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ABSTRACT

State-of-the-art System-on-Chip (SoC) designs consist of many In-
tellectual Property (IP) cores that interact using a Network-on-Chip
(NoC) architecture. SoC designers increasingly rely on global supply
chains for obtaining third-party IPs. In addition to inherent vulner-
abilities associated with utilizing third-party IPs, NoC based SoCs
enable attackers to exploit the distributed nature of NoC and its con-
nectivity with various IPs to launch a plethora of attacks. Specifically,
Denial-of-Service (DoS) attacks pose a serious threat in degrading the
SoC performance by flooding the NoC with unnecessary packets. In
this paper, we present a machine learning-based runtime monitoring
mechanism to detect DoS attacks. The models are statically trained
and used for runtime attack detection leading to minimum runtime
performance overhead. Our approach is capable of detecting DoS
attacks with high accuracy, even in the presence of unpredictable
NoC traffic patterns caused by various application mappings. We
extensively explore machine learning models and features to provide
a comprehensive study on how to use machine learning for DoS
attack detection in NoC-based SoCs.

1 INTRODUCTION

Network-on-chip (NoC) is widely used for on-chip communication in
modern system-on-chips (SoC). NoC has allowed computer architects
to fully utilize the computational power in an SoC by facilitating low-
latency and high-throughput communication between intellectual
property (IP) cores in a many-core SoC. As a result, NoC has become
a critical component in state-of-the-art SoC designs [16, 17, 19]. With
the increased complexity of SoCs, manufacturers have favored IP li-
censing and outsourcing where only a subset of IPs are manufactured
in-house and the rest is sourced from third-party vendors. There
are multiple avenues to introduce malicious implants (e.g., hardware
Trojans) in designs during the long supply chain, such as by an un-
trusted CAD tool, a rouge designer or at the foundry via reverse
engineering [10, 17].

The NoC is at an elevated risk of being vulnerable to hardware
attacks due to several reasons: i) NoC interconnects IPs manufactured
in house and/or sourced from trusted vendors (secure IPs) together
with IPs from potentially untrusted vendors (non-secure IPs) allowing
Trojan-infected malicious IPs (MIPs) to utilize NoC to launch attacks,
ii) the distributed nature of NoC makes it easier to replicate an attack,
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and iii) the complexity of NoC design allows Trojans to hide without
being detected. These vulnerabilities have motivated both industry
and academic researchers to develop countermeasures to secure NoC-
based SoCs. There are a wide variety of threats from MIPs such as
eavesdropping attacks [6, 9], data integrity attacks [8], denial-of-
service (DoS) attacks [5], etc. In this paper, we focus on securing the
SoC from DoS attacks. The primary objective of a DoS attack is to
prevent legitimate users from accessing services and information. In
the context of NoC, MIPs sending unnecessary requests to IPs can
delay legitimate requests leading to delay of service (e.g., deadline
violations in real-time systems) or denial of service (e.g., temporary
or permanent service failure). Such “flooding” type of DoS attacks can
also cause congestion in the network, further degrading performance
and energy efficiency [5, 7].

Previous work on mitigating flooding type of DoS attacks explored
traffic latency comparison [15] and packet arrival monitoring [5, 7].
These approaches made an unrealistic assumption, highly predictable
NoC traffic patterns, which allowed the construction of linear statis-
tical bounds to detect DoS attacks. Unfortunately, this assumption
does not hold during many realistic scenarios that include task mi-
gration, task preemption, changing application characteristics due to
major input variations, etc. As a potential solution to address such
runtime variations, in this paper, we explore the feasibility of using
machine learning (ML) for DoS attack detection. While ML has shown
promising results for optimizing NoC power consumption [20], to the
best of our knowledge, our approach is the first attempt at securing
NoC-based SoCs from DoS attacks using machine learning. Major
contributions of this paper are as follows:

e We propose an ML-based DoS attack detection method that
trains ML models during design time and uses the trained
models to classify network traffic behavior as normal or attack
during runtime, to detect flooding type of DoS attacks.

e We outline features that can be extracted from NoC traffic as
well as engineered features, and experimentally evaluate the
most suitable features.

e We perform a comprehensive exploration of 12 different ML
models to select the best fit for the given architecture and
threat models.

e Our approach achieves high accuracy in DoS attack detec-
tion across different NoC traffic patterns caused by various
application mappings.

e Our approach can detect DoS attacks in real-time with detec-
tion times comparable to previous work [5, 7] without requir-
ing highly predictable traffic patterns.

2 THREAT MODEL AND RELATED WORK
2.1 Threat Model

Figure 1 shows the architecture model considered in this paper that
includes a 4 X 4 mesh NoC connecting 16 IP cores. When a mem-
ory request (e.g., memory LOAD or STORE instruction) is initiated



by a core during application execution, in case of a cache miss, a
memory request is injected into the NoC in the form of NoC packets.
Typically, the packets are further broken down into smaller units
called flits to facilitate flow control mechanisms. The flits are routed
in the appropriate virtual network (vnet) that matches the cache
coherence request type via routers and links. When the flits arrive
at the memory controller, the memory fetch is initiated. Once the
operation is completed, the response is routed back to the requestor.

DoS attacks can happen from MIPs intentionally degrading SoC
performance by flooding the NoC with packets. MIPs can target a
component that is critical to SoC performance, such as a memory
controller that provides the interface to off-chip memory, and in-
ject unnecessary requests [7]. As a result, the legitimate requests
can experience severe delays. Figure 1 shows a MIP at node 1 that
targets its victim at node 7 and injects additional packets. The traf-
fic rate in routers along the routing path is increased causing NoC
congestion, which leads to performance degradation and reduced
energy efficiency. Since the victim receives a lot more requests than
it is designed to handle, responses are delayed and that can lead
to violation of task deadlines. Violation of real-time requirements
can be catastrophic for safety-critical applications. A similar threat
model was also used by previous work that explored DoS attacks in
NoC-based SoCs [5, 7, 15].
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Figure 1: Example DoS$ attack from a malicious IP to a victim
IP. The thermal map shows high traffic near the victim IP.

2.2 Related Work

Previous work that explored defenses against DoS attacks proposed

traffic latency comparison [15] and security verification techniques [3].

However, these approaches give suboptimal results due to inherent
drawbacks in their methodologies such as injection of additional
packets that can further congest the network [15] and being able to
reduce the risk of attacks, but unable to detect if an attack happens [3].
Fiorin et al. introduced a countermeasure against DoS attacks that
has an architecture similar to our work [12]. However, their method
is fundamentally different from ours since they monitor the band-
width considering the data loaded/stored by an initiator from/to a
specific memory block or range of addresses. Charles et al. proposed
to statically profile the normal behavior of the SoC and detect DoS
attacks during runtime [5, 7]. In their work, each router statically
profiled NoC traffic behavior based on packet arrivals at routers and
used that as an upper bound to detect attacks. While such methods
are efficient when the applications are fixed, they are not suitable
when variations can alter the NoC traffic behavior.

ML has been widely adopted in various domains for efficient data
processing and fast decision making. For example, ML can analyze
encrypted HTTP traffic to differentiate between malicious and benign
execution [13, 18]. Cisco encrypted traffic analytics [13] and IBM
QRadar security intelligence [14] are two state-of-the-art network

security countermeasures developed by the industry. Shekhawat
et al. [18] showed that XGBoost, an algorithm based on gradient
boosting, can classify encrypted traffic as malicious or benign with
an accuracy of 99.15%. To the best of our knowledge, there are no
prior efforts that use ML to secure NoC-based SoCs from DoS attacks.

3 ML-BASED DOS ATTACK DETECTION

As a means of achieving high accuracy in detecting DoS attacks in
the presence of runtime variations of NoC traffic, we explore the
feasibility of using ML for DoS attack detection. An overview of
our approach is shown in Figure 2. During design time, NoC traffic
is statically analyzed to gather the dataset that is used to train the
ML models. Both normal and attack scenarios are emulated during
this phase using a few known application mappings. The trained
models are stored in a dedicated IP denoted as the Security Engine
(SE). During runtime, NoC traffic data is gathered at each router using
probes attached to routers and the collected data is sent to the SE
using a separate physical Service NoC. The models at the SE use data
collected within a predefined time window to make inferences about
the condition of the NoC. In Section 4, we show that our method is
capable of classifying data as normal or attack, irrespective of the
locations of cores running the applications (active cores) and the
locations of MIP(s).
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Figure 2: Major steps of the ML-based DoS attack detection.

Our ML-based DoS attack detection mechanism relies on the fol-
lowing features of the architecture model.

e Probes attached to routers can gather data from NoC packets
with minor performance and power overhead.

e The SoC architecture comprises two physical NoCs: (i) a Data
NoC that is used to communicate between IPs for application
execution, and (ii) a Service NoC which transfers data collected
from probes to the SE.

The remainder of this section is organized as follows. Section 3.1
presents the ML models used to make inferences. Section 3.2 discusses
the hardware implementation to have probes connected to routers
that gather data and send to the SE via the Service NoC.

3.1 Machine Learning Model

As outlined in Section 2.1, NoC packets/flits in our architecture model
correspond to memory requests/responses between IPs running the
applications and the memory controllers. We extract information
when flits are transferred through routers. The features consist of data
extracted from NoC packets as well as engineered features (marked
with the symbol { in Table I) using the extracted data. A complete list
of NoC traffic features used in our exploration is shown in Table 1.
However, as elaborated in Section 4.3, we experimentally eliminated
some features based on feature importance! in an attempt to find
!Feature importance gives a score to indicate how important a feature is in the decision

making process of an ML model. In a trained model, the more a feature contributes to
key decisions, the higher its relative importance.



the optimum trade-off between the least number of features and the
highest model accuracy. Feature IDs of the selected features, when
running the final model, are marked with a star (*) in Table 1.

We use Gradient Boosting, a powerful technique to perform super-
vised ML classification, as our classifier. It is an ensemble learner that
creates the final model based on a collection of weak predictive mod-
els, decision trees in most instances, and that results in better overall
prediction capabilities due to iterative learning from each model. The
key concept of the algorithm is to create new base-learners having a
maximum correlation with the negative gradient of the loss function
of the entire ensemble. Weaker predictive models in the ensemble
are trained gradually, additively, and sequentially, and their short-
comings are identified by the use of gradients in the loss function
which indicates the acceptability of the model’s coefficients at fitting
the underlying data. The decision to use gradient boosting for our
classification was made experimentally as outlined in Section 4.2.

3.1.1 Training the ML model. The ML model is trained statically,
during design time. We choose a few application mapping scenarios
to train the model that includes both normal execution and attack
scenarios. A list of all training and testing configurations is outlined
in Section 4.1. NoC packet traces are collected during application
execution at each router. When flits pass through the routers, a feature
vector is constructed including the selected features for each flit.
Selected features are transformed using MinMaxScaler to fit into the
range of 0 to 1, without distorting the shape of the original features.
Transformed features are then used to tune the hyperparameters
of the model using Bayesian Optimization, which outputs the best-
optimized list of parameters while learning from previous iterations
in each iteration. This process is repeated for all 16 routers separately
to train 16 models, one per router.

3.1.2  Attack detection. During runtime, probes attached to the routers
gather data and send to the SE for evaluation. The SE aggregates

data and constructs feature vectors corresponding to each router,

following a process similar to that of during model training. Let M;

correspond to the model trained for router r; using gradient boosting.
Feature vectors that fall within a predefined time window 7; is then

used as input to each trained model, which gives a probability of
an attack as the output. If V; ; denotes the set of feature vectors

constructed at r; for 7;, the probability of an attack is denoted by

pi.j>» where p; j < M;(V; ;). The probability is calculated as the

portion of feature vectors labeled as “attack” during 7;. If all feature

vectors are classified as “attack” by the model, the probability is 1. If
all feature vectors are classified as “normal”, the probability is 0. The

overall attack probability for the time window 7; is calculated after

pooling all probabilities as:

p, = 2vilpij - [Vijl)
! 2vi [Vijl

The overall probability for the time window 7; (P;) is a weighted
average of probabilities from each model where the weights corre-
spond to the number of flits transferred through each router within
the given time window. If #; is greater than a predefined threshold
A, an attack is flagged. This process is repeated for every 7; during
SoC operation to detect attacks that can be potentially initiated at
any point in time.

Weights based on the number of flits indicate that when a model
makes a decision based on a lot of data points, it can be trusted to
give a more accurate result. The choice was motivated by the fact that

1)

Table 1: NoC traffic features used in our ML model

F
e;t)u ™ Feature Name Feature Description
A loutport* port used by the flit to exit the router
P (0-local,1-north,2-east,3-south,4-west)
B linport port used by the flit to enter the router
P (0-local,1-north,2-east,3-south,4-west)
cache coherence type of the packet
€ |ectypef corresponding to the flit
D [flitid identifier used to denote each flit
E [flit type type of the flit (head, tail, body)
F |vnet virtual network used by the flit
G |vc© virtual channel used by the flit
H  lraversal id*+ identifier used to group all packet

transfers related to one NoC traversal

number of hops from the source to the

h t* ..
J op count™f destination

number of hops from the source to the

K |current ho
Pt current router

ratio between the current hop and the

L  |hop percentage¥ hop count

M |enqueue time*  [time spent inside the router by the flit

packet count cumulative no. of flit arrivals within time

N decr*t window 7 (decremented as packets arrive)
o packet count cumulative no. of flit arrivals within time
incr’f window 7 (incremented as packets arrive)
p [max packet maximum no. of flits transferred through
count™ the router within a given time window 7
Q ii;:;f: Tcount packet count incr X packet count decr
R |port indexf outport X inport
S ltraversal index** cacl}e coherence type >< flit id
x flit type X traversal id
T |cc vnetindexf |cache coherence type X vnet
U |vnet vc cc indexT|cache coherence vnet index X vc

we make no assumptions about the placement of the secure and non-
secure IPs. However, if more information is available, the weighted
average can be adjusted so that some models contribute more to
the final decision. For example, if the locations of the non-secure
(potentially malicious) IPs are known, the probabilities of models
corresponding to those routers can be given more weight and it
would result in a better overall performance in distinguishing normal
traffic from an attack scenario. How to combine different probabilities
to arrive at a single conclusion under various assumptions is well
studied in the area of Opinion Pooling, which is a part of probability
theory, and can be used in our approach based on the assumptions.

It is important to note that all the features we have used in our
method can be extracted from the packet header or by counting flits
or as a combination of header and count information. Observing the
packet payload (e.g., memory data block in case of a memory data
fetch packet) is not required. Therefore, our approach can be used
together with other NoC security mechanisms such as encryption
and authentication.

3.2 Implementation of Hardware Components

Our approach relies on collecting features at routers using probes and
sending the data via a separate physical NoC (Service NoC) to the SE



to make inferences. In this section, we discuss the implementation of
these hardware components.

3.2.1 Multiple physical NoCs. We identify two main types of packets
to be transferred through the NoC to facilitate our ML-based DoS
attack detection method: i) packets related to application execution
as introduced in Section 2.1, and ii) packets related to extracted NoC
features transferred from probes at routers to the SE. Instead of using
different virtual networks to carry the different packet types, we pro-
pose to use two separate physical NoCs (Data NoC and Service NoC)
to carry the two main types of packets. The choice is motivated by
state-of-the-art commercial NoC-based SoC architectures that follow
the same practice of carrying different types of packets over multiple
physical NoCs [19, 21]. There is a trade-off between area and perfor-
mance when considering one versus multiple NoCs. When different
packet types are facilitated through the same NoC, header fields must
be added to distinguish between the packet types. Furthermore, the
buffer space must be shared between virtual networks. This can lead
to performance degradation, specially when scaling to many-core
processors. On the other hand, separate physical NoCs contribute
to the area overhead. However, due to advances in manufacturing
technologies, additional wiring to facilitate the NoCs incurs minimal
overhead as long as the wires stay on-chip. On-chip buffer area has
become the more scarce resource. If virtual networks are used, the
increased buffer space due to sharing and the logic complexity to
handle virtual networks can closely resemble to having a separate
physical NoC. Intel and Tilera opted for separate physical NoCs for
the same reasons. Yoon et al’s work provides a comprehensive trade-
off analysis [23]. When we apply the analysis from [23] to fit the
parameters in our work, the power and area overhead of having two
physical NoCs versus one NoC are 7% and 6%, respectively.

3.2.2  Probes at routers and security engine. Hardware implemen-
tations for probes collecting data at routers and the SE have been
explored in several prior work [11, 12]. Fiorin et al. [12] utilized
probes attached to the network interfaces to collect data and send to
a central processor to detect DoS attacks. The runtime NoC monitor-
ing and debugging framework proposed in [11] also used a similar
setup where event related information is gathered at NoC routers
and sent to a central unit for processing. Our security mechanism is
built using a similar architecture. In our framework, the probes are
event triggered on flit arrival. The probes consist of a sniffer, an event
generator and an interface to the Service NoC. The sniffer extracts
the features from flits and sends to the event generator to create the
timestamped messages. The network interface then packetizes the
messages and sends to the SE via the Service NoC. The SE completes
feature engineering and combines the engineered and extracted fea-
tures to construct the final feature vectors. Previous work performed
detailed overhead analysis and reported minimal area overhead, for
example, the probes consumed 0.05mm? compared to a 0.26mm?
router area when synthesized with 0.13 micron technology [11]. Our
overhead analysis is consistent with the analysis done in [11].

4 EXPERIMENTS

In this section, we experimentally evaluate our approach. First, we
describe our experimental setup (Section 4.1). Next, we explore sev-
eral machine learning models to identify the best performing one and
justify the choice of gradient boosting (Section 4.2). Then, we rank
feature importance according to the selected model and eliminate low
priority features in an attempt to find the optimum trade-off between

Table 2: Train and test configurations

Iteration Train Test
ID (IID) | Normal Attack Attack
1 N-0-15 |N-0-15-A-1 N-0-15-A-7
N-0-15-A-11
N-0-15-A-12
2 N-0-15  [N-0-15-A-1 N-0-15-A-7
N-0-15 N-0-15-A-11 N-0-15-A-12
N-0-9 N-0-9-A-1 N-0-9-A-7
N-0-9 N-0-9-A-11 N-0-9-A-12
N-0-6 N-0-6-A-1 N-0-6-A-7
N-0-6 N-0-6-A-11 N-0-6-A-12
N-0-4 N-0-4-A-1 N-0-4-A-7
N-0-4 N-0-4-A-11 N-0-4-A-12
3 N-0-6-9-15 | N-0-6-9-15-A-1-11 | N-0-6-9-15-A-1-7
N-0-6-9-15-A-7-11
N-0-6-9-15-A-11-12
N-0-6-9-15-A-7-12

the number of features and model accuracy (Section 4.3). Finally, we
show how our ML-based DoS attack detection mechanism performs
across several training and testing configurations by exploring model
accuracy for all the test cases in Table 2 (Section 4.4).

4.1 Experimental Setup

Following the realistic architecture model proposed in [4], the 4 X 4
mesh NoC was modeled using the “GARNET2.0" framework [1] that
is integrated with the gem5 [2] cycle-accurate full-system simulator.
The NoC model was implemented using X-Y routing with wormhole
switching, 3-stage router pipeline (buffer write, route compute +
virtual channel allocation + switch allocation, and link traversal)
and 4 virtual channel buffers per input port. Each IP was modeled
as a processor core executing a given task at 1 GHz with a private
L1 cache. Processor cores used the NoC for memory operations as
outlined in Section 2.1. The four memory controllers attached to
four boundary nodes of the NoC provided the interface to off-chip
memory. The address space was shared equally between the memory
controllers. FFT benchmark from the SPLASH-2 benchmark suite [22]
was used for application instances. The same benchmark has been
used in [5, 7] that explored DoS attacks in NoC-based SoCs. During
normal operation, n IPs out of the 16 IPs in the 4 X 4 mesh, were
chosen at random to run an instance of the benchmark (active IPs). To
model the DoS attack scenario, an IP that did not run an instance of
the benchmark injects memory request packets to the four memory
controllers increasing the overall network traffic by 50%. A complete
set of training and testing configurations are listed in Table 2. Iteration
ID (IID) 1 indicates that the model has been trained with two datasets:
i) normal execution scenario with applications running on IPs 0 and
15 (N-0-15), and ii) attack scenario with an attacker at IP 1 launching
a DoS attack while applications are running on IPs 0 and 15 (N-0-15-
A-1). The trained model has been tested with three attack scenarios:
i) N-0-15-A-7, ii) N-0-15-A-11, and iii) N-0-15-A-12. The IP numbers
correspond to the node numbers given in Figure 1.

4.2 Machine Learning Model Comparison

To identify which ML model performs the best for our given archi-
tecture and threat models, we compared the performance of 12 ML
models - Naive Bayes Classifer (NBC), Logistic Regression (LRN),



2-Layer Neural Network (2NN), 3-Layer Neural Network (3NN), 4-
Layer Neural Network (4NN), 5-Layer Neural Network (5NN), 6-Layer
Neural Network (6NN), K-Neighbors Classifier (KNN), LightGBM
Classifier (LGB), Decision Tree Classifier (DCT), Random Forest Clas-
sifier (RFC), and XGBoost Classifier (XGB). Each model was trained
using the training dataset of IID 2. Figure 3 shows training accuracy
and validation accuracy measured using an 80:20 training:validation
split from the dataset at router 0 (rg). The model comparison results
at other routers manifested a similar trend (omitted from Figure 3 for
clarity). We can observe that non-linear ML models perform better
than linear models with XGB showing the best results. XGBoost is
an algorithm based on gradient boosting machines.

=>=Validation Accuracy =~ =#=Training Accuracy
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90

80 Y
69.9 70.4 70.5 2

Accuracy %

70 65.6 2 =
¢ 69.9 70.0 70.5
60 65.6

50
NBC LRN 2NN 3NN 4NN 5NN 6NN KNN LGB DCT RFC XGB

Figure 3: ML model performance comparison using IID 2
training dataset.

To evaluate the selected XGB model further, we use cross valida-
tion, which is a resampling process used to evaluate the performance
of a trained ML model. We use StratifiedKFold? cross validation since
it gives a better representation over the entire dataset. Results for
10 folds of StratifiedKFold cross validation are shown in Figure 4.
The results generated by cross validation confirm that the model is less
biased, performing well in unseen data and not overfitting. Since our
exploration indicated that XGB performs best in the given scenario, we
use XGB as the ML model for our DoS attack detection method.

fold 1 2 3 4 5 6 7 8 9 10
accuracy % |96.84|96.86|96.84(96.88|96.80(96.92(96.84|96.54|96.71|96.90

Figure 4: Validation results of the model using StratifiedKFold
cross validation.

4.3 Feature Importance

While using more features can certainly increase model accuracy, ex-
tracting redundant features from NoC traffic can lead to unnecessary
performance and power overhead. Therefore, we eliminate features
that show the least importance for the decision making process of the
ML model-XGB and experimentally evaluate the optimum number
of features to have the best trade-off with the accuracy of the model.
Figure 5 shows the feature importance rank of each feature. Since
each router runs a model trained from the data extracted at that
particular router, the feature importance rank slightly changes from
router to router. However, the overall trend remains consistent where

2 StratifiedKFold cross validation uses a subset from each class in the test set emulating a
representation of the entire dataset in each fold.

the highlighted features are the least used. Elimination of features flit
id, flit type and cc type from the decision making process can be un-
derstood because during the modeled attack, no header information
is changed. Since flits are routed via vnets based on their cc type, the
rank of the feature vnet can be perceived. It can be said that outport
is outperforming inport because of the influence of the attacker that
injects memory request packets, and current hop and hop percentage
are relative features when compared to hop count. Therefore, for the
rest of the exploration, we eliminate the highlighted features when
training and testing the accuracy of our approach.

Router

Feature To T |72 |3 | Ta |75 |76 |77 |78 | To 710|711 |T12 |T13 [T14 |T15
outport 121 81 813|119 | 810|111 9] 9|10(14| 9| 9|14
inport 14]112]11)12f10f11|10|14|13|12]11|12|15f11|10]11
cc type 13]115]15]14(15(13|12|16|15]|13]13|15(13|14| 13|13
flit id 18|18 18(18)20|20|20(19]|19|20|20|20]| 18|18 18| 19
flit type 17117]16]16(19|18| 18| 18| 18| 19]|18|19|17|17| 17| 16
vnet 16(19)20]/20]| 18| 19]|19) 20|20 18| 19| 18] 2020 20| 20
e 10|13|14[10] 9 17|15 8 | 8 |16/ 15| 8 | 10|15 15| 10
traversal id 1(1f1]1 1]1f1]1)1]1f1 1)1
hop count 6|\ 7| 77777\ 77|77 |7|7|7]|7]|6
current hop 9116|17|17(14|16|16|12|10|14]|16|11|12|16| 16|12
hop percentage 15 9 110)11f16|10|11)13]|14]|10]12|17|11|10|12]15
enqueue time 8[({1019]9|8]|8|9|9[9]|8|8[9][8]|8|8]38
packet count decr 3|4|4|5|4|5]4|4|4]4])4]4]|5]5]|5]5
packet count incr 5|5|6|6|5]|]6|]6|]6|[5]|]6|]6|5|6|]6]6]7
max packet count 2121212|2|2]2]21212)2)12|2]12]2]2
packetcountindex | 4 | 3 [3]4|3|3]3|3|3|3]|3|3|4]|4]|4|4
port index 20| 14|13]15]13)|12]14(11(12|11|10|14]16]12]11(18
traversal index 7{6|5[3]6|4|5]|]5|]6]5|5[6]3]3]3]3
cc vnet index 19120]19)19(17|15|17|17|17|17]|17|16|19|19| 19|17
vnet vc cc index 11)11)12) 8 (12|14|13|15]|16|15]|14|13| 9 |13]|14| 9

Figure 5: Feature importance rank for features at each router
for IID 2 dataset with least important features highlighted.

4.4 DoS Attack Detection Accuracy

With the selected model and features, in this section, we evaluate
the accuracy of our DoS attack detection method. As outlined in
Section 3, each model outputs the attack probability independently
for a given time window 7;. The overall attack probability during
7j (P;) is calculated according to Equation 1. Figure 6 and Figure 7
show excerpts from results generated during an attack (IID 2 and
test case N-0-15-A-12) and a normal (IID 2 and test case N-0-15) sce-
nario, respectively. The threshold for inferring attacks from $; is
set to 0.5 (A = 0.5) since an attack scenario should give probabilities
close to 1 whereas in a normal scenario, the probabilities should be
close to 0. Columns “rg” through “ri5” in Figure 6 and Figure 7 show
the probabilities outputted by models corresponding to each router.
Column “P;” shows the overall probability for time window 7; cal-
culated using Equation 1 and the “Status” column indicates the final
decision of the ML model for each 7. The two excerpts show 100%
accuracy since all the time windows are classified accurately. How-
ever, each test case consists of more than 3000 time windows (3280
in the complete table corresponding to Figure 6), which is related
to the application execution time. DoS attack detection accuracy is
calculated as the portion of accurately classified time windows.
Figure 8 shows DoS attack detection accuracy for all test cases
shown in Table 2. In IID 1, the model is trained with two datasets
(N-0-15 and N-0-15-A-1) and tested with varying MIP locations (7, 11
and 12). Even though the number of training datasets is low, the ML
model still achieves an accuracy of ~90%. As the number of training
datasets is increased, the model achieves very high accuracy (~99%),
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T | 1 1 1 i} 1 1 1 1 1 1 1 i ) 1 1 1: 1 1 |ATTACK
77 (02| 1 0|0 1 1 1 1 1 1 1 1 1 1 i 1 | 0.9 |ATTACK
Tg| 1 1(08] 1 1 1]05]0 1 1 1 d 1 1 i 1 1 |ATTACK
Tg| 1 1 1 al 1 1 P 1 1 1 1 i) 1 1 al 1 1 |ATTACK
T10| 1 1 1 il 1 1 1 1 1 1 1 il 1 1 il 1 1 |ATTACK

Figure 6: Results for attack scenario for IID 2 and test N-0-15-
A-12 (1 = 1000).
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Figure 7: Normal scenario IID 2 and test N-0-15 (z; = 1000).

even when tested with MIP locations which the model was not trained
on. Since a decision is made at the end of each time window, the time
taken to detect an attack is 7j, which is experimentally set to 1000
cycles (1 ps). Attack detection times of previous work that addressed
DosS attack detection in real-time systems fall in the same range (3-8

ps) [5,7
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Figure 8: DoS attack detection accuracy for all tests in Table 2.

Figure 9 shows a comparison of common evaluation metrics used
to evaluate ML models. The false positive rate ranges from 2.08% to
12.51% (on average), and the true negative rate ranges from 89.98% to
99.35% (on average), for all 3 iterations of test cases. Further, having
precision, recall and f1 score in the range of 0.89 or above gives
evidence to the high precision of the model. Hence, results show that
our approach is capable of detecting DoS attacks with high accuracy and
in real time, irrespective of the number or the placement of MIPs and
the number of applications running on the SoC. High attack detection
accuracy is achieved not only if active and malicious IP placements
match the training configurations, but also in new MIP placements,
which the model has not been trained on.

Accuracy | False Positive Rate | True Negative Rate | Precision |Recall | F1 Score
1ID1| 88.83% 12.51% 89.98% 0.900 0.893 0.896
1ID2| 98.93% 2.08% 99.35% 0.993 0.991 0.992
IID3 | 94.95% 5.64% 95.29% 0.953 |0.955 | 0.954

Figure 9: Comparison of evaluation metrics for test cases.

5 CONCLUSION

In this paper, we introduced a machine learning based DoS attack
detection mechanism for NoC-based SoCs. We consider a widely
explored threat model where a malicious IP floods the NoC with a
large number of packets causing deadline violations, performance
degradation or reduced energy efficiency. Unlike existing DoS at-
tack detection methods that rely on highly predictable NoC traffic
patterns and specific use cases, our approach is capable of detect-
ing DoS attacks with high accuracy in real-time, in the presence of
unpredictable NoC traffic patterns caused by diverse applications
with input variations and application mappings. Experimental results
demonstrated that non-linear models, such as gradient boosting, pro-
duce the best results for the given architecture and threat models.
Our observations reveal that the key to achieving high accuracy is
to carefully craft features out of the data extracted from NoC traffic.
Our approach is capable of detecting DoS attacks with high accuracy
in a wide variety of scenarios.
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