
Content-aware Encoding for Improving Energy Efficiency in Multi-Level
Cell Resistive Random Access Memory

Hadi Hajimiri, Prabhat Mishra
CISE, University of Florida
{hadi, prabhat}@cise.ufl.edu

Swarup Bhunia
EECS, Case Western Reserve University

sxb21@case.edu

Branden Long, Yibo Li, Rashmi Jha
EECS, University of Toledo

rashmi.jha@utoledo.edu

Abstract— Memory is an integral and important component of
both general-purpose and embedded systems. It is widely acknowl-
edged that energy of the memory structure is a major contributor in
overall system energy. Recent advances with emerging non-volatile
memory (NVM) technologies can potentially alleviate the issue of
memory leakage power. However, they introduce new challenges
and opportunities for dynamic power management in memory. In
this paper, we consider resistive random access memory (RRAM),
a promising NVM technology, and observe that a specific feature
of the memory, namely, its multi-level cell (MLC) structure, can
be used to significantly reduce its read access energy. Unlike con-
ventional CMOS static random access memory (SRAM), the read
access energy in RRAM largely depend on the stored content. Based
on this observation, we present an efficient encoding technique for
improving the energy efficiency for multi-level cell RRAM. Our
simulation results with benchmark applications demonstrate an
order-of-magnitude energy reduction with modest area overhead.

I. INTRODUCTION

Power consumption has emerged as a primary design
constraint for both general-purpose and embedded systems.
The active power in an integrated circuit (IC) comprises of
switching (dynamic) power and active leakage in logic and
memory circuits. Reduction of active power has emerged
as the primary design goal for the IC manufacturers and
system designers to address the battery life issue in portable
systems and to mitigate the temperature induced reliability
concerns. Memory plays an important role in system energy,
due to integration of increasingly larger memory closer to the
processor in the memory hierarchy and faster memory clock.
Hence, there is a critical need to significantly reduce active
energy in memory. Memory active power has two components:
1) active leakage (which is typically much higher than standby
power due to higher junction temperature in active mode); and
2) the read/write access energy. In order to reduce memory
energy significantly, one needs to address both the leakage
and dynamic energy during read/write operations.

With CMOS technology rapidly approaching the end of
its roadmap [1], future computing systems are likely to
be built with emerging non-volatile memory (NVM) tech-
nologies, such as resistive random access memory (RRAM)
[7][8], spin torque transfer RAM (STTRAM) [11]-[13], phase
change memory (PCM) [10], which show promising density,
read/write performance and endurance. Among these tech-
nologies, RRAM has appeared highly promising primarily
due to the benefits in terms of its non-volatility, integration
density, read/write endurance, manufacturability, and access
performance/energy. In recent times, various research efforts

This work was partially supported by NSF grants CNS-0746261, CCF-
1218629, BRIGE 1125743, CCF-0964514 and ECCS-1002237.

have focused on RRAM fabrication, device modeling and
optimization, and circuit and system level performance/energy
analysis. However, circuit/architecture level design approaches
for minimizing memory energy for these devices have not been
adequately explored. In this paper, we study a specific charac-
teristic of RRAM, namely its multi level cell (MLC) structure
that enables a cell to store more than one bit information
and is beneficial in greatly improving memory density. Next,
we propose an architecture-level energy optimization approach
that exploits the MLC nature of the RRAM cells to drastically
reduce the read access energy. This is in addition to the fact
that the non-volatile nature of RRAM cells virtually eliminates
the memory core leakage. This makes RRAM as an attractive
choice for implementing the memory arrays in a processor
memory hierarchy.

Based on read/write process of RRAM memory cells, we
exploit the intrinsically asymmetric nature of most NVM cells
in order to improve the energy efficiency while maintaining
or improving access performance and integration density. In
particular, we observe that MLC structures, which lead to large
improvement in density, provide largely varying access energy.
From the RRAM read operation we find that a smaller current
flows in the circuit corresponding to read “00” than read “11”.
This is because the resistance of state “00” is higher than state
“11”. A more resistive state with an identical voltage pulse will
result in a lower instantaneous power (V2/R) and therefore a
lower read energy. Our analysis with respect to read access
energy in a resistive crossbar shows that reading “00” and “01”
from MLC comes at several orders of magnitude less energy
than reading “10” and “11” as shown in Fig. 1. In order to
exploit the nature of MLC for improving energy-efficiency,
we propose an efficient encoding technique based on bit flips.
Our experimental results demonstrate an order-of-magnitude
reduction in memory access energy.

The rest of the paper is organized as follows. Section
II presents an overview and contributions of our proposed
approach. We have surveyed the related work in Section III.
In Section IV, we model energy consumption of RRAM cells.
Section V describes our encoding-based energy optimization
technique. Section VI presents the experimental results for
a set of benchmark applications. Section VII concludes the
paper.

II. OVERVIEW AND CONTRIBUTIONS

Fig. 2 shows the overall approach, which integrates memory
characterization and power modeling with content-aware en-
coding and subsequent system-level energy estimation steps.
We study the effectiveness of the proposed encoding for MLC

10-20

10-18

10-16

10-14

10-12

-5 0 5 10 15 20

'00'
'01'
'10'
'11'

En
er

gy
 (J

)

Time (ns)

-0.1
0

0.1
0.2
0.3
0.4
0.5
0.6

10-7

10-6

10-5

0.0001

0.001

0.01

-5 0 5 10 15 20

Voltage (V) '00'

'01'

'10'

'11'

Vo
lta

ge
 (V

) C
urrent (A

)

Time (ns)

Fig. 1: Memory read access energy for RRAM MLC (2 bits per
cell) for four different states with a read-voltage pulse duration
of 15ns. Read energy is calculated by first obtaining the
resistance of the device in different states from experimental
data (shown in Fig. 5 (a)) after programming the device in
different states. These resistance values were then used along
with the read-voltage pulse of amplitude 0.5 V, and width 15ns
to get the instantaneous read currents, shown in the inset. The
instantaneous read power was calculated and integrated along
the pulse-width and plotted as read-energy vs. time over the
entire 15ns pulse-width.

RRAM based main memory, although such an approach can
be used in other levels of memory hierarchy. As a by-product,
RRAM array also helps to mitigate the memory leakage
issue. Unlike alternative volatile memory technologies such
as SRAM and DRAM, which require constant connection to
VDD to retain stored content, RRAM reduces the core leakage
power to virtually zero. This is consistent with other resistive
NVM technologies [17]. The leakage power of the read/write
circuitry remains comparable to that of a volatile memory.
However, the leakage for a conventional SRAM-based memory
array is typically dominated by the core. Hence, elimination of
core leakage results in large saving in memory leakage. Since
RRAM does not incur any leakage overhead, reduction of
read energy consumption directly translates to overall energy
efficiency for application binaries.

In a processor-based system, a large part of the memory
dynamic energy is typically dissipated in reading data. In
particular, for instructions of a program, there is no writing
once the program page is fetched to main memory from the
last level of memory. In our simulations with a set of media
benchmarks, we observed 88.7% read operation compared
to 11.3% write operations in L2 cache. Hence, a system-
level design approach that aims at minimizing the read access
energy of embedded memory can translate to large saving
in total energy. Based on the skewed content-dependent read
energy of RRAM devices, we infer that if the system is biased
for reading more “00” than “11”s, we can have considerable
saving in total dynamic energy with RRAMs.

This analysis provides the motivation to encode information
(both instruction and data) before storing them to memory in a
way that maximizes the “00” and “01” content in order to dra-
matically improve the access energy. Interestingly, increasing

Characterize RRAM MLC Array

Develop Device Model &

Perform Power Analysis

Perform Content-Aware

Information Encoding

Perform System-Level Power

Simulations

Program

Benchmarks

Input

Dataset

MLC

Power

Model

Memory Access Energy,

Area Overhead

Processor

Config.

RRAM Array

Fig. 2: Overall flow for the proposed approach that leverages
on intrinsic asymmetry of resistive memory.

“00” and “01” counts is also expected to have large positive
impact in memory reliability. This is because storing a reduced
range of values improves the reliability of a multi-level cell,
since variation-induced degradation in dynamic range (due to
reduced ION /IOFF) is not likely to cause failures in the cells
storing “00” and “01”. We believe it would affect the read,
write and data retention reliability of the memory cells. In
order to exploit the nature of MLC in reliability and energy-
efficiency simultaneously, we propose an efficient encoding
technique based on bit flips at varying level of granularity. It
can drastically reduce read access energy in RRAM array.

In particular, the paper makes following key contributions:
1) It presents a study of read access energy of resistive

memory which shows a content-dependent variation in
access energy due to corresponding variations in resistive
states. It models the access energy behavior for MLC
RRAM cells for representative cell design.

2) Exploiting the skewed access energy pattern, it presents
a low-cost content-dependent information encoding ap-
proach that aims at maximizing the memory access
energy saving. To the best of our knowledge, this is
the first effort that aims at improving memory energy
efficiency exploiting intrinsic asymmetry of MLC cells,
which provide different read access energy depending on
the stored content.

III. RELATED WORK

Encoding techniques are widely used to achieve energy,
area, reliability, and performance optimizations. Xie et al. [2]
introduced a compression technique capable of compressing
flexible instruction formats in VLIW architectures. Seong et
al. [3] presented bitmask-based compression that improves
dictionary-based compression using bitmasks. Mirhoseini et
al. [4] developed a novel coding method to minimize Phase
Change Memory (PCM) write energy. It minimizes the energy
required for memory rewrites by utilizing the differences
between PCM read, set, and reset energies. S. Cho and Lee

[9] proposed Flip-N-Write to replace a PRAM write operation
with a more efficient read-modify-write operation. These tech-
niques only consider write energy for single level cell PRAM
memory. In this work we present a content-aware encoding
technique that optimizes the read energy (program and read-
only data) utilizing the differences in energy of reading dif-
ferent values in multilevel RRAM cells (MLC). The existing
write-energy minimization techniques are complementary to
our approach, and can be used together to reduce both read
and write energy of memory in case of diverse datasets.

IV. RRAM POWER ANALYSIS

After an initial electroforming step by DC voltage sweep,
the device was reset to high-resistance state (HRS) the state
denoted by 00. Fig. 3 (a) shows that low-resistance state (LRS)
denoted by 11 can be achieved by setting the device using a
compliance current of 5 mA and a different LRS denoted by
10 can be achieved by setting the device using a compliance
current of 1 mA from an initial state of 00. Fig 3 (b) shows
that, HRS 00 and 01 could be achieved by resetting the device
from state 11 using reset voltages of -4.0 V and -2.6 V,
respectively. The compliance currents were much higher than
the desired values (< 100µA) due to larger dimensions of
these devices.

Based on the above results, Fig. 4 summarizes the write s-
trategies for storing multiple bits in these devices by switching
the device to multiple resistance states. Multiple LRS can be
achieved using different compliance currents while multiple
HRS can be achieved using different reset voltages. All states
are not interchangeable. For example, a device in the state
01 can be brought to 00 simply by applying a higher reset
voltage. However, to toggle a device from state 00 to 01, one
has to first set the device to one of the LRS values and then
apply an appropriate reset voltage. Similarly, a device in state
10 can be switched to 11 by simply setting it again with a
higher compliance current. However, a device in state 11 can
be toggled to a state 10 only by first resetting it to an HRS (e.g.
00) and then setting again using an appropriate compliance
current.

10-10

10 -9

10 -8

10 -7

10 -6

10 -5

0.0001

0.001

0.01

0 0.5 1 1.5 2 2.5 3 3.5

1 mA
5 mA

Cu
rr

en
t (

A
)

Voltage (V)

10-10

10 -9

10 -8

10 -7

10 -6

10 -5

0.0001

0.001

0.01

-5 -4 -3 -2 -1 0

-4 V
-2.6 V

Cu
rr

en
t (

A
)

Voltage (V)

b)a)
Fig. 3: (a) States 11 and 10 achieved by setting the device
from state 00 using compliance currents of 5 mA and 1 mA,
respectively, (b) State 00 and 01 can be achieved by resetting
the device from state 11 using reset voltages of -4.0 V and
-2.6 V, respectively.

Fig. 5 (a) shows DC I-V characteristic of devices put into
four distinct states namely 00, 01, 10, and 11. Clearly, distinct
resistance of the device can be observed corresponding to

Fig. 4: Strategy for achieving multiple resistance states and
2-bit MLC in RRAM devices.

each state which demonstrates the potential for achieving
MLC using RRAM devices. Fig. 5(b) shows resistance values
extracted at -0.5 V corresponding to each of these states. If
same read pulse is used to read these states then it is intuitive
that HRS (00 and 01) will demonstrate lower read energy than
LRS (10 and 11). This result was simulated using a trapezoidal
read voltage pulse of 0.5 V amplitude and 5 ns width with
rise and fall time of 5 ns. The total read energy integrated
during the read pulse duration is shown in Fig. 1. Interestingly,
read energy for 11 state was almost 3 orders of magnitude
higher than 00 state. Therefore, for memory read intensive
computations, storing data in different HRS values of devices
will be beneficial to achieve low-power operations.

10-11

10 -9

10 -7

10 -5

0.001

-1.2 -1 -0.8 -0.6 -0.4 -0.2 0 0.2

'00'
'01'
'10'
'11'

Cu
rr

en
t (

A
)

Voltage (V)

100

1000

104

105

106

0 1 2 3

Resistance (Ohms))s
m

h
O(ec

natsise
R

2-Bit MLC Value

a) b)
Fig. 5: (a) DC I-V characteristic of the device in different
states, (b) resistance in different states extracted at -0.5 V.
Clearly, distinct resistance states can be observed.

In addition to saving energy using this approach, we believe
that storing data in HRS values of the device will also
improve reliability and considerably reduce the failure rate
due to cycle-to-cycle variability in RRAM devices. This is
because to achieve multiple LRS values in RRAM devices,
the compliance current needs to be carefully controlled. The
LRS value of RRAM device is very sensitive to the compliance
current used to set the device [14]. A lower compliance current
leads to the formation of smaller dimension filaments resulting
in a higher resistance in LRS while a higher compliance
current leads to the formation of bigger filament resulting
in a lower resistance in LRS of the device [14]. Different
compliance currents can be achieved by connecting a transistor
with RRAM device and applying an appropriate gate voltage to
limit the maximum current through the RRAM device, shown
in Fig. 6. However, it is well-known that the charging of
parasitic capacitor at transistor-RRAM junction when RRAM
switches from HRS to LRS leads to an overshoot of current
over the compliance current [6][15], shown in Fig. 6. This
can cause uncontrolled filament dimensions and variability in
LRS.

Fig. 6: Schematic diagram for illustrating the origin of current
overshoot effect by charging of parasitic capacitor at transitor-
RRAM junction when device resistance state switches from
HRS (A) to LRS (B).

Fig. 7 shows overshoot current (Iovershoot) vs. the compli-
ance current (Icomp) simulated for different parasitic capaci-
tances (Cp) at transistor-RRAM node. Clearly, the overshoot
current increases with an increase in the compliance current
for a given parasitic capacitance. This indicates that the
variability in the dimension of the filament will be much
larger for devices set with higher compliance current than
lower compliance currents. Therefore, the devices in the lowest
resistance states (i.e. 11 in this case) will cause highest
variability. This variability can manifest itself as variability
in the resistance value corresponding to the state 11 between
different devices and cycles or when devices are reset to an
HRS from state 11. Therefore, from device standpoint, to
minimize the failure during operation due to cycle-to-cycle
and device-to-device variability, it is desired to set the device
using a low compliance current and achieve multiple states by
resetting the device with different reset voltages. This indicates
that storing data in HRS values of devices (i.e. 00 and 01 in
this case) will not only provide energy saving but also has
potential for improved reliability.

0

50

100

150

200

0 200 400 600 800 1000 1200

No C
p

C
p
 = 2.2 pF

C
p
 = 5 pF

C
p
 = 10 pF

C
p
 = 20 pF

C
p
 = 50 pF

C
p
 = 100 pF

I ov
er

sh
oo

t (u
A

)

I
comp

 (uA)

Simulation
V

set
 = 0.6 V

Fig. 7: Current overshoot (Iovershoot) over the compliance
current(Icomp) due to parasitic capacitance(Cp) vs. Icomp. This
indicates that higher Icomp leads an increased Iovershoot for a
particular Cp.

Table I shows read energy comparison for RRAM devices
if operated as Single Level Cell (SLC) versus MLC. SLC
refers to the condition where RRAM stores just two states
either 0 or 1. In this case, 0 can correspond to the highest
resistance state (i.e. 00 of MLC) while 1 can correspond to
the lowest resistance state (i.e.11 of MLC) while skipping
the intermediate states. Therefore, for SLC in this scenario,

TABLE I: Simulated read energy comparison of single cell
RRAM versus Multilevel RRAM cell.

Two-Bit Value Total Read Energy Multilevel RRAM Cell
for Two-RRAM (J) Read Energy (J)

‘00’ 2.54E-14 1.2702e-14
‘01’ 1.25E-11 9.9770e-14
‘10’ 1.25E-11 1.2577e-12
‘11’ 2.49E-11 1.2438e-11

the read energies for the state ‘0’ is 1.2702E-14 J and state
‘1’ is 1.2438E-11 J for 0.5V, 15 ns read pulse, as evident
in Fig.1. The second column in the table represents the read
energy for two-bits (i.e. 00, 01, 10, 11) in SLC RRAM devices.
This energy was obtained by adding the read energies for two
separate states for various combinations. For example, the read
energy for two bits containing ‘10’ would be the sum of the
read energy for bit ‘1’ and bit ‘0’ (i.e. 1.2438E-11+1.2702E-
14 = 1.25E-11 J) and so on. The third column is the read
energy for the MLC approach that simply uses the final energy
readings from Fig.1. for 0.5V, 15ns read-pulse to show the read
energies for all four states if intermediate states of RRAM
is utilized for MLC. It can be observed that for all 2-bit
patterns using a multilevel RRAM cell is more energy efficient
and suggests energy savings even if no encoding is used. In
the following section we propose an encoding technique to
drastically reduce the read energy exploiting the low-energy
characteristic of multilevel RRAM cell.

V. CONTENT-AWARE CODING FOR ENERGY EFFICIENCY

To take advantage of the aforementioned characteristics of
RRAM we propose a novel encoding of the program binary to
improve the overall energy consumption. The program coding
and decoding flow is illustrated in Fig. 8 where the encoding
is done offline (prior to execution) and the encoded program
is loaded into the memory. The decoding is done during
the program execution (online). As shown in the figure, the
decoder is placed between memory and processor cache. Let’s
assume program binary is composed of N-bit words where N
can be 2, 4, 8, 16, 32, 64, or 128. Every pair of bits in the
program code can be stored in one memory cell. For example,
a 4-bit word can be stored in two memory cells. The key idea is
to flip all bits of a word if the number of ‘11’ and ‘10’ patterns
stored in memory cells for that word is greater than the number
of ‘01 and ‘00’s1. Recall that read energy consumption of a
cell storing ‘11’ is three orders-of-magnitude higher than a cell
storing ‘00’ (about 100 times of reading ‘01’ and 10 times of
reading ‘10’). An additional memory cell (flip bit) is added
for each word to indicate whether the word has been flipped
or not.

Algorithm 1 presents major steps of our encoding algorithm.
It slices the input program into N-bit words. Each word in the
input program translates into a (2+N)-bit word in the output
program (extra 2 bits as the flip indicator)2.

1In our experiments we use actual energy numbers from Table I to decide
whether it is beneficial to flip all bits.

2One bit is enough to indicate whether a word is flipped. Since we consider
MLCs of 2 bits, the flip indicator requires two bits (one cell) – 00 to indicate
original word and 01 to indicate flipped word.

Application
Program
(binary)

Encoded
Binary

(Memory)

Encoding
Algorithm

 Original Binary
(Cache)

System at runtime

Fetch and
Execute

D
ecoder

Processor

Fig. 8: Overview of the proposed content-aware information
encoding scheme.

Algorithm 1: Content-aware encoding algorithm

1 Inputs: N: word size, P: program binary
2 Output: EP: encoded program binary
3

4 Initialize EP as a binary stream
5 Array W = slice P into dsize(P)/Ne N-bit words
6 for each word in W do
7 flipped word = flip all bits in word
8 e = energy required for reading the word
9 e′ = energy required for reading the flipped word

10 if e′ < e then
11 new word = 01:flipped word // concatenate

01 with flipped word
12 else
13 new word = 00:word
14 end
15 Append new word to EP
16 end
17 return EP

Fig. 9 a) shows an example of transforming an 8-bit word
with its corresponding flip bit. Here the flip bit is 01 indicating
that it is beneficial to flip all bits in the word to reduce
the number of 11 patterns and thus reducing the energy
consumption of storing this word in memory. The flipped
words are flipped again by the processor at retrieval time. In
this example, area overhead of 25% is introduced for an 8-
bit word code transformation (4 cells to 5 cells). The word is
flipped only if the overall energy consumption of the flipped
word is lower than the input word. However, as it can be seen
in the figure, flipping every bit in the word can also transform
a 00 pattern into 11. By dividing the 8-bit word into two 4-
bit words and encoding each word individually we gain more
control over how the bits are flipped. Fig. 9 b) shows encoding
of the same 8-bit data where we chose the word size to be 4
bits. Although 4-bit encoding of the same data can reduce
amount of unwanted bit flips, it also increases the number of
additional flip bits, increasing the area overhead.

VI. EXPERIMENTS

A. Experimental Setup

In order to evaluate the effectiveness of our approach we
used Simplescalar cycle accurate detailed microarchitectural

11 11 00 01 00 00 11 10 01
01

Input word Flip bit Encoded word

00 01 00 00 01
01

Input words Flip bit Encoded

a)

11 11 00 01 00
01

Flip bit Encoded
b)

Fig. 9: Examples of encoding with bit flips: a) word size=8,
b) word size=4

simulator compiled for Alpha instruction set [16]. The memory
hierarchy was composed of separate level one instruction and
data caches and main memory. We used a 4KB cache with
line size of 32 bytes and associativity of 2 for both instruction
and data caches. Cache hit latency was set to 1 cycle. Memory
latency was set to 18 and 2 cycles (first chunk and remaining
chunks) and memory access bus width was 8 bytes. We
selected applications from MiBench and MediaBench embed-
ded benchmark suites with their default inputs obtained from
the benchmark suites. The encoded programs were placed in
memory and new program addresses was calculated based on
the word size. Area overhead was calculated by counting the
increase in program size due to addition of flip bits. We fed
gathered memory read statistics into our memory power model
to obtain the energy consumption.

B. Energy Efficiency

Fig. 10 shows energy consumptions of this encoding for
several word sizes using MLC RRAM. This energy includes
the extra energy consumption accounted for the larger pro-
gram and area due to encoding. The energy consumption is
normalized to the energy of using single cell RRAM. It can
be observed that reducing word size increases energy savings
but it also increases area overhead. Energy savings of up to
88% (85% on average) is achieved if area overhead of 25% is
allowed. In other words, our approach can provide an order of
magnitude reduction in energy with modest area overhead. In
the extreme case where 100% area overhead is acceptable for
the system, 99% (two orders of magnitude) energy savings on
average can be achieved.

C. Performance Overhead

Fig. 11 illustrates the performance overhead of using our
encoding technique3. Several embedded applications were
used from MiBench, MediaBench embedded benchmarks and
Spec2000 application suite. The performance overhead for
many benchmarks (g721 enc, adpcm dec, adpcm enc, bitcnt,
crc32, dijkstra, and patricia) is less than 0.2% even when 2-bit
word size is selected. Less than 1% performance overhead is
observed for all benchmarks with 4-bit and larger word sizes.
Selecting 2-bit word size results in the highest performance
overhead (1.6% using epic benchmark). Clearly, this perfor-
mance overhead is negligible especially since we are able to
achieve two orders of magnitude energy improvement.

3Performance overhead is defined as: (execution time of the encoded
program / execution time of the original program) x 100 - 100

Fig. 10: Energy consumption and area overhead for various word sizes for different benchmarks normalized to single cell
RRAM.

VII. CONCLUSION

We have presented a novel system-level design approach
that minimizes dynamic energy of memory through content-
aware encoding. It considers resistive memory, an emerging
NVM technology that shows promising density, access per-
formance and endurance. We exploit the fact that read energy
of a 2-bit MLC for ‘11’ state is three orders of magnitude
higher than ‘00’ state due to corresponding difference in
read current, which depends on the resistance for a state
(i.e. stored value). We presented an efficient encoding scheme
based on bit flips exploiting the differences of read energy of
various MLC states. The encoding scheme can be applied at
various level of granularity which trades off energy savings
with area overhead. Our experimental results demonstrated
that the proposed encoding technique can provide an order-
of-magnitude energy savings with modest area overhead. Al-
though, we have considered main memory as a case study, the
approach can be easily extended to other levels of memory in a
typical processor memory hierarchy. Moreover, the approach is
scalable across higher-density MLC memory, which can store
3 or more bits per cell.

While our study is based on a specific resistive memory,
the approach applies to all variants of resistive memory
technologies. Furthermore, it easily extends to other emerging
NVM technologies, such as spin torque transfer RAM (STT-
RAM), which also exhibit MLC feature. STT-RAM cells are
also known to exhibit content-dependent read access energy
due to variation in cell resistance for storing ‘1’ or ‘0’ (for a
SLC) [18] and similarly for multi-level states (for MLC).

REFERENCES

[1] International Technology Roadmap for Semiconductors
(ITRS), http://www.itrs.net

[2] Y. Xie, W. Wolf, and H. Lekatsas, “A Code Decompression Architecture
for VLIW Processors”, MICRO, 2001.

[3] S. Seong, P. Mishra, “Bitmask-Based Code Compression for Embedded
Systems”, IEEE Trans. CAD, 2008.

[4] Mirhoseini, A. Potkonjak, M. ; Koushanfar, F. , “Coding-based energy
minimization for Phase Change Memory”, Design Automation Confer-
ence (DAC) , 2012.

[5] H. Y. Lee et al. , “Low Power and High Speed Bipolar Switching with
A Thin Reactive Ti Buffer Layer in Robust HfO2 Based RRAM”, IEEE
International Electron Devices Meeting (IDEM) , 2008.

[6] B. Long, Y. Li, R. Jha , “Switching Characteristics of Ru/HfO2/TiO2-
x/Ru RRAM Devices for Digital and Analog Non-Volatile Memory
Applications”, IEEE Electron Device Letters , Vol. 33, No.5, 2012.

[7] Pierre Fazan, Global Semiconductor Alliance, “Future RAM
Emerging Memory Technologies and Their Applications”,
http://www.gsaglobal.org/events/2010/0316/docs/7.GMC-
PierreFazan.pdf

[8] Greg Atwood, Micron Technologies, “ Current and Emerging Memory
Technology Landscape”, [Online] http://www.micron.com/

[9] S. Cho and H. Lee, “Flip-N-Write: a simple deterministic technique to
improve PRAM write performance, energy and endurance”, MICRO ,
pages 347357, 2009.

[10] A. Pirovano et al, “Reliability study of phase-change nonvolatile mem-
ories”, IEEE Transactions on Device and Materials Reliability, Sept.
2004, vol 4, issue 3, pp. 422427.

[11] M. Hosomi et al, “A Novel Nonvolatile Memory with Spin Torque
Transfer Magnetization Switching: Spin-RAM”, IEDM Tech, 2006.

[12] S. Salahuddin et al, “ Self-Consistent Simulation of Hybrid Spintronic
Devices”, IEDM Tech, pp.1-4, Dec., 2006.

[13] A.D. Smith et al, “STT-RAM A New Spin on Universal Memory”, IEEE
Transactions on Device and Materials Reliability, Future Fab Intl. Vol.
23, July 2007.

[14] B. Long, Y. Li, S. Mandal, R. Jha, and K. Leedy, “Switching dynamics
and charge transport studies of resistive random access memory de-
vices”, Applied Physics Letters, Vol.101, Issue 11, Sept. 12, 2012

[15] D. C. Gilmer, G. Bersuker, et al., “ Effects of RRAM Stack Con-
figuration on Forming Voltage and Current Overshoot”, 3rd IEEE
International Memory Workshop, pp.1-4, 2011.

[16] D. Burger, T. Austin, S. Bennet, “Evaluating future microprocessors:
the simplescalar toolset”, Report CS-TR-1308, University of Wisconsin-
Madison. Computer Science Department Technical (July 2000).

[17] X. Guo, E. Ipek, and T. Soyata, “Resistive Computation: Avoiding the
Power Wall with Low-Leakage, STT-MRAM based computing”, ISCA
2010.

[18] S. Paul, S. Chatterjee, S. Mukhopadhyay and S. Bhunia, “Nanoscale
Reconfigurable Computing Using Non-Volatile 2-D STTRAM Array”,
IEEE Nano, 2009.

[19] X. Dong and Y. Xie, “AdaMS: Adaptive MLC/SLC phase-change
memory design for file storage”, ASP-DAC, 2011.

Fig. 11: Performance overhead of using content-aware encoding for various word sizes in case of different benchmarks.

