depth of color channels.
These filters are convolved across an image and the dot
products are calculated between the filters and the section of
image. This process can be seen in Figure 3. In this way, larger
features can be identified. For example, a filter that identifies
the triangular shape of a dog’s ear might be convolved across
the image to identify if a picture contains a dog or not.

Adversarial Machine Learning: With the rise of neural
networks in technology there has been a growing concern
of the security of neural networks. Many attacks on neural
networks have been demonstrated to have high effectiveness
[10]–[15]. A type of attack that has been shown to be
particularly viable is an evasion attack [16]. The goal of an
evasion attack is to change an input image to a network some

Fig. 3: An example of a convolutional layer [9]

amount in order to cause the network to classify the image
incorrectly. This is often done so that the perturbation in the
image is not noticeable to the human eye. These attacks often
use the gradients of an output of a neural network to determine
what pixels to perturb so that the smallest changes in pixel
values can cause the largest changes in the classification. One
example of an evasion algorithm that does this is the Fast
Gradient Sign Method [13]. This method uses the following
equation to develop an adversarial image.

η = εsign(∇xJ(θ, x, y))

In this equation, θ is the parameters of the model, x is the input
image to the model, and y is the output labels. J(θ, x, y) is the
cost function used during the training of the neural network,
and ∇xJ(θ, x, y) is the gradient of this cost function given the
input image. The gradient of this cost function can be easily
calculated using backpropagation, an already necessary step in
network training. An example of an adversarial image created
using this method for an evasion attack is shown in Figure 4.

Fig. 4: An example of an adversarial image for an evasion
attack using Fast Gradient Sign Method [13]

From this attack method, it can be seen that a network with
higher gradients at any given point will be more susceptible
to an attack and that any attacks for such a network would be
hard to identify. There are several methods that have been
developed to counter such evasion attacks. One method is
simply training a neural network on adversarial images that
are generated. For example, in the case of Figure 4, one could
retrain the network with the second picture of a panda labeled
as a panda added to the labeled data set. This has been shown

to be successful in reducing the effectiveness of evasion attacks
for a given network [11], [13], [16]. Another method is to
change the structure of the network itself by doing something
like smoothing out the gradients [17]–[19].

III. RELATED WORK

This section discusses research work that suggests a method
of evaluating neural networks in terms of robustness. I will
discuss two different kinds of evaluation methods: attack-
specific and attack-agnostic.

A. Attack-Specific Robustness Evaluation

Some methods evaluates the robustness of a neural network
by evaluating it against a specific evasion attack [11], [13].
An example of this is presented in [11] where the DeepFool
attack is used to create a robustness metric [11]. In this case,
the metric for the average robustness p̂adv(f) of a classifier f
is defined by the following equation:

p̂adv(f) =
1

|D|
∑
xεD

||r̂(x)||2
||x||2

where r̂(x) is the minimal perturbation calculated by Deep-
Fool and D is the test set [11]. Although attack-specific
metrics are a good estimate of the robustness of a system
to a specific attack, they might not extend well to other
attacks [20]. In this case, an attack-agnostic method would
be preferred.

B. Attack-Agnostic Robustness Evaluation

Some methods for evaluation the robustness of a neural net-
work rely solely on the network itself without using a specific
attack [20], [21], and therefore, might be more representative
to overall robustness of a neural network. For example, [20]
suggests a method that uses the encoding of robustness as
a linear program. This is achievable through the piecewise
linearity of neural networks with rectified-linear units. The
metrics that I propose in this thesis are also attack-agnostic.

IV. PROPOSED ROBUSTNESS METRICS

As discussed in the previous section, the gradient is often
used in evasion attacks to find the optimal directions to perturb
an image. In order to develop a metric for the robustness of a
neural network, I decided to use measurements on the neural
network to reflect the amount of change in the the classification
given a change in the input image. In this section, I discuss
three proposed metrics to measure robustness: heuristic, sim-
ulation method, and Lipschitz method.

A. Heuristic

The heuristic is the simplest method of evaluating the
robustness of a neural network against evasion attacks. The
heuristic measures the magnitude of the gradient for each pixel
value in a given image. When taken with a comprehensive
subsection of images, this can provide a good robustness
estimate about a network.

Because the equations involved in a neural network are
differentiable, backpropagation can be used to find the gradi-
ents of the classification values given the input values. These
gradients can then be used to test the robustness of a neural
network. The formula for the heuristic is defined as:

h =

∥∥∥∥ dfdx
∥∥∥∥

Here, the f is the final output of the neural network, x is an
image, and df

dx is the gradient of the output given a particular
image.

B. Simulation Method

The simulation method requires significantly more compu-
tation than the heuristic. However, it gives a better idea of
the values of the neighborhood around the picture in question.
Given some picture x, new images x′ are generated within
a certain pixel distance. The classification is then calculated
for this x′, and the slope is found with the change of the
classification value over the change in pixel value. The highest
slope value is kept as the value for the simulation method.
Algorithm 1 outlines the major steps.

Algorithm 1 Simulation Method

1: metric = 0
2: for each image x do
3: for each image sample x′ do
4: x′ = x
5: for each pixel in x’ do
6: sample random pixel value
7: end for
8: Compute f(x’) where f is network
9: Compute ||∆f(x)||/||∆x||

10: metric = maximum(metric, ||∆f(x)||/||∆x||)
11: end for
12: end for

This method can provide a good idea of robustness given a
comprehensive subsection of images.

C. Lipschitz Method

The Lipschitz method approximates the Lipschitz constant
for a given image. The Lipschitz continuity is denoted by the
following equation where f is some function, x is some input,
x′ is some input sufficiently close to x, and L is a constant:

‖f(x′)− f(x)‖ ≤ L ‖x′ − x‖

The Lipschitz constant L is the smallest constant such that
the above equation holds. Let Cn be some output node in a
neural network. Then the Lipschitz continuity for this output
node where the input are the values for the inputs I for some
image, J can be expressed as:

‖Cn(IJ′)− Cn(IJ)‖ ≤ Ln ‖I ′J − IJ‖

Let the image inputs IJ be the pixels of that image
p1, p2, p3, ..., pq . For computations in neural networks, the

partial derivative for the output given any input pi can be
calculated as δCn

δpi
. Let ei = maxpi{Cn ∗ δCn

δpi
}. Assuming

that the second derivative for Cn exists, the change in Cn
can be written in terms of ei using the maxima of the
partial derivatives, the Mean Value Theorem and the Triangle
Inequality.
|Cn(p1, p2, p3)− Cn(p′1, p

′
2, p
′
3)|

= |Cn(p1, p2, p3)− Cn(p′1, p2, p3) + Cn(p′1, p2, p3)
−Cn(p′1, p

′
2, p3) + Cn(p′1, p

′
2, p3)− Cn(p′1, p

′
2, p
′
3)|

≤ |Cn(p1, p2, p3)− Cn(p′1, p2, p3)|+ |Cn(p′1, p2, p3)
−Cn(p′1, p

′
2, p3)|+ |Cn(v′1, p

′
2, p3)− Cn(p′1, p

′
2, p
′
3)|

≤ (maxp1
δCn

δp1
Cn(p′′1 , p2, p3))|p′1 − p1|+

(maxp2
δCn

δp2
Cn(p′1, p

′′
2 , p3))|p′2 − p2|+

(maxp3
δCn

δp3
Cn(p′1, p

′
2, p
′′
3))|p′3 − p3|

≤ e1|p′1 − p1|+ e2|p′2 − p2|+ e3|p′3 − p3|
≤
√
e21 + e22 + e23|(p′1, p′2, p′3)− (p1, p2, p3)|

Therefore, the Lipschitz constant is bounded by the sum
of the squares of the maxima of the product of the partial
derivatives and the function Cn for a given neuron. This
process can be repeated for each neuron so that the entire
output is bounded by the sum of the Lipschitz constant for
each neuron.

In order to calculate this bound, the maximum value of δCn

δpi
must be found. This value is estimated by sampling around
the given image for pixel pi within a given range and finding
the pixel value for the highest value of δCn

δpi
. The method for

estimating the Lipschitz constant is shown in Algorithm 2.

Algorithm 2 Lipschitz Continuity

1: for each image x do
2: metric = 0
3: for each node Cn in network do
4: total = 0
5: for each pixel pi in x do
6: max = 0
7: for p′i in pixel range do
8: Find δCn

δpi
where Cn is network

9: max = maximum(max, δCn

δpi
) ∗ Cn

10: end for
11: total = total +max2

12: end for
13: metric = metric+

√
total

14: end for
15: end for

D. Complexity Analysis

These three metrics provide a clear trade-off. If a designer is
interested in finding the robustness value of a neural network
as quickly as possible, the heuristic method is the choice
because it has the lowest computation time. However, it
has experimentally been shown to lead to inferior accuracy
compared to the other two metrics. If a designer is interested
in the highest accuracy and willing to spend the required
evaluation time, the Lipschitz method is the best choice. It has

been shown through my experiments to have both the highest
accuracy and the highest computation time for most cases. The
simulation based method provides moderate accuracy with an
evaluation time between heuristic and simulation method.

V. EXPERIMENTS

This section describes various experiments that were run to
test the effectiveness of the three proposed metrics developed
as indicators of the robustness of neural networks. The section
is organized as follows. First, I describe the experimental setup
including the architecture used to run the experiments and the
software used to develop the experiments. Next, I present the
results of the experiments using two data sets and discuss their
significance.

A. Experimental Setup

The following experiments were performed on a host ma-
chine with AMD Ryzen 5 1600X Six-Core Processor 3.60
GHz CPU, 8.00 GB RAM, and NVIDIA 1070 256-bit GPU.
The operating system used was a Windows 10 64-bit operating
system. I developed code using Python for model training
using Keras as the machine learning library. The attacks were
generated using the Adversarial-Machine-Learning repository
[22]. Two popular machine learning data sets were used in this
experimental setup:
• CIFAR-10 - A data set of 60,000 32x32 pixel color

images with 10 classes [23].
• MNIST - A data set of 70,000 28x28 pixel grey scale

images of hand drawn digits [24].
For each data set the following steps were followed to

evaluate the robustness metrics:
1) Train a neural network on the data set for 10 epochs
2) Generate adversarial samples and test accuracy of these

samples using three attacks: Fast Gradient Method [13],
DeepFool [11], and NewtonFool [15]

3) Retrain three new networks using the adversarial samples
generated in the previous step

4) Generate adversarial samples for three new networks and
test network accuracy on adversarial samples

5) Calculate heuristic, simulation-based metric, and Lips-
chitz metric for original network and for each retrained
network

6) Calculate the correlation coefficient between the success
of the attacks and the robustness metrics

For step 1, the data set was split into a training and testing
data set. For CIFAR-10 50,000 images were used for the
training data set and 10,000 images were used for the testing
set. For MNIST, 60,000 images were used for the trainind data
set and 10,000 images were used for the testing set. Let the
original training data be referred to as xtrain and the original
testing data be referred to as xtest. A network built with Keras
was then trained on these data sets.

For step 2, the three attacks described were run on the
trained network. Each of these attacks generated a set of
adversarial examples for xtrain and xtest. Let these adversarial

examples for each attack be denoted as xtrain−adversarial
and xtest−adversarial. I then had the network classify
xtest−adversarial and recorded the accuracy of the network
for each attack.

For step 3, I retrained three new networks with the adversar-
ial samples generated by the three attack methods so that the
new training data set for each was xtrain+xtrain−adversarial.
Therefore, the first network was trained on the original training
set plus the adversarial samples generated by the Fast Gradient
Method [13], the second was trained on the original training
set plus the adversarial samples generated by the DeepFool
[11] and so on. These new networks were trained in an
identical way to the original training.

For step 4, I generated new adversarial samples for xtest
using the three new networks and the same three attacks. I
then find the accuracy of these three networks on the new
adversarial samples.

For step 5, I calculated the values for the heuristic, the sim-
ulation method, and the Lipschitz method for the original net-
work and the three new networks trained on xtrain−adversarial
for each attack method. In order to do this, I had to choose
some subsection of images to develop the metrics. I simply
used the first 500 images in the test set for the data set
for both the heuristic and the simulation method. However,
due to the high computation time of the Lipschitz method
I only used the first 45 images from the test set for the
Lipschitz method. Future work could be done to ensure a
comprehensive selection of images are selected for these three
metrics. The heuristic was easily calculated for each of the
images. The values for the simulation and Lipschitz method,
however, required designation of the parameters involved. For
the simulation, I decided to sample 100 perturbed images
around the given input image and used a maximum pixel
distance of .01 (out of 1). For the Lipschitz method I decided
to use a pixel range of .01. Once again, further work could be
done in this area in order to optimize the parameters for these
methods.

For step 6, I calculated the correlation coefficient between
the success of the attacks on a given network and the three
metrics. The original network that is trained on a data set
should be the least robust because the other three networks
have the adversarial examples generated by the Fast Gradient
Method [13], DeepFool [11], and NewtonFool [15] attacks as
part of their training data. Training on adversarial samples has
been shown to substantially increase the robustness of a neural
network [11], [13], [16]. This difference in robustness should
be observable in the success of the attacks. If the metrics are
also a good indicator of robustness, then there should be a
strong correlation between the metrics and the success of the
attacks on the neural networks. Given two data sets X and Y
with data points x and y and averages x̄ and ȳ, the correlation
coefficient between the two data sets is calculated as follows:

Correlation(X,Y) =
Σ(x− x̄)(y − ȳ)√

Σ(x− x̄)2Σ(y − ȳ)2

B. CIFAR-10 Results

In this section, I describe the experimental results for the
CIFAR-10 data set. As can be seen in Figure 5, the success
of all three attacks was much higher on the original neural
network that was trained on the CIFAR-10 data set than on
the three retrained networks. This is expected because training
with adversarial examples increases the robustness of a neural
network.

Fig. 5: The success of the three attacks on the original and
retrained networks

It can be seen from Figure 6 that the heuristic value follows
the same pattern as the success of the evasion attacks. The
highest heuristic value is for the original network trained on
xtrain. The heuristic values for the three retrained networks
are noticeably smaller than the original heuristic value. This
suggests that the heuristic is indicating the increase in robust-
ness after the retraining.

Fig. 6: Resulting metric values for the heuristic

It can be seen from Figure 7 that the simulation value
follows the same pattern as the success of the evasion attacks.
The highest simulation value is for the original network
trained on xtrain. The simulation values for the three retrained
networks are noticeably smaller than the original simulation
value. This suggests that the simulation is also indicating the
increase in robustness after the retraining.

Fig. 7: Resulting metric values for the simulation method

It can be seen in Figure 8 that the Lipschitz method
metric follows the same pattern as the heuristic and simulation
method values. It has the highest value for the original
network and lower values for the retrained networks. This
demonstrates that the Lipschitz method is also a suitable metric
for measuring robustness.

Fig. 8: Resulting metric values for the Lipschitz method

As discussed previously, a high correlation between the
success of the attacks on a given network and the metrics
developed in this paper suggests that the metrics developed
are a good indicator of the robustness of a neural network.
Figure 9 shows the correlation coefficient between the success
of each attack and the metrics. This figure shows that the
correlation coefficient suggests a strong positive linear rela-
tionship between the success of the attacks and the metrics.
The correlation coefficient for the Lipschitz method is the
highest followed closely by the simulation method and then
the heuristic for most cases. This is as was expected for
the three methods. However, for the first attack simulation
had the higher correlation. One reason for this might be that
the Lipschitz method was evaluated on less of a sample of
images. If more images were tested, the Lipschitz method
would likely have the highest correlation for all three attacks.
The correlation for the heuristic is less for all three metrics
but still relatively high. This suggests that all three metrics are

good indicators of robustness.

Fig. 9: Correlation Coefficients Between the Success of the
Attacks and the Metrics

C. MNIST Results

In this section, I describe the experimental results for the
MNIST data set. As can be seen in Figure 10, the success
of all three attacks was much higher on the original neural
network that was trained on the MNIST data set than on the
three retrained networks. This follows the same trend as the
CIFAR-10 data set.

Fig. 10: The success of the three attacks on the original and
retrained networks

The results for the three metrics are similar to the results
for CIFAR-10. It can be seen that for all three metrics the
highest value is for the original network trained on xtrain.
This suggests that all three metrics are reasonable indicators
of robustness.

Figure 14 shows the correlation coefficient between the
success of each attack and the metrics. This figure shows

Fig. 11: Resulting metric values for the heuristic

Fig. 12: Resulting metric values for the simulation method

that the correlation coefficient suggests a strong positive linear
relationship between the success of the attacks and the metrics.
For the first two networks the Lipschitz method performed
better than the simulation method and the heuristic. This
pattern is consistent with the previous data set and the expected
results. The last, however, was inverse. This is a somewhat
surprising result because it seems like the Lipschitz method
and simulation method should perform better than the heuristic
in all cases. This result might be an incentive for further
research to discover the cause of this inconsistency.

VI. CONCLUSION

Neural networks are widely used today for designing smart
systems. Due to their widespread use, an important emerging
concern is to secure the neural networks from adversarial
attacks. The field of adversarial machine learning has led to
many promising ideas in developing robust neural networks.
Unfortunately, there are very limited studies in evaluating
the robustness of machine learning models. This thesis in-
vestigated suitable metrics for evaluating the robustness of
neural networks to evasion attacks. Specifically, I explored fast
heuristics, simulation, and Lipschitz methods to develop useful
robustness metrics. I have performed a detailed evaluation of
accuracy of these metrics on two popular machine learning
data sets.

Fig. 13: Resulting metric values for the Lipschitz method

Fig. 14: Correlation coefficients between the success of the
attacks and the metrics

The results from the three metrics are promising in their
ability to judge the robustness of a neural network to an
evasion attack. This is because all three metrics have a
relatively high correlation coefficient to the success of the
attacks on a given network. The simulation method provides
the best metric out of the three based on the experimental data
because it seems to have the best trade off between accuracy
and computational complexity. The simulation method results
had a strong correlation while remaining relatively cheap
to compute. The Lipschitz method seemed to be the most
accurate as it had the highest correlation metrics with a limited
data set (only 45 images). However, it had a very high com-
putational complexity that would most likely be prohibitive in
most circumstances. In cases where very low computational
complexity is desired, the heuristic would likely be most
desirable because it is much cheaper computationally than the
simulation method and Lipschitz method while still providing
a good approximation of the robustness. This method would
most likely be best used to give a quick approximation of the
robustness of a neural network.

Future work can refine the individual metrics to be more
accurate in their measure of neural network robustness. Given

the computationally expensive nature of Lipschitz method,
more work is needed in refining the Lipschitz method and
reducing its computational complexity. Future work could also
be done by experimenting in incorporating these metrics into
the training of neural networks. This could help improve the
robustness of the neural network during the initial training.

REFERENCES

[1] G. M. Luigi Atzori, Antonio Lera, “The internet of things: A survey,”
Computer Networks, vol. 54, 2010.

[2] N. Carlini, A. Athalye, N. Papernot, W. Brendel, J. Rauber, D. Tsipras,
I. J. Goodfellow, A. Madry, and A. Kurakin, “On evaluating adversarial
robustness,” CoRR, vol. abs/1902.06705, 2019. [Online]. Available:
http://arxiv.org/abs/1902.06705

[3] “Application of neural networks in medicine - a review,” 1998.
[4] L. Deng, “The mnist database of handwritten digit images for machine

learning research,” IEEE Signal Processing Magazine, vol. 29, 2012.
[5] A. Coates, H. Lee, and A. Y. Ng, “An analysis of single-layer networks

in unsupervised feature learning,” in 14th Internation Conference on
Artificial Intelligence and Statistics, 2011.

[6] N. Kang, “Multi-layer neural networks with sigmoid
function - deep learning for rookies (2),” Available at
https://towardsdatascience.com/multi-layer-neural-networks-
with-sigmoid-function-deep-learning-for-rookies-2-bf464f09eb7f
(2017/06/27).

[7] S. I. Serengil, “Hyperbolic tangent as neural network activation func-
tion,” Available at https://sefiks.com/2017/01/29/hyperbolic-tangent-as-
neural-network-activation-function/ (2017/01/29).

[8] J. Brownlee, “A gentle introduction to the rectified linear unit
(relu,” Available at https://machinelearningmastery.com/rectified-linear-
activation-function-for-deep-learning-neural-networks/ (2019/01/09).

[9] H. Yakura, S. Shinozaki, R. Nishimura, Y. Oyama, and J. Sakuma,
“Malware analysis of imaged binary samples by convolutional neural
network with attention mechanism,” in The 8th ACM Conference on
Data and Application Security and Privacy, 2018.

[10] N. Carlini and D. A. Wagner, “Towards evaluating the robustness of
neural networks,” CoRR, vol. abs/1608.04644, 2016.

[11] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” CVPR, 11 2016.

[12] N. Papernot, P. D. McDaniel, and I. J. Goodfellow, “Transferability in
machine learning: from phenomena to black-box attacks using adversar-
ial samples,” CoRR, vol. abs/1605.07277, 2016.

[13] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” in 3rd International Conference on Learning
Representations, 2015.

[14] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial examples
in the physical world,” in 5th International Conference on Learning
Representations, 2017.

[15] “Objective metrics and gradient descent algorithms for adversarial
examples in machine learning,” in 33rd Annual Computer Security
Application Conference, 2017.

[16] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J.
Goodfellow, and R. Fergus, “Intriguing properties of neural networks,”
in 2nd International Conference on Learning Representations, 2014.

[17] Y. Yoshida and T. Miyato, “Spectral norm regularization for improving
the generalizability of deep learning,” CoRR, vol. abs/1705.10941, 2017.

[18] “A unified gradient regulatization family for adversarial examples,” in
IEE International Conference on Data Mining, 2015.

[19] “Improcing the adversarial robustness and interpretability of deep neural
networks by regularizing their input gradients,” in AAI, 2018.

[20] O. Bastani, Y. Ioannou, L. Lampropoulos, D. Vytiniotis, A. V. Nori,
and A. Criminisi, “Measuring neural net robustness with constraints,”
in 30th Conference on Neural Information Processing Systems (NIPS),
2016.

[21] T.-W. Weng, H. Zhang, P.-Y. Chen, J. Yi, D. Su, Y. Gao, C.-J. Hsieh, and
L. Daniel, “Evaluating the robustness of neural networks: An extreme
value theory approach,” in 6th International Conference on Learning
Representation, 2018.

[22] “Adversarial robustness toolbox.” [Online]. Available:
https://github.com/IBM/adversarial-robustness-toolbox

[23] “The cifar-10 dataset.” [Online]. Available:
http://www.cs.toronto.edu/ kriz/cifar.html

[24] “The mnist database of handwritten digits.” [Online]. Available:
http://yann.lecun.com/exdb/mnist/

