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Abstract—System-on-Chips (SoCs) are designed using differ-
ent Intellectual Property (IP) blocks from multiple third-party
vendors to reduce design cost while meeting aggressive time-to-
market constraints. Designing trustworthy SoCs need to address
the increasing concerns related to supply-chain security vulner-
abilities. Malicious implants on IPs, such as Hardware Trojans
(HTs) are one of the significant security threats in designing
trustworthy SoCs. It is a major challenge to detect Trojans
in complex multi-processor SoCs using conventional pre- and
post-silicon validation methodologies. Packet-based Network-on-
Chip (NoC) is a widely used solution for on-chip communication
between IPs in complex SoCs. The focus of this paper is to
enable trusted NoC communication in the presence of potentially
untrusted IPs. This paper makes three key contributions. (1) We
model an HT in NoC router that activates misrouting of the
packets to initiate denial of service, delay of service, and injection
suppression. (2) We propose a dynamic shielding technique
that isolates the identified HT infected IP. (3) We present a
secure routing algorithm to bypass the HT infected NoC router.
Experimental results on HT infected NoC demonstrate that the
proposed method reduces effective average packet latency by
38% in real benchmarks and 48% in synthetic traffic patterns.
Our method also increases throughput and reduces effective
average deflected packet latency by 62% in real benchmarks
and 97% in synthetic traffic patterns.

Index Terms—Hardware Trojan, Network-on-Chip Security

I. INTRODUCTION

With the widespread commercialization of safety-critical
real-time systems, semiconductor industries have started pay-
ing more attention to robust hardware-based security. Due to
time-to-market and cost considerations, many products still
rely on supply chain to perform various activities includ-
ing design automation of specific components as well as
manufacturing of integrated circuits. Functional security of
these devices can be compromised due to involvement of
potentially untrusted third-parties during the design cycle [1]
[2]. While there are various forms of supply-chain vulnerabil-
ities, malicious implants in circuits, also known as Hardware
Trojans (HTs) [3] [4], is one of the major security threats
in modern System-on-Chips (SoCs). These HTs can create
security vulnerabilities as well as functional inconsistencies
in the SoC [1]. Some of the HTs are hard to detect, subtle
in their operation and are sophisticated to the extent that they
can even bypass the root-of-trust techniques that secure device
firmware [2] [5]. Given that SoCs are used in a wide variety of
embedded and IoT devices, it is critical to enable trustworthy
computing using potentially untrusted components in SoCs.

This work was partially supported by the NSF grant SaTC-1936040.

Packet-based Network-on-Chip (NoC) provides the on-
chip communication infrastructure for modern Multi-Processor
System-on-Chips (MPSoCs). NoC provides connectivity be-
tween a wide variety of components in a MPSoC such as
processor cores, GPUs, memories, converters, controllers, I/O,
etc. Due to its positional advantage, NoC is a prime target for
attackers to insert HTs. Today’s NoCs provide more emphasis
on performance, scalability and backward compatibility than
security [6] [7]. In NoC, due to bandwidth limitations, packets
are further divided into smaller flow control units called flits.
A packet consists of a head flit carrying route information, a
number of body flits carrying the data/payload and a tail flit
marking the end of the packet. Routing decisions are made
on the head flit and other flits follow the route using worm-
hole switching. NoC routers, the communication backbone of
MPSoCs are also vulnerable to security threats. HT infected
NoC routers can lead to denial of service [8], information
leakage [9], high jacking [10], unauthorized memory access
[11], etc. They directly or indirectly result in bandwidth
depletion and performance degradation of the entire system.
Detection and mitigation of HTs on NoCs impose unique
challenges [12] [13]. To the best of our knowledge, there are
no prior efforts in Trojan-aware routing that considers both
run-time detection and avoidance of Trojans.

In this paper, we model an HT on an NoC router that
misroutes packets in the network and initiates DoS attack on
a specific set of processing elements. Furthermore, misrouting
packets at times also create injection suppression that prop-
agates across various routers, leading the system to a near
halt. To secure NoC from such misrouting HTs, we propose a
technique called Trojan Aware Routing (TAR) which consists
of three main phases. In the first phase, we deploy a run-
time detection mechanism that tracks for routing violation
and exposes the HT infected NoC router. After detection,
the second phase employs a dynamic shielding mechanism
that isolates the HT infected NoC router from the rest of the
network. With the shielding enabled, the third (final) phase
uses a bypass algorithm that route packets in the network
isolating the HT infected NoC router. In this paper, we make
the following major contributions:

• We implement packet misrouting on NoC to model an
HT that leads to denial of service, delay of service, and
injection suppression.

• Our Trojan-aware routing dynamically detects a misrout-
ing HT, shields it and route packets bypassing it.

• We experimentally demonstrate that our approach effec-
tively mitigates DoS and injection suppression.
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Fig. 1: 8×8 mesh NoC with an HT at router 35

The remainder of the paper is organized as follows. We
describe the threat model in Section II. Section III describes
our Trojan-aware routing framework. Experimental results
are presented in Section IV. Section V covers other related
approaches and we conclude our paper in Section VI.

II. THREAT MODEL

In our threat model, we consider an HT that tampers
the routing algorithm employed in NoC routers to enable
misrouting. When triggered, the HT maliciously assigns a
wrong output port to the head flit of a packet. All flits of the
packet also get misrouted in the same way. This can move
the packet away from its destination and can cause either
denial of service (DoS) or injection suppression or both. DoS
is a scenario where a packet gets indefinitely delayed in the
path and never reaches its destination. Injection suppression
scenario is a by-product of DoS where new flits cannot
be injected into the network due to unavailability of router
input buffers. Sometimes the packet may reach the destination
after few cycles of extra delay. Usually, NoC packets carry
cache miss requests, cache miss replies, evicted cache blocks,
and coherence messages. An infected NoC router with the
proposed HT can misroute these packets and degrade the
application-level performance of latency-critical applications.

Such type of HTs can be added to an NoC IP at any of
the phases of an IC life cycle, including specification phase,
design phase, and fabrication phase [3] [14]. In this work, we
assume that the proposed HT enters the NoC IP during the
pre-silicon stage, either by an attacker having access to the
system design or by an untrusted third party EDA tool. These
HTs can be modelled in a way such that they are internally
triggered and intermittently malicious [3] [15]. Note that if an
HT is permanently malicious, it is easier to detect and bypass.
We formulate the HT threat model as follows:
An NoC packet P can be represented as:

P = {F p
head ‖ F

p
body1 ‖ F

p
body2 ‖ ... ‖ F

p
bodyn ‖ F

p
tail} (1)
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Fig. 2: Illustration of diverse HT impacts

where F p
i are the flits of packet P such that:

F p
head = [{SRC, DEST, CTRL MSG}]

F p
body = [{CTRL MSG}, {Data}]

F p
tail = [{CTRL MSG}, {Data}]

Path of packet P from source to destination can be given as:

P = {Rsrc, . . . Rk−1, Rk, Rk+1, . . . Rdest} (2)

where Ri denotes router i on the NoC. Let RAi denote the
routing algorithm employed in router Ri. We can infer from
Equation (1) and (2) that for a packet P ,

RAk(F
p
head) = Rk+1 (3)

where for packet P , the routing algorithm employed in router
Rk will assign the next router as Rk+1.

Let HT denotes our proposed threat model such that

HT (RAk) = RA∗
k and

RA∗
k(F

p
head) = R∗

k+1 where
R∗

k+1 6= Rk+1

Consider an 8×8 mesh NoC shown in Fig. 1. Based on the
location of HT (router 35, shown in red color), we divide the
NoC into eight different regions: N , E, S, W , NE, SE, SW
and NW . When triggered, the impact of HT varies based on
the source and destination regions of packets. We categorize
the behaviour and impact of the proposed HT threat model
into two cases. We explain them using two specific examples
with the help of Fig. 2.

Case 1: Consider a packet P1 with source S1 on its way to
destination D1 reaches router 35 as shown in Fig. 2. Instead
of forwarding P1 to router 43 as per XY routing, the HT
misroutes P1 to router 34. P1, upon reaching router 34,
follows XY routing, and reaches back to router 35. Note that
destination D1 is at router 59 which is on the same column
as that of HT infected router 35. As per XY routing, P1 can
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Fig. 3: HT triggered injection suppression
reach destination D1 only through router 35, which is infected.
Hence router 35 will always misroute and P1 can never reach
destination D1, leading to a DoS like attack on NoC. From
Fig. 1 we can see that source S1 is in region E and destination
D1 is in region N . Thus, inter-region communication of type
E −→ N will create a DoS like scenario here. To generalise,
for all inter-region communication where the destination router
is on the same column as that of HT infected router 35, a
DoS attack like scenario will arise. A DoS attack like scenario
arises when there is a packet movement between the following
regions: E −→ N , E −→ S, W −→ N , W −→ S NE −→ S,
NW −→ S, SE −→ N , SW −→ N .

In this illustrative example, packet P1 will be trapped in
a ping-pong behaviour between router 35 and its neighbor
routers 27, 34, and 36 since router 35 will never forward P1
to router 43. Packets are buffered in VCs of routers while
taking part in routing and arbitration decisions. Prolonged
ping-pong of P1 leads to VC unavailability in neighboring
routers and propagates the effect to others by back-pressure.
Eventually a scenario of injection suppression arises in the
entire system. Fig. 3 shows how the proposed HT threat model
creates injection suppression in an 8×8 NoC while running the
uniform random synthetic traffic. As injection rate increases,
the impact of the proposed HT escalates, and results in more
injection suppression.

Case 2: Consider another packet P2 in Fig. 2 with source
S2 on its way to destination D2 reaches router 35. Instead of
forwarding P2 to router 36 (as per XY routing), the activated
Trojan at router 35 misroutes P2 to router 27. Following XY
routing, router 27 now forwards packet P2 to router 28. Since
the destination D2 is not in the same column as that of router
35, packet P2 can eventually reach the destination. However,
getting misrouted by router 35 delays the arrival of packet
P2 at destination D2. This is a scenario of delay of service
attack. From Fig. 1 we can see that source S2 is in region
W and destination D2 is in region NE. Thus inter-region
communication of type W −→ NE creates a delay of service.
To generalise, a delay of service attack like scenario will arise
when there is a communication between the following regions:
E −→ W , E −→ NW , E −→ SW W −→ E, W −→ NE,
W −→ SE.

III. TROJAN AWARE ROUTING (TAR)

Our proposed TAR technique is employed in every router
on NoC. TAR involves three phases: Detection, Shielding, and
Bypass. The working of these phases is described as follows:

MARS Research Lab, CSE@IITG ©2017 Something Short and Simple

Dest CTRL Bits Alert Message 

CTRL Bits msg_dir DHT_msg_dir

msg_dir: 0: Anti-clock, 1: Clock

DHT_msg_dir/NHT_msg_dir: 000: No Dir, 001: North, 010: West, 011: South, 100: East

7-bits

Src

DestSrc NHT_msg_dir

1-bit 3-bits 3-bits

Fig. 4: Structure of an alert flit

A. Phase 1: Trojan Detection

We use XY routing where a packet travels along the X
direction and reach the same column as that of destination.
Then, the packet travels along the Y direction to reach the
destination. Let P be a packet with source S(x1, y1) and
destination D(x2, y2). As per XY routing, when P reaches
an intermediate router R(x, y), it will be forwarded along X
direction until (x < x2). When P reaches a router where
(x == x2), it changes the direction and starts travelling
along Y direction until (y < y2). When P reaches a router
where (y == y2), it reaches destination D(x2, y2). The
XY routing algorithm decides the output port for a packet
based on the position of destination router with respect to
the current router. The routing algorithm does not consider
the input port of the packet and its previous router for its
routing decisions. Our proposed HT threat model exploits this
feature of the routing algorithm and enables misrouting. Now,
even if a packet is misrouted and reaches a router where it
should not have reached as per XY routing, the employed
routing algorithm will never be able to detect it. Packet will
be forwarded to destination without knowing the misrouting
that lead the packet to this router.

To identify packet misrouting and HT infected router, we
add a detection module, a 1-bit alert flag and a 3-bit alert dir
at every NoC router. alert flag is set only if the neighbor
is identified as an HT infected router and reset otherwise.
alert dir either denotes no direction or the direction where the
HT is detected; north, east, south, or west. In the illustrative
example shown in Fig. 2, packet P1 is forwarded to router
34 because of the misrouting at router 35. With the detection
module in place, router 34 knows that P1 has entered through
east input port from router 35. Analysing the position of
destination D1 at router 59 with respect to router 35, detection
module concludes that XY routing is violated and P1 is
misrouted. Router 34 sets its alert flag and updates alert dir
as east since router 35 misrouted packet P1 and hence must
be an HT infected router. Both alert flag and alert dir are
extensively used in the subsequent phases of shielding and
bypass routing.

B. Phase 2: Dynamic Shielding

Once the HT is detected by one of its neighbors (27, 34, 36,
or 43), a dynamic shielding protocol is activated. The router
that detects the HT, generates a special alert flit to be sent
to its neighbors about the detection of the HT. We call such
routers as generators. Neighbors upon receiving the alert flit
propagates the message further by creating a propagation flit.
We call such routers as propagators. The structure of these
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Fig. 5: Working of dynamic shielding in TAR

special flits are very similar to normal flits as shown in Fig. 4.
Alert flit contains a 1-bit msg dir indicating the direction
an alert flit needs to be forwarded by generators. A 3-bit
DHT alert dir indicates the direction an alert flit needs to be
forwarded by propagators. Alert message also contains a 3-bit
NHT alert dir which indicates the direction where the HT is
detected. Fig. 4 presents all the possible values for different
fields of the alert flit. When the message of HT detection is
propagated among all the neighboring routers using alert and
propagation flits, each router accordingly updates its alert flag
and alert dir. This results in a shield creation around the HT
that successfully isolates the HT infected router from rest of
the network. Third and final phase of TAR uses this shielding
to route packets by bypassing the isolated HT infected router.

With an illustrative example shown in Fig. 5, we explain the
working of our dynamic shielding phase. From the previous
phase of HT detection, let us assume that router 34 has
identified router 35 as an HT infected router. alert flag in
router 34 is now set to 1 and alert dir as 100 (East). As
shown in Fig. 5, router 34 generates two alert flits, GN and
GS . With an alert message {msg dir = 0, DHT alert dir =
100, NHT alert dir = 011}, alert flit GN is forwarded from
router 34 to router 42, where msg dir = 0 indicates GN to be
forwarded in clockwise direction. DHT alert dir = 100 (East)
in GN indicates that upon reaching router 42, the message
needs to be propagated in East direction. Router 42 generates
a propagation flit PE with an alert message {msg dir = 0,
DHT alert dir = 000, NHT alert dir = 011} to be forwarded
to router 43. When PE reaches router 43, NHT alert dir = 011
(South) indicates that the HT is detected in South direction
of router 43; which is router 35. alert flag and alert dir are
updated as 1 and south respectively in router 43 which can be
a generator for other neighbors. Similarly, GS and PE ′ also
propagates the message of HT detection to other neighbors.
Here, 27, 34, 43, and 36 are generator routers and 26, 42,
44, and 28 are propagation routers. The message propagation
continues from both sides until a logical shield is created
around the HT infected router. In this example, the shield is

completed when alert dir is set for router 27 as north, router
34 as east, router 43 as south, and router 36 as west. After the
end of dynamic shielding, the detected HT infected router is
isolated from rest of the network.

C. Phase 3: Trojan Bypass

The final phase of TAR implements a bypass routing
mechanism as presented in Algorithm 1.

Algorithm 1: Trojan bypass
Input : Packet header
Output: Output port direction of a flit
Terminology
xdiff : x difference between destination & current router.
ydiff : y difference between destination & current router.
in dir: Input port direction of a flit.
out dir: Output port direction of a flit.
maxCredit(out dir1, out dir2): returns out dir with more VCs.

/*Part I: Mitigation by generator routers */
if alert flag is SET then

if xdiff 6= 0 && ydiff 6= 0 then
if alert dir 6= EAST then

if xdiff > 0 && in dir 6= EAST then
out dir = EAST

else if alert dir 6= WEST then
if xdiff < 0 && in dir 6= WEST then

out dir = WEST

else if alert dir == EAST || WEST then
if ydiff < 0 then

out dir = SOUTH
else

out dir = NORTH

else if xdiff == 0 then
if (ydiff > 0 && alert dir == NORTH) ||
(ydiff < 0 && alert dir == SOUTH) then

out dir = maxCredit(EAST,WEST )

else if ydiff == 0 then
if (xdiff > 0 && alert dir == EAST ) ||
(xdiff < 0 && alert dir == WEST ) then

out dir = maxCredit(NORTH,SOUTH)

else if alert dir 6= NORTH then
if ydiff > 0 && in dir 6= NORTH then

out dir = NORTH

else if alert dir 6= SOUTH then
if ydiff < 0 && in dir 6= SOUTH then

out dir = SOUTH

/*Part II: Mitigation by propagation routers */
else if alert flag is RESET then

if (xdiff < 0 && in dir == WEST ) ||
(xdiff > 0 && in dir == EAST ) then

if ydiff < 0 then
out dir = SOUTH

else
out dir = NORTH

else if xdiff < 0 && in dir == SOUTH then
out dir = WEST

else if xdiff > 0 && in dir == NORTH then
out dir = EAST

When a packet arrives at a router, bypass mechanism checks
the alert flag and alert dir of that router. Only if the alert flag
is set and alert dir matches with the desired output port
direction of the packet, bypass routing in activated. In all
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Fig. 6: Working of bypass algorithm in TAR

other cases a packet follows normal XY routing to reach its
destination.

We explain the working of Trojan bypass algorithm with an
illustration as shown in Fig. 6. We consider the same example
as that in Fig. 2 for the sake of simplicity and continuity. A
packet P1 with source S1 on its way to destination D1 reaches
router 36. After the completion of shielding in the previous
phase, router 36 has its alert flag set and alert dir as west. As
per XY routing, the desired output port of packet P1 at router
36 is west which matches with the alert dir of router 36.
Now the Trojan bypass algorithm initiates and reroute packet
P1 away from the HT infected router 35 as presented in Part
I of Algorithm 1. Packet P1 is rerouted from router 36 to
router 44 and Part II of Algorithm 1 is initiated since 44 is a
propagation router. Now, packet P1 is forwarded from router
44 to router 43 and from there it directly reaches destination
D1 at router 59.

Since destination D1 is in the same column as that of HT
infected router 35, it becomes impossible for P1 to reach
D1 using conventional approach and resulted in a DoS like
scenario. With the Trojan bypass algorithm in place, now P1
is able to reach its destination thus mitigating the impact of
DoS. Since packet like P1 are not trapped in the network
anymore, our bypass routing also diminishes the possibility
of injection suppression. Similarly, packet P2 with source
S2 on its way to destination D2 reaches router 34. Instead
of forwarding to router 35 which is HT infected, router 34
reroutes P2 towards router 42. The Trojan bypass algorithm
rerouted packet P2 in such a way that it reaches destination
D2 without any additional delay. Hence, the delay of service
scenario created by the proposed HT threat model is mitigated
by intelligent bypassing.

Rerouting packets using the bypass algorithm violates nor-
mal XY routing and creates a possibility for network deadlock.
To ensure deadlock prevention, we employ the concept of
intermediate destination [16]. When packet P2 is rerouted
from router 34 to router 42, it starts travelling in Y direction.

However, when it travels from router 42 to router 43, P2
violates XY routing, since turning X from Y direction is
prohibited. Using the concept of intermediate destination [16],
router 42 is made the new destination for packet P2. Now,
after getting rerouted from router 34, packet P2 reaches
router 42 and gets ejected into its local output port, since
42 is the new destination. Only after router 42 finds out that
P2 is actually meant for destination D2 at router 62, it re-
injects P2 as a new packet destined for D2. Packet P2 now
follows normal XY routing like any other packet to reach the
destination. The ejection of packet P2 and re-injection as a
new packet from the intermediate destination 42 makes sure
that XY routing is not violated thus eliminating the scope of
network deadlock.

IV. EXPERIMENTS

We evaluate the performance of TAR using effective average
packet latency, effective average deflected packet latency,
throughput, and injection suppression avoidance.

A. Experimental Setup and Workloads

We implement the baseline system (normal NoC without
any HT), NoC with an HT infected router, as well as the
proposed TAR using the event-driven simulator, gem5 [19].
We use the garnet framework in gem5's ruby memory model
for implementing the NoC. Our baseline system is a traditional
8×8 2D mesh NoC with 5 VCs per input port and uses
a 128-bit flit channel for inter-router communication using
XY routing. To model the Trojan, we modify the routing
module such that there exists a single HT router in the NoC
at any given point in time. The shielding approach and bypass
algorithm is done in garnet with all micro-architectural and
functional specifications, as discussed in Section 3.

To evaluate the performance and NoC-specific parameters,
we run standard synthetic traffic patterns uniform random,
and bit complement by varying the injection rate. We also
analyse the proposed system using real application workloads
consisting of SPEC CPU 2006 benchmarks. We model a 64-
tile TCMP, each with a simple CPU core and a 32 KB, 4-
way set associative, 64-byte block, private L1 cache. Each tile
has a 256 KB, 16-way associative, 64-byte block, shared L2
cache. L2 cache sets are mapped to various tiles using the
SNUCA technique. We assign a SPEC CPU 2006 benchmark
application to each of the 64 core to model a TCMP simulation
framework. L1 cache misses trigger NoC packets, which get
routed from the source tile to the destination tile to which the
corresponding L2 cache sets are mapped. Similarly, the reply
packets also travel through the NoC. We use a 1-flit request
packet and a 5-flit reply packets.

We study the performance of the NoC under different
network loads by grouping the SPEC CPU 2006 benchmarks
based on their Misses Per Kilo Instructions (MPKIs). We
classify the benchmarks into High MPKI (greater than 40),
Medium MPKI (less than 40 but greater than 20), and Low
MPKI (less than 20). Here we use leslie3d, lbm, GemsFDTD,
and mcf under High MPKI, soplex and astar under Medium



TABLE I: Workload categorization using SPEC CPU 2006 benchmark mixes.

Workload Workload Pattern: name of benchmark (number of instances) Workload Characteristics
M1 leslie3d (16) lbm (16) GemsFDTD (16) mcf (16) 100% High MPKI
M2 sjeng (16) bzip2 (16) omnetpp (16) sphnix (16) 100% Low MPKI
M3 soplex (32) astar (32) 100% Medium MPKI
M4 leslie3d (8) bzip2 (8) omnetpp (16) sjeng( 8) GemsFDTD(8) lbm (8) mcf (8) 50% High MPKI, 50% Low MPKI
M5 sjeng (8) bzip2 (8) sphnix (16) soplex (16) astar (16) 50% Low MPKI, 50% Medium MPKI
M6 leslie3d (8) bzip2 (8) omnetpp (16) sjeng( 8) soplex (8) astar ( 16) 50% High MPKI, 50% Low MPKI
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Fig. 7: Performance analysis with synthetic traffic patterns. For latency plots given in (a), (b), (d), & (e), lower the line better

and for throughput plots in (c) & (f), higher the line the better.
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Fig. 8: Performance analysis with SPEC CPU 2006 benchmark mixes. TAR reduces effective average packet latency and
deflected packet latency over HT, and maintains a comparable throughput as that of baseline. For latency plots (a) & (b),

lower the bar the better and for throughput plot (c), higher the bar the better.

MPKI, and sjeng, bzip2, omnetpp, and sphinx under Low
MPKI. With the help of this classification, we form six
categories of workloads; M1, M2, M3, M4, M5, and M6, each
having 64 benchmark instances, as given in Table I.

B. Effective Average Packet Latency

To analyse the effect in packet latency with HT triggering
and mitigation, we use average packet latency (APL), which
is defined as the number of cycles required for a packet to
reach its destination. As the average packet latency on an
HT infected NoC shows inconsistent values at higher injection
rates due to packet loss and injection suppression, we apply a

more realistic metric effective average packet latency (EAPL)
[15] which is defined as follows:

EAPL = APL ∗ Packets EjectedwithoutHT

Packets EjectedwithHT
(4)

Fig. 7a and 7d shows the effective average packet latency
using uniform random and bit complement traffic patterns. As
expected when injection rate increases, packet latency also
increases in baseline, HT infected NoC, and TAR. But we
observe that the rate of latency increase in the case of HT
infected NoC is significantly higher than other two. This is due
to the deflection of packets by HT router and subsequent DoS
as well as delay of service scenario. However, TAR reduces
effective average packet latency significantly compared to



HT infected NoC. Since TAR uses HT bypassing to secure
communication, majority of packets that are supposed to travel
through the HT have to take extra few hops to reach the
destination. Because of this, we note an increase in effective
average packet latency for synthetic traffic patterns by 16%
compared to baseline. We also analyse the effective average
packet latency using real workloads and the results are shown
in Fig. 8a. Our simulations show that, across all benchmark
mixes, HT triggering increases packet latency by an average
of 87% over the baseline. TAR exhibits a reduction in the
effective average packet latency by 38% with respect to HT
infected NoC, but a minor 7% increase with respect to baseline
due to bypass routing.

C. Effective Average Deflected Packet Latency

Average deflected packet latency (ADPL) is defined as the
average packet latency of those packets which are meant to
travel through the HT infected router. Consider a router R
that is going to be HT infected. To calculate the ADPL in
baseline, we consider the packets that are passing through R.
In the case of an HT infected NoC, ADPL is calculated for
only those packets that suffer Trojan-induced deflection at R.
For calculation of ADPL in TAR, we consider the packets that
are deflected by the neighbors of R while applying the bypass
algorithm.

Similar to effective average packet latency, to get
meaningful latency values, we use effective average deflected
packet latency (EADPL) which is defined as follows:

EADPL = ADPL∗Deflected Packets EjectedwithoutHT

Deflected Packets EjectedwithHT
(5)

Fig. 7b and Fig. 7e shows the effective average deflected
packet latency using uniform random and bit complement
traffic patterns, respectively. We observe that as the injec-
tion rate increases, effective average deflected packet latency
increases significantly on the HT infected NoC. With HT
triggering, few packets deflected by HT enter into a ping-pong
state between its neighbors. Eventually, some of these packets
move out of this state and reach the destination. This leads to
an increase in the deflected packet latency. As the injection rate
increases, this ping-pong effect reduces the available router
buffers, which, in turn, increases the deflected packet latency.
We observe that TAR reduces the effective average deflected
latency significantly with the help of a bypassing algorithm.
While analysing the results, we observe that TAR reduces
average deflected packet latency by 97% compared to HT
infected NoC. However, due to the bypass-induced deflection
of packets, TAR shows an average of 38% increase in the
deflected packet latency over the baseline.

We also analyse effective average deflected packet latency
in real application workloads using SPEC CPU 2006 bench-
mark mixes as shown in Fig. 8b. Experimental results show
that across all benchmark mixes, TAR reduces the average
deflected packet latency by 62% over HT infected NoC, and
increases by 40% over the baseline.
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Fig. 9: Virtual channel (VC) availability

D. Throughput

We also analyse the impact of HT in the throughput of
NoC. Throughput is defined as the number of packets that
have reached its destination per router per clock cycle. In
baseline and TAR, almost all injected packets are ejected after
passing through the NoC, where as in HT infected NoC this
delivery rate is less than 75%. Here few packets are stuck
in the routers due to ping-pong effect. This leads to lack of
free VC buffers in neighboring routers and can block new
packet injections. This injection suppression together with
ping-pong effect reduces the throughput. Our analysis (Fig. 7c
and Fig. 7f) shows the difference in throughput across various
techniques. In case of real benchmark simulations (Fig. 8c),
across various mixes, HT infected NoC receives an average of
80% fewer packets compared to baseline. But TAR technique
suffers only 6% throughput reduction over the baseline.

E. Injection Suppression Avoidance

Due to ping-pong effect, the number of packets processed
around the HT infected router is very high. This can block
the router VCs of HT, its neighbors and subsequent back
pressure leading to injection suppression, as shown in Fig. 3.
We study the the average number of input VCs available
on the NoC router during continuous time intervals T1 to
T8, while simulating uniform random traffic at pre-saturation
load and the results are given in Fig. 9. We observe that as
the simulation progresses, the impact of HT results in fewer
number of input VCs being available in the routers. When the
simulation reaches close to T4, input VC availability becomes
zero, which indicates the injection suppression in the whole
network. TAR ensures that none of the packets are under DoS
attack, and the packets are deflected by its one-hop neighbor
with the help of our shielding approach. This keeps the input
VC availability as close as possible to the baseline, which
prevents injection suppression in the network.

F. Overhead Analysis

Timing Overhead: We implement the standard 3-stage
pipelined input buffered router. The stages of the router
pipeline are (1) buffer write and route computation, (2) VC
allocation and switch allocation, and (3) switch traversal. The
detection module used in TAR works in parallel with the route
computation stage to identify whether the previous router is
HT infected. Our dynamic shielding phase is completely inde-
pendent and works in parallel with the usual router operation.



Trojan bypass routing is an additional feature in the existing
XY routing algorithm which works in the route computation
stage. Since none of the phases of TAR execution lies in
the critical path of the router pipeline, we confirm that TAR
enabled NoC can function at the same operating frequency.

Hardware Overhead: An additional circuitry is used for
the detection and mitigation of HT. 1-bit alert flag and 3-bit
alert dir used in each NoC router incurs a storage overhead
of 4-bits per router and only 32B (4-bits × 64-core) for the
entire system. We use DSENT [17] to evaluate the area and
power of 8×8 2D mesh NoC with TAR. In DSENT, we use
22nm processor technology at 1GHz operating frequency. The
addition of detection module and alert flit generator incur
a negligible area overhead of 2.78% and a leakage power
overhead of 3% compared to the baseline router.

V. RELATED WORK

Several survey articles [2] are published about threats and
challenges associated with securing hardware systems. Re-
searchers in the hardware security domain are adopting new
technologies for securing NoC based MPSoCs [18]. The data
protection technology [11], which is suitable for dynamic
and reconfigurable systems, ensures secure memory access in
NoCs. Li et. al. [3] discusses various on-chip and off-chip
monitoring techniques for HT attacks that could affect the
behavior and performance of ICs. Travis et. al. [12] presents
an HT model that generates DoS attack by inspecting the links
in NoC. The system makes use of the vulnerabilities of the
error correction code to cause the DoS attack. It is configured
with a switch-to-switch mitigation technique to obfuscate the
data in the packet. Three-layer protection mechanism [8],
which uses data scrambling, data integrity protection, and node
obfuscation technique, can be used to prevent side-channel
attacks by HTs located in NoC routers. HT models can also
target vital fields in an NoC packet. A pre-planned shuffling
pattern can impede these attacks in runtime [19].

There exist HTs that infect IP to launch attacks such as
DoS, flooding to waste bandwidth, and high communication
latency, which can result in network saturation [20]. These
can be detected and localized by monitoring packet arrival
curves. Routing aware HT mitigation techniques for NoC
based MPSoCs is a recently explored field. One of the popular
HTs that exists in an NoC router misroutes the packet to trigger
DoS attack [21]. A runtime detection algorithm that uses the
incoming direction of the packet detects the location of such
HT infected routers. It assumes that the operating system
will provide shielding to ensure protection. Unfortunately,
such an intrusive solution is not realistic, especially when
it involves interaction with the operating system. Moreover,
such a hardware-software solution can lead to unacceptable
performance overhead. A pure hardware-only approach will
give a better action response. This motivated us to implement
a defense-in-depth shielding approach, which can improve
performance of the network.

As most of the attackers aim in launching HT, which can
create catastrophic effects since its triggering, the delay in

HT detection and mitigation can create back-pressure to the
system-on-attack such as bandwidth denial, buffer unavailabil-
ity, system performance, etc. This motivated us to propose a
technique that can quickly detect and bypass hardware Trojans.

VI. CONCLUSION

NoC technology gained popularity in MPSoCs due to its
ability to separate transport, transaction, and physical layers.
The security of the NoC router is vital. An HT infected NoC
router can deteriorate the performance of applications running
in the system. In this paper, we model an HT that performs
misrouting, which can lead to DoS, delay of service, and injec-
tion suppression in the network. We developed a Trojan-aware
routing method that can effectively detect and bypass Trojan
infected components to enable trusted communication in the
presence of untrusted components. Experimental results show
that TAR mitigates such HT attacks with graceful degradation
in system performance. The proposed system improves the
throughput and shows a substantial reduction in average packet
latency and deflected packet latency compared to HT infected
NoC.
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