
Proactive Thermal Management Using Memory Based Computing

Hadi Hajimiri, Mimonah Al Qathrady, Prabhat Mishra
CISE, University of Florida, Gainesville, USA
{hadi, qathrady, prabhat}@cise.ufl.edu

Abstract—Nanoscale devices provide the capability of gigascale
integration in modern electronic systems. However, such systems
suffer from high defect rates and large parametric variations. The
surge of transistor count with the increased clock rate elevates
the processor temperature which makes these systems even more
unreliable and unstable. Dynamic Thermal Management (DTM)
approaches considerably increase application’s run-time in order
to lower the peak temperature. Memory-based computing (MBC)
is a promising approach to improve overall system reliability
when few functional units are defective or unreliable under
process-induced or thermal variations. In this paper, we present
a novel DTM technique using proactive MBC to reduce the peak
temperature of applications. We propose an efficient technique to
proactively transfer the instructions with frequent operand pairs
to memory. Experimental results demonstrate that the proposed
proactive thermal management can significantly decrease the peak
temperature to improve the system reliability with minor impact on
performance.

I. INTRODUCTION

Scaling down the transistor dimensions enables to integrate
more and more transistors in a single System-on-Chip (SoC).
Technology scaling also introduces major challenges such as
high defect rate and device parameter variations [1]. Increasing
process-induced variations and high defect rate in nanometer
regime leads to reduced yield [3]. Operating in higher temper-
ature due to higher power consumption of these chips makes
these systems even more vulnerable to unreliability caused by
parametric variations.

Dynamic Thermal Management (DTM) techniques have
been widely studied and employed to control the temperature
for computing platforms. Memory-based computing (MBC)
is a promising alternative to improve system reliability in
the presence of both manufacturing defects and parametric
(process or thermal-induced) failures [2]. Existing approaches
[2][15] address reliability problems due to thermal variations
by dynamically transferring activities of a functional unit (FU)
to memory when the FU experiences high temperature. The
basic idea is to store the results of Boolean functions in lookup
table (LUT) and use caches to implement the functionality
of different execution units. As a result, reconfigured caches
can be used as a private or shared reconfigurable computing
resource for on-demand computing.

Fig. 1 depicts how MBC can be used to alleviate thermal
violations. The solid line represents the transient temperature
of ALU in a traditional system thoughout the execution of an
application. This line is depicted in red where the temperature
crosses the threshold temperature. A system is considered

This work was partially supported by NSF grants CNS-0746261 and CCF-
1218629.

Tr
an

si
en

t A
LU

 Te
m

pe
ra

tu
re

Execution Time

Temperature Threshold

Traditional system System with MBC

MBC engagement periods Execution
time
increase

Fig. 1: Using MBC to prevent thermal violations.

reliable when the temperature remains below the threshold.
In an MBC-enabled system (dotted line in the picture) in-
structions supported by MBC are transferred to the MBC unit
after the temperature violation is triggered (reactive). Since
the MBC activation is reactive to thermal violation, the ALU
temperature actually crosses the threshold by a few degrees,
due to the response delay, before it starts to cool down. In
order to alleviate this problem MBC can be used proactively
in which specific instructions can be sent to MBC to reduce
activities of a functional unit.

There are two major challenges in implementing the proac-
tive MBC: i) when to start the transfer of computations, and
ii) what percentage of computations needs to be transferred
to memory? If the computation transfer starts too early and/or
too many instructions are transferred to memory, it can lead
to unacceptable performance overhead. If the transfer starts
too late and/or less than required number of instructions are
transferred, the temperature may cross the threshold. Fig. 2
shows a system in which all applicable operations are sent to
MBC. It can be observed that the peak temperature is reduced
drastically (up to 16◦ Celsius). However, the execution time
of this application is increased by 34%. This performance
overhead may not be acceptable in many systems. In this
paper, we propose an efficient proactive MBC that significantly
reduces the peak temperature of a running application with
minimal performance overhead. We devise an efficient method
to selectively send operations to MBC that have the lowest
MBC latency by exploiting the locality of most frequently used
operand pairs. Our methodology improves system reliability
by considerably reducing the peak temperature with minor
impact on overall performance.

The rest of the paper is organized as follows. Section II
describes related research activities. Section III provides an
overview of memory based computation. Section IV describes
our proposed dynamic thermal management methodology.
Section V presents our experiments. Finally, Section VI con-
cludes the paper.



Fig. 2: Utilizing proactive MBC to prevent thermal violations
using bitcount benchmark.

II. RELATED WORK

Constraints such as power, energy, reliability, and tem-
perature are among recent challenges today’s microproces-
sor design is facing. Among these challenges, temperature-
related issues have become especially important within the
past several years. Temperature monitoring, thermal reliabili-
ty/security, floor planning, microarchitectural techniques, and
OS/compiler techniques are among the different approaches
dealing with various aspects of thermal-aware microprocessor
designs. We focus on microarchitectural techniques that in-
volve Dynamic Thermal Management (DTM). These methods
monitor temperature and throttle down the processors activity
and hence power dissipation to protect against unexpected
or malicious behaviors that exceed the capacity of cooling
solution. DTM may engage during runtime of an application,
and performance optimization becomes important to avoid the
inevitable performance loss caused by DTM.

Brooks and Martonosi [6] evaluated the performance impact
of many DTM techniques for high-performance microproces-
sors. They proposed DTM triggering, response, and initiation
mechanisms focusing on reducing performance loss. When the
temperature of the microprocessor reaches the predefined trig-
ger temperature, there is an initiation delay before triggering
DTM. After the DTM response is engaged, the microprocessor
checks the temperature at each time interval. When the sensed
temperature drops below the DTM trigger temperature, the
DTM is disengaged and the microprocessor runs normally
again. Their proposed DTM response mechanisms can be
categorized into voltage/frequency scaling and throttling the
instruction bandwidth of the microprocessor. They showed
that ILP throttling has a much lower invocation overhead than
DVFS invocation overhead. Jung and Pedram [7] proposed
a stochastic dynamic thermal management technique which
takes into account the stochastic nature of temperature varia-
tion. This technique utilizes DVFS for thermal management.
Cochran and Reda [9] utilized processor performance counter
readings to detect the phase changes of application at run
time and adjust the operating frequency accordingly to avoid
thermal violations. Jayaseelan and Mitra [8] proposed to dy-
namically adapt some micro-architecture parameters, such as

instruction window size, issue width, and fetch gating level, to
the application characteristics and hence control the processor
temperature. To the best of our knowledge, our study is the
first attempt to perform dynamic thermal management using
proactive MBC.

III. BACKGROUND: MEMORY BASED COMPUTING

Fig. 3 shows an overview of the memory based computing
scheme [5]. If one or more functional units are defective, the
operands for the faulty functional unit is used to form the ef-
fective physical address for accessing the LUTs corresponding
to the mapped function. These LUTs are efficiently stored in
the memory hierarchy.

Temperatur > Th
or Defective Mult Unit?

Perform Operation
 in ALU

Perform Operation
 in Memory

YesNO
MULT X,Y

MULT X,Y...Pr
og

ra
m ...

Fig. 3: An overview of memory-based computing
Fig. 4 shows MBC in a multicore framework. Under nor-

mal circumstances, issue logic sends the instructions to the
respective functional units. However, if the functional unit is
not available (due to temperature stress), for certain types of
instructions (addition, multiplication, etc.), issue logic bypass-
es the original functional unit for memory based computation.
The operands are used to form the effective physical address
for accessing the LUTs corresponding to the mapped function.
The LUTs are stored in main memory and most recent accesses
are cached for performance improvement [15].

In our earlier work [2], we have applied MBC to realize
the functionality of the integer execution unit (adder and
multiplier) in each core. This architecture has m cores each
having it’s own private L1 data and instruction caches. All the
cores share an L2 combined (instruction+data) cache which
is connected to main memory. Instruction and data L1 caches
are highly reconfigurable in terms of effective capacity, line
size and associativity. We adopt the underlying reconfigurable
cache architecture used in [4].

In the MBC framework, both private L1 cache associated
with each core and the unified shared L2 cache can be
partitioned. Unlike traditional LRU replacement policy which
implicitly partitions each cache set on a demand basis, we use
a way-based partitioning in the shared cache and private MBC
caches [13]. For example, in Fig. 5, five ways are reserved for
normal instruction/data caches, whereas multiply and addition
LUTs (for MBC) received 1 and 2 ways, respectively. We
refer the number of ways assigned to each functionality as
its partition factor. For example, the L2 partition factor for
instruction/data cache in Fig. 5 is 5.



Task 1

Issue

Core m
Task m

L2 Cache

M
B

C
 m

ul

M
B

C
 a

dd

Unified inst/data

Main Memory

M
B

C
 a

dd

M
B

C
 m

ul
DL1

IL1
MBC mul

MBC add

DL1

IL1
MBC mul

MBC add

...MBC

Issue

Core 1

Ex1 ExnEx2 ...MBC Ex1 ExnEx2

Fig. 4: Memory-based computing in multicore systems

Unified inst/data MBC addMBC mul

8 ways in one cache set

Fig. 5: Way-based cache partitioning example: 5 ways for
inst/data, 1-way of MBC mul, and 2 ways for MBC add.

To support MBC, each core also has an L1-level MBC cache
that stores most frequently accessed entries of the LUTs. The
existing private L1 cache can be partitioned into two parts:
one part dedicated for MBC cache to store most frequently
used LUTs, and the other part will be used for conventional
data/instruction accesses. For example, in Fig. 4 core1 uses
half of private MBC cache for each MBC operation whereas
core m needs less than half for mul operation (assigning
more to add operation). Similarly, shared L2 cache can be
partitioned to make space for MBC LUTs.

Existing MBC (we call it reactive MBC) is beneficial for
reliability and performance improvement. It may be used for
lowering the peak temperature. However, it has two disad-
vantages. It may violate the threshold temperature due to
response delay. In addition, when the threshold temperature
is reached, in a desperate attempt, it transfers all instructions
to MBC regardless of their latency. This may cause significant
performance overhead as some of the LUT accesses may not
be present in the cache hierarchy and result in long latency
memory accesses. Therefore, existing MBC is not effective in
balancing both reliability and performance.

IV. PROACTIVE MBC FOR THERMAL MANAGEMENT

In this section, we propose a set of smart select functions
to reduce the peak temperature of applications with mini-
mal performance overhead. To alleviate the reliability and

performance issues associated with reactive MBC, we need
to transfer instructions to MBC well before the temperature
threshold is reached. Clearly, sending all instructions with any
operand pair values to MBC may have significant performance
overhead. From Fig. 2, we can observe that the execution
time of bitcount application is increased drastically when all
addition/multiplication operations are sent to MBC. This is
due to the fact that not all MBC accesses perform a one cycle
LUT access and MBC accesses may take up to 7 cycles1. We
call this Naive Proactive MBC.

(a) bitcount (b) parser

Fig. 6: Operand pair frequency profile of (a) bitcount and (b)
parser benchmarks.

In order to identify and transfer only instructions with low-
latency MBC accesses, we explored the operands value distri-
bution patterns. We profiled the frequency of each possible pair
of operands for addition operation (dynamic instruction count).
Fig. 6 shows frequency of operands of all dynamic addition
instructions. It can be observed that operand distribution has
a very high spatial locality in applications. For example, for
bitcount benchmark (Fig. 6(a)), most of the MBC accesses for
this benchmark have operand1 between 12 and 20. Also the
diagonal line where operand1 equals operand2 is among the
frequent MBC accesses. In the parser’s case (Fig. 6(b)), the
diagonal line along with operand2 equals 41 will give most
frequent accesses. Although, the operand distribution is not
quite clean as bitcount benchmark, we can capture most of
the accesses if we choose operand pairs on the diagonal along
with the line with operand2 as 41.

In order to exploit the operand patterns we devise an
efficient method to only transfer instructions to MBC that have
low latency, i.e. the results of most frequent operand pairs are
stored in the MBC cache. We create an application-based smart
select function that selects instructions when their operands
are within the most frequent region. Finding such functions is
challenging. First, the function should be very simple as it is
implemented in hardware and should be very fast. Secondly,
this simple function should identify the most frequent operand
pair region with the lowest possible error. Third, this function
should be able to work using the predefined cache size. We call
this function Decision function as the output of this function

1It is infeasible to build LUTs for 32 bit operands with 232 × 232 entries.
Therefore, a 32-bit operation is essentially performed using mulitple result
lookups involving 8-bit operands [15].



determines whether to send an instruction to MBC or not.
Fig. 7 shows the overview of our proactive MBC approach.
The basic idea is to preload the result of the most frequent
operand pairs in the MBC cache and send instructions to MBC
only if the operands are within the most frequent region. First,
the issue unit detects whether the operation is supported by
MBC. If yes, the decision function circuitry checks whether
the operands satisfy the decision conditions. If the operands
satisfy the decision function, the operation will be transferred
to MBC.

MULT X,Y...Pr
og

ra
m

Operation Supported
by MBC?

Perform Operation
 in ALU

Perform Operation
 in Memory

YesNO
MULT X,Y

Operands Satisfy the
Decision Function?

YesNO

...

Fig. 7: Proactive memory-based computing

The decision function is defined as a binary function:

D(i, j) =

{
1, if a <= i <= b and c <= j <= d.

0, otherwise.
(1)

where i and j refer to operand1 and operand2, respectively;
and 0 <= {a, b, c, and d} <= 255 ∈ N are defined as bounds.
This represents general select functions in the form of:{

a <= operand1 <= b.

c <= operand2 <= d.

that cat be fitted to meet the needs of each application.
There are a large number of possible choices for a, b, c, and

d that makes it difficult to choose a suitable decision function
for an application. We use static profiling in order to find the
best fit decision function for each application. We define the
benefit of a decision function as:

Benefit(D) =

∑
0≤i,j≤255

D(i, j) ∗ F (i, j)∑
0≤i,j≤255

F (i, j)
(2)

where F (i, j) is the number of dynamic instructions (frequen-
cy) of the specific operation type being profiled, respectively.
The benefit is the summation of frequency of instructions
selected by the decision function divided by frequency of
all functions. We want to include as many operand pairs in
dynamic instructions as we can. We increase the boundaries to
include more operand pairs and therefore increase the benefit.
However, stretching the boundaries increases the minimum
MBC cache size required to store the result of the most
frequent operand pairs. We add i = j condition to the
decision function to include the diagonal line if necessary for a

TABLE I: Benefit of using various functions with their re-
quired cache size using lucas benchmark.

Function Benefit Min. memory
requirement

0 ≤ i < 13 and 7 < j < 11 0.02 1KB
i mod 2 = 0 and j = 17 0.52 2KB

i = 1 or (i mod 2 = 0 and j = 20) 0.78 3KB
0 ≤ i ≤ 30 and 0 ≤ j ≤ 30 0.88 1KB

0 ≤ i < 60 0.91 15KB
i = j or (0 ≤ i ≤ 100 and 0 ≤ j ≤ 37) 0.95 4KB

specific application. We also explored similar simple functions.
TABLE I shows the benefit of various functions using lucas
benchmark.

Fig. 8 shows the benefit of the function:

D(i, j) =

{
1, if 0 <= i <= 20 and 0 <= j <= 100.

0, otherwise.
for various benchmarks for addition and multiplication op-
erations. Although this function only requires 2KB of MBC
cache, it is very beneficial for some benchmarks. For example,
it gains benefit of 0.92 for vpr benchmark capturing 92% of
all instructions. It can be observed that a decision function that
is beneficial for a benchmark may perform poorly for other
benchmarks. For example, this decision function only achieves
0.16 in benefits for lucas benchmark.

Fig. 8: Benefit of a decision function for various benchmarks.

In order to maintain the original performance of application-
s, we explore MBC cache sizes of 1KB, 2KB, 3KB, and 4KB.
Static profiling is used to find the best fit decision function
for each application. We have modified the genetic algorithm
proposed in our earlier work [2] to generate best possible cache
parameters when the L1 MBC cache size is limited to 1KB,
2KB, 3KB, and 4KB. The efficient L1 data/instruction cache
sizes and L2 partitioning factors are computed by the proposed
genetic algorithm. The overview of the genetic algorithm is
shown in Fig. 9. In step 1, the initial population is filled with
individuals that are generally created at random. In step 2,
each individual in the current population is evaluated using the
fitness measure. Step 3 tests whether the termination criteria is
met. If so the best solution in the current population is returned
as our solution. If the termination criteria is not satisfied a new
population is formed by applying the genetic operators in step
4. Each iteration is called a generation and is repeated until
the termination criteria is satisfied.

V. EXPERIMENTS

A. Experimental Setup

To evaluate the effectiveness of the proposed approach,
we incorporated tools broadly used by research community



Step 4: Create new population by reproduction,
crossover, and mutation

Step 1: Create initial random population

Step 2: Evaluate each member of the population

Final solution
Step 3:

Criteria satisfied?

No

Yes

Fig. 9: Overview of our genetic exploration algorithm

including M5 multicore Simulator [14], HotSpot [17], and
McPAT [16]. Fig. 10 shows our experimental framework. We
integrated these tools at the source code level to generate one
executable application that efficiently encompasses all of them.
Each of these tools have a large initialization time and exter-
nally invoking them at each iteration (thousands of iterations
for simulation of each application) would require extremely
long simulation time. The integrated implementation was able
to reduce simulation time drastically (e.g. from 15 hours to
12 minutes). The M5 simulator takes an application program
along with system configuration information and produces
processor as well as cache/memory architectural performance
statistics. We feed these statistics to McPAT, an integrated
power, area, and timing modeling framework for multicore
architectures, to produce detailed power dissipation of each
unit in the system. Since McPAT uses an XML as its input
interface, we implemented a parser program to translate the
M5 generated statistics to McPAT XML format. The power
profile is then fed into “HotSpot 2.0” tool [17] in order to
estimate the temperature of the integer ALU units. We used the
Alpha 21264 floor plan and configurations for HotSpot, M5,
and McPAT. The temperature is calculated at regular intervals
during simulation of each application (once per 50,000 cpu
cycles) in M5 to generate the ALU temperature trace.

M5
Simulator

CPU
Stats

McPAT 
Parser

McPAT XML
Input

ALU
Temperature

McPATPower
Stats

HotSpot

System
Con�g

Application
Program

Floor
Plan

System
Con�g

Fig. 10: Experimental framework

We implemented the computation transfer mechanism in
M5 to make the required modifications in processor cores
as well as in memory hierarchy. We modified memory hi-
erarchy to support cache partitioning, to introduce L1 private
MBC caches and shared L2 MBC cache. We configured the
simulated system with a two-core processor each of which
runs at 500MHz. The DerivO3CPU model [14] in M5 is used
which represents a detailed model of an out-of-order SMT-
capable CPU which stalls during cache accesses and memory
response handling. A 128KB 16-way associative cache with
line size of 32B is used for L2 cache. For both IL1 and DL1
caches, we utilized the sizes of 1 KB, 2 KB, 4 KB, and 8 KB,
line sizes ranging from 16 bytes to 64 bytes, and associativity
of 1-way, 2-way, 4-way, and 8-way. Since the reconfiguration
of associativity is achieved by way concatenation [4], 1KB
L1 cache can only be direct-mapped as three of the banks
are shut down. Similarly, 2KB cache can only be configured
to direct-mapped or 2-way associativity. Therefore, there are
18 (=3+6+9) configuration candidates for L1 caches. For
comparison purposes, we used the base cache configuration set
to be a 4 KB, 2-way set associative cache with a 32-byte line
size, a common configuration that meets the average needs of
the studied benchmarks [4]. The memory size is set to 256MB.
The L1 cache, L2 cache and memory access latency are set
to 2ns, 20ns and 200ns, respectively.

TABLE II: Multi-task benchmark sets.

Set 1 mgrid,lucas Set 4 parser,toast
Set 2 vpr,qsort Set 5 bitcount,swim
Set 3 toast,dijkstra Set 6 toast,mgrid

We used benchmarks selected from MiBench [12] (bit-
count, CRC32, dijkstra, qsort, and toast) and SPEC CPU
2000 [10] (applu, lucas, mgrid, parser, swim, and vpr). In
order to make the size of SPEC benchmarks comparable
with MiBench, we use reduced (but well verified) input sets
from MinneSPEC [11]. TABLE II lists the task sets used
in our experiments which are combinations of the selected
benchmarks. We choose 6 task sets for 2-core and 4 task sets
for 4-core scenarios, each core running one benchmark. The
task mapping is based on the rule that the total execution time
of each core is comparable.

B. Results

Fig. 11 shows the transient temperature of dijkstra bench-
mark using different approaches. No MBC represents a tra-
ditional system without MBC. Naive Proactive transfers all
applicable instructions to MBC. Proactive 1K, Proactive 2K,
Proactive 3K, and Proactive 4K selectively transfer operations
to memory where the MBC cache sizes are limited to 1K,
2K, 3K, and 4K, respectively. Running dikstra benchmark
reaches a high peak temperature of 63.7◦ (Celsius) in a
traditional system. Although using Naive MBC reduces the
peak temperature by 9.4 degrees, it increases the execution
time by 38%. Proactive 4K is able to achieve peak temperature
reduction of 7.4 degrees and reduces performance overhead to
19%. Proactive 1K only poses a 10% performance overhead



Fig. 11: Transient temperature of dijkstra benchmark using No MBC, Naive Proactive, and Proactive with various cache sizes

while reduces the peak temperature by 5.8 degrees. Proactive
2K and Proactive 3K achieve 6.4 and 6.9 degrees in peak tem-
perature reduction with 13% and 16% performance overhead.
As expected, transferring more operations (with larger cache
sizes) reduces temperature but increases execution time. So
the choice of different cache sizes creates a tradeoff between
performance overhead and the peak temperature.

TABLE III shows the peak temperature and execution time
of various applications using different approaches. For com-
parison purposes execution times are normalized to No MBC
(the execution time is divided by the execution time of No
MBC). On average, 8.6 degrees reduction in peak temperature
(up to 19.8 degrees using swim benchmark) was achieved
using Naive MBC with an average 25% performance overhead.
Proactive 1K, Proactive 2K, Proactive 3K, and Proactive 4K
reduce the peak temperature by 2.7, 3.4, 3.6, and 3.8 degrees
on average with performance overhead of 4%, 5%, 6%, and
9%, respectively. Proactive MBC reduces the peak temperature
by up to 13.9 degrees using mgrid benchmark with only 6%
increase in execution time.

VI. CONCLUSION

We presented a novel thermal management technique using
efficient proactive memory-based computing to reduce the
peak temperature of applications. We used MBC to temporar-
ily bypass the activity in functional units under thermal stress,
thus providing dynamic thermal management by activity mi-
gration. The basic idea is to preload MBC LUT caches with the
results of most frequent operand pairs in order to reduce the
latency of MBC accesses. Experimental results demonstrated
that the proposed proactive thermal management can decrease
the peak temperature by up to 19.8 degrees (8.6 degrees on
average) with nominal performance overhead.

REFERENCES

[1] S. Borkar, “Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation”, IEEE Micro, 2005.

[2] H. Hajimiri. et al, “Dynamic Cache Tuning for Efficient Memory Based
Computing in Multicore Architectures”, International Conference on
VLSI Design,January 2013.

[3] A. Agarwal et al, “A Process-Tolerant Cache Architecture for Improved
Yield in Nanoscale Technologies”, IEEE Trans. on VLSI, 13,27-38, 2005.

[4] W. Wang et al., “Dynamic Cache Reconfiguration and Partitioning for
Energy Optimization in Real-Time Multicore Systems”, DAC, 2010.

[5] H. Hajimiri et al, “ Reliability Improvement in Multicore Architectures
Through Computing in Embedded Memory”, MWSCAS, 2011.

[6] D. Brooks , And M. Aetonosi, “ Dynamic thermal management for
high-performance microprocessors”, International Symposium on High-
Performance Computer Architecture (HPCA01), 2001.

[7] H. Jung and M. Pedram, “ Stochastic dynamic thermal management:
A Markovian decision-based approach”, In Proceedings of the IEEE
International Conference on Computer Design (ICCD06), 2006.

[8] R. Jayaseelan, T. Mitra, “ Dynamic Thermal Management via Architec-
tural Adapting”, In Proc. of the esign Automation Conference,, 2009.

[9] R. Cochran and S. Reda, , “ Consistent Runtime Thermal Prediction
and Control Through Workload Phase Detection”, In Proc. of the esign
Automation Conference, 2010.

[10] Spec 2000 benchmarks [Online], http://www.spec.org/cpu/.
[11] A. KleinOsowski and D. Lilja, “Minnespec: A new spec benchmark

workload for simulation-based computer architecture research”, CAL
g(1), 2002.

[12] M. Guthaus et al., “Mibench: A free, commercially representative
embedded benchmark suite”, WWC, 2001.

[13] A. Settle et al., “A dynamically reconfigurable cache for multithreaded
processors”, JEC, Vol. 2, pp. 221-223, 2006.

[14] N. Binkert et al., “The M5 simulator: Modeling networked system-
s”, IEEE/ACM International Symposium on Microarchitecture, vol. 26,
no. 4, pp. 52 -60, 2006.

[15] S. Paul and S. Bhunia, “Dynamic Transfer of Computation to Processor
Cache for Yield and Reliability Improvement”, IEEE TVLSI, 2011.

[16] S. Li et al., “McPAT: An integrated power, area, and timing model-
ing framework for multicore and manycore architectures”, IEEE/ACM
International Symposium on Microarchitecture,2009.

[17] K. Skadron, M. Stan, W. Huang, S. Velusamy, K. Sankaranarayanan, and
D. Tarjan, “Temperature-aware microarchitecture”, IEEE ISCA, 2003.

TABLE III: Peak temperature (◦C) using proactive MBC.

Function No MBC Naive Proactive Proactive 1K Proactive 2K Proactive 3K Proactive 4K
Peak Temp. Time Peak Temp. Time Peak Temp. Time Peak Temp. Time Peak Temp. Time Peak Temp. Time

parser 57.33 1 54.39 1.21 56.04 1.04 55.39 1.05 55.34 1.06 55.29 1.07
toast 60.29 1 55.09 1.21 57.85 1.05 57.83 1.05 57.70 1.10 57.53 1.22

mgrid 70.86 1 54.30 1.22 62.74 1.03 56.94 1.06 59.17 1.08 58.49 1.18
lucas 57.54 1 54.34 1.22 57.52 1.07 55.57 1.07 55.42 1.07 55.42 1.08
vpr 55.36 1 54.29 1.15 55.36 1.01 55.36 1.02 55.37 1.02 55.35 1.04

qsort 58.44 1 54.69 1.15 56.32 1.02 56.21 1.02 56.13 1.02 56.05 1.03
bitcount 75.50 1 59.95 1.34 71.23 1.00 73.91 1.00 70.96 1.01 70.94 1.01

swim 74.19 1 54.38 1.34 73.94 1.00 73.79 1.00 73.64 1.00 73.49 1.01
dijkstra 63.75 1 54.31 1.38 57.91 1.10 57.38 1.13 56.86 1.16 56.39 1.19


