
UNIVERSITY OF CALIFORNIA,
IRVINE

Specification-driven Validation of
Programmable Embedded Systems

DISSERTATION

submitted in partial satisfaction of the requirements
for the degree of

DOCTOR OF PHILOSOPHY

in Information and Computer Science

by

Prabhat Kumar Mishra

Dissertation Committee:
Professor Nikil Dutt, Chair

Professor Rajesh Gupta
Professor Alex Nicolau

2004

c© 2004 Prabhat Kumar Mishra

The dissertation of Prabhat Kumar Mishra
is approved and is acceptable in quality
and form for publication on microfilm:

Committee Chair

University of California, Irvine
2004

To my parents and my wife.

iii

Contents

List of Figures vii

List of Tables ix

Acknowledgments x

Curriculum Vitae xi

Abstract of the Dissertation xii

1 Introduction 1
1.1 Traditional Bottom-Up Validation Flow 2
1.2 Proposed Top-Down Validation Methodology 4
1.3 Thesis Contributions . 5
1.4 Thesis Organization . 8

2 Architecture Specification 9
2.1 Architecture Description Languages 9

2.1.1 Behavioral ADLs . 11
2.1.2 Structural ADLs . 11
2.1.3 Mixed ADLs . 12

2.2 Specification using EXPRESSION ADL 13
2.2.1 Processor Specification . 15
2.2.2 Coprocessor Specification . 16
2.2.3 Memory Subsystem Specification 18
2.2.4 Specification of Interrupts and Exceptions 19

2.3 Chapter Summary . 21

3 Validation of Specification 23
3.1 Validation of Static Behavior . 24

3.1.1 Graph-based Modeling of Pipelines 25
3.1.2 Validation of Pipeline Specifications 29

3.1.3 Experiments . 42
3.2 Validation of Dynamic Behavior . 46

3.2.1 FSM-based Modeling of Processor Pipelines 47
3.2.2 Validation of Dynamic Properties 52
3.2.3 A Case Study . 58

3.3 Chapter Summary . 60

4 Model Generation using Functional Abstraction 62
4.1 Survey of Contemporary Architectures 63

4.1.1 Summary of Architectures Studied 63
4.1.2 Similarities and Differences . 64

4.2 Functional Abstraction . 67
4.2.1 Structure of a Generic Processor 67
4.2.2 Behavior of a Generic Processor 72
4.2.3 Structure of a Generic Memory Subsystem 72
4.2.4 Generic Controller . 73
4.2.5 Interrupts and Exceptions . 74

4.3 Reference Model Generation . 75
4.4 Design Space Exploration . 79

4.4.1 Simulator Generation and Exploration 79
4.4.2 Hardware Generation and Exploration 90

4.5 Chapter Summary . 94

5 Specification-driven Validation 96
5.1 Design Validation . 98

5.1.1 Property Checking using Symbolic Simulation 99
5.1.2 Equivalence Checking . 101

5.2 Experiments . 103
5.2.1 Property Checking of a Memory Management Unit 103
5.2.2 Equivalence Checking of the DLX Architecture 106

5.3 Chapter Summary . 107

6 Functional Test Generation 109
6.1 Test Generation using Model Checking 109

6.1.1 Test Generation Methodology 110
6.1.2 A Case Study . 113

6.2 Functional Coverage driven Test Generation 117
6.2.1 Functional Fault Models . 118
6.2.2 Functional Coverage Estimation 121
6.2.3 Test Generation Techniques 121
6.2.4 A Case Study . 126

6.3 Chapter Summary . 130

v

7 Conclusions and Future Work 132
7.1 Conclusions . 132
7.2 Future Research Directions . 134

Bibliography 137

List of Figures

1.1 An example embedded system . 2

1.2 Bottom-up validation flow for programmable embedded systems . . . 3

1.3 Proposed specification-driven validation methodology 5

2.1 ADL-driven design space exploration 10

2.2 Block level description of an example architecture 13

2.3 Pipeline level description of the DLX processor shown in Figure 2.2 . 14

2.4 Processor specification using EXPRESSION ADL 16

2.5 Coprocessor specification using EXPRESSION ADL 17

2.6 Memory subsystem specification using EXPRESSION ADL 18

2.7 Specification of division by zero exception 19

2.8 Specification of illegal slot instruction exception 20

2.9 Specification of machine reset exception 20

2.10 Specification of interrupts . 21

3.1 Validation of pipeline specifications 25

3.2 An example architecture . 26

3.3 A fragment of the behavior graph . 28

3.4 An example processor with false pipeline paths 32

3.5 An example processor with false data-transfer paths 35

3.6 The DLX architecture . 43

3.7 ADL driven validation of pipeline specifications 46

3.8 A fragment of the processor pipeline 48

vii

3.9 Automatic validation frameworks . 57

4.1 A fetch unit example . 68

4.2 Modeling of RenameRegister function using sub-functions 69

4.3 Modeling of MAC operation . 72

4.4 Modeling of associative cache function using sub-functions 73

4.5 Examples of distributed and centralized controllers 74

4.6 Mapping between MACcc and generic instructions 77

4.7 Simulation model generation for the DLX architecture 78

4.8 Architecture exploration framework 80

4.9 Cycle counts for different graduation styles 81

4.10 Functional unit vs. coprocessor . 82

4.11 Memory exploration results for GSR 87

4.12 Energy performance tradeoff for Compress 88

4.13 Energy performance tradeoff for MatMult 89

4.14 Energy performance tradeoff for Laplace 90

4.15 The application program . 91

4.16 Pipeline path exploration . 92

4.17 Pipeline stage exploration . 93

4.18 Instruction-set exploration . 94

5.1 Top-down validation methodology . 97

5.2 Test vectors for validation of an AND gate 99

5.3 Compare point matching between reference and implementation design 102

5.4 TLB block diagram . 105

6.1 Test program generation methodology 111

6.2 A fragment of the DLX architecture 115

List of Tables

3.1 Specification validation time for different architectures 42

3.2 Summary of property violations during DSE 45

3.3 Validation of in-order execution by two frameworks 60

4.1 Processor-memory features of different architectures. R4K: MIPS R4000,

SA: StrongArm, 56K: Motorola 56K, c5x: TI C5x, c6x: TI C6x,

MA: MAP1000A, SC: Starcore, R10: MIPS R10000, MP: Motorola

MPC7450, U3: SUN UltraSparc IIi, α64: Alpha 21364, IA64: Intel

IA-64 . 65

4.2 A list of common sub-functions . 70

4.3 Benchmarks . 84

4.4 The memory subsystem configurations 85

5.1 Validation of the DLX implementation using equivalence checking . . 107

6.1 Number of test programs in different categories 114

6.2 Reduced number of test programs . 114

6.3 Test programs for validation of DLX architecture 129

6.4 Test programs for validation of LEON2 processor 130

ix

Acknowledgments

First of all, I would like to thank my advisor Prof. Nikil Dutt for his guidance

and support throughout my graduate studies. Without the numerous discussions and

brainstorms with him, the results presented in this thesis would never have existed.

I am grateful to Prof. Alex Nicolau for his guidance and encouragement during last

four years. I would also like to thank Prof. Rajesh Gupta for his valuable comments

and suggestions on my research.

This thesis is the result of many collaborations. I would like to acknowledge the

contributions of Jonas Astrom, Dr. Peter Grun, Ashok Halambi, Arun Kejariwal,

Mahesh Mamidipaka, Dr. Frederic Rousseau, Prof. Sandeep Shukla, and Prof. Hi-

royuki Tomiyama. I would also like to thank Dr. Magdy Abadir and Dr. Narayanan

Krishnamurthy for their help in my research work.

I am thankful to many people in the Center for Embedded Computer Systems

(CECS) for making my journey a memorable one. In particular, I would like to

thank Melanie Sanders for her help and understanding throughout my graduate life.

I would also like to thank all my colleagues in CECS, including Ana Azevedo, Sudar-

shan Banerjee, Nikhil Bansal, Partha Biswas, Radu Cornea, Paolo DAlberto, Sumit

Gupta, Ilya Issenin, Dan Nicolaescu, Sudeep Pasricha, Mehrdad Reshadi, Nick Savoiu,

Srikanth Srinivasan, and Aviral Srivastava.

Last but not least, I am grateful to my parents and my wife for their love, encour-

agement, and understanding. It would be impossible for me to express my gratitude

towards them in mere words. I dedicate this thesis to them.

Curriculum Vitae

Prabhat Mishra

Education
2004 Ph.D. in Computer Science, University of California, Irvine, USA
1996 M.Tech. in Computer Science, Indian Institute of Technology, Kharagpur
1994 B.E. in Computer Science, Jadavpur University, Calcutta, India

Research and Work Experience
1999–2004 Graduate Researcher University of California, Irvine, USA
2001, 2002 Summer Research Intern Somerset Design Center, Motorola, USA
2000 Summer Research Intern IA-64 Performance Group, Intel, USA
1998–1999 Senior R&D Engineer Synopsys, Bangalore, India
1997–1998 Senior Software Engineer Sasken, Bangalore, India
1996–1997 Software Design Engineer Texas Instruments, Bangalore, India

Selected Publications
1. P. Mishra and N. Dutt, “Modeling and Validation of Pipeline Specifications”, ACM

Transactions on Embedded Computing Systems (TECS), 3(1), 114–139, 2004.

2. P. Mishra, M. Mamidipaka, and N. Dutt, “Processor-Memory Co-Exploration us-
ing an Architecture Description Language”, ACM TECS, 3(1), 140–162, 2004.

3. P. Mishra, N. Dutt, and H. Tomiyama, “Towards Automatic Validation of Dy-
namic Behavior in Pipelined Processor Specifications”, Kluwer Design Automation
for Embedded Systems (DAES), 8(2/3), pages 249-265, 2003.

4. P. Mishra, N. Dutt, N. Krishnamurthy, and M. Abadir, “A Top-Down Methodology
for Validation of Microprocessors”, IEEE Design & Test of Computers, 2004.

5. P. Mishra and N. Dutt, “Graph-based Functional Test Program Generation for
Pipelined Processors”, Design Automation and Test in Europe (DATE), 2004.

6. P. Mishra, A. Kejariwal, and N. Dutt, “Synthesis-driven Exploration of Pipelined
Embedded Processors”, International Conference on VLSI Design, 921–926, 2004.

7. M. Reshadi, P. Mishra, and N. Dutt, “Instruction Set Compiled Simulation: A
Technique for Fast and Flexible Instruction Set Simulation”, Design Automation
Conference (DAC), 758–763, 2003.

8. M. Reshadi, N. Bansal, P. Mishra, and N. Dutt, “An Efficient Retargetable Frame-
work for Instruction-Set Simulation”, Intl. Symposium on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), 13-18, 2003. Best Paper Award

xi

Abstract of the Dissertation

Specification-driven Validation of Programmable Embedded Systems

by

Prabhat Kumar Mishra

Doctor of Philosophy in Information and Computer Science
University of California, Irvine, 2004

Professor Nikil Dutt, Chair

Validation of programmable embedded systems, consisting of processor cores, co-

processors, and memory subsystems, is one of the major bottleneck in current System-

on-Chip (SOC) design methodology. One of the most important problems in valida-

tion of such systems is the lack of a golden reference model. As a result, many

existing validation techniques employ a bottom-up approach to design verification,

where the functionality of an existing architecture is, in essence, reverse-engineered

from its implementation. This thesis presents a top-down validation methodology

that complements the existing bottom-up approaches. It leverages the system archi-

tect’s knowledge about the behavior of the design through architecture specification.

We have developed validation techniques to ensure that the static and dynamic be-

haviors of the specified architecture is well formed. The validated specification is

used as a golden reference model. A major challenge in top-down validation method-

ology is the ability to generate executable models from the specification for a wide

variety of programmable architectures. We have developed a functional abstraction

technique that enables specification-driven model generation for simulation, hardware

generation, and property checking. The generated simulator and hardware models are

used for design space exploration of programmable architectures. We have explored

two top-down validation scenarios: design validation and test generation. First, the

generated hardware is used as a reference model to verify the hand-written implemen-

tation using a combination of symbolic simulation and equivalence checking. Second,

we have proposed a functional coverage based test generation technique for validation

of pipelined processor architectures. The experiments demonstrate the utility of the

specification-driven validation methodology for programmable embedded systems.

Chapter 1

Introduction

Embedded systems run the computing devices hidden inside a vast array of ev-

eryday products and appliances such as cell phones, toys, handheld PDAs, cameras,

and microwave ovens. Cars are full of them, as are airplanes, satellites, and ad-

vanced military and medical equipments. As applications grow increasingly complex,

so do the complexities of the embedded computing devices. Figure 1.1 shows an ex-

ample embedded system, consisting of programmable components including processor

cores, coprocessors and a memory subsystem. The memory subsystem contains mem-

ory components such as cache hierarchies and scratch-pad SRAM. Depending on the

application domain, the embedded system can have application specific hardwares,

interfaces, controllers, and peripherals. In this thesis, we refer to the programmable

components, consisting of the processor core, coprocessors, and memory subsystem,

as programmable embedded systems. We also refer to them as programmable archi-

tectures.

Embedded systems are typically designed for dedicated tasks or application do-

mains. The design of such embedded systems often begins with the specification of

the application, as well as the definition of the architecture onto which the applica-

tion is mapped. Validation of programmable embedded systems is one of the most

important and complex tasks in embedded systems design. A significant bottleneck

in the validation of such systems is the lack of a golden reference model. As a result,

many existing approaches employ a bottom-up validation approach by using a combi-

1

Converter
D2A

Core
ProcessorA2D

Converter

Controller
DMA Memory

Actuators
Sensors &

FPGA
ASIC/

Subsystem

Programmable Embedded Systems

Coprocessor

Coprocessor

Embedded Systems

Figure 1.1: An example embedded system

nation of simulation techniques and formal methods. This thesis presents a top-down

validation methodology for programmable embedded systems that complements the

existing bottom-up techniques. We consider validation of systems with single pro-

cessor core, coprocessors and memories. Today’s embedded systems employ deeply

pipelined processor architectures to meet desired system performance. One of the ma-

jor challenges in validation of such systems is the verification of processor pipelines.

The main focus of this thesis is the validation of pipelined processor architectures.

This chapter provides an overview of the problems that will be addressed in the

rest of the thesis and outlines a brief summary of the thesis contributions.

1.1 Traditional Bottom-Up Validation Flow

Figure 1.2 shows a traditional architecture validation flow. In the current val-

idation methodology, the architect prepares an informal specification of the pro-

grammable embedded systems in the form of an English document. The logic de-

signer implements the modules at the register-transfer level (RTL). The RTL design

is validated using a combination of simulation techniques and formal methods. Sim-

ulation is the most widely used form of microprocessor validation using random (or

pseudo-random) testcases [1, 12, 35, 77, 91]. Model checking is applied on the high-

level description of the design abstracted from the RTL implementation [23, 37].

Formal verification is performed by describing the system using a formal language

[11, 15, 24, 75, 80, 81, 92]. The specification for the formal verification is derived

from the architecture description. The implementation for the formal verification can

be derived either from the architecture specification or from the abstracted design.

The validated RTL design is used as a golden reference model for future design modi-

fications. Several design transformations (including synthesis) are applied on the RTL

design. The modified design is validated against the RTL design using equivalence

checking.

Implementation

Specification

(English Document)
Architecture Specification

Abstraction

Model Checking

Simulation

Equivalence

Checking

Abstracted Design

Modified Design
(RTL / Gate)Transform

RTL Design
(Implementation)

V
erification

Form
al

Design Transformations
Manual Derivation
Validation Techniques

Figure 1.2: Bottom-up validation flow for programmable embedded systems

The existing processor validation techniques can be divided into two categories de-

pending on the models used for specification and implementation. The techniques in

the first category do not verify the actual design implemented by the logic designers.

3

Instead, they verify the implementation written in a formal language that is either

abstracted from the actual design or written manually. Hence, this verification does

not uncover the bugs in the actual design. The traditional formal verification tech-

niques are in this category. The techniques in the second category are applied on the

actual RTL implementation. A significant bottleneck in these techniques is the lack

of a golden reference model. As a result, they derive the specification model from

the actual implementation by reverse-engineering methods. The simulation based

techniques are in this category. The existing techniques employ a bottom-up ap-

proach to validation, where the functionality of an existing processor is, in essence,

reverse-engineered from its RTL implementation.

1.2 Proposed Top-Down Validation Methodology

The validation technique proposed in this thesis is complementary to the existing

bottom-up approaches. Our approach leverages the system architect’s knowledge

about the behavior of the pipelined architecture, through Architecture Description

Language (ADL) constructs, and thus allows a top-down approach to architecture

validation.

Figure 1.3 shows our top-down validation methodology. The first step is to capture

the programmable architecture using the EXPRESSION ADL [20]. The static and

dynamic behaviors of the architecture specification are validated to ensure that the

specification is well formed. The validated ADL specification is used to generate

various executable models including simulator, hardware, and validation models. This

thesis explores three top-down validation scenarios using the generated models: design

space exploration, design validation, and test generation.

The generated hardware model (by HDLGen) and simulator (by SimGen) are

used for design space exploration of programmable architectures for the given set

of application programs under various design constraints such as area, power, and

performance. The generated hardware is also used as a reference model for verify-

ing the hand-written implementation (RTL Design) using a combination of symbolic

simulation and equivalence checking. Finally, the specification is used to generate

ADL SPECIFICATION
(Golden Reference Model)

Properties

RTL Design
(Implementation)

Compiler Simulator

Application
Programs

Equivalence
Checking RTL Design

TestGen

Sym
bolic

Simulation

Feedback
Validation
Manual
Automatic

Architecture Specification
(English Document)

Success

Success

Failed
Failed

Graph Model FSM Model

HDLGen

SimGen

Binary

Synthesis

A
re

a,
 P

ow
er

, C
lo

ck
 F

re
qu

en
cy

Si
m

ul
at

io
n

Verify
Dynamic BehaviorStatic Behavior

Verify

Pe
rf

or
m

an
ce

, C
od

e
Si

ze

Pattern Generator
From Random Test

Figure 1.3: Proposed specification-driven validation methodology

functional test programs (by TestGen) based on the functional coverage of pipelined

architectures. The generated test programs are used to simulate the implementation,

and complement the tests generated by the existing techniques such as a random test

pattern generator.

1.3 Thesis Contributions

This thesis makes two major contributions: validation of the architectural specifi-

cation, and specification driven validation of programmable embedded systems. We

explore three specification-driven validation scenarios: model generation and explo-

ration, top-down design validation, and functional test program generation. Specifi-

cation validation, model generation, and exploration studies are conducted on pro-

grammable architectures with a pipelined processor, coprocessors, and a memory

5

subsystem. However, design validation and test generation techniques are applied

mainly on pipelined processor architectures.

We have developed validation techniques to ensure that the architectural specifica-

tion is well formed by analyzing the static behavior of the architecture [52, 56, 70]. A

novel feature of our approach is the ability to model the pipeline structure and behav-

ior of the processor, coprocessor, as well as the memory subsystem using a graph-based

model. Based on this model we present algorithms to ensure that the specification

is well formed by verifying several architectural properties, such as connectedness,

false pipeline paths, completeness, and finiteness. We have also developed techniques

to verify the execution style of the processor architecture specified in the ADL. The

dynamic behavior is verified by analyzing the instruction flow in the pipeline using a

finite-state machine (FSM) based model to validate several important architectural

properties such as determinism and in-order execution in the presence of hazards

and multiple exceptions [51, 60, 69]. The validated ADL specification is used as a

golden reference model for specification-driven validation of programmable embedded

systems.

A major challenge in a top-down validation methodology is the ability to gen-

erate executable models from the specification for a wide variety of programmable

architectures including RISC (Reduced Instruction Set Computing), DSP (Digital

Signal Processing), VLIW (Very Long Instruction Word), and superscalar architec-

tures. We developed a functional abstraction approach by studying the similarities

and differences of each architectural feature in various architecture domains. Based

on our observations we have defined necessary generic functions, sub-functions, and

computational environment needed to capture a wide variety of programmable ar-

chitectures. Our functional abstraction technique enables generation of models for

simulation, hardware generation, and property checking from the ADL specification.

We have developed a technique for retargetable simulator generation using functional

abstraction [57]. The generated simulators are used for functional validation and de-

sign space exploration of programmable architectures [61, 65, 66]. Simulation-based

exploration may answer questions concerning the instruction set, the performance of

an algorithm and the required size of memory and registers. However, it is necessary

to generate hardware model to determine the required silicon area, clock frequency,

and power consumption of the specified architectures. We have also developed a

technique for specification-driven hardware generation [62, 63]. Our design space

exploration results demonstrate the power of reuse in composing architectures using

functional abstraction primitives allowing for a reduction in the time for specification,

model generation, and exploration. by an order of magnitude.

The generated hardware is also used as a reference model for verifying the hand-

written RTL implementation [55]. An important aspect of our methodology is the

ability to perform both model (property) checking and equivalence checking depend-

ing on the generated reference model. To verify that the implementation satisfies

certain properties, our framework generates the intended properties. We use a sym-

bolic simulator to perform property checking. Our framework generates the RTL

description of the pipelined processor to enable equivalence checking with the hand-

written implementation.

We have developed two specification-driven test generation techniques: model

checking based and functional coverage based. The first technique uses a model

checker to generate test programs [50, 54]. The processor model is generated from

the ADL specification. Properties are generated based on the coverage of the pro-

cessor pipeline. The generated properties are applied on the processor model using

the SMV model checker [28]. The generated counterexamples are converted into

test programs consisting of instruction sequences. We have also developed a func-

tional coverage based test generation technique for pipelined architectures [53]. A

general graph-theoretic model is developed that can capture the structure and be-

havior (instruction-set) for a wide variety of pipelined processors. We have proposed

a functional fault model that is used to define the functional coverage of pipelined

processors. We have also developed test generation procedures that accept the graph

model of the architecture as input and generate test programs to detect all the faults

in the functional fault model. Our experimental results demonstrate that the number

of test programs generated by our approach to obtain a fault coverage is an order of

magnitude less than those generated by random or constrained-random test genera-

tion techniques.

7

1.4 Thesis Organization

The organization of the thesis is as follows. Chapter 2 surveys the existing

ADLs that can be used to specify the programmable architectures. This chapter

also presents the EXPRESSION ADL that is used in our validation framework to

specify processor, coprocessor, and memory architectures.

Chapter 3 presents the techniques for validating the architecture specification.

These techniques verify the static and dynamic behaviors of the specified architecture.

The validated specification is used as a reference model in three top-down validation

scenarios: model generation and exploration, design validation, and test generation.

The functional abstraction technique is presented in Chapter 4. It enables auto-

matic generation of models for simulation, hardware generation, and validation for a

wide variety of programmable architectures. This chapter also presents exploration

experiments using the generated simulator and hardware models.

In Chapter 5, the generated hardware is used as a reference model for verifying

the hand-written RTL implementation using a combination of symbolic simulation

and equivalence checking.

Chapter 6 presents two specification-driven test generation techniques. The first

technique enables functional test program generation using model checking. The sec-

ond technique generates test programs based on functional coverage of the pipelined

processor architectures.

Finally, Chapter 7 contains a summary of the thesis and a discussion of future

research directions.

Chapter 2

Architecture Specification

The first step in a top-down validation methodology is to capture the programmable

architecture using a specification language. The language should be powerful enough

to specify the wide spectrum of contemporary processor, coprocessor, and memory

features. On the other hand, the language should be simple enough to allow correla-

tion of the information between the specification and the architecture manual.

This chapter is organized as follows. Section 2.1 introduces the notion of an

Architecture Description Language (ADL) and surveys the existing ADLs in terms of

their specification capabilities. Section 2.2 describes architecture specification using

EXPRESSION ADL [20]. Finally, Section 2.3 summarizes the chapter.

2.1 Architecture Description Languages

The phrase Architecture Description Language (ADL) is used in the context of

designing both software and hardware architectures. Software ADLs are used for rep-

resenting and analyzing software architectures ([14], [47]). It captures the behavioral

specifications of the components and their interactions that comprise the software

architecture. On the other hand, hardware ADLs (such as processor ADLs) cap-

ture the structure (hardware components and their connectivity), and the behavior

(instruction-set) of processor architectures. In this thesis the term ADL will refer to

hardware architecture description language.

9

Models

Generic
C++

Architecture Specification
(English Document)

ADL Description

Simulator
ASM BIN

Programs
Compiler
Generator

Simulator
Generator

Compiler Assembler

Validation

F
eedback (P

erform
ance, C

ode Size)

Application

Automatic
Manual
Feedback

Figure 2.1: ADL-driven design space exploration

Traditionally, ADLs are used for early exploration of programmable embedded

systems. Embedded systems present a tremendous opportunity to customize designs

by exploiting the application behavior. ADLs enable exploration of programmable

architectures for a given set of application programs under the design constraints such

as area, power and performance.

Figure 2.1 shows a traditional ADL-driven exploration flow. The ADL is used to

specify the processor, coprocessor and memory architectures. The software toolkit

including the compiler, simulator and assembler is generated from the ADL specifi-

cation, and the feedback is used to modify the architecture. Although, ADL-driven

exploration is extensively used in both academia (nML [17], ISDL [19], EXPRESSION

[20], Valen-C [34], MIMOLA [45], Sim-nML [74], and LISA [96]), and industry (ARC

[5], Axys [6], RADL [79], Target [87], Tensilica [88], LISATek [27], and MDES [90]),

to the best of our knowledge, there has not been any effort in validating the ADL

specification. It is necessary to validate the ADL specification of the architecture

to ensure the correctness of both the architecture specified, as well as the generated

software toolkit. Chapter 3 presents specification validation techniques for pipelined

processors.

Traditionally, ADLs have been classified into two categories depending on whether

they primarily capture the behavior (instruction set) or the structure of the processor.

Recently, many ADLs have been proposed that capture both the structure and the

behavior of the architecture.

2.1.1 Behavioral ADLs

nML [17] and ISDL [19] are examples of behavior-centric ADLs. In nML, the

processor’s instruction-set is described as an attributed grammar with the deriva-

tions reflecting the set of legal instructions. nML has been used by the retargetable

code generation environment CHESS [42] to describe DSP and ASIP (Application

Specific Instruction set Processor) architectures. In ISDL, constraints on parallelism

are explicitly specified through illegal operation groupings. This could be tedious for

complex architectures like DSPs which permit operation parallelism (e.g. Motorola

56K) and VLIW machines with distributed register files (e.g. TI C6X). The retar-

getable compiler system by Yasuura et al. [34] produces code for RISC architectures

starting from an instruction set processor description, and an application described

in Valen-C.

Many behavioral ADLs share one common feature: a hierarchical instruction set

description based on attribute grammars [36]. This feature greatly simplifies the in-

struction set description by exploiting the common components between operations.

However, the lack of detailed pipeline and timing information prevents the use of these

languages as an extensible architecture model. Information required by resource-

based scheduling algorithms cannot be obtained directly from the description. Also,

it is impossible to generate cycle accurate simulators based on the behavioral de-

scriptions without some assumptions on the architecture’s control behavior, i.e., an

implied architecture template has to be used.

2.1.2 Structural ADLs

MIMOLA [45] and UDL/I [2] are examples of ADLs that primarily capture the

structure of the processor wherein the net-list of the target processor is described

11

in a HDL (Hardware Description Language) like language. One advantage of this

approach is that the same description is used for both processor synthesis and code

generation. The target processor has a micro-coded architecture. Using MIMOLA,

the net-list description is used to extract the instruction set [44, 45], and produce

the code generator. UDL/I [2] is used for describing processors at an RT-level on

a per-cycle basis. The instruction-set is automatically extracted from the UDL/I

description [3], and is then used for generation of a compiler and a simulator.

In general, structural ADLs enable flexible and precise micro-architecture descrip-

tions. The same description can be used for hardware synthesis, test generation,

simulation and compilation. However, it is difficult to extract the instruction-set for

retargetable compilation. The instruction set information is buried under enormous

micro-architectural detail. These ADLs are more suited for hardware design than for

retargetable software-toolkit generation.

2.1.3 Mixed ADLs

More recently, languages that capture both the structure and the behavior of the

processor, as well as detailed pipeline information have been proposed (EXPRESSION

[20], RADL [79], FLEXWARE [73], MDes [90], and LISA [96]). The main characteris-

tic of LISA is the operation-level description of the pipeline. RADL [79] is an extension

of the LISA approach that focuses on explicit support of detailed pipeline behavior to

enable generation of production quality cycle-accurate and phase-accurate simulators.

FLEXWARE [73] and MDes [90] have a mixed-level structural/behavioral representa-

tion. FLEXWARE contains the CODESYN code-generator and the Insulin simulator

for ASIPs. The simulator uses a VHDL model of a generic parameterizable machine.

The application is translated from the user-defined target instruction set to the in-

struction set of this generic machine. The MDes [90] language used in the Trimaran

system is a mixed-level ADL, intended for exploration of parameterized VLIW archi-

tectures. Information is broken down into sections (such as format, resource-usage,

latency, operation, and register), based on a high-level classification of the informa-

tion being represented. However, MDes allows only a restricted retargetability of

Controller
DMA

Subsystem
Memory

Coprocessor

Processor
DLX

Memory
Instruction

Instruction
Memory

Unified
L2

Memory
Main

EMIF_1 CoProc EMIF_2

Memory
Local

a) Detailed Description of the Memory b) Pipeline Description of the Coprocessor

Figure 2.2: Block level description of an example architecture

the simulator to the HPL-PD processor family. MDes permits the description of the

memory system, but is limited to the traditional memory architectures consisting of

register files and caches. It will be difficult to describe novel memory subsystems

that includes efficient memory modules (such as partitioned register files, scratch-pad

SRAM, stream buffer, SDRAM, DDRAM, and RAMBUS) exhibiting a heterogeneous

set of features (such as page-mode, burst-mode and pipelined accesses).

The EXPRESSION ADL also follows a mixed-level approach to facilitate DSE.

Furthermore, it provides support for specification of novel memory subsystems. It

avoids explicit representation of the reservation tables1 by extracting them from the

structural description [18]. The ADL is used to drive the generation of both compiler

[21] and simulator [40].

2.2 Specification using EXPRESSION ADL

Our validation framework uses the EXPRESSION ADL [20] to specify processor,

coprocessor, and memory architectures. The EXPRESSION ADL follows a mixed-

level approach to facilitate specification of a wide range of programmable embedded

systems. We illustrate the use of the EXPRESSION ADL to describe a simple multi-

issue architecture consisting of a processor, a co-processor and a memory subsystem.

Figure 2.2 shows the block level description of a simple architecture. This level

of detail is available in a typical architecture manual. Typically, pipeline level de-

1Reservation Tables (RTs) have been used to detect conflicts between instructions that simulta-
neously access the same architectural resource.

13

M

x
u

M

x
u

M

x
u

M

x
u

MEM/WB

extend
Sign

Data
Memory

16 32

IR 11..15

6..10IR

EX/MEMID/EXIF/ID

Memory
Instruction

PC

ADD

Registers

Zero?

ALU

Branch
taken

4

Figure 2.3: Pipeline level description of the DLX processor shown in Figure 2.2

tails are available in a micro-architecture manual. For example, Figure 2.2(a) and

Figure 2.2(b) show the detailed description of the memory subsystem and the copro-

cessor. The memory subsystem consists of separate instruction and data memories

(L1 cache), a unified L2 memory, and a main memory. The coprocessor consists of

three pipeline stages: EMIF 1, CoProc, and EMIF 2. The coprocessor uses it local

memory for computations. The data transfer between coprocessor local memory and

the main memory is handled by the DMA controller shown in Figure 2.2. Similarly,

Figure 2.3 shows the pipeline level description of the DLX processor shown in Fig-

ure 2.2. The DLX processor has five pipeline stages: fetch (IF), decode (ID), execute

(EX), memory (MEM), and write back (WB).

The architecture shown in Figure 2.2 can issue up to two operations (an ALU or

memory access operation and a coprocessor operation) per cycle. The coprocessor

supports vector arithmetic operations. This section describes how to specify proces-

sor, coprocessor, and memory architectures using the EXPRESSION ADL. It also

briefly describes how to capture interrupts and exceptions in the ADL.

2.2.1 Processor Specification

This section describes how EXPRESSION ADL captures the structure and be-

havior of the DLX processor shown in Figure 2.3.

Structure

The structure of a processor can be viewed as a net-list with the components as

nodes and the connectivity as edges. Figure 2.4(a) shows a portion of the EXPRES-

SION description of the processor. It describes all the components in the structure:

PC, Registers, fetch, decode, ALU, MEM, and writeback. Each component has a list

of attributes. For example, the ALU unit has information regarding the number

of instructions executed per cycle, timing of each instruction, supported opcodes,

input/output latches, and so on.

The connectivity is established using the description of pipeline and data-transfer

paths. Informally, a pipeline path is used to transfer instruction whereas a data-

transfer path is used to transfer data. For example, {IF → ID → EX → MEM →
WB} is a pipeline path, and {WB→ Registers} is a data-transfer path in Figure 2.3.

Section 3.1.1 defines the pipeline and data-transfer paths in detail.

Figure 2.4(a) describes the five-stage pipeline as {fetch, decode, execute, memory,

writeback}. In this particular case, the execute stage has only one component. In

general, the execute stage can have multiple execution paths. Furthermore, each

path can contain pipelined or multi-cycle execution units. The ADL specification

also includes the description of all the data-transfer paths.

Behavior

The EXPRESSION ADL captures the behavior of the architecture as the descrip-

tion of the instruction set. The behavior is organized into operation groups, with

each group containing a set of operations2 having some common characteristics. For

example, Figure 2.4(b) shows two operation groups. The aluOps includes all the op-

erations supported by the ALU unit. Similarly, the memOps group contains all the

2In this thesis we use the terms operation and instruction interchangeably.

15

Components specification

(FetchUnit Fetch

(capacity 2) (timing (all 1))

(opcodes all) (latches . . .) . . .

)

(ExecUnit ALU

(capacity 1) (timing (add 1) (sub 1) . . .)

(opcodes (add sub . . .)) (latches . . .) . . .

)

.

Pipeline and data-transfer paths

(pipeline Fetch Decode Execute MEM WriteBack)

(dtpaths (WB Registers) (Registers ALU) . . .)

.

(a) Structure

Behavior: description of instruction set

(opgroup aluOps (add, sub, . . .))

(opgroup memOps (load, store, . . .))

.

(opcode add

(operands (s1 reg) (s2 reg/imm16) (dst reg))

(behavior dst = s1 + s2)

(format 000101 dst(25-21) s1(21-16) s2(15-0))

)

(opcode store

(operands (s1 reg) (s2 imm16) (s3 reg))

(behavior M[s1 + s2] = s3)

(format 001101 s3(25-21) s1(21-16) s2(15-0))

)

(b) Behavior

Figure 2.4: Processor specification using EXPRESSION ADL

operations supported by the MEM unit. Each instruction is then described in terms

of its opcode, operands, behavior, and instruction format. Each operand is classified

either as source or as destination. Furthermore, each operand is associated with a

type that describes the type and size of the data it contains. The instruction format

describes the fields of the instruction in both binary and assembly. Figure 2.4(b)

shows the description of the add and store operations.

The ADL also captures the mapping between the structure and the behavior (and

vice versa). For example, the add and sub instructions are mapped to the ALU unit,

the load and store instructions are mapped to the MEM unit, and so on.

2.2.2 Coprocessor Specification

The ADL specification of a programmable coprocessor is similar to the specifica-

tion of the processor architecture described in Section 2.2.1. This section describes

how the ADL captures the structure and behavior of the coprocessor shown in Fig-

ure 2.2(b). To describe the structure of the coprocessor we specify each pipeline stage

of the coprocessor along with the processor pipeline as shown in Figure 2.5(a). The

coprocessor pipeline has three stages. The EMIF 1 (external memory interface) stage

requests the DMA to transfer the data from the main memory to the coprocessor

local memory. The CoProc stage performs the intended computation using the co-

processor local memory for accessing input operands. Results are stored back in the

coprocessor memory. Finally, the EMIF 2 requests the DMA to transfer the data

from coprocessor memory to main memory. Figure 2.5(a) shows the description of

the CoProc component. It supports four-cycle vector arithmetic operations.

Components specification

(FetchUnit Fetch

(capacity 2) (timing (all 1))

(opcodes all) (latches . . .) . . .

)

(CPunit CoProc

(capacity 1) (timing (vectAdd 4) (vectMul 4))

(opcodes (vectAdd vectMul . . .)) . . .

)

Pipeline and data-transfer paths

(pipeline Fetch Decode Execute MEM WriteBack)

(Execute (parallel ALU Coprocessor))

(Coprocessor (pipeline EMIF 1 CoProc EMIF 2))

(dtpaths (EMIF 1 DMA) (EMIF 2 DMA) . . .)

.

(a) Structure

Behavior: description of instruction set

(opgroup cpOps

(vectAdd, vectMul, . . .)

)

.

(opcode add

(operands (s1 reg) (s2 reg/imm16) (dst reg))

(behavior dst = s1 + s2)

(format 000101 dst(25-21) s1(21-16) s2(15-0))

)

(opcode vectMul

(operands (s1 mem) (s2 mem) (dst mem)

(length imm))

(behavior dst = s1 * s2)

)

(b) Behavior

Figure 2.5: Coprocessor specification using EXPRESSION ADL

The behavior of the coprocessor is captured in terms of the operations it supports.

For example, Figure 2.5(b) shows the description of a vectMul operation. Unlike

normal instructions whose source and destination operands are of type register (except

load/store), here source and destination operands are of type memory. The s1 and

s2 fields refer to the starting addresses of two source operands for the multiplication.

Similarly dst refers to the starting address of the destination operand. The length

field refers to the vector length of the operation that has immediate data type.

17

2.2.3 Memory Subsystem Specification

In order to explicitly describe the memory architecture in EXPRESSION, we need

to capture both structure and behavior of the memory subsystem. The memory struc-

ture refers to the organization of the memory subsystem containing memory modules

and the connectivity among them. The behavior refers to the memory subsystem

instruction set.

Storage section

(DCache L1Data

(wordsize 64) (linesize 8) (associativity 2)

(num lines 1024) (replacement LRU) (latency 1) . . .

)

(ICache L1Inst (latency 1) . . .)

(DCache L2 (latency 5) . . .)

(DRAM MainMemory (latency 50) . . .)

Pipeline and data-transfer paths

(dtpaths (L1Data L2) (L1Inst L2) (L2 MainMemory) . . .)

(a) Structure

Behavior: description of instruction set

(opcode load miss

(operands (s1 L2) (dst L1Data))

(behavior dst = s1)

)

.

(b) Behavior

Figure 2.6: Memory subsystem specification using EXPRESSION ADL

The memory subsystem structure is represented as a netlist of memory compo-

nents connected through ports and connections. The memory components are de-

scribed and attributed with their characteristics (such as cache line size, replacement

policy, and write policy). For example, Figure 2.6(a) shows the structure of the mem-

ory subsystem shown in Figure 2.2(a). The specification of the memory structure also

includes the description of the memory pipeline and data-transfer paths. The mem-

ory subsystem instruction set represents the possible operations that can occur in the

memory subsystem, such as data transfers between different memory modules or to

the processor (e.g., load and store), control instructions for the different memory com-

ponents (such as the DMA), or explicit cache control instructions (e.g., cache freeze,

prefetch, replace and refill). For example, Figure 2.6(b) shows an internal memory

data transfer operation during a load miss. The load miss operation represents data

refill from L2 cache in the event of a L1 data miss.

2.2.4 Specification of Interrupts and Exceptions

It is also necessary to capture exceptions and interrupts explicitly in the ADL for

various reasons. First, the simulator and hardware generators require this information

to accurately generate and handle exceptions. Second, the specification validation

techniques use this information to analyze pipeline interactions in the presence of

multiple exceptions. For example, we have used this information in Section 3.2 to

verify in-order execution of pipelined processor specifications.

We classify exceptions into three categories: opcode related exceptions, exceptions

related to functional units, and external exceptions. The motivation behind this

classification is to enable ease of specification.

Opcode related exceptions

It is appropriate to describe opcode related exceptions and their actions inside the

opcode specification. For example, the modified div operation contains the exception

information as shown in Figure 2.7.

Behavior: description of instruction set

.

(opcode div

(operands (s1 reg) (s2 reg) (dst reg)) (behavior dst = s1 / s2) . . .

(exceptions (if (s2 == 0) throw div by zero) . . .)

)

Figure 2.7: Specification of division by zero exception

Exceptions Related to Functional Units

Functional unit related exceptions are defined in ADL’s component specification

section. For example, the Decode unit shown in Figure 2.2 can issue upto two instruc-

tions per cycle. The first one is for the ALU pipeline and the second one is for the

coprocessor pipeline. It is an exception if the second instruction is not a coprocessor

19

instruction. The specification of such an exception is described in the Decode unit as

shown in Figure 2.8.

Components specification

.

(DecodeUnit Decode

(capacity 2) (timing (all 1)) (opcodes all) . . .

(exceptions (if (slot2 opcode != coprocessor type) throw illegal slot instruction) . . .)

)

Figure 2.8: Specification of illegal slot instruction exception

External Exceptions

External interrupts can be specified at the processor level. We model a control unit

that performs the task of a controller. The control unit is also used to perform stalling

and flushing of the processor pipelines as described in Section 4.2.4. We describe

external interrupts in the control unit. For example, a machine reset exception can

be described in the control unit as shown in Figure 2.9. We assume that the reset is

an external interrupt that is used to generate the internal exception machine reset.

Components specification

.

(ControlUnit control

.

(exceptions (if reset throw machine reset) . . .)

)

Figure 2.9: Specification of machine reset exception

The mapping between exceptions and interrupts is a many-to-one mapping func-

tion. A class of exceptions may give rise to one interrupt, in that case the architec-

ture implementation should ensure that only one exception from that class occurs

at a time. In general, one interrupt corresponds to more than one exception. We

specify the interrupts and exceptions in the control unit specification. For example,

the interrupt int1 is described in Figure 2.10. The interrupt int1 gets generated due

to any memory failure during memory operation, for example, ITLB miss or DTLB

miss. It can mask several lower priority interrupts such as int2 and int7.

Components specification

.

(ControlUnit control

.

(interrupt int1

(exceptions ITLB miss DTLB miss . . .)

(masks int2 int7 . . .) (behavior . . .) . . .

)

)

Figure 2.10: Specification of interrupts

We model the interrupt handler using a priority table that can accept n excep-

tion requests and generate only one interrupt per cycle. The multiple exceptions are

handled in a simple and uniform manner using interrupt service register (ISR). The

length of the ISR is equal to the number of interrupts possible in that architecture.

One entry in the ISR corresponds to an interrupt. Control unit defines the class of

exceptions that generates a particular interrupt. Each exception sets one particular

bit in the ISR of the interrupt handler. Interrupt handler decides the highest priority

interrupt using the interrupt priority table. Depending on the masking information

the highest priority interrupt masks the appropriate bits in ISR. The process of se-

lecting highest priority interrupt continues until there are no bits set in ISR. The

details on specification of exceptions and interrupts are available in [58].

2.3 Chapter Summary

This chapter surveyed existing ADLs in terms of their capabilities in captur-

ing programmable architectures. Structural ADLs enable flexible and precise micro-

architecture descriptions. The same description can be used for hardware synthe-

sis, test generation, simulation and compilation. However, it is difficult to extract

21

instruction-set information for retargetable compilation. Behavioral ADLs simplify

the instruction set description by exploiting the common components between opera-

tions. However, the lack of detailed pipeline and timing information prevents the use

of these languages as an extensible architecture model. Mixed ADLs capture both

the structure and the behavior of the architecture.

The second part of this chapter described the use of the EXPRESSION ADL in

our framework to specify programmable embedded systems. We described how to

capture processor, coprocessor, and memory architectures using the ADL. Chapter 3

will present techniques to validate the ADL specification of the architecture.

Chapter 3

Validation of Specification

One of the most important requirements in a top-down validation methodology

is to ensure that the specification (reference model) is golden. This chapter presents

techniques to validate the static and dynamic behaviors of the architecture specified

in an ADL. It is necessary to validate the ADL specification to ensure the correctness

of both the architecture specified and the generated executable models including soft-

ware toolkit and hardware implementation. The benefits of validation are two-fold.

First, the process of any specification is error-prone and thus verification techniques

can be used to check for correctness and consistency of the specification. Second,

changes made to the processor during exploration may result in incorrect execution

of the system and verification techniques can be used to ensure correctness of the

modified architecture.

One of the major challenges in validating the ADL specification is to verify the

pipeline behavior in the presence of hazards and multiple exceptions. There are many

important properties that need to be verified to validate the pipeline behavior. For

example, it is necessary to verify that each operation in the instruction set can execute

correctly in the processor pipeline. It is also necessary to ensure that execution of each

operation is completed in a finite amount of time. Similarly, it is important to verify

the execution style (e.g., in-order execution) of the architecture. In this chapter, we

verify several properties to validate the static and dynamic behaviors of the specified

pipelined architecture. While these properties are by no means complete to prove

23

the correctness of the specification, we believe these are necessary for establishing

the correctness of the specification. Additional properties can easily be added and

integrated into our validation framework.

The chapter is organized as follows. Section 3.1 describes the validation techniques

to ensure that the static behavior of the pipeline is well-formed by analyzing the

structural aspects of the specification using a graph based model. Section 3.2 presents

the techniques to verify the dynamic behavior by analyzing the instruction flow in

the pipeline using a FSM based model to validate several important architectural

properties such as determinism and in-order execution in the presence of hazards and

multiple exceptions. Finally, Section 3.3 summarizes the chapter.

3.1 Validation of Static Behavior

This section presents an automatic validation framework driven by an ADL. The

first step (and only manual step) in the flow is to specify the architecture using

EXPRESSION ADL. A novel feature of this approach is the ability to model the

pipeline structure and behavior of the processor, co-processor, and memory subsystem

using a graph-based model. Based on this model, we present algorithms to ensure

that the static behavior of the pipeline is well-formed by analyzing the structural

aspects of the specification.

Figure 3.1 shows the flow for validating static behaviors. The designer describes

the programmable architecture in an ADL. The graph model of the architecture is

generated from this ADL description. Several properties are applied to ensure that

the architecture is well formed.

This section describes three important steps in this methodology. First, it presents

a graph-based modeling of processor, memory, and co-processor pipelines. Second,

it describes several properties that must be satisfied for valid pipeline specification.

Finally, it illustrates validation of pipeline specifications for several realistic architec-

tures.

EXPRESSION Description

Model
Properties Graph

Verify
Failed Failed

Success

Architecture Specification

Figure 3.1: Validation of pipeline specifications

3.1.1 Graph-based Modeling of Pipelines

We present a graph-based modeling of architecture pipelines that captures both

the structure and the behavior. The graph model presented here can be derived from

a pipeline specification of the architecture described in an ADL e.g., EXPRESSION

[20]. This graph model can capture processor, memory, and co-processor pipelines

for a wide variety of architectures including RISC, DSP, VLIW, and superscalar

architectures. In this section, we briefly describe how the graph model captures

the structure and behavior of the processor using the information available in the

architecture manual.

Structure

The structure of an architecture pipeline is based on a block diagram view available

in the processor manual, and is modeled as a graph GS = (VS, ES), where VS denotes

a set of components and ES consists of a set of edges. VS consists of two types of

components: Vunit and Vstorage. Vunit is a set of functional units (e.g., ALU), and

Vstorage is a set of storages (e.g., register files). ES consists of two types of edges.

25

MEMORY SUBSYSTEM

PROCESSOR

MEM

FADD4

FADD3

FADD2

CO-PROCESSOR

FADD1

Decode

PC

L1

Inst.
L1

Data Memory
Main

Unified
L2

Memory
Local DMACoProc

EMIF_2

EMIF_1

ALU

Fetch

Data-transfer edge
Unit

Back
Write

Register
File

Pipeline edge

Storage

Figure 3.2: An example architecture

Edata transfer is a set of data-transfer edges, and Epipeline is a set of pipeline edges.

An edge (pipeline or data-transfer) indicates connectivity between two components.

A data-transfer edge transfers data between units and storages. A pipeline edge

transfers instruction (operation) between two units.

VS = Vunit ∪ Vstorage

ES = Edata transfer ∪ Epipeline

Edata transfer ⊆ {Vunit, Vstorage} × {Vunit, Vstorage}

Epipeline ⊆ Vunit × Vunit

For illustration, we use a simple multi-issue architecture consisting of a processor,

a co-processor and a memory subsystem. Figure 3.2 shows the graph-based model of

this architecture that can issue up to three operations (an ALU operation, a floating-

point addition operation, and a coprocessor operation) per cycle. Figure 3.2 is ob-

tained from Figure 2.2. We have added a four-stage floating point adder (FADD)

and a feedback path from the FADD pipeline to the ALU pipeline. In the figure,

oval boxes denote units, dotted ovals are storages, bold edges are pipeline edges, and

dotted edges are data-transfer edges. A path from a root node (e.g., Fetch) to a

leaf node (e.g, WriteBack) consisting of units and pipeline edges is called a pipeline

path. For example, one of the pipeline paths is {Fetch, Decode, ALU, MEM, Write-

Back}. A path from a unit to main memory or register file consisting of storages

and data-transfer edges is called a data-transfer path. For example, {MEM, L1, L2,

MainMemory} is a data-transfer path.

Behavior

The behavior of the architecture is typically captured by the instruction-set (ISA)

description in the processor manual. It consists of a set of operations that can be

executed on the architecture. Each operation in turn consists of a set of fields (e.g.

opcode, arguments) that specify, at an abstract level, the execution semantics of the

operation. We model the behavior as a graph GB = (VB, EB), where VB is a set of

nodes, and EB is a set of edges. The nodes represent the fields of each operation,

while the edges represent orderings between the fields. The behavior graph GB is

a set of disjointed sub-graphs, and each sub-graph is called an operation graph (or

simply an operation). Figure 3.3 shows a portion of the behavior (consisting of two

operation graphs) for the example processor shown in Figure 3.2.

VB = Vopcode ∪ Vargument

EB = Eoperation ∪ Eexecution

Eoperation ⊆ Vopcode × Vargument ∪ Vargument × Vargument

Eexecution ⊆ Vargument × Vargument ∪ Vargument × Vopcode

Nodes are of two types. Vopcode is a set of opcode nodes that represent the opcode

(i.e. mnemonic), and Vargument is a set of argument nodes that represent argument

fields (i.e., source and destination arguments). In Figure 3.3, the ADD and STORE

nodes are opcode nodes, while the others are argument nodes. Edges are also of two

types. Eoperation is a set of operation edges that link the fields of the operation and

also specify the syntactical ordering between them. On the other hand, Eexecution is

27

Operation Edge

Execution Edge

Argument Node

Opcode Node

SRC1STORE SRC OFFSET

SRC2ADD DEST SRC1

Figure 3.3: A fragment of the behavior graph

a set of execution edges that specify the execution ordering between the fields. In

Figure 3.3, the solid edges represent operation edges while the dotted edges repre-

sent execution edges. For the ADD operation, the operation edges specify that the

syntactical ordering is opcode followed by DEST, SRC1 and SRC2 arguments (in

that order), and the execution edges specify that the SRC1 and SRC2 arguments

are executed (i.e., read) before the ADD operation is performed. Finally, the DEST

argument is written.

Mapping between Structure and Behavior

The mapping between the structure and the behavior is captured explicitly in the

ADL. This information is available in the architecture manual as mapping between the

instruction set and the functional units. It other words, the manual describes what

operations are supported by which functional units in the architecture. We define a set

of mapping functions that map nodes in the structure to nodes in the behavior (and

vice-versa). The unit-to-opcode (opcode-to-unit) mapping is a bi-directional function

that maps unit nodes in the structure to opcode nodes in the behavior. The unit-to-

opcode mappings for the architecture in Figure 3.2 include mappings from Fetch unit to

opcodes {ADD, FADD}, ALU unit to opcode ADD, FADD1 unit to opcode FADD etc.

The argument-to-storage (storage-to-argument) mapping is a bi-directional function

that maps argument nodes in the behavior to storage nodes in the structure. For

example, the argument-storage mappings for the ADD operation are mappings from

{DEST, SRC1, SRC2} to RegisterFile.

Each functional unit (with read or write ports) supports certain data-transfer

operations. These operations can be derived from the above mapping functions. For

example, the Decode unit of Figure 3.2 supports register read (regRead) for ADD and

LD opcodes; the MEM unit supports data read (dataRead) and data write (dataWrite)

from L1 data cache; the Fetch unit supports instruction read (instRead) from L1

instruction cache; the WriteBack unit supports register write (regWrite). Similarly,

each storage supports certain data-transfer operations. For example, the RegisterFile

of Figure 3.2 supports regRead and regWrite; L1 data cache supports dataRead and

dataWrite, and so on.

3.1.2 Validation of Pipeline Specifications

Based on the graph model presented in the previous section, the ADL specification

of architecture pipelines can be validated. In this section, we describe some of the

properties used in our framework for validating pipelined architecture specifications.

Connectedness Property

The connectedness property ensures that each component is connected to other

component(s). As pipeline and data-transfer paths are connected regions of the ar-

chitecture, this property holds if each component belongs to at least one pipeline or

data-transfer path.

∀vcomp ∈ VS, (∃GPP ∈ GPP, s.t. vcomp ∈ GPP) ∨ (∃GDP ∈ GDP, s.t. vcomp ∈ GDP)

where GPP is a set of pipeline paths and GDP is a set of data-transfer paths.

Algorithm 1 presents the pseudo-code for verifying the connectedness property.

The algorithm requires the graph model G of the architecture as input. It also

requires all the component lists as input. The first step is to unmark the entries

in all the input lists. Each input list contains all the respective components in the

graph. For example, the ListOfUnits contains all the units in the graph G. Next, the

graph is traversed in breadth-first manner and the visited components are marked.

For example, when a unit u is visited during traversal, it is marked in ListOfUnits.

29

Finally, the algorithm returns true if all the entries are marked in all the input lists.

It returns false if there are any unmarked entries in any of the input lists, and it

reports them.

Algorithm 1: Verify Connectedness

Inputs: i. Graph model of the architecture G

ii. ListOfUnits: list of units in the graph G

iii. ListOfStorages: list of storages in the graph G

Outputs: i. True, if the graph model satisfies this property else false.

ii. In case of failure, report the disconnected components.

Begin

Unmark all the entries in all the input lists.

InsertQ(root, Q) /* Put root node of G in queue Q */

while Q is not empty

Node n = DeleteQ(Q) /* Remove the front element of Q */

Mark n as visited in G

case type of node n

unit: Mark n in ListOfUnits

storage: Mark n in ListOfStorages

endcase

for each successor node s of n

if s is not visited InsertQ(s, Q)

endfor

endwhile

Return true if all the entries are marked in all of the input lists;

false otherwise, and report the unmarked components.

End

Each node of the graph is visited only once. The time and space complexity of

the algorithm is O(n), where n is the number of nodes in the graph G. Each node of

the graph can be either unit or storage.

False Pipeline and Data-transfer Paths

According to the definition of pipeline paths, there may exist pipeline paths that

are never activated by any operation. Such pipeline paths are said to be false. For

example, let us use another architecture shown in Figure 3.4 that executes two oper-

ations: ALU-shift (alus) and multiply-accumulate (mac). This processor has unit-to-

opcode mappings between ALU unit and opcode alus, between SFT and alus, between

MUL and mac, and between ACC and mac. Also, there are unit-to-opcode mappings

between each of {IFD, RD1, RD2, WB} and alus, and each of {IFD, RD1, RD2,

WB} and mac. This processor has four pipeline paths: {IFD, RD1, ALU, RD2,

SFT, WB}, {IFD, RD1, MUL, RD2, ACC, WB}, {IFD, RD1, ALU, RD2, ACC,

WB}, and {IFD, RD1, MUL, RD2, SFT, WB}. However, the last two pipeline paths

cannot be activated by any operation. Therefore, they are false pipeline paths. Since

these false pipeline paths may become false paths depending on the detailed struc-

ture of RD2, they should be detected at a higher level of abstraction to ease the later

design phases.

From the view point of SOC architecture exploration, we can view the false

pipeline paths as an indication of potential behaviors that are not explicitly defined

in the ADL description. These false pipeline paths can be used to perform valid com-

putations. This opens up avenues for further exploration experiments for cost, power,

and performance by adding new instructions to activate the false pipeline paths.

Formally, a pipeline path GPP (VPP , EPP) is false if the intersection of opcodes

supported by the units in the pipeline path is empty.⋂
vunit∈VPP

funit−opcode(vunit) = φ (3.1)

Similarly, there may exist data-transfer paths in the specification that are never

activated by any operation. Such data-transfer paths are said to be false. For ex-

ample, let us use another architecture shown in Figure 3.5 that has seven possi-

ble data-transfer operations: integer-register-read (IregRd), float-register-read (Fre-

gRd), integer-register-write (IregWr), float-register-write (FregWr), load-data-from-

memory (ldData), load-instruction-from-memory (ldInst), and store-data-in-memory

(stData). The Decode (ID) unit has mappings for IregRd and FregRd. There are

mappings between each of {WB1, WB2} and {IregWr, FregWr}, each of {IF, L1I,

ISB } and ldInst, each of { LDST, L1D, DSB } and { ldData, stData }, and each of

{ L2, DRAM } and { ldData, stData, ldInst }. This processor has ten data-transfer

31

Register
File

Storage

Unit

Pipeline edge
Data-transfer edgeWB

ACCSFT

RD2

MUL

RD1

IFD

ALU

Figure 3.4: An example processor with false pipeline paths

paths: {IRF, ID}, {FRF, ID}, {WB1, IRF}, {WB1, FRF}, {WB2, IRF}, {WB2,

FRF}, {IF, L1I, L2, ISB, DRAM}, {LDST, L1D, L2, DSB, DRAM}, {IF, L1I, L2,

DSB, DRAM}, {LDST, L1D, L2, ISB, DRAM} . However, the last two data-transfer

paths cannot be activated by any operation. Therefore, they are false data-transfer

paths. If ALU1 supports only floating-point operations, the fourth path ({WB1,

IRF}) becomes a false data-transfer path.

Formally, a data-transfer path GDP (VDP , EDP) is false if the intersection of data-

transfer operations supported by the units and storages (fnode−operation) in the data-

transfer path is empty.

⋂
vnode∈VDP

fnode−operation(vnode) = φ (3.2)

Algorithm 2 presents the pseudo-code for verifying false pipeline and data-transfer

paths. The algorithm requires the graph model G as input. It traverses the graph in

depth-first manner along each pipeline and data-transfer path. Each unit u has a list

of supported opcodes SuppOpListu. Each node n (unit or storage) also maintains

Algorithm 2: Verify False Pipeline and Data-transfer Paths

Input: Graph model of the architecture G.

Outputs: i. True, if the graph model satisfies this property else false.

ii. In case of failure, report the list of false pipeline and data-transfer paths.

Begin

Push (root, S); FalsePPpathList = {}; FalseDPpathList = {};
while S is not empty

Node n = Pop(S); Mark n as visited.

case node type of n

unit: if n is the root node

OutOpListn = SuppOpListn // Send supported opcodes to children

else /* p is the recently visited parent */

InOpListn = OutOpListp; OutOpListn = SuppOpListn ∩ InOpListn
if n has read or write ports

OutDTopListn = ComputeDataTransferOps(OutOpListn)

if OutDTopListn is empty

for all the data-transfer paths fDP from n to any leaf nodes

Insert fDP in FalseDPpathList.

else for each children storage node st of n, Push(st, S)

if OutOpListn is empty

Get path pp from n by tracing recently visited parents till root

for all pipeline paths ppEnd from n to any leaf nodes

Append ppEnd to pp to get fPP; Insert fPP in FalsePPpathList.

else for each children unit u of n, Push(u, S)

storage: InDTopListn = OutDTopListp

OutDTopListn = SuppDTopListn ∩ InDTopListn
if OutDTopListn is empty

Get path dp from n by tracing recently visited parents till any unit

for all data-transfer paths dpEnd from n to any leaf nodes

Append dpEnd to dp to generate false data-transfer path fDP.

Insert fDP in FalseDPpathList.

endfor

else for each children storage node st of n, Push(st, S)

endcase

endwhile

if FalsePPpathList and FalseDPpathList are empty return true;

else return false and report FalsePPpathList and FalseDPpathList.

End

33

four temporary lists: OutOpListn, OutDTopListn, InOpListn, and InDTopListn.

The OutOpListn is the list of opcodes produced by unit n and sent to its children

units. The OutDTopListn is the list of data-transfer operations produced by node

(unit or storage) n and sent to its children storages. The InOpListn is the list that

is used by unit n to copy the OutOpListp, the output list of the recently visited

parent p. Similarly, the InDTopListn is the list that is used by storage n to copy the

OutDTopListp, the output list of the recently visited parent p. Each unit n performs

intersection of InOpListn and SuppOpListn and send the result OutOpListn to its

children units. If OutOpListn is empty, all the pipeline paths that use the path

from n to root (via recently visited parents) are false pipeline paths. A unit with

read or write ports computes data transfer operations using the method described

in Section 3.1.1. A storage computes OutDTopListn by performing intersection of

SuppDTopListn and the input list InDTopListn. If OutDTopListn is empty, all

the data-transfer paths that use the path from storage n to any unit via recently

visited parents are false data-transfer paths. The algorithm returns true if there are

no false pipeline or data-transfer paths. It returns false if there are any false pipeline

or data-transfer paths, and reports them.

If there are n nodes, x pipeline and data-transfer paths in the graph and the num-

ber of opcodes supported by the processor is p, the time complexity of the algorithm

is O(x × n × (x + plogp)) and space complexity is O(n × p). The supported opcode

list in each node is a sorted list.

Completeness Property

The completeness property confirms that all operations must be executable. An

operation op is executable if there exists a pipeline path GPP (VPP , EPP) on which

op is executable. An operation op is executable on a pipeline path GPP (VPP , EPP) if

both Condition 3.1 and 3.2 hold.

Condition 3.1: All units in VPP support the operation op. More formally, the

following condition holds where vopcode is the opcode of the operation op.

∀vunit ∈ VPP , vopcode ∈ funit−opcode(vunit). (3.3)

CORE

Pipeline edge

Unit

Data-transfer edge

DRAM

Storage

IntRegFile
IRF

Fetch

Decode

WriteBack

WriteBack

FRF
FltRegFile

WB1

ALU1 ALU2

WB2

Load/Store
LDST

ID

IF
InstCache

L1I

L1D L2
DataCache

DSB

ISB

Buffer
DataStream

Instruction
StreamBuffer

Figure 3.5: An example processor with false data-transfer paths

Condition 3.2: There are no conflicting partial orderings of operation arguments

and unit ports. Let V be a set of argument nodes of operation op. There are no

conflicting partial orderings of operation arguments and unit ports if, for any two

nodes v1, v2 ∈ V such that (v1, v2) ∈ Eexecution, all the following conditions hold:

➤ There exists a data-transfer path from a storage farg−storage(v1) to a unit vu1 in

VPP through a port farg−port(v1).

➤ There exists a data-transfer path from a unit vu2 in VPP to a storage farg−storage(v2)

through a port farg−port(v2).

➤ vu1 and vu2 are the same unit or there is a path consisting of pipeline edges from

vu1 to vu2.

For example, let us consider the ADD operation (shown in Figure 3.3) for the

processor described in Figure 3.2. To satisfy Condition 3.1, each of {Fetch, Decode,

ALU, MEM, WriteBack} must have mappings to the ADD opcode. On the other

hand, Condition 3.2 is satisfied because the structure has data-transfer paths from

35

Algorithm 3: Verify Completeness

Inputs: i. Graph model G of the architecture.

ii. The list of operations OpList supported by the architecture.

Outputs: i. True, if the graph model satisfies this property else false.

ii. In case of failure, report the list of operations that are not executable.

Begin

for each operation op supported by the architecture /* op ∈ OpList */

opSrcList = list of sources in the operation op.

opDestList = list of destinations in the operation op.

Push(root, S) /* Put root node of G in stack S */

while S is not empty

Node n = Pop(S); Mark n as visited in G.

if op ∈ SuppOpListn /* op is supported by unit n */

for each port p of n

if p is a read or read-write port

for each unmarked source src in opSrcList

if src can be read via p, mark src in opSrcList with (p, n)

if p is a write or read-write port

for each unmarked destination dest in opDestList

if dest can be written via p

mark dest in opDestList with (p, n)

endfor

if unit n is a leaf node

if ((all sources in opSrcList are marked) and

(all nodes r that read the sources are in expected order) and

(all destinations in opDestList are marked) and

(all nodes w that write the destinations are in expected order) and

(all nodes r & w are in same pipeline path and r appears before w))

Mark op in OpList /* this path supports op */

break /* one pipeline path is sufficient, exit while loop */

endif

else for each children unit u of n, Push(u, S)

endwhile

endfor

Return true if all the entries in OpList are marked;

false otherwise, and report the unmarked entries in OpList.

End

RegisterFile to Decode and from WriteBack to RegisterFile, and there is a pipeline

path from Decode to WriteBack.

Algorithm 3 presents the pseudo-code for verifying the completeness property.

The algorithm requires the graph model (G) and the list of operations supported by

the architecture (OpList) as inputs. It traverses the graph in depth-first manner for

each operation op and identifies a pipeline path pp that supports op. All the units n

in the pipeline path should have op in their supported opcode list SuppOpListn. The

pipeline path pp must have units that can read the source operands of op and write

the destination operands of op in correct order. If all the conditions are met, op is

executable in pipeline path pp and op is marked in OpList. The algorithm returns

true if all the entries in OpList are marked. It returns false if there are unmarked

entries and reports them.

If there are n nodes, x pipeline and data-transfer paths in the graph and the

number of opcodes supported by the architecture is p, the time complexity of the

algorithm is O(x× n× p× logp) and space complexity is O(n× p). The opcode list

in each unit is a sorted list.

Finiteness Property

The finiteness property guarantees the termination of any operation executed

through the pipeline. The termination is guaranteed if all pipeline and data-transfer

paths except false pipeline and data-transfer paths have finite length and all nodes

on the pipeline or data-transfer paths have finite timing. The length of a pipeline or

data-transfer path is defined as the number of stages required to reach the final (leaf)

nodes from the root node of the graph. Formally,

∃K, s.t. ∀path ∈ (GPP,GDP), num stages(path) < K (3.4)

Here, num stages is a function that, given a pipeline or data-transfer path, returns the

number of stages (i.e. clock cycles) required to execute it. In the presence of cycles in

the pipeline path, this function cannot be determined from the structural graph model

alone. However, if there are no cycles in the pipeline paths, the termination property

37

is satisfied if the number of nodes in VS is finite, and each multi-cycle component has

finite timing.

Algorithm 4: Verify Finiteness

Inputs: i. Graph model G of the architecture.

ii. The list of operations OpList supported by the architecture.

Outputs: i. True, if the graph model satisfies this property else false.

ii. In case of failure, report the list of paths that violates this property.

Begin

PathList = {};
for each operation op supported by the architecture

PathLength = 0; ColorCode = 0

Push(< root, PathLength >, S); Unmark all the nodes in graph G

while S is not empty

< n,PathLength > = Pop(S)

if op ∈ SuppOpListn /* op is supported by unit n */

PathLength = PathLength + 1; timing = GetExecutionTime(op, n);

if ((n is already marked with ColorCode) or

(timing is greater than MaxExecutionTime) or

(PathLength is greater than MaxPathLength))

Insert < op, path > pair in PathList; break; /* exit while loop */

else

Mark n with ColorCode

if unit n is a leaf node, ColorCode = ColorCode + 1;

else

for each children node child of n

Push(< child, PathLength >, S);

endif

endif

else ColorCode = ColorCode + 1;

endwhile

endfor

Return true if PathList is empty

false otherwise, and report PathList.

End

Algorithm 4 presents the pseudo-code for verifying finiteness property. The al-

gorithm requires the graph model G and the list of operations supported by the

architecture (OpList) as inputs. It traverses the graph in depth-first manner for each

operation op and identifies all the pipeline paths op-pp that support op. For each

operation it marks different pipeline paths op-pp with a different color. A cycle is

detected if the same colored node is visited more than once during traversal. The

pipeline path op-pp with cycle will be stored in PathList. This property is also vio-

lated when there are paths that are longer than MaxPathLength or when the execution

time needed by op in any node in that path is greater than MaxExecutionTime. The

algorithm returns true if PathList is empty. It returns false if there are entries in

PathList and reports them.

Our finiteness algorithm assumes that there are no cycles in the pipeline. If the

cycles are allowed in the pipeline due to the reuse of the resources, our algorithm

needs to be modified. Let us assume that a resource is reused by an operation op for

nop times. We can modify the algorithm to check for “already marked with ColorCode

for nop times” instead of checking “already marked with ColorCode” for the operation

op.

If there are n nodes, x pipeline and data-transfer paths in the graph and the

number of opcodes supported by the architecture is p, the time complexity of this

algorithm is O(x× n× p× logp) and space complexity is O(n× p). The opcode list

in each unit is a sorted list.

Architecture-specific Properties

The architecture must be well-formed based on the original intent of the archi-

tecture model. To verify the validity of this property we need to verify several archi-

tectural properties. Here we mention some of the architecture specific properties we

verify in our framework.

❐ The number of operations processed per cycle by a unit can not be smaller

than the total number of operations sent by its parents unless the unit has

a reservation station. This event (fewer output instructions than the input

39

instructions) is not an error if that specific unit kills certain operations based

on certain conditions e.g., killing no operation (NOP).

❐ There should be a path from an execution unit supporting branch opcodes to

program counter (PC) or Fetch unit to ensure that PC is modified in case of

branch mis-prediction.

❐ The instruction template should match the available pipeline bandwidth. How-

ever, having instruction template size different than pipeline bandwidth does

not always imply an error because a machine with n operations in an instruction

and m (> n) parallel pipeline paths may have many multicycle units. Similarly,

the architecture may have m (< n) parallel pipeline paths if it has a reservation

station and the instruction fetch timing is large.

❐ There must be a path from load/store unit to main memory via storage com-

ponents to ensure that every memory operation is complete.

❐ The address space used by the processor must be equal to the union of address

spaces covered by memory subsystem (SRAM, cache hierarchies etc.) to ensure

that all the memory accesses can complete.

These are only some of the properties we currently verify in our framework. In

this manner, for every architecture with new architectural features we can easily add

and verify new properties for those features.

Algorithm 5 shows how we apply these properties in our framework. We first

verify finiteness property before applying any other properties in our framework. If

there are paths with infinite length and timing, the finiteness algorithm will display

the path and exit. Next, we apply the connectedness property followed by the false

pipeline and data-transfer path property. The remaining properties can be applied in

any order. The worst case time complexity of Algorithm 5 is O(x× n× (x+ plogp))

and space complexity is O(n×p), where the architecture graph has n nodes, x pipeline

and data-transfer paths, and the number of operations supported by the processor is

p. Typically, the numeric values of these variables are not large: both n and x are

less than 100, and p is less than 1000. As a result, it requires less than a second to

verify an architecture specification as demonstrated in the next section.

Algorithm 5: Verify Architecture Specification

Input: Graph model G of the architecture.

Output: True, if the graph model satisfies all the properties

else false, and report the error.

Begin

status = VerifyFiniteness (G, G.SupportedOpcodeList);

if (status == false)

Report the paths that violate this property;

return false;

endif

status = VerifyConnectedness (G, G.ListOfUnits, ...);

if (status == false) {
Report the components that are not connected;

return false;

endif

status = VerifyFalsePipelineDataTransferPaths(G);

if (status == false) {
Report the list of false pipeline and data-transfer paths;

return false;

endif

status = VerifyCompleteness (G, G.SupportedOpcodeList);

if (status == false) {
Report the list of operations that are not executable;

return false;

endif

/* Apply other architecture specific properties */

.

return true;

End

41

3.1.3 Experiments

In order to demonstrate the applicability and usefulness of our validation ap-

proach, we have described a wide range of architectures using the EXPRESSION

ADL: MIPS R10K [31], TI C6x [89], PowerPC [30], and DLX [22] that are collectively

representative of RISC, DSP, VLIW, and superscalar architectures. Our framework

generates the graph model from the ADL specification. We have implemented each

property as a function that operates on the graph model. Finally, we have applied

these properties on the graph model to verify that the specified architecture is well-

formed. Table 3.1 shows the specification validation time for different architectures

on a 333 MHz Sun Ultra-II with 128M RAM. This includes the time to generate

the graph model from the ADL specification and to apply all the properties on the

graph model. The validation time depends on three aspects: number of properties

applied, complexity of the structure and the number of operations supported by the

architecture. Typically, the validation time is in the order of seconds.

Table 3.1: Specification validation time for different architectures

Architecture ARM DLX TI C6x PowerPC MIPS R10K
Validation Time (seconds) 0.2 0.1 0.2 0.3 0.5

In the remainder of this section, we describe our specification validation experi-

ments. First, we describe the validation of the DLX specification in detail. Next, we

summarize the incorrect specification errors captured by our framework during design

space exploration of different architectures. We have described the architectures us-

ing EXPRESSION ADL. We have performed many modifications of the specification.

These are some of the typical modifications an architect would like to do during de-

sign space exploration. The errors captured by our framework represent the common

mistakes made during modification of the architecture specification.

Validation of the DLX specification

Our framework generated the graph model G from the ADL specification of the

DLX architecture. Figure 3.6 shows the simplified graph model of the DLX architec-

ture. Figure 3.6 is obtained by adding two execution paths (seven-stage multiplier

and a multi-cycle divider) in the processor pipeline shown in Figure 3.2. The oval

(unit) and rectangular (storage) boxes represent nodes. The solid (pipeline) and

dotted (data-transfer) lines represent edges.

Register File

Pipeline edge
Data-transfer edge

Functional unit
Storage

Fetch

FADD2

FADD3

FADD4

WriteBack

MEM

MUL2

MUL1 FADD1

PC Memory

Decode

IALU

MUL7

DIV

Figure 3.6: The DLX architecture

We applied all the properties (Algorithm 5) on the graph model G. We encountered

two kinds of errors viz., incomplete specification errors and incorrect specification er-

rors. An example of an incomplete specification error we uncovered is that the opcode

assignment is not done for the fifth stage of the multiplier pipeline. Similarly, an ex-

ample of an incorrect specification error we found is that only load/store opcodes were

mapped for the memory stage (MEM). Since all the opcodes pass through memory

stage in DLX, it is necessary to map all the opcodes in memory stage as well.

We used Algorithm 5 for specification validation. First, the finiteness property is

applied on the graph model. It detects a violation for the division operation since

the multi-cycle division unit (DIV) has an undefined latency value. Once the latency

for the division operation is defined, the finiteness property is successful. Next, the

connectedness property is applied. It detects that the sixth stage of the multiplier unit

43

(MUL6) is not connected. Once it is connected properly (from MUL5 to MUL6, and

from MUL6 to MUL7), the connectedness property is successful. The false pipeline

and data-transfer path detection property is successful. Finally, the completeness

property is violated for the multiply operation. This operation is not defined in the

MUL5 unit. As a result, the multiply operation cannot execute in the pipeline. Once

this is fixed, the validation of the DLX specification is successful.

Violation of Properties during DSE

We have performed many modifications of several architecture specifications. These

are typical changes made by a designer during exploration. Here we briefly mention

some of the errors captured using our approach.

✰ We have modified the MIPS R10K ADL description to include another load/store

unit that supports only store operations. The false data-transfer path property

is violated since there is a write connection from the load/store unit to the

floating-point register file that will never be used.

✰ We have modified the PowerPC ADL description to have a separate L2 cache

for instruction and data. Validation determined that there were no paths from

L2 instruction cache to main memory. The connection between L2 instruction

cache and unified L3 cache was missing.

✰ We have modified the C6x architecture’s data memory by adding two SRAM

modules to the existing cache hierarchy. The property validation fails due to

the fact that the address ranges specified in the SRAMs and cache hierarchy are

not disjoint, moreover union of these address ranges did not cover the physical

address space specified by the processor description.

✰ We have added a coprocessor pipeline to the MIPS R10K architecture that

supports vector integer multiplication. This path was reported as a false pipeline

path since this opcode is not added in all the units in the path correctly. It also

violates the completeness property since the read/write connections to integer

register file is missing from the coprocessor pipeline.

✰ In the R10K architecture we have decided to use a coprocessor local memory

instead of integer register file for reading operands. We have removed the read

connections that are used to access the integer register file and added local mem-

ory, DMA controller and connections to the main memory. The connectedness

property is violated for two ports in the integer register file.

✰ We have modified the PowerPC ADL description by reducing the instruction

buffer size from 16 to 4. This violates the architecture-specific property. The

fetch unit fetches 8 instructions per cycle and decode unit decodes 3 instructions

per cycle, hence there is a potential for instruction loss.

Table 3.2 summarizes the errors captured during design space exploration of ar-

chitectures. Each column represents one architecture and each row represents one

property. An entry in the table presents the number of violations of that property for

the corresponding architecture1. The figure (in parenthesis) below each architecture

represents the number of design space explorations done for that architecture. Each

class of problem is counted only once. For example, the DLX error mentioned above

(where one of the unit has incorrect specification of the supported opcodes that led

to false pipeline path for most of the opcodes) is counted only once instead of using

the number of opcodes that violated the property.

Table 3.2: Summary of property violations during DSE

ARM DLX C6x R10K PowerPC
(1) (2) (2) (3) (2)

Connectedness 0 0 1 2 1
False Pipeline/Data-transfer Path 2 5 3 4 2

Completeness 1 2 3 3 2
Architecture-specific 2 4 5 12 6

Finiteness 0 0 0 1 1

Our experiments have demonstrated the utility of our validation approach across a

wide range of realistic architectures, and the ability to detect errors in the architecture

1Of course the error numbers will change depending on the number of design space explorations
and the type of modifications done each time.

45

specification, as well as errors generated through inconsistent modifications to an

architecture during design space exploration.

3.2 Validation of Dynamic Behavior

This section presents a technique to verify the dynamic behavior of an architecture

specified in an ADL by analyzing the instruction flow in the pipeline. Figure 3.7 shows

our modified flow for validation of static and dynamic behaviors. The FSM model is

generated from the ADL specification. Based on this model, we propose a method for

validating pipelined processor specifications using two properties: determinism and

in-order execution. Our automatic property checking framework determines if all the

necessary properties are satisfied. In case of a failure, it generates traces so that a

designer can modify the ADL specification of the architecture.

EXPRESSION Description

Verify Verify

Properties
(Dynamic)

Properties
(Static)Model

Graph
Model
FSM

FailedSuccessFailed Success

Validation of Dynamic Behavior Validation of Static Behavior

Architecture Specification

Figure 3.7: ADL driven validation of pipeline specifications

The remainder of this section is organized as follows. First, we describe a FSM-

based modeling of processor pipelines. Next, we present the validation technique

followed by a case study using the DLX architecture.

3.2.1 FSM-based Modeling of Processor Pipelines

In this section we describe how we derive the FSM model of the processor pipeline

from the ADL specification. We first explain how we specify the information necessary

for FSM modeling, then we present the FSM model of the processor pipelines using

the information captured in the ADL.

A. Processor Pipeline Description in ADL

Figure 3.8(a) shows a fragment of a processor pipeline. The oval boxes represent

units, rectangular boxes represent pipeline latches, and arrows represent pipeline

edges. In this section we briefly describe how we specify pipeline flow conditions for

stalling, normal flow, bubble insertion, exception and squashing in the ADL.

A unit is in normal flow (NF) if it can receive instruction from its parent unit and

can send to its child unit. A unit can be stalled (ST) due to external signals or due to

conditions arising inside the processor pipeline. For example, the external signal that

can stall a fetch unit is ICache Miss; the internal conditions to stall the fetch unit

can be due to decode stall, hazards, or exceptions. A unit performs bubble insertion

(BI) when it does not receive any instruction from its parent (or busy computing in

case of multicycle unit) and its child unit is not stalled. A unit can be in exception

condition due to internal contribution or due to an exception. A unit is in bubble/nop

squashed (SQ) stage when it has a nop instruction that gets removed or overwritten

by an instruction of the parent unit.

For units with multiple children the flow conditions due to internal contribution

may differ. For example, the unit UNITi−1,j in Figure 3.8(a) with q children can be

stalled when any one of its children is stalled, or when some of its children are stalled

(designer identifies the specific ones), or when all of its children are stalled; or when

none of its children are stalled. During specification, the designer selects from the set

{any, some, all, none} the internal contribution along with any external signals to

specify the stall condition for each unit. Similarly, the designer specifies the internal

contribution for other flow conditions [68].

The PC unit can be stalled (ST) due to external signals such as cache miss or when

47

Stage

Stage i

UNITi−1, j

IRi,j

.

.

.
.

.

.

Stage m

Stage

. . . .

. . . .

Stage i−1

Stage i−2

u−2

u−1

UNITu−2, f

UNITu−1, v

IRu,v

UNITm, w

UNITi−2, 2 UNITi−2, p

UNITi, qUNITi, 2UNITi, 1

IRi−1,1 IRi−1,2 IR i−1,p

IRi+1,qIRi+1,2IRi+1,1

IR m+1,w

IRu−1,f

UNITi−2, 1

..

....

..

.

.

.

.

(a) With units and pipeline latches

IRi,j

Stage i−2

Stage i−1

Stage i

IRi−1,2 IRi−1,p

IRi+1,1 IRi+1,2 IRi+1,q

i−1,1IR . . .

. . .
...................................

..................................

..................................

(b) With only instruction registers

Figure 3.8: A fragment of the processor pipeline

the fetch unit is stalled. When a branch is taken the PC unit is said to be in branch

taken (BT) state. The PC unit is in sequential execution (SE) mode when the fetch

unit is in normal flow, there are no external interrupts, and the current instruction is

not a branch instruction.

B. FSM Model of Processor Pipelines

This section presents an FSM-based modeling of controllers in pipelined proces-

sors. Intuitively, the FSM captures the information of all the storage elements in the

pipeline including program counter and pipeline latches. Let us assume that there

are n such elements. Therefore, a state Snt in the FSM has the values of all the n

elements at time t. The state transition (next-state) function returns the set of values

of all the n elements at next time step (clock cycle). In other words the next state of

Snt is Snt+1. The remainder of this section describes the FSM model in detail.

Figure 3.8(b) shows a fragment of the processor pipeline with only instruction

registers2 (IR). We assume a pipelined processor with in-order execution as the target

for modeling and validation. The pipeline consists of n stages. Each stage can have

more than one pipeline register (in case of fragmented pipelines). Each single-cycle

pipeline register takes one cycle if there are no pipeline hazards. A multi-cycle pipeline

register takes m cycles during normal execution (no hazards). Let Stagei denote the

i-th stage where 0 ≤ i ≤ n − 1, and ni the number of pipeline registers between

Stagei−1 and Stagei. Let IRi,j denote an instruction register between Stagei−1 and

Stagei (1 ≤ i ≤ n, 1 ≤ j ≤ ni). The first stage, i.e., Stage0, fetches an instruction

from instruction memory pointed by program counter PC, and stores the instruction

into the first instruction register IR1,j (1 ≤ j ≤ n1). Without loss of generality, let us

assume that IRi,j has p parent units and q children units as shown in Figure 3.8(b).

During execution, the instruction stored in IRi,j is executed at Stagei and then stored

into the next instruction register IRi+1,k (1 ≤ k ≤ q).

In this section, we define a state of the n-stage pipeline as values of PC and∑n−1
i=1 ni instruction registers. Let PC(t) and IRi,j(t) denote the values of PC and

IRi,j at time t, respectively. Then, the state of the pipeline at time t is defined as

S(t) = < PC(t), IR1,1(t), · · · , IRi,j(t), · · · , IRn−1,nn−1(t) > (3.5)

We first describe the flow conditions for stalling(ST), normal flow(NF), bubble inser-

tion(BI), bubble squashing (SQ), sequential execution(SE), and branch taken (BT) in

the FSM model, then we describe the state transition functions possible in the FSM

model using the flow conditions.

In this section we use the symbol ‘∨’ to denote logical or, and ‘∧’ to denote logical

and. For example, (a ∨ b) implies (a or b), and (a ∧ b) implies (a and b). We use the

symbols
∨j
i and

∧j
i to denote sum and product of symbols respectively. For example,∨2

i=0 ai implies (a0 ∨ a1 ∨ a2), and
∧2
i=0 ai implies (a0 ∧ a1 ∧ a2).

2We refer to these pipeline latches (registers) as instruction registers since they are used to
transfer instructions from one pipeline stage to the next.

49

Modeling Conditions in FSM

Let us assume that every instruction register IRi,j has an exception bit XNIRi,j ,

which is set when the exception condition (condXNIRi,j say) is true. The XNIRi,j has

two components viz., exception condition when the children are in exception (XN child
IRi,j

say) and exception condition due to exceptions on IRi,j (XN self
IRi,j

say). More formally

the exception condition at time t in the presence of a set of external signals I(t) on

S(t) is, condXNIRi,j(S(t), I(t)) (condXNIRi,j in short),

condXNIRi,j = XNIRi,j = XN child
IRi,j
∨XN self

IRi,j
(3.6)

For example, if the designer specified that any (see Section 3.2.1(A)) of the children

are responsible for the exception on IRi,j i.e., IRi,j will be in exception condition if

any of its children is in exception, the Equation (3.6) becomes:

XNIRi,j = (
∨q
k=1 XNIRi+1,k

) ∨XN self
IRi,j

Similarly, the conditions for squashing (say condSQIRi,j), stalling (say condSTIRi,j),

normal flow (say condNFIRi,j) and bubble insertion (say condBIIRi,j) are shown below.

condSQIRi,j = SQIRi,j = NF parent
IRi,j

∧ ST childIRi,j
∧ ((IRi,j).opcode == nop) (3.7)

condSTIRi,j = (ST childIRi,j
∨ ST selfIRi,j

) ∧XNIRi,j ∧ SQIRi,j (3.8)

condNFIRi,j = NF parent
IRi,j

∧NF child
IRi,j
∧ ST selfIRi,j

∧XNIRi,j ∧ SQIRi,j (3.9)

condBIIRi,j = BIparentIRi,j
∧BIchildIRi,j

∧ ST selfIRi,j
∧XNIRi,j ∧ SQIRi,j (3.10)

Similarly the conditions for PC viz., condSEPC (SE: sequential execution), condBIPC (BI:

bubble insertion), and condBTPC (BT: branch taken) can be described using the infor-

mation available in the ADL. The condBTPC is true when a branch is taken or when

an exception is taken. When a branch is taken, the PC is modified with the target

address. When an exception is taken, the PC is updated with the corresponding

interrupt service routine address. Let us assume that the BTPC bit is set when the

unit completes execution of a branch instruction and the branch is taken. Formally,

condSEPC(S(t), I(t)) = NF child
PC ∧ ST selfPC ∧BTPC ∧XNIR1,j

(3.11)

condSTPC(S(t), I(t)) = (ST childPC ∨ ST selfPC) ∧BTPC ∧XNIR1,j
(3.12)

condBTPC(S(t), I(t)) = (BTPC ∨XNIR1,j
) (3.13)

Modeling State Transition Functions

In this section, we describe the next-state function of the FSM. Figure 3.8(b) shows

a fragment of the processor pipeline with only instruction registers. If there are no

pipeline hazards, instructions flow from IR (instruction register) to IR every m cycles

(m = 1 for single-cycle IR). In this case, the instruction in IRi−1,l (1 ≤ l ≤ p) at time

t proceeds to IRi,j after m cycles (m is the timing of IRi−1,l, and IRi,j has p parent

latches and q child latches as shown in Figure 3.8(b)), i.e., IRi,j(t+1) = IRi−1,l(t). In

the presence of pipeline hazards, however, the instruction in IRi,j may be stalled, i.e.,

IRi,j(t + 1) = IRi,j(t). Note that, in general, any instruction in the pipeline cannot

skip pipeline stages. For example, IRi,j(t+ 1) cannot be IRi−2,v(t) (1 ≤ v ≤ ni−2) if

there are no feed-forward paths.

The rest of this section formally describes the next-state function of the FSM.

According to the Equation (3.5), a state of a n−stage pipeline is defined by (M + 1)

registers (PC and M instruction registers where, M =
∑n−1
i=1 ni). Therefore, the next

state function of the pipeline can also be decomposed into (M+1) sub-functions each

of which is dedicated to a specific state register. Let fNSPC and fNSIRi,j
(1 ≤ i ≤ n − 1,

1 ≤ j ≤ ni) denote next-state functions for PC and IRi,j respectively. Note that in

general fNSIRi,j
is a function of not only IRi,j but also other state registers and external

signals from outside of the controller. For the program counter, we define three types

of state transitions as follows.

PC(t+ 1)

= fNSPC (S(t), I(t))

=


PC(t) + L if condSEPC(S(t), I(t)) = 1

target if condBTPC(S(t), I(t)) = 1

PC(t) if condSTPC(S(t), I(t)) = 1

(3.14)

Here, I(t) represents a set of external signals at time t, L represents the instruction

length, and target represents the branch target address which is computed at a certain

pipeline stage. The condxPC ’s (x ∈ SE,BT, ST) are logic functions of S(t) and I(t) as

described in Equation (3.11) - Equation (3.13), and return either 0 or 1. For example,

if condSTPC(S(t), I(t)) is 1, PC keeps its current value at the next cycle.

51

For instruction registers, IRi,j (2 ≤ i ≤ n − 1, 1 ≤ j ≤ ni), we define five types

of state transitions as follows. The state transitions for the first instruction register,

IR1,j, will have IM(PC(t)) in place of IRi−1,l(t), where IM(PC(t)) denotes the

instruction pointed by the program counter (PC) in instruction memory (IM).

IRi,j(t+ 1)

= fNSi,j (S(t), I(t))

=



IRi−1,l(t) if condNFIRi,j(S(t), I(t)) = 1

IRi,j(t) if condSTIRi,j(S(t), I(t)) = 1

nop if condBIIRi,j(S(t), I(t)) = 1

IRi−1,l(t) if condSQIRi,j(S(t), I(t)) = 1

nop if condXNIRi,j(S(t), I(t)) = 1

(3.15)

The IRi,j is said to be stalled at time t if condSTIRi,j(S(t), I(t)) is 1, resulting in IRi,j(t+

1) = IRi,j(t). Similarly, IRi,j is said to flow normally at time t if condNFIRi,j(S(t), I(t))

is 1. A nop instruction (bubble) is inserted in IRi,j when condBIIRi,j(S(t), I(t)) or

condXNIRi,j(S(t), I(t)) is 1, resulting in IRi,j(t + 1) = nop. Similarly, when condSQIRi,j is

1, the bubble in IRi,j gets overwritten by the instruction from the parent instruction

register, i.e., IRi,j(t+ 1) = IRi−1,l(t) (1 ≤ l ≤ ni−1).

In this FSM model, signals coming from the datapath or the memory subsystem

into the pipeline controller are modeled as primary inputs to the FSM, and control

signals to the datapath or the memory subsystem are modeled as outputs from the

FSM.

3.2.2 Validation of Dynamic Properties

Based on the FSM model presented in Section 3.2.1, we propose a method for val-

idating dynamic behaviors of pipelined processor specifications using two properties:

determinism and in-order execution. We consider validation of dynamic behavior for

architectures with in-order execution. We first describe the properties needed for vali-

dating the specification. Next, we present an automatic property checking framework

driven by the EXPRESSION ADL [20].

A. Properties

This section presents two properties: determinism and in-order execution. Any

pipelined processor with in-order execution must satisfy these properties.

Determinism

To ensure correct execution, there should not be any instruction or data loss in

the pipeline. The bubble squashing and flushing of instructions are permitted. The

flushed instructions are fetched and executed again. The next-state functions for

all state registers must be deterministic. This property is valid if all the following

equations hold for ∀i, j(1 ≤ i ≤ n− 1, 1 ≤ j ≤ ni).

condSEPC ∨ condBTPC ∨ condSTPC = 1 (3.16)

condNFIRi,j ∨ cond
ST
IRi,j
∨ condBIIRi,j ∨ cond

XN
IRi,j
∨ condSQIRi,j = 1 (3.17)

∀x, y(x, y ∈ {SE,BT, ST} ∧ x 6= y), condxPC ∧ cond
y
PC = 0 (3.18)

∀x, y(x, y ∈ {NF, ST,BI,XN, SQ} ∧ x 6= y), condxIRi,j ∧ cond
y
IRi,j

= 0 (3.19)

The first two equations mean that in the next-state function for each state register,

the five conditions must cover all possible combinations of processor states S(t) and

external signals I(t). The last two guarantee that any two conditions are disjoint for

each next-state function. Informally, exactly one of the conditions should be true in a

clock cycle for each state register. As a result, at any time t an instruction register will

have a deterministic instruction. In other words, given an initial state of the pipelined

processor and an input application program consisting of instruction sequences, it is

possible to deterministically decide the instruction in a given instruction register at

a given time t.

In-Order Execution

A pipelined processor with in-order execution is correct if all instructions that are

fetched from instruction memory, flow from the first stage to the last stage, while

maintaining their execution order. In order to guarantee in-order execution, state

53

transitions of adjacent instruction registers must depend on each other. Illegal com-

bination of state transitions of adjacent stages are described below using Figure 3.8(b)

where 2 ≤ i ≤ n− 1, 1 ≤ j ≤ ni, 1 ≤ l ≤ p, and 1 ≤ k ≤ q.

An instruction register can not be in normal flow if all the parent instruction

registers (adjacent ones) are stalled. If such a combination of state transitions are

allowed, the instruction stored in IRi−1,l at time t will be duplicated, and stored into

both IRi−1,l and IRi,j in the next cycle. Therefore, the instruction will be executed

more than once. Formally, the Equation (3.20) should be satisfied. Similarly, the

equations (Equation (3.21) - Equation (3.32)) should be satisfied for IRi,j. The

detailed explanation is available in [68].

(
p∧
l=1

condSTIRi−1,l
) ∧ condNFIRi,j = 0 (3.20)

condNFIRi,j ∧ (
q∧

k=1

condSTIRi+1,k
) = 0 (3.21)

condBIIRi,j ∧ (
q∧

k=1

condSTIRi+1,k
) = 0 (3.22)

condNFIRi−1,l
∧ condBIIRi,j = 0 (3.23)

condBIIRi−1,l
∧ condBIIRi,j = 0 (3.24)

condSTIRi−1,l
∧ condSQIRi,j = 0 (3.25)

condXNIRi−1,l
∧ condSQIRi,j = 0 (3.26)

condSQIRi,j ∧ cond
NF
IRi+1,k

= 0 (3.27)

condSQIRi,j ∧ cond
NI
IRi+1,k

= 0 (3.28)

condNFIRi−1,l
∧ condXNIRi,j = 0 (3.29)

condSTIRi−1,l
∧ condXNIRi,j = 0 (3.30)

condSQIRi−1,l
∧ condXNIRi,j = 0 (3.31)

condBIIRi−1,l
∧ condXNIRi,j = 0 (3.32)

The above equations are not sufficient to ensure in-order execution in fragmented

pipelines. An instruction Ia should not reach join node earlier than an instruction Ib

when Ia is issued by the corresponding fork node later than Ib. Formally the following

equation should hold:

∀(F, J), Ia�JIb ⇒ ΓF (Ia) < ΓF (Ib) (3.33)

where, (F, J) is fork-join pair, Ia �J Ib implies Ia reached join node J before Ib,

ΓF (Ia) and ΓF (Ib) returns the timestamps when instructions Ia and Ib (respectively)

are issued by the fork node F.

The previous property ensures that instruction does not execute out-of-order.

However, with the current modeling two instructions with different timestamp can

reach the join node. If join node does not have capacity for more than one instruction

this may cause instruction loss. We need the following property to ensure that only

one immediate parent of the join node is in normal flow at time t:

∀x, y(x, y ∈ {1, 2, ..., p} ∧ x 6= y), condNFIRi−1,x
∧ condNFIRi−1,y

= 0 (3.34)

Similarly, the state transition of PC must depend on the state transition of IR1,j

(1 ≤ j ≤ n1). The illegal combination of state transitions between PC and IR1,j are

described below.

condSTPC ∧ condNFIR1,j
= 0 (3.35)

condSEPC ∧ (
n1∧
j=1

condSTIR1,j
) = 0 (3.36)

condBTPC ∧ (
n1∧
j=1

condSTIR1,j
) = 0 (3.37)

condSEPC ∧ condBIIR1,j
= 0 (3.38)

condBTPC ∧ condBIIR1,j
= 0 (3.39)

condSEPC ∧ condXNIR1,j
= 0 (3.40)

condSTPC ∧ cond
SQ
IR1,j

= 0 (3.41)

condSTPC ∧ condXNIR1,j
= 0 (3.42)

We have described all possible illegal combination of state transition functions (Equa-

tion (3.20) - Equation (3.42)). However, Equation (3.23), Equation (3.24), Equa-

tion (3.27), and Equation (3.28) are not necessary to prove in-order execution.

55

B. Automatic Validation Framework

Algorithm 6 describes the specification validation technique. It accepts the pro-

cessor specification, described in EXPRESSION ADL [20], as input. The FSM model

and the properties are generated from the ADL specification. In case of a failure, it

generates counter-examples so that the designer can modify the ADL specification of

the architecture.

Algorithm 6: Validation of Pipeline Specification

Input: ADL specification of the processor architecture.

Outputs: Success, if the processor model satisfies the properties.

Failure otherwise, and produces the counter-examples.

Begin

Generate FSM model from the ADL specification using Equation (3.5) - Equation (3.15)

Generate properties using Equation (3.16) - Equation (3.42)

Apply the properties on the FSM model to verify determinism and in-order execution.

Return Success if all the properties are verified;

Failure otherwise, and produce the counter-example(s).

End

We have verified the properties using two different approaches. First, we have

used an SMV [28] based property checking framework as shown in Figure 3.9(a). The

SMV based approach fits nicely in our validation framework. However, the SMV is

limited by the size of the design it can handle. We have also developed an equation

solver based framework as shown in Figure 3.9(b) that can handle complex designs.

In this section, we briefly describe these two approaches. The detailed description is

available in [68].

Validation using Model Checker

The FSM model (SMV description) of the processor is generated from the ADL

specification. The properties are also described using SMV description. The proper-

ties are applied on the FSM model using the SMV model checker as shown in Fig-

ure 3.9(a). In case of failure, SMV generates counter-examples that can be used to

modify the ADL specification. Each counter-example describes the failed equation(s)

and the instruction registers that are involved.

Properties FSM Model

SMV

Analyze
Success Failed

(EXPRESSION)
Processsor Specification

C
o
u
n
t
e
r
-
e
x
a
m
p
l
e
s

(a) Framework using SMV

Equations

Analyze

Espresso

Eqntott

Properties FSM Model

Success Failed

Processsor Specification
(EXPRESSION)

C
o
u
n
t
e
r
-
e
x
a
m
p
l
e
s

(b) Using equation solver

Figure 3.9: Automatic validation frameworks

We have verified the in-order execution style of the processor specification in

two ways. First, the framework generates properties using Equation (3.20) - Equa-

tion (3.42) to verify in-order execution. This is similar to how other properties (e.g.,

determinism) are verified. Second, an auxiliary automata is used instead of using

equations to verify in-order execution. In the auxiliary automata based approach,

we use the same FSM model of the processor (SMV description) generated from the

ADL specification. We have developed a SMV module that generates two instructions

randomly with random delay between them. These two instructions are recorded and

fed to the FSM model. The processor (FSM) model accepts these instructions and

performs regular computations. At the completion (e.g., writeback unit) the auxiliary

automata analyzes these two instructions to see whether they completed in the same

sequence as generated. Note that, this auxiliary automata does not need any manual

57

modification for different architectures. In case of failure, SMV generates counter-

examples containing instruction sequences (instruction pair with NOPs in between

them) that violate in-order execution for the processor model.

Validation using Equation Solver

In the second approach, the framework generates the FSM model and flow equa-

tions for normal flow, stall, exception, squashing, and bubble insertion for each in-

struction register and sequential execution, stall, and branch taken for PC using

ADL specification and Equation (3.5) - Equation (3.15). It generates the equations

necessary for verifying properties using ADL description and Equation (3.16) - Equa-

tion (3.42) as shown in Figure 3.9(b).

The Eqntott [26] tool converts these equations in two-level representation of a two-

valued Boolean function. This two-level representation is fed to Espresso [25] tool that

produces minimal equivalent representation. Finally, the minimized representation is

analyzed to determine whether the property is successfully verified or not. In case

of failure, it generates traces explaining the cause of failure. The trace contains the

equation(s) that failed, and the identification of the instruction registers involved.

The designer therefore knows the property that is violated and the reason for the

violation. This information is used to modify the ADL specification. The detailed

description is available in [68].

3.2.3 A Case Study

In a case study we successfully applied the proposed methodology to the single-

issue DLX [22] processor. We have chosen the DLX processor since it has been

well studied in academia and contains many interesting features such as fragmented

pipelines and multicycle units.

We used the EXPRESSION ADL [20] to capture the structure and behavior of the

DLX processor shown in Figure 3.6. We captured the conditions for stalling, normal

flow, exception, branch taken, squashing, and bubble insertion in the ADL. Using the

ADL description, we automatically generated the equations for flow conditions for all

the units. The necessary equations for verifying the properties such as determinism

and in-order execution are generated automatically from the given ADL specification.

The detailed description of the case study is available in [68].

We have used Espresso [25] to minimize the equations. These minimized equations

are analyzed to verify whether the properties are violated. Our framework determined

that the Equation (3.33) is violated and generated a simple instruction sequence which

violates in-order execution: floating-point addition followed by integer addition. The

decode unit issued the floating point addition Ifadd operation in cycle m to floating-

point adder pipeline and an integer addition operation Iiadd to integer ALU at cycle

m+1. The instruction Iiadd reached the join node (MEM unit) prior to Ifadd.

We have modified the ADL specification to change the stall condition depending

on current instruction in decode unit and the instructions active in the integer ALU,

MUL, FADD, and DIV pipelines. The current instruction will not be issued (decode

stalls) if it leads to out-of-order execution. Our framework generates equations for

the modified processor model. The Equation (3.34) is violated for this modeling for

the join node (MEM unit). The instruction sequence generated by our framework for

this failure consists of a multiplication operation (issued by decode unit in cycle m)

followed by a floating-point add operation (issued by decode unit in cycle (m + 3)).

As a result both the operations reached memory stage at cycle (m+7).

Finally, the stall condition of the decode unit is modified to avoid completion of

two instructions at the same time. The in-order execution was successful for this

modeling. In such a simple situation this kind of specification mistakes might appear

as trivial, but when the architecture gets complicated and exploration iterations and

varieties increase, the potential for introducing bugs also increases.

We have verified the properties using two different methods: using the SMV model

checker and the Espresso equation solver, as described in Section 3.2.2. We have used

a 300 MHz Sun UltraSparc-II with 1024M RAM to run the experiments. Table 3.3

shows the performance of the two methods for verifying in-order execution property.

We have used the VLIW DLX architecture as the base configuration and modified

the number of opcodes. The first column presents our two methods of specification

validation. The second, third, and fourth columns present the execution time (in

59

seconds) of the two methods for verifying in-order execution property for different

architecture configurations.

Table 3.3: Validation of in-order execution by two frameworks

DLX Processor Configurations
8 opcodes 16 opcodes 32 opcodes

SMV based Framework 302.4 sec 400.4 sec 740.9 sec
Espresso based Framework 5.4 sec 6.7 sec 9.4 sec

We have performed experiments by modifying the pipeline structure such as ad-

dition of pipeline paths and pipeline stages. Our SMV based framework could not

verify in-order execution when pipeline path is added to the VLIW DLX architec-

ture. However, our equation solver based framework requires in the order of seconds

to verify in-order execution and can handle complex configurations. The SMV based

framework performed better for verifying the determinism. This is due to the fact

that the properties (equations) that need to be applied to verify determinism consists

of local computations for each state register. The SMV based framework took 0.8

seconds to verify determinism property, whereas the equation solver based framework

took 4 seconds for the same DLX configuration. Although we have not applied this

technique on other architectures, we believe the SMV based framework is suitable for

verifying determinism property whereas our equation solver based framework can be

used for verifying in-order execution of complex architectures.

3.3 Chapter Summary

Validation of the architectural specification is essential to ensure that the reference

model is golden so that it can be used to uncover bugs in the design. This chapter

presented a framework for automatic modeling and validation of pipelined processor

specifications driven by an architecture description language (ADL).

We developed validation techniques to ensure that the static behavior of the

pipeline is well-formed by analyzing the structural aspects of the specification us-

ing a graph based model. We applied these techniques on the graph model of the

MIPS R10K, TI C6x, DLX, and PowerPC architectures to demonstrate the useful-

ness of this approach. The dynamic behavior is verified by analyzing the instruction

flow in the pipeline using a FSM-based model to validate several important archi-

tectural properties such as determinism and in-order execution in the presence of

hazards and multiple exceptions. We applied this methodology to the DLX processor

to demonstrate the usefulness of this technique.

These properties are by no means complete to prove the correctness of the specifi-

cation. The designer can add new architecture specific properties and easily integrate

it in our framework. Our validation framework uses two approaches: SMV based prop-

erty checking and Espresso based equation minimization. The framework determines

whether all the necessary properties are satisfied. In case of a failure, it generates

traces so that a designer can modify the ADL specification of the architecture.

61

Chapter 4

Model Generation using Functional

Abstraction

Contemporary processor architectures vary widely in terms of their architectural

features. Program address generation and instruction dispatch features are widely

used in DSP processors. VLIW processors use strong compiler support to ensure cor-

rect execution of long instruction words. Superscalar processors on the other hand,

use hardware scheduling techniques, register renaming, and so on. Multimedia proces-

sors support SIMD operations. Furthermore, each architecture has different branch

prediction schemes, execution style (e.g., in-order, out-of-order), interrupt handling

procedures, and last but not the least different memory subsystems. Emerging archi-

tectures have combined features of classical architectures (e.g., RISC, DSP, VLIW,

and superscalar). For example, the Intel Itanium combines the features of VLIW and

superscalar architectures; the TI C6x family combines the features of DSP and VLIW

architectures. In order to allow rapid design space exploration of such heterogeneous

processor-memory architectures, the framework requires the ability to capture a wide

variety of such architectural features.

Moreover, during design space exploration using customized Intellectual Property

(IP) cores designers may want to add certain architectural features (e.g., some su-

perscalar features to a VLIW processor core) to see how it impacts the area, power,

performance, and other important design parameters. Similarly, to find the best

match between the application characteristics and the memory organization features

(e.g., caches, stream buffers, access modes, SRAM, DRAM etc.), the designer needs

to explore different memory configurations in combination with different processor

architectures, and evaluate each such system for cost, power, and performance. To

enable this, designers need (i) a way of specifying a wide variety of processor-memory

features and (ii) the ability to generate automatically executable models of the archi-

tecture. It is necessary to find the commonality (if exists) among such heterogeneous

architectures and use that as a building block for defining a set of abstraction prim-

itives. The abstraction primitives should be simple enough to allow correlation with

the architectural features. On the other hand, the primitives should be generic enough

to be useful across a wide range of architectures. In this chapter we present a func-

tional abstraction technique that enables automatic generation of executable models

from the ADL specification.

This chapter is organized as follows. Section 4.1 surveys contemporary processor-

memory architectures. Section 4.2 presents the functional abstraction needed to cap-

ture a wide variety of architectural features and memory configurations. Section 4.3

describes the procedure for reference model generation from the ADL specification

using functional abstraction. Finally, Section 4.5 summarizes the chapter.

4.1 Survey of Contemporary Architectures

We have studied contemporary processor and memory architectures from popu-

lar architectural domains, including RISC, DSP, VLIW, and superscalar [49]. This

section summarizes the survey and outlines the similarities and differences of the

architectural features available in a wide a variety of processor and memory architec-

tures.

4.1.1 Summary of Architectures Studied

In order to understand and characterize the diversity of contemporary architec-

tures, we have surveyed processors from different architectural domains - RISC (MIPS

63

R4000 [48] and StrongArm [82]), DSP (Motorola 56000 and TI C5x), VLIW DSP (TI

C6x [33], MAP1000A [7], and Motorola StarCore [29]), superscalar (MIPS R10000

[31], MPC7450 [30], Sun UltraSparc IIi [83], and DEC Alpha 21364), and hybrid

(Intel IA-64 [95]). The Intel IA-64 architecture has combined features of VLIW and

superscalar processors with out-of-order execution.

Table 4.1 summarizes the processor-memory features for different architectures.

Each row of the table corresponds to an architectural feature. Each column represents

an architecture. We have shown the relationship between a feature and an architec-

ture only. In general, an architectural feature may also depend on the type of the

instruction.

An entry in Table 4.1, TAB[F, A], represents the behavior of an architecture

A towards a feature F. If an entry is marked x, that feature is supported by that

architecture. If an entry is blank, the feature is either not supported or not applicable

(or not known) to that architecture. An entry containing an integer number, n, means

that feature is supported n times. An entry containing a series , (n-m), implies that

the feature is supported for i times, where (n <= i <= m). Similarly, an entry

containing a set, {n,m}, means that the feature is supported either n or m times.

For example, the table entry with memory feature “Levels of D-Cache” and processor

name IA64 has value 3, this implies IA-64 has 3 levels of data cache. The row

corresponding to “operand read in” has four types of values depending on where the

operands are read in the pipeline: (D: Decode stage), (R: Read stage), (I: Issue stage),

and (E: Execute stage). The row corresponding to Branch Prediction has values that

indicate the method of branch prediction employed in the respective architecture:

(2b: 2-bit algorithm using branch history table), (BT: BTB based prediction), and

(MA: dynamically choose among multiple algorithms based on local predictor table,

global predictor table and branch history table).

4.1.2 Similarities and Differences

Broadly speaking, the structure of a processor consists of functional units, con-

nected using ports, connections and pipeline latches. Major functional units are the

Architectures RISC DSP VLIW DSP Superscalar Hybrid
Processor-Memory R4K SA 56K C5x C6x MA SC R10 MP U3 α64 IA64

Features

of fetches/cycle 2 1 1 1 8 4 8 4 4 4 4 6
of fetch stages 2 1 1 1 4 3 1 2 1 1 2

of decodes/cycle 2 1 1 1 8 4 4 3 4 4
entries in decode RS 12 8

of issue units 3 3 1 3 3
of issues/cycle 6 5 6 4 6 6

entries in issue RS 48 12 35
operations/instruction 1 1 1 1 8 4 1 1 1 1
of parallel exec units 8 4 6 5 11 6

Branch Prediction 2b BT MA
Feedback paths x x x

Operand read in D D E R E E E I I I R I
SIMD support x x x x

entries in completion Q 32 16
Register Renaming x x x x

Dynamic Scheduling x x x x x
Speculation x x
Predication x x

register files 2 1 3 1 3 3 2 2 3 3 5
Coprocessors 3 1

pipeline stages 8 5 3 4 3 5 5-7 7 9 6 10
Levels of D-Cache 1-2 1 0-2 1 0-2 2 3 2 2 3

cache prefetch x x x
cache hints x

On-chip SRAM x x x x x
configurable SRAM x
Off-chip DRAM x x x x x x x x x x x x
page/burst mode x x

Write Buffer x x x
Read Buffer x

Victim Buffer x
Stack x x x
FIFO x
DMA x x x x x

parallel mem transfers 1 2 2 2 1 2 2
mem pipelining x x

Table 4.1: Processor-memory features of different architectures. R4K: MIPS R4000,
SA: StrongArm, 56K: Motorola 56K, c5x: TI C5x, c6x: TI C6x, MA: MAP1000A,
SC: Starcore, R10: MIPS R10000, MP: Motorola MPC7450, U3: SUN UltraSparc
IIi, α64: Alpha 21364, IA64: Intel IA-64

65

PC unit, fetch unit, decode unit, branch prediction unit, issue unit, load store unit,

TLB, execute unit and completion or writeback unit. Similarly, the structure of a

memory subsystem consists of SRAM, DRAM, cache hierarchy, and so on.

Although a broad classification makes the architectures look similar, each archi-

tecture differs in terms of the algorithm it employs in branch prediction, the way it

detects hazards, the way it handles exceptions etc. Moreover, each unit has differ-

ent parameters for different architectures (e.g., number of fetches per cycle, levels

of cache, cache line size etc.). Program address generation and instruction dispatch

features are widely used in DSP processors. VLIW processors use strong compiler

support to ensure correct execution of long instruction words. Superscalar processors

on the other hand, use hardware scheduling techniques, register renaming etc. Mul-

timedia processors support SIMD operations. The contemporary EPIC architectures

use predication and speculation techniques to increase instruction level parallelism.

Depending on the architecture a functional unit may perform the same computa-

tion at different stages in the pipeline. For example, read-after-write (RAW) followed

by operand read happen in the decode unit for some architectures (e.g., DLX [22]),

whereas in some others these operations are performed in the issue unit (e.g., MIPS

R10K [31]). Some architectures even allow operand read in the execution unit. On

the other hand, some architectures do not issue operations if RAW hazard is detected

while others issue the operation in spite of RAW hazard (e.g., use snooping to read the

data at execution stage using feedback paths). In other words, the same functionality

is used at different stages in the pipeline for different architectures.

Towards obtaining a unifying abstraction, we can observe some fundamental dif-

ferences from the study; the architecture may use:

1. the same functional or memory unit with different parameters

2. the same functionality in different functional or memory units

3. new architectural features

The first difference can be eliminated by defining generic functions with appro-

priate parameters. The second difference can be eliminated by defining generic sub-

functions that can be used by different architectures at different stages in the pipeline.

The last one is difficult to alleviate since it is new, unless this new functionality can

be composed of existing sub-functions. Section 4.2 presents the functional abstraction

needed to capture a wide variety of architectural features and memory configurations.

4.2 Functional Abstraction

Functional abstraction allows the system designer to describe a wide variety of

architectures. In this section we present functional abstraction by way of illustrative

examples. We first explain the functional abstraction needed to capture the structure

and behavior of the processor and memory subsystem, then we discuss the issues

related to defining a generic controller functionality, and finally we discuss the issues

related to handling interrupts and exceptions.

4.2.1 Structure of a Generic Processor

The structure of each functional unit is captured using parameterized functions.

However, generic functions are not sufficient since each functional unit may perform

a different set of computations depending on the architecture. Hence, there is a need

for parametric sub-functions. Based on the observations made in Section 4.1, we have

defined a set of common functions and sub-functions with appropriate parameters.

First, we describe the generic functions. Next, we describe the generic sub-functions.

Finally, we discuss how these functions and sub-functions are used to compose a new

processor architecture.

Generic functions

We capture the structure of each functional unit using parameterized functions.

For example, a fetch unit functionality contains several parameters, such as number

of operations read per cycle, number of operations written per cycle, reservation

station size, branch prediction scheme, number of read ports, number of write ports,

and so on. Figure 4.1 shows a specific example of a fetch unit described using sub-

67

functions. Each sub-function is defined using appropriate parameters. For example,

ReadInstMemory reads n operations from instruction cache using current PC address

(returned by ReadPC) and writes them to the reservation station. The fetch unit

reads m operations from the reservation station and writes them to the output latch

(fetch to decode latch) and uses BTB based branch prediction mechanism.

FetchUnit (# of read/cycle, res-station size,)
{
 address = ReadPC();
 instructions = ReadInstMemory(address, n);

}

 WriteToReservationStation(instructions, n);
outInst = ReadFromReservationStation(m);
WriteLatch(decode_latch, outInst);

pred = QueryPredictor(address);
if pred {
 nextPC = QueryBTB(address);
 SetPC(nextPC);
} else
 IncrementPC(x);

Figure 4.1: A fetch unit example

We have defined parameterized functions for all functional units present in con-

temporary programmable architectures including fetch unit, branch prediction unit,

decode unit, issue unit, execute unit, completion unit, interrupt handler unit, PC

Unit, Latch, Port, Connection, and so on. The detailed description of each of the

generic functions is available in [49].

Generic sub-functions

We have defined sub-functions for all the common activities e.g., ReadLatch,

WriteLatch, ReadOperand, and so on. Table 4.2 lists some of the common activi-

ties that we have identified. The first column represents the name of the function,

the second column describes the activity, and the last column describes the input

and output parameters of the function. We have also defined a set of sub-functions

including RenameRegister and GraduateOperation using sub-functions. Figure 4.2

shows a specific implementation of RenameRegister modeled using sub-functions.

RenameRegister (Instruction inst)

begin

RenameReg(inst.src1);

RenameReg(inst.src2);

if (inst.opcode == store)

RenameReg(dest);

else if (inst.opcode != branch)

freeReg = GetFreeRegister();

MapRegisters(freeReg, inst.dest);

MarkDestBusy(freeReg);

endif

end

(a) Rename registers in an instruction

RenameReg (Register src)

begin

if IsMapped(src)

reg = GetPhysicalRegister(src)

else

reg = GetFreeRegister();

endif

MapRegisters(reg,src)

end

(b) Rename a register

Figure 4.2: Modeling of RenameRegister function using sub-functions

New architecture generation using generic functions and sub-functions

So far we have discussed the generic functions and sub-functions necessary to

capture a wide variety of processor architectures. In this section we briefly describe

how these functions and sub-functions can be used to compose a new architecture or

modify an existing architecture. First, we describe how to compose a simple RISC

architecture. Next, we discuss what generic functions are necessary to modify the

simple RISC architecture into a VLIW or superscalar architecture.

A RISC architecture typically has four pipeline stages: fetch, decode, execute,

and writeback. Each of these stages requires one generic function. Each function

uses ReadLatch sub-function to read the instruction from the pipeline latch. At

the end of the computation each function uses WriteLatch sub-function to write the

modified instruction into the output latch. The fetch function reads the program

counter (PC) value using ReadPC. If the architecture supports branch prediction,

the fetch function needs to use appropriate sub-functions such as QueryPredictor,

QueryBTB, and so on. Depending on the outcome, the fetch function either invokes

69

Table 4.2: A list of common sub-functions

Function Name Description Parameters
ReadLatch Read a latch for n operations Latch X, n, Data
WriteLatch Write data to a latch Latch, Data

QueryPredictor Query prediction status Branch address, status
QueryBTB Query predicted address Branch and memory address
UpdateBTB Send address to branch unit ID, target address

UpdatePredictor Update branch predictor ID, prediction type
BranchOther Other branch address ID, Address
IncrementPC Increase PC with X X, New PC

SetPC New PC address X X, New PC
ReadPC Get PC PC address

RSInsertOperation Add one operation to RS Operation
RSInsertOperations Add X operations to RS Operations, X
RSDeleteOperation Dequeue operation from RS ID
RSReadOperation Read one operation from RS Operation
RSReadOperand Read n’s operations operands RS, n, RS

ReadOperand Read one operand Address bus, Reg name, Data
WriteResult Write operand Data/Addr bus, Reg name, Data

MarkDestBusy Mark Register busy Register name
ReleaseDest Unmark Register busy Register name
CheckRAW Check for RAW Register name, status
CheckWAW Check for WAW ID, status
CheckWAR Check for WAR ID, status
IsUnitBusy Is unit X busy X, status

IsUnitStalled Is unit X stalled X, status
IsOperandRead Is operand X read ID, X, status

MarkOperandRead Mark the operand as read ID, X
HasUnitRS Does unit X have RS? X, status

SetUnitStalled Set Stall bit for unit X X, True/False
SetUnitBusy Set Busy Bit for unit X X, True/False

ReadPredicate Check predicate register X Pred reg. X, status
WritePredicate Set predicate register X to Y Pred reg., value
CheckPredicate Query ID’s predicate ID, status

ExecuteOperation Execute an operation Src1, Src2, func, Result
ExecuteBranchOperation Execute branch Src1-2, func, Result, Cmp reg

MarkOperationDone Mark operation done in comp queue ID
IsOperationDone Query if operation done ID, status

CompletionQDeleteOperation Delete an entry from comp queue ID
FlushCompletionQ Remove all operations above ID ID
IsOperationValid Query if operation is valid ID, status

SetValidBit Set valid bit to X for operation ID, X
IsBranchAhead Is there a branch ahead? ID, status

IsBranchOperation Is operation a branch? ID, status
IsStoreOperation Is operation a store? ID, status

IsMapped Is X in mapping table Reg X, status
GetPhysicalRegister For a logical register Logical, physical reg

GetFreeRegister Return a free physical reg Register number
MapRegisters logical to physical Logical, physical reg

ComputeBusybit check if unit is busy Incoming operations,
free entries, cycles left

IncrementPC or SetPC. Similarly, the decode function uses CheckRAW, CheckWAR,

and CheckWAW sub-functions to perform hazard detection. The source operands

of the instruction are read using ReadOperand sub-function. The execute function

uses ExecuteOperation sub-function to execute an operation. Finally, the writeback

function uses WriteResult sub-function to write the result back into the register file.

To convert the RISC architecture into a VLIW one that can issue m operations

per cycle to the n pipeline paths, we need to perform the following modifications

to the functions discussed above. The decode function can use a reservation station

(instruction buffer). The instruction buffer can be accessed using sub-functions such

as RSInsertOperation, RSDeleteOperation, and so on. The decode function needs

to use IsUnitBusy and IsUnitStalled sub-functions to detect structural hazard and

decide where to send the next instruction. Each pipeline path needs to have separate

execute functions. In case the architecture supports predicated execution, a set of

sub-functions including ReadPredicate, WritePredicate, and CheckPredicate can be

used.

To add superscalar features to the existing VLIW architecture, the following mod-

ifications can be done. The decode function can invoke RenameRegister to perform

register renaming. Several sub-functions such as GetPhysicalRegister and GetFreeReg-

ister are also useful in this regard. If the intended execution style is out-of-order

execution, we need to add a completion queue (in-order buffer) in the architecture.

The decode function needs to insert an operation in the queue using CompletionQIn-

sertOperation before issuing it to the child unit. This is to ensure in-order completion

in the presence of out-of-order execution. The writeback function can delete the front

operation of the queue using CompletionQDeleteOperation sub-function. The com-

pletion queue can also be used to perform WAW and WAR checks, to flush necessary

instructions in the pipeline, to enforce in-order completion of branches and memory

writes, and to synchronize events such as all memory writes are completed and all

pending exceptions are reported.

71

4.2.2 Behavior of a Generic Processor

The behavior of a generic processor is captured through the definition of opera-

tions. Each operation is defined as a function, with a generic set of parameters, that

performs the intended functionality. The parameter list includes source and desti-

nation operands, and necessary control and data type information. We have defined

common sub-functions (generic set) such as ADD, SUB, MUL, SHIFT, and so on [49].

} }

MUL (src1, src2) {

MAC (src1, src2, src3) {

ADD (src1, src2) {

 return (src1 + src2); return (src1 * src2);

 return (ADD(MUL(src1, src2), src3));
}

Figure 4.3: Modeling of MAC operation

Given a new (target) operation and a mapping1 between the target operation and

the generic operations, the functionality of the new operation can be created using

the functionalities of the existing operations. For example, the MAC (multiply and

accumulate) functionality can be composed of two sub-functions (ADD and MUL) as

shown in Figure 4.3.

4.2.3 Structure of a Generic Memory Subsystem

Each type of memory module, such as SRAM, cache, DRAM, SDRAM, stream

buffer, and victim cache, is modeled using a function with appropriate parameters.

For example, the cache function shown in Figure 4.4(a) has many parameters includ-

ing cache size, line size, associativity, word size, replacement policy, write policy, and

latency. It performs four operations: read, write, replace, and refill. These functions

can have parameters for specifying pipelining, parallelism, access modes (normal read,

page mode read, and burst read), and so on. Again, each function is composed of

1Such mappings are typically available at the specification level and used by a compiler to perform
instruction selection.

sub-functions. For example, the associative cache function shown in Figure 4.4(b) is

modeled using cache sub-function.

Cache(cache size, line size, ... opType, addr, data)

begin

// It has three storages: tag, cache, valid

// Get row, col, and tag from addr

if opType is READ

if ((tag[row] == tag) and valid[row])

data = cache[row][col]

return HIT

else

return MISS

endif

else if opType is WRITE

.

else if opType is REPLACE

.

else if opType is REFILL

.

endif

end

(a) Cache function

AssociativeCache (. . . , assoc, opType, addr, dataOut)

begin

if opType is READ

/** Find the one with data **/

for (ci=0; ci < associativity; ci ++)

stat = Cache(cache ci, ... READ, data)

if stat is HIT

dataOut = data

return HIT

endif

endfor

// Find the cache to be replaced and refilled

Cache (. . . , cache, . . . , REPLACE, addr)

Cache (. . . , cache, . . . , REFILL, addr)

.

else if opType is WRITE

.

endif

end

(b) Associative cache function

Figure 4.4: Modeling of associative cache function using sub-functions

4.2.4 Generic Controller

A major challenge in defining an architectural abstraction is the modeling of con-

trol for a wide range of architectural styles. We define control in both distributed and

centralized manners. The distributed control is transfered through pipeline latches.

While an instruction gets decoded the control information needed to select the opera-

tion, the source and the destination operands are placed in the output latch as shown

in Figure 4.5(a). These decoded control signals pass through the latches between two

pipeline stages unless they become redundant. For example, when the value for src1

is read that particular control is not needed any more, instead the read value will be

in the latch. We have shown here only the control information of the latch. The latch

also contains data values and predicate registers (if applicable).

73

opcode src1 src2 dest

Execution Unit

(a) Example of distributed control

BB:0 SB:0

Fetch
BB:0 SB:0

Decode
BB:0 SB:0

IALU
BB:0 SB:0

MUL1
BB:0 SB:0

BB:0 SB:0
MUL2

MUL3
BB:0 SB:0

MUL4
BB:0 SB:0

BB:0 SB:0

BB:0 SB:0

MUL7
BB:0 SB:0

MEM

WriteBack
BB:0 SB:0

FADD1
BB:0 SB:0

FADD2
BB:0 SB:0

FADD3
BB:0 SB:0

FADD4
BB:0 SB:0

BB:0 SB:0
DIV

MUL5

MUL6

Pipeline Bandwidth (parallelism)

Pi
pe

lin
e

St
ag

es

(b) Control Table for the DLX processor

Figure 4.5: Examples of distributed and centralized controllers

The centralized control is maintained by using a generic control table. The number

of rows in the table is equal to the number of pipeline stages in the architecture. The

number of columns is equal to the maximum number of parallel units present in any

pipeline stage. Each entry in the control table corresponds to one particular unit in

the architecture. It contains information specific to that unit e.g., busy bit (BB), stall

bit (SB), list of children, list of parents, opcodes supported, and so on. For example,

Figure 4.5(b) shows the control table for the DLX processor shown in Figure 3.6.

The control table captures all the necessary details to perform selective or complete

stalling of the pipelines. Stalling happens due to three kinds of hazards: structural

hazards, data hazards, and control hazards.

4.2.5 Interrupts and Exceptions

Another major challenge in defining architectural abstractions is the modeling

of interrupts and exceptions. We briefly describe the abstraction needed to capture

a wide variety of exceptions and interrupts in programmable architectures. Each

exception is captured using an appropriate sub-function. Opcode related exceptions

(e.g., divide by zero) are captured in the opcode functionality. Functional unit related

exceptions (e.g., illegal slot exception) are captured in functional units. External

interrupts (e.g., reset, debug exceptions) are captured in the control unit functionality.

We model an interrupt handler unit that services these exceptions. It has in-

formation regarding the priority of interrupts and which exceptions generate what

interrupt. The generic interrupt handler has a parameterized priority table. The

interrupt handler unit generates one particular interrupt based on the priority. Be-

fore execution of an interrupt service routine, context saving and complete/partial

flushing occurs. The specific type of flushing is decided by the semantics of the in-

terrupt: complete flushing clears the entire pipeline; partial flushing means flushing

only the instructions behind the interrupted instruction and allowing the previous

instructions to continue using the program order information available in completion

queue. Again, these actions are part of parametric sub-functions that allow a finer

grain of microarchitectural exploration.

The detailed description of generic abstractions for all of the microarchitectural

components are too long to describe in this section, and can be found in [49].

4.3 Reference Model Generation

We use the functional abstraction technique to generate executable models (such

as a simulator and synthesizable hardware) from the ADL specification. The model

generation procedure is same for generating the simulator, hardware (synthesizable

RTL), as well as validation models. Only difference is that the input library (con-

sisting of generic functions and sub-functions) needs to be implemented using the

appropriate language. For example, the generic functions and sub-functions need to

be implemented using programming languages such as C/C++ to enable simulator

generation. Similarly, to enable hardware generation the generic library needs to be

implemented using a synthesizable subset of VHDL/Verilog. The development of the

generic library (consisting of implementation of generic functions and sub-functions)

is a one-time activity and independent of the architecture.

75

The reference model generation process consists of three steps. First, the ADL

specification is read to gather all the necessary details for the model generation.

Second, the functionality of each component is composed using the generic functions

and sub-functions. Finally, the structure of the architecture is composed using the

structural details. In the remainder of this section we describe last two steps for

simulator generation. As mentioned earlier, the procedure remains the same for

generation of hardware and validation models.

Component Generation

To compose the functionality of each component, all necessary details (such as

parameters and functionality) are extracted from the ADL specification. First, we

describe how to generate three major components of the processor: instruction de-

coder, execution unit, and controller, using the generic functions and sub-functions.

Next, we describe how to compose the functionality of new instructions (behavior)

using the generic functions.

A generic instruction decoder uses information regarding individual instruction

format and opcode mapping for each functional unit to decode a given instruction.

The instruction format information is available in the ADL specification. The decoder

extracts information regarding the opcode and operands from the input instruction

using the instruction format. The mapping section of the ADL captures the informa-

tion regarding the mapping of opcodes to the functional units. The decoder uses this

information to perform/initiate necessary functions (e.g., operand read) and decide

where to send the instruction.

To compose an execution unit, it is necessary to instantiate all the operation

functionalities (e.g, ADD, SUB etc. for an ALU) supported by that execution unit.

The execution unit invokes the appropriate opcode functionality for an incoming

operation based on a simple table look-up technique as shown in Figure 4.7(a). Also,

if the execution unit is supposed to read the operands, the appropriate number of

operand read functionalities need to be instantiated unless the same read functionality

can be shared using multiplexers. Similarly, if the execution unit is supposed to write

(TARGET

((MACcc dest src1 src2 src3))

)

(GENERIC

((MUL temp src1 src2) (ADD dest src3 temp) (RESET CR[2]))

)

Figure 4.6: Mapping between MACcc and generic instructions

the data back to register file, the functionality for writing the result needs to be

instantiated. The actual implementation of an execute unit might contain many

more functionalities such as read latch, write latch, modify reservation station (if

applicable), and so on.

The controller is implemented in two parts. First, it generates a centralized con-

troller (using generic controller function with appropriate parameters) that maintains

the information regarding each functional unit, such as busy, stalled etc. It also com-

putes hazard information based on the list of instructions currently in the pipeline.

Based on these bits and the information available in the ADL, it stalls/flushes neces-

sary units in the pipeline. Second, a local controller is maintained at each functional

unit in the pipeline. This local controller generates certain control signals and sets

necessary bits based on the input instruction. For example, the local controller in an

execute unit will activate the add operation if the opcode is add, or it will set the

busy bit in case of a multi-cycle operation.

So far we have discussed composition of the structural components for an architec-

ture. It is also necessary to compose the functionality of new instructions (behavior)

using the functionality of existing instructions. The EXPRESSION ADL based frame-

work assumes a generic set of instructions (generic architecture). While describing a

new architecture (target architecture) using the ADL, it is necessary to provide the

mapping between target instructions and generic instructions. This instruction map-

ping information is typically used by a compiler during instruction selection. This

mapping is also used to generate the functionality for the target (new) instructions

using the the functionality of the corresponding generic instructions. The scheme

77

allows one-to-many, many-to-one, and many-to-many mappings between generic and

target instructions. For example, the MACcc instruction shown in Figure 4.6 uses

three generic instructions. The first two generic instructions perform the multiply

and accumulate. The third instruction clears the carry bit of the control register.

Processor Model Generation

The final implementation is generated by instantiating components (e.g., fetch,

decode, ALU, LdSt, writeback, branch, caches, register files, memories etc.) with

appropriate parameters and connecting them using the information available in the

ADL. For example, Figure 4.7(a) shows a portion of the simulation model for the

DLX architecture shown in Figure 4.7(b).

fetches buffer size input/output ports

DLX {

result = opTable[].execute()opcode

}

<opcode, dst, src1, src2, ...> = input instruction

FetchUnit (4, 0,) {
/** No instruction buffer processing **/

DecodeUnit (....) {
/** use binary description and operation mapping

 ** to decide where to send the instruction **/
}

}

ExecuteUnit (....) {

}
............
Controller (....) {

/** Use control table to stall/flush the pipeline */
}

src1, src2, ...

(a) Simulation model

Register File

Pipeline edge
Data-transfer edge

Functional unit
Storage

Fetch

FADD2

FADD3

FADD4

WriteBack

MEM

MUL2

MUL1 FADD1

PC Memory

Decode

IALU

MUL7

DIV

(b) The DLX architecture

Figure 4.7: Simulation model generation for the DLX architecture

The generated simulation models combined with the existing simulation kernel

creates a cycle-accurate structural simulator that executes the assembly instructions.

In our framework, the assembly instructions generated by the EXPRESS compiler

[21] are loaded in the instruction memory of the simulator.

We have used the generated reference models in three top-down validation sce-

narios: design space exploration, design validation, and test generation. Section 4.4

presents exploration experiments using generated simulator and hardware models.

Chapter 5 describes design validation using equivalence checking between the im-

plementation and the generated hardware model. Finally, Chapter 6 presents test

generation techniques using the generated validation models.

4.4 Design Space Exploration

Embedded systems present a tremendous opportunity to customize designs by ex-

ploiting the application behavior. Specification-driven simulator and hardware gener-

ation enable exploration of programmable architectures for a given set of application

programs under various design constraints such as area, power and performance. Fig-

ure 4.8 shows our architectural exploration framework. The application programs are

compiled using the EXPRESS compiler [21] and simulated using the generated sim-

ulator, and the feedback is used to modify the ADL specification. Similarly, the

generated hardware is used to perform exploration based on silicon area, power, and

clock frequency. First, we present exploration experiments using generated simula-

tors. Next, we present exploration experiments using generated hardware models.

4.4.1 Simulator Generation and Exploration

Simulation is the most widely used means of architecture validation. Instruction-

set architecture (ISA) simulators are an integral part of todays processor and soft-

ware design process. While increasing complexity of the architectures demands high

performance simulation, the increasing variety of available architectures makes re-

targetability a critical feature of an instruction-set simulator. We have performed

exploration by varying different architectural features. In this section we illustrate

the usefulness of our approach in three architecture exploration dimensions.

79

(English Document)
Architecture Specification

ADL Specification

Generator
Compiler

Compiler

Generic

Models
VHDL

Automatic
Manual
Feedback

Synthesis

HDL
Generator

Binary

Model
Hardware

Application
Programs

Generic

Models
C++

Simulator
Generator

Simulator

F
eedback (P

erform
ance, C

ode Size)

F
ee

db
ac

k
(A

re
a,

 P
ow

er
, C

lo
ck

 F
re

qu
en

cy
)

Figure 4.8: Architecture exploration framework

A. Exploration varying Processor Features

Contemporary superscalar processors use in-order completion (graduation) to en-

sure sequential execution behavior in the presence of out-of-order execution. Here, we

explore the MIPS R10K processor in the presence of out-of-order graduation without

violating functional correctness. We used a simplified version of the MIPS R10K

architecture. It includes the pipeline level description of the processor structure and

memory subsystem [59]. We modeled the MIPS R10K architecture (with in-order

graduation and an eight entry Active List) using functional abstraction and generated

the software toolkit from the specification. We modified the description to perform

out-of-order graduation and generated the simulator. We used a set of benchmarks

from the multimedia and DSP domains for the experiments.

Figure 4.9 presents a subset of the experiments we ran to study the performance

improvement due to out-of-order graduation. The light bar presents the number

of execution cycles when in-order graduation is used whereas the dark bar presents

the number of execution cycles when out-of-order graduation is used. We observe

an average performance improvement of 10%. During in-order graduation certain

instructions (independent of the instructions above in the Active List) complete exe-

cution but are not allowed to graduate since some long latency operations are on top

of the Active List (completion queue) and are yet to complete. As a result, the Ac-

tive List becomes full and the decode stalls. This situation becomes more prominent

when the top instruction is a load and the load misses. We modified the memory

subsystem to study the impact of cache misses along with out-of-order graduation

and observed upto 27% performance improvement (in benchmark StateExcerpt when

hit ratio is zero). The complete study of the out-of-order graduation for the MIPS

R10K processor is available in [59].

Figure 4.9: Cycle counts for different graduation styles

Due to the high modeling efficiency of functional abstraction, the original descrip-

tion and toolkit generation took less than a week; the graduation style modification

81

and toolkit generation took less than a day; the experiments and analysis took few

hours; the complete exploration experiment took approximately one week.

B. Co-processor based Exploration

In the context of co-processor codesign for programmable architectures we ex-

plored the performance impact of using a co-processor for the TI C62x architecture.

We used a simplified version of the TI C62x architecture. It includes the pipeline level

description of the processor structure and memory subsystem [67]. First, we mod-

eled the TI C62x architecture (where multiplication is done in the functional unit)

using functional abstraction and generated the software toolkit. Next, we modified

the description by adding a co-processor that supports multiplication and generated

the simulator. This co-processor has its own local memory and uses DMA to transfer

data from main memory. We used a set of DSPStone fixed point benchmarks to

explore and evaluate the effects of adding a coprocessor.

Figure 4.10: Functional unit vs. coprocessor

Figure 4.10 presents a subset of the experiments we ran to study the performance

improvement due to the co-processor. The light bar presents the number of execution

cycles when the functional unit is used for the multiplication whereas the dark bar

presents the number of execution cycles when the co-processor is used. We observe

an average performance improvement of 22%. The performance improvement is due

to the fact that the co-processor is able to exploit the vector multiplications available

in these benchmarks using its local memory. Moreover, functional units operate in

register-to-register mode whereas co-processor operates on its memory-memory mode.

As a result the register pressure and thereby spilling gets reduced in the presence of

the co-processor. However, the functional unit performs better when there are mostly

scalar multiplications. The complete study of the co-processor based design space

exploration is available in [67].

C. Processor-Memory Co-Exploration

While a traditional memory architecture for programmable systems was organized

as a cache hierarchy, the widening processor/memory performance gap [78] requires

more aggressive use of memory configurations, customized for specific target applica-

tions. To address this problem, recent advances in memory technology have generated

a plethora of new and efficient memory modules (e.g., SDRAM, DDRAM and RAM-

BUS), exhibiting a heterogeneous set of features (e.g., page-mode, burst-mode and

pipelined accesses). On the other hand, many embedded applications exhibit varied

memory access patterns that naturally map into a range of heterogeneous mem-

ory configurations (containing for instance multiple cache hierarchies, stream buffers,

on-chip and off-chip direct mapped memories). Due to the heterogeneity in recent

memory organizations and modules, there is a critical need to address the memory-

related optimizations simultaneously with the processor architecture and the target

application.

We present a set of experiments using our memory-aware ADL to drive the ex-

ploration of the memory subsystem for the TI C6211 processor architecture, demon-

strating cost, performance, and energy trade-offs. First, we describe the experimental

setup. Next, we present the exploration results.

83

Experimental Setup

We performed a set of experiments starting from the base TI C6211 [89] pro-

cessor architecture, and varied the memory subsystem architecture. We generated a

memory-aware software toolkit (compiler and simulator), and performed design space

exploration of the memory subsystem. The memory organization of the TIC6211 is

varied by using separate L1 instruction and data caches, an L2 cache, an off-chip

DRAM module, an on-chip SRAM module, and a stream buffer module [38] with

varied connectivity among these modules.

Table 4.3: Benchmarks

Benchmark Description
Compress Image compression scheme
GSR Red-black Gauss-Seidel relaxation method
Hydro Hydro fragment
DiffPred Difference predictors
FirstSum First sum
FirstDiff First difference
PartPush 2-D PIC (Particle In Cell)
1DPartPush 1-D PIC (Particle In Cell)
CondCompute Implicit, conditional computation
Hydrodynamics 2-D explicit hydrodynamics fragment
GLRE General linear recurrence equations
ICCG ICCG excerpt (Incomplete Cholesky Conjugate Gradient)
MatMult Matrix multiplication
Planc Planckian distribution
2DHydro 2-D implicit hydrodynamics fragment
FirstMin Find location of first minimum in array
InnerProd Inner product
LinearEqn Banded linear equations
TriDiag Tri-diagonal elimination, below diagonal
Recurrence General linear recurrence equations
StateExcerpt Equation of state fragment
Integrate ADI integration
IntPred Integrate predictors
Laplace Laplace algorithm to perform edge enhancement
Linear Implements a general linear recurrence solver
Wavelet Debaucles 4-Coefficient Wavelet filter

We used benchmarks from the multimedia and DSP domains for our experiments.

The list of the benchmarks is shown in Table 4.3. The benchmarks are compiled

using the EXPRESS compiler [21]. We collected the statistics information using

the generated simulator that models both the TIC6211 processor and the memory

subsystem.

Table 4.4: The memory subsystem configurations

Cfg Area L1 ICache L1 DCache L2 Cache SRAM Str. Buffer
(rbe) (latency=1) (latency=1) (latency=5) (lat=1) (lat=5)

1 54567 256B (8x2x4x4) 256B (8x2x4x4) 8K (256x8x1x4) - -
2 61335 256B (8x2x4x4) 256B (8x2x4x4) 4K (64x2x8x4) 4K -
3 60449 256B (8x2x2x4) 256B (8x2x4x4) 8K (64x4x8x4) - -
4 66394 256B (8x2x4x4) 256B (8x2x4x4) 8K (64x4x8x4) - 8x2x8x4
5 125466 256B (8x2x4x4) 256B (8x2x4x4) 2K (16x4x8x4) 16K 8x2x8x4
6 51169 128B (8x2x2x4) 128B (8x2x2x4) 8k (256x8x1x4) - -
7 52868 128B (8x2x2x4) 256B (8x2x4x4) 8k (256x8x1x4) - -
8 58198 128B (8x2x2x4) 256B (8x4x2x4) 8k (64x4x8x4) - -
9 52057 128B (8x2x2x4) 256B (16x2x2x4) 8k (256x8x1x4) - -
10 52868 256B (8x2x4x4) 128B (8x2x2x4) 8k (256x8x1x4) - -
11 33099 256B (8x4x2x4) 256B (8x4x2x4) 4k (64x4x4x4) - -
12 31698 256B (16x2x2x4) 256B (16x2x2x4) 4k (256x4x1x4) - -
13 33469 256B (16x2x2x4) 512B (32x2x2x4) 4k (256x4x1x4) - -
14 53847 512B (16x4x2x4) 128B (8x2x2x4) 8k (256x8x1x4) - -
15 33488 512B (16x4x2x4) 256B (16x2x2x4) 4k (256x4x1x4) - -
16 35259 512B (16x4x2x4) 512B (32x2x2x4) 4k (256x4x1x4) - -
17 58100 512B (8x8x2x4) 512B (8x8x2x4) 8k (256x8x1x4) - -
18 36066 512B (8x8x2x4) 512B (16x4x2x4) 4k (256x4x1x4) - -
19 59156 512B (8x4x4x4) 512B (8x4x4x4) 8k (256x8x1x4) - -
20 55182 256B (16x2x2x4) 256B (16x2x2x4) 4k (256x4x1x4) 4k -
21 53406 128B (8x2x2x4) 128B (8x2x2x4) 4k (256x4x1x4) 4k -
22 76753 128B (8x2x2x4) 128B (8x2x2x4) 4k (256x4x1x4) 8k -
23 36227 128B (8x2x2x4) 256B (16x2x2x4) 4k (256x4x1x4) - 8x8x2x4
24 33909 128B (8x2x2x4) 256B (16x2x2x4) 8k (256x4x1x4) - 8x4x2x4
25 106722 128B (8x2x2x4) 256B (16x2x2x4) 8k (64x8x4x4) 8k 8x8x2x4
26 106722 128B (8x2x2x4) 256B (16x2x2x4) 8k (64x8x4x4) 8k 8x8x2x4
27 85146 128B (8x2x2x4) 512B (32x2x2x4) 8k (64x8x4x4) 4k 8x8x2x4

While any micro-architectural estimation models can be used in our framework,

we use area models from Mulder et al. [71] and energy models2 from Wattch [8]. The

2This considers only dynamic power dissipation; leakage effects and static power dissipation have
not considered in this study.

85

performance of a particular memory configuration for a given application program

is computed as the number of clock cycles it takes to execute the application in the

simulator. We divide this cycle count by 2000 to show both energy and performance

plots in the same figure.

Some of the configurations we experimented with are presented in Table 4.4. Each

row of the table corresponds to a memory configuration. The second column presents

the area of the memory configurations. The remaining entries in the table represent

the size of the memory module (e.g., the size of L1 in configuration 1 is 256 bytes)

and the cache/stream buffer organizations: num lines × line size × num ways ×
word size. The LRU cache replacement policy is used. The latency is defined in

number of processor cycles. Note that, for stream buffer the num ways represents

the number of FIFO queues present in it. The first configuration contains an L1

instruction cache (256 bytes), L1 data cache (256 bytes), and a unified L2 cache (8K

bytes). All the configurations contain the same off-chip DRAM module with a latency

of 50 cycles. The cache sizes are decided based on the application programs. We have

used benchmarks from the multimedia and DSP domains for our experiments. These

benchmarks are small/medium size kernels. Therefore, the cache sizes are smaller

than typical sizes used in conventional processor architectures.

Results

Here we analyze a subset of the experiments we ran with the goal of evaluating

different memory configurations for area, energy and performance. Figure 4.11 shows

the exploration result for the GSR benchmark. The X-axis represents the memory

configurations in the increasing order of cost in terms of area. The Y-axis represents

values for both performance and energy. The performance value is normalized by

dividing cycle count by 2000. The energy value is given in µJ. Although the cost

for memory configurations 6 and 9 are much lower than the cost of configuration

5, the former (6 and 9) configurations deliver better results in terms of energy and

performance. Configuration 21 consumes lower energy and delivers better perfor-

mance than configuration 6. However, the former is worse than the latter in terms

of area. Depending on the priority among area, energy and performance, one of the

configurations can be selected.

Figure 4.11: Memory exploration results for GSR

When area consideration is not very important we can view the pareto-optimal

configurations from energy-performance trade-offs. Figure 4.12 shows the energy-

performance trade-off for the Compress benchmark. It is interesting to note that

a set a memory configurations (with varied parameters, modules and connectivity)

deliver similar performance results for the Compress benchmark. There are three

distinct performance zones. The first zone has performance values between 5 and

10. This zone consists of memory configurations 2, 5, 20, 21, 22, 25, 26, and 27.

The energy values are different due to the fact that each configuration has different

parameters, modules, connectivity and area. However, the performance is almost

similar since the data fits in SRAM of size 2K for these configurations. Similarly, the

second zone (configurations 1, 6, 7, 9, 10, 14, 17, 19) has performance values between

15 and 20 with very different power values. The performance is almost same for these

configurations because the L2 cache size of 8K or larger has very high hit ratio and as

87

a result for all these memory configurations L2 dominates and L2 to DRAM access

remains almost constant.

Figure 4.12: Energy performance tradeoff for Compress

Similarly, the third zone (configurations 3, 4, 8, 11, 12, 13, 15, 16, 18, 23, 24)

has almost same performance with different power values. This is due to the fact

that each of these configurations has L2 line size of 4 that dominates over other

parameters for these configurations. This line size is the reason why configurations

in the third zone are worse than the configurations in the second zone. Depending

on the priority among cost, energy and performance one of the three configurations

(Config 11, 17, 26) can be chosen. The same phenomenon can be observed in the

benchmarks FirstSum, FirstDiff, and FirstMin [64]. The benchmark InnerProd has

four such performance zones whereas the benchmark Tridiag has five such performance

zones [64]. The pareto-optimal configurations are shown using symbol X, and the

corresponding memory configuration is mentioned in the figure.

However, for some set of benchmarks the energy performance tradeoff points are

scattered in the design space and thus only the pareto-optimal configurations are of

interest. Figure 4.13 shows the energy performance tradeoff for the benchmark Mat-

Mult. It has only one pareto-optimal point i.e., configuration 5. However, the Laplace

Figure 4.13: Energy performance tradeoff for MatMult

benchmark (Figure 4.14) has two pareto-optimal points: configuration 5 delivers bet-

ter performance than configuration 17 but consumes more energy and has a larger

area requirement. Depending on the priority among area, energy and performance,

one of the two configurations can be selected. The energy-performance tradeoff results

for the remaining benchmarks are available in [64].

Thus, using our memory-aware ADL based design space exploration approach, we

have obtained design points with varying cost, energy and performance. We have

observed various trends for different application classes, allowing customization of

the memory architectures tuned to the applications. Note that, this cannot be deter-

mined through analysis alone; the customized memory subsystem must be explicitly

captured, a memory-aware compiler and simulator should be automatically gener-

ated, and the applications have to be executed on the configured processor-memory

system, as demonstrated in this section.

We have also performed microarchitectural exploration of the MIPS 4000 processor

[48] in three directions: pipeline exploration, instruction-set exploration, and memory

exploration [72]. Pipeline exploration allows the addition (deletion) of new (existing)

functional units or pipeline stages. Instruction-set exploration allows addition of new

89

Figure 4.14: Energy performance tradeoff for Laplace

instructions or formation of complex instructions by combining the existing instruc-

tions. Similarly, memory exploration allows modification of memory hierarchies and

cache parameters. The user can modify the ADL specification of the architecture, and

the software toolkit, including a compiler and a simulator, is automatically generated

from the ADL specification. The public release of the retargetable simulation and

exploration framework is available from http://www.cecs.uci.edu/˜express.

4.4.2 Hardware Generation and Exploration

The simulator produces profiling data and thus may answer questions concerning

the instruction set, the performance of an algorithm and the required size of mem-

ory and registers. However, the required silicon area, clock frequency, and power

consumption can only be determined in conjunction with a hardware model. In this

section, we illustrate the use of ADL-driven synthesizable hardware model generation

for exploration of the DLX [22] processor by varying different architectural features.

Figure 3.6 shows the pipelined DLX architecture. The EXPRESSION ADL cap-

tures the structure and behavior of the DLX architecture. Synthesizable HDL models

are generated automatically from the ADL specification using the procedure described

in Section 4.3. We have used Synopsys Design Compiler [84] to synthesize the gen-

erated HDL description using LSI 10K technology library and obtained area, power

and clock frequency values.

c1 = cos(arg)
s1 = sin(arg)
c2 = c1 * c1 - s1 * s1;
s2 = c1 * s1 + c1 * s1;
c3 = c1 * c2 - s1 * s2;
s3 = c2 * s1 + s2 * c1;

arg = th2 * piovn

jlast = j0 + in - 1;
k0 = ji * int4 + 1;
j0 = jr * int4 + 1;
int4 = in * 4;

Figure 4.15: The application program

Figure 4.15 shows one of the most frequently executed code segment from FFT

benchmark that we have used as an application program during micro-architectural

exploration.

We have performed architectural explorations on this DLX model by varying dif-

ferent micro-architectural features [39]. In this section we present three exploration

experiments: pipeline path exploration, pipeline stage exploration, and instruction-

set exploration. The reported area, power, and clock frequency numbers are for the

execution units only. The numbers do not include the contributions from others

components such as Fetch, Decode, MEM and WriteBack.

Addition of Functional Units (Pipeline Paths)

Figure 4.16 shows the exploration results due to addition of pipeline paths using

the application program shown in Figure 4.15. The first configuration has only one

pipeline path consisting of Fetch, Decode, one execution unit (say Ex1), MEM and

WriteBack. The Ex1 unit supports five operations: sin, cos, +, – and ×. The

second configuration is exactly same as the first configuration except it has one more

execution unit (say Ex2) parallel to Ex1. The Ex2 unit supports three operations: +,

– and ×. Similarly, the third configuration has three parallel execution units: Ex1 (+,

–, ×), Ex2 (+, –, ×), and Ex3 (sin, cos, +, – and ×). Finally, the fourth configuration

has four parallel execution units: Ex1 (sin, cos), Ex2 (+, –, MAC3), Ex3, and Ex4,

3MAC performs multiply-and-accumulate of the form a× b+ c

91

Figure 4.16: Pipeline path exploration

where Ex3 and Ex4 are customized functional units that perform a× b+ c× d.

As expected, the application program requires fewer number of cycles (schedule

length) due to addition of pipeline paths whereas the area and power requirement

increases. The fourth configuration is interesting since both area and schedule length

decrease due to addition of specialized hardware and removal of operations from other

execution units.

Addition of Pipeline Stages

Figure 4.17 presents exploration experiments due to addition of pipeline stages

in the multiplier unit. The first configuration is a one-stage multi-cycle multiplier.

The second, third and fourth configurations use multipliers with two, three and four

stages respectively.

As expected, the clock frequency (speed) is improved due to addition of pipeline

stages. The fourth configuration generated 30% speed improvement at the cost of

Figure 4.17: Pipeline stage exploration

13% area increase over the third configuration. The designer needs to decide whether

13% area increase is acceptable for the 30% speed improvement.

Addition of Operations

Figure 4.18 presents exploration results for addition of opcodes using three pro-

cessor configurations. The three configurations are shown in Figure 4.18. The first

configuration has four parallel execution units: FU1, FU2, FU3 and FU4. The FU1

supports three operations: +, –, and ×. The FU2, FU3 and FU4 supports (+, –, ×),

(and, or), and (sin, cos) respectively. The second configuration is obtained by adding

a cos operation in the FU3 of the first configuration.

As expected, this generated reduction of schedule length of the application pro-

gram at the cost of area increase. The third configuration is obtained by adding

multipliers both in FU3 and FU4 of the second configuration. This generated best

possible (using +, –, ×, sin and cos) schedule length for the application program

shown in Figure 4.15.

93

Figure 4.18: Instruction-set exploration

Each iteration in our exploration framework is in the order of hours to days de-

pending on the amount of modification needed in the ADL and the synthesis time.

However, each iteration will be in the order of weeks to months for manual or semi-

automatic development of HDL models. The reduction of exploration time is at least

an order of magnitude.

4.5 Chapter Summary

A major challenge in top-down validation methodology is the ability to generate

executable models from the specification for a wide variety of programmable architec-

tures including RISC, DSP, VLIW, and superscalar. We have studied the similarities

and differences of each architectural feature in different architecture domains. Based

on our observations we have defined generic functions, sub-functions, and computa-

tional environment needed to capture a wide variety of programmable architectures.

Our functional abstraction technique enables model generation for simulation, hard-

ware generation, and property checking from the ADL specification. The generated

models are used for design validation, test generation, and design space exploration.

The second part of this chapter presented exploration experiments for programmable

architectures for a given set of application programs under various design constraints

such as area, power, and performance. We presented exploration results using gen-

erated simulation models in the context of three scenarios: exploration varying pro-

cessor features, coprocessor exploration, and processor-memory co-exploration. We

also presented results using generated hardware models in three exploration scenarios:

pipeline path exploration, pipeline stage exploration, and instruction-set exploration.

We have obtained design points with varying cost, energy, and performance attributes

using ADL-driven design space exploration.

95

Chapter 5

Specification-driven Validation

One of the major challenges in validation of programmable embedded systems

is the verification of RTL design (implementation). Design validation techniques

can be broadly categorized into simulation-based approaches and formal techniques.

Due to the complexity of modern designs, validation using only traditional scalar

simulation cannot be exhaustive. Formal techniques exhaustively analyze parts of the

design but, because of state space explosion, are not suitable for the complete design.

Equivalence Checking is one of the most widely used formal techniques in industry

today. Typically, the implementation is compared with a set of Boolean equations, or

an optimized circuit is compared with the original circuit. Symbolic simulation has

proven to be an efficient technique, bridging the gap between traditional simulation

and full-fledged formal verification.

Figure 1.2 shows a traditional architecture validation flow. The implementation

design is validated using a combination of simulation techniques and formal meth-

ods. The existing techniques employ a bottom-up approach to validation, where the

functionality of an existing processor is, in essence, reverse-engineered from its RTL

implementation. The validation technique presented in this thesis is complementary

to these bottom-up approaches. This chapter presents a top-down methodology for

validation of microprocessors.

Figure 5.1 shows our validation methodology. Logic designers implement the

architecture at register-transfer level (RTL design). The structure and behavior of the

RTL Design
(Implementation)

ADL Specification

Validation

HDL Generator

Symbolic
Simulator Checker

Equivalence

Generic
HDL Models

(Complete Description)
Reference ModelReference Model

(Properties)

Automatic
Manual
Feedback

(English Document)
Architecture Specification

Successful Equivalent

DifferentFailure

Figure 5.1: Top-down validation methodology

processor is captured using an ADL. Chapter 2 describes how to specify architectures

using the EXPRESSION ADL. The ADL specification is validated to ensure that

it specifies a well-formed architecture using the techniques presented in Chapter 3.

The reference model (HDL description) is automatically generated from the ADL

specification using the procedure described in Section 4.3.

Our validation framework allows generation of synthesizable RTL description of

the architecture as well as specific properties. The RTL description can be used for

checking equivalence with the given implementation. However, generation of specific

behaviors would enable property checking. For example, our framework generates

97

the property: output =
∑n
i=1 inputi, for a n-input adder. The design should satisfy

this property irrespective of the adder implementation, such as ripple carry adder or

carry lookahead adder.

A major advantage of property checking is that it reduces the complexity of ver-

ification. However, this technique raises an important question: how to choose the

set of properties. A set of properties can be chosen in two different ways. First, the

designers can decide what properties are important to be verified for the design based

on their design knowledge and past experience. They can then choose the properties

to uncover otherwise difficult-to-find bugs. Second, a set of behaviors can be chosen

and their effectiveness can be evaluated. For example, to verify a memory controller

in a microprocessor, it is necessary to generate properties to validate each output

of the controller. To measure the effectiveness of these properties, a set of coverage

measures can be used during property checking [13].

We use the Versys2 symbolic simulator [41] to perform property checking. A

counter-example is generated if a property fails in the RTL design. The feedback

is used to modify the RTL design. Our framework uses Synopsys Formality [85] to

perform equivalence checking between the implementation and the generated RTL

description. In case of a failure, the feedback is used to modify the RTL design.

If there is an ambiguity in the original description that led to the mismatch, the

architecture specification needs to be updated.

This chapter is organized as follows. Section 5.1 describes our validation methodol-

ogy using a combination of symbolic simulation and equivalence checking. Section 5.2

presents the validation experiments. Finally, Section 5.3 summarizes the chapter.

5.1 Design Validation

Our top-down validation methodology has the ability to perform both model

(property) checking and equivalence checking depending on the generated reference

model. This section describes the validation techniques used in our framework.

. . .

. . .

. . .
. . .
. . .

.

. . . In

In

I

I1
I2
3 AND out...

. . . InI I I1 2 3

. . . SnS S S1 2 3x x
1 x

x

x
x
x

x
1

1x

x x x 1
1 1 1 1Vector n+1:

Vector n:

Vector 3:

Vector 2:

Vector 1:

Inputs I I I1 2 3

(c) Symbolic Simulation

(b) Ternary Simulation

(a) n-input AND gate

Figure 5.2: Test vectors for validation of an AND gate

5.1.1 Property Checking using Symbolic Simulation

Symbolic simulation combines traditional simulation with formal symbolic ma-

nipulation [9]. Each symbolic value represents a signal value for different operating

conditions, parameterized in terms of a set of symbolic Boolean variables. By this

encoding, a single symbolic simulation run can cover many conditions that would

require multiple runs of a traditional simulator. Figure 5.2(a) shows a simple n-input

AND gate. Exhaustive simulation of the AND gate requires 2n binary test vectors.

However, the ternary simulation (uses 0, 1, and x) requires (n + 1) test vectors for

the AND gate. Figure 5.2(b) shows the vectors: n vectors with one input set to ’1’

and the remaining inputs set to ’x’, and one vector with all inputs set to ’1’. Finally,

symbolic simulation [9] requires only one vector using n symbols (s1, s2, ..., sn) as

shown in Figure 5.2(c).

Researchers at IBM first introduced symbolic simulation to reason about prop-

erties of circuits described at the register-transfer level. With the advent of Binary

Decision Diagrams (BDDs), the technique became much more practical. Providing a

canonical representation for Boolean functions, BDDs enabled the implementation of

an efficient event-driven logic simulator that operated over a symbolic domain. By

encoding a model’s finite domain using a Boolean encoding, it is possible to sym-

bolically simulate the model using BDDs. Bryant’s formal state transition model for

a ternary system [10], and Seger’s work on symbolic trajectory evaluation renewed

further interest in symbolic execution [76].

99

The symbolic simulator (used in our framework) uses symbolic trajectory evalu-

ation (STE). In this section we informally describe STE. The formal description of

STE is available in [76]. STE is a modified form of symbolic simulation that operates

over the quaternary logic domain 0, 1, X, and T [76]. A state of the circuit is defined

as the set of all node values at a particular time instant. The value domain is partially

ordered and forms a complete lattice, X v 0 indicates X has less information than

0, or X is weaker than 0. The information content of 0 and 1 are not comparable. If

r v q and r v t, we can think of r as representing both q and t. Any property that

holds for a state such as r will also hold for all the states above it in the lattice, for

example q and t.

STE provides a mathematically rigorous method for establishing that properties

(assertions) of the form antecedent (A) ⇒ consequent (C) hold for a given simulation

model of a circuit. For the test vector shown in Figure 5.2(c), the antecedent is:

(I1 is s1, I2 is s2, ..., In is sn) from time 0 to 1, and the consequent is: out is

s1&s2&...&sn from time 1 to 2. Circuit state holders are initialized with symbolic

values specified by the antecedent. The model is then simulated, typically for one or

two clock cycles, while driving the inputs with symbolic values during simulation. The

resulting values, appear on selected internal nodes and primary outputs, are compared

with the expected values expressed in the consequent. In general, the values could

be functions over a finite set of variables. A trajectory is a sequence of states such

that each state has at least as much information as the next-state function applied

to the previous state. Intuitively, a trajectory is a state sequence constrained by the

system’s next-state function. A successful simulation of assertion A⇒ C establishes

that any sequence of assignments of values to circuit nodes that is both consistent

with the circuit behavior and consistent with antecedent A is also consistent with

consequent C.

Symbolic trajectory evaluation is used to verify that an implementation satisfies its

specification (reference model). Necessary assertions are extracted from the reference

model. If the implementation (e.g., RTL design) is correct, these assertions should

hold during symbolic simulation of the RTL design. An assertion (A ⇒ C) holds

if the weakest antecedent trajectory that the implementation goes through during

simulation (using A) should be at least as strong as the weakest sequence satisfying the

consequent C. Informally, the outputs produced during simulation (using A) should

be at least as strong as the expected outputs (given in C).

To verify that the implementation satisfies certain properties, our framework gen-

erates the intended properties instead of generating the complete reference design.

We use the Versys2 [41] that uses symbolic trajectory evaluation to perform prop-

erty checking. It is necessary to manually specify the state mappings between the

reference model and the implementation. This involves mapping of both latches and

bit cells by specifying their names. The assertions are automatically generated from

the reference model [94]. Versys2 symbolically simulates the implementation by us-

ing the generated assertions to ensure that the implementation satisfies the reference

model. A counter-example is generated if an assertion fails in the implementation.

The feedback is used to modify the implementation.

5.1.2 Equivalence Checking

Equivalence Checking is a branch of static verification that employs formal tech-

niques to prove that two versions of a design either are, or are not, functionally

equivalent. The equivalence checking flow consists of four stages: reading, match-

ing, verification and debugging. The matching and verification stages are those most

impacted by design transformations. During the reading stage, both versions of the

design are read by the equivalence checking tool and segmented into manageable sec-

tions called logic cones. Logic cones are groups of logic bordered by registers, ports,

or black boxes. Figure 5.3(a) shows the cones for a typical design block. The output

border of a logic cone is referred to as the compare point. For example, OUT1 is the

compare point in Cone1 of Figure 5.3(a).

In matching phase, the tool attempts to match, or map, compare points from

the reference design to their corresponding compare point within the implementation

design [4]. Two types of matching techniques are used: name based (non-function)

and function based (signature analysis). Figure 5.3(b) shows compare point match-

ing for a typical reference design and implementation. For better performance, the

101

...

.
...
.

matched cones
User specified

matched cones
Automatically

2

3

4

5

m

IN

IN

IN

IN

IN

IN

OUT

OUT

OUT

1

1

2

n

Implementation DesignReference Design

Cone

Cone

Cone

1

n

2

Unmatched cones

b) Compare Point Matchinga) Logic Cones in a Design Block

Figure 5.3: Compare point matching between reference and implementation design

majority of the matching should be completed by more efficient name based meth-

ods. Design transformations can result in fewer cones being matched by the name

based techniques, slowing match performance. Creating compare rules assist name

based techniques, but determination and creation of the rules themselves can be time

consuming. If the implementation is drastically different than the reference design,

design rules cannot be written and compare points have to be manually matched for

better performance or matched using more costly function based techniques. This

becomes impractical for design with many unmatched points.

During the verification stage, each matched compare point is proven either func-

tionally equivalent or non-equivalent ([16], [46]). Design transformations can impact

the structure of a logic cone in the implementation design. When logic cones are very

dissimilar, performance suffers. In some cases, such as during retiming, the logic cones

can change so significantly that additional setup is required to successfully verify the

designs. The debugging phase begins when the tool has returned a non-equivalent

result. Design transformations that have not been accounted for can lead to a false

negative result, and valuable time could be spent debugging designs that are, in re-

ality, equivalent. The solution would be to perform additional setup so that the tool

is guided for the given designs.

Our framework generates the synthesizable RTL description of the processor to

enable equivalence checking using Synopsys Formality [85]. The tool reads both the

reference and the implementation designs, and attempts to match the compare points

between them. The unmatched compare points need to be mapped manually. The

tool tries to establish equivalence for each matched compare point. In case of a failure,

the failing compare points are analyzed to verify whether they are actual failures or

not. The feedback is used to perform additional setup (in case of a false negative),

or to modify the implementation.

Specification-driven design validation using equivalence checking has one limita-

tion: the structure of the generated hardware model (reference) needs to be similar to

that of the implementation. This requirement is primarily due the limitation of the

equivalence checkers available today. Equivalence checking is not possible using these

tools if the reference and implementation designs are large and drastically different.

As a result, our methodology is applicable when the reference model generation is

guided to have a structure similar to the implementation. Section 5.2.2 presents the

validation of a RISC DLX processor [22] using equivalence checking.

5.2 Experiments

An important aspect of our methodology is the ability to perform both model

(property) checking and equivalence checking depending on the generated reference

model. To verify that the implementation satisfies certain properties, our framework

generates the intended properties instead of generating the complete reference design.

Section 5.2.1 presents validation of a memory management unit of a microprocessor

that is compliant with the PowerPC instruction-set using model checking. On the

other hand, if the generated reference model contains the RTL description of the

design, our framework performs equivalence checking between the implementation

and the generated reference model. Section 5.2.2 presents the validation of a RISC

DLX processor using equivalence checking.

5.2.1 Property Checking of a Memory Management Unit

The memory management unit (MMU) supports demand-paged virtual memory.

It consists of blocks such as Segment Registers, Translation Lookaside Buffers (TLBs),

103

and Block Address Translation (BAT) Arrays. Each of these memory blocks are

composed of sub-blocks. For example, a TLB has three sub-blocks: entry (data

information), LRU (least recently used information), and valid (information regarding

validity of the data) as shown in Figure 5.4. Each of these sub-blocks is implemented

as SRAM. The typical operations in SRAM are read and write. Therefore, a natural

property to verify is to check read and write for each SRAM cell. The generated

reference model contains the following Verilog code segment to verify the read and

write properties for an SRAM cell.

always @ (wrClk or wrEn or dIn or wrAddr)

begin

if (wrClk & wrEn) ram[wrAddr] <= dIn;

end

assign out = (rdClk & rdEn) ? ram[rdAddr] : 32’b0;

The Versys2 symbolic simulator does not have automatic node matching (com-

pare point matching) scheme. Therefore, it is necessary to manually map the nodes

between the reference model and the implementation. We modified Versys2 configu-

ration file to provide the node mapping between the reference model and the imple-

mentation. For example, the wrClk of the reference model is mapped to sramWrClk

of the implementation. An interesting feature of this validation approach is that the

same set of properties (without any modification) is applied to all MMU memory

blocks. However, in each case, the node mapping must be modified.

To verify whether the RTL design correctly implements the TLB miss detection,

our framework generated the following Verilog code segment. The information needed

to build this property is directly available from the specification of the MMU.

assign inp =({1’b1,vsid[0:23],ea[4:9],ea[10:13]});

assign out0=({vld0,e0[0:23],e0[24:29],e0[54:57]});

assign out1=({vld1,e1[0:23],e1[24:29],e1[54:57]});

assign hit0=(inp == out0);

assign hit1=(inp == out1);

assign miss=~(hit0 | hit1);

Entry 1Entry 0

V
alid 0

V
alid 1

LRU

TLB

ea

vsid

pa

e0 e1

vld0 vld1

Figure 5.4: TLB block diagram

This property verifies miss detection for a two-way set-associative TLB. It would

be a simple extension for generating this property for a n-way set-associative TLB.

Here vsid (virtual segment id) and ea (effective address) are inputs and pa (physical

address) is the output of the TLB block. The e and vld variables are outputs from

the entry and valid blocks respectively as shown in Figure 5.4.

Similarly we have generated and validated the property for the BAT array miss

detection. There are several mismatches found (between the reference model and the

implementation) during property checking. The architecture specification document

does not provide the value for the else condition (default value of a signal for example)

in most of the cases. As a result the description of the property does not have the

default value for a signal, whereas the signal has a definite value in its implementation

under all possible conditions. Symbolic simulation produced mismatches in those

cases. Consider the following read implementation of a SRAM cell.

assign out = (rdClk & rdEn) ? ram[rdAddr] : 32’b0;

This implementation assigns 32’b0 to signal out when condition (rdClk & rdEn) is

false. However, the architecture document does not specify the value in the default

case. As a result, the generated property does not have this value that caused the

mismatch. The architecture document can be updated to add the values in all cases.

It is also possible to impose certain constraints in Versys2 [41] to avoid the detection

105

of such false negatives. For example, we can set the condition (rdClk & rdEn) as true

in the Versys2 configuration file to avoid the detection of the mismatch mentioned

above.

5.2.2 Equivalence Checking of the DLX Architecture

We validated the DLX [22] processor using equivalence checking. We have chosen

the DLX processor since it has been well studied in academia, and there are HDL

implementations available that can be used in our validation framework. We obtained

a VHDL description of the synthesizable 32-bit RISC DLX from eda.org [86] and

used it as the implementation. The structure and behavior of the DLX architecture

is captured using the EXPRESSION ADL. Our framework generated the VHDL

description from the ADL specification using the method described in Section 4.3.

The generated VHDL description is used as the reference model (specification) for the

validation.

Regardless of the implementation style, the equivalence checker can verify a de-

sign based on the correct behavior in the reference model. For example, our HDL

generation framework generates a 32-bit adder module that uses a carry-look-ahead

principle. The equivalence checker verifies that this design is equivalent to the 32-bit

adder implementation, which uses a ripple-carry adder principle. Equivalence check-

ing took 4 seconds to verify the adder on a 300 MHz Sun Ultra-250 with 1024M RAM.

Similarly, we generated a structural model of a 32×32 register file and used it as a

reference model to verify the behavioral register file implementation [86]. In this case,

equivalence checking took 432 seconds. The majority of this time (347 seconds) was

consumed in the elaboration (linking) phase of the behavioral implementation.

Our framework generated synthesizable RTL for 32-bit RISC DLX that supports

signed operations. To avoid memory explosion, we guided the RTL generation process

to have a structure similar to the implementation [86]. The equivalence checking

process took 397 seconds. We have encountered a mismatch in the output data bus

at clock cycle 2500. The analysis revealed that the problem is in the overflow bit of

the adder. The ripple-carry adder implementation of the DLX [86] had an incorrect

computation of the overflow bit.

Design analysis in our framework is easy once we figure out the module that is

causing the problem. For example, in this particular case once we know that the

adder is causing the problem, we can verify the adder implementation of the DLX by

generating an adder specification (HDL description) from our framework and applying

equivalence checking.

Table 5.1: Validation of the DLX implementation using equivalence checking

Reference 32-bit CLA adder 32×32 register-file 32-bit DLX
Implementation ripple-carry adder behavioral model DLX [86]
Validation Time 4 seconds 432 seconds 397 seconds

Table 5.1 summarizes the experimental results. Each column in the table presents

the equivalence checking time for the respective reference model and the implemen-

tation. As we can see from the table that the validation time is longer for equivalence

checking of the register file than the DLX processor. This is due to the fact that

the models used for verifying the register-file are very different (structural vs. be-

havioral). However, we have guided the reference model generation process of the

DLX processor such that the reference model has structure similar to that of the

implementation.

5.3 Chapter Summary

Verification is one of the most complex and expensive tasks in the current micro-

processor design flow. A significant bottleneck in the validation of such systems is the

lack of a golden reference model. Thus, many existing approaches employ bottom-up

validation methodology by using a combination of simulation techniques and formal

methods.

This chapter presented a top-down validation methodology driven by an ADL.

The reference model (HDL description) is generated from the ADL specification of

the architecture. An important aspect of our methodology is the ability to perform

both model (property) checking and equivalence checking depending on the generated

107

reference model. Our framework generates the intended properties to enable model

checking, and generates the RTL description of the processor to enable equivalence

checking. To verify the properties, the framework uses Versys2 [41] that generates

assertions from the reference model and applies them to the implementation using

symbolic trajectory evaluation. The Formality [85] is used to perform equivalence

checking. We have applied our methodology in two validation scenarios: property

checking of a memory management unit of a microprocessor that is compliant with

the PowerPC instruction-set, and equivalence checking of the DLX architecture.

Specification-driven hardware generation and validation of design implementation

using equivalence checking has one limitation: the structure of the generated hardware

model (reference) needs to be similar to that of the implementation. This requirement

is primarily due the limitation of the equivalence checkers available today. Equivalence

checking is not possible using these tools if the reference and implementation designs

are large and drastically different. Property checking can be useful in such scenarios

to ensure that both designs satisfy a set of properties. However, property checking

does not guarantee equivalence between two designs. As a result, it is also necessary

to use other complementary validation techniques (such as simulation) to verify the

implementation.

Chapter 6

Functional Test Generation

As embedded systems continue to face increasingly higher performance require-

ments, deeply pipelined processor architectures are being employed to meet desired

system performance. Functional validation of such programmable processors is widely

acknowledged as a major bottleneck in current design methodology. Simulation is the

most widely used form of microprocessor verification: millions of cycles are spent dur-

ing simulation using a combination of random and directed test cases in traditional

design flow. Certain heuristics and design abstractions are used to generate directed

random testcases. However, due to the bottom-up nature and localized view of these

heuristics the generated testcases may not yield a good coverage. The problem is

further aggravated due to the lack of a comprehensive functional coverage metric.

This chapter presents two specification-driven test generation techniques. Sec-

tion 6.1 describes a model checking based functional test program generation tech-

nique for pipelined processors. Section 6.2 proposes a functional fault model that is

used to define functional coverage for pipelined architectures. It also presents pro-

cedures for generating test programs to detect all the faults in the functional fault

model. Finally, Section 6.3 summarizes the chapter.

6.1 Test Generation using Model Checking

This section presents a specification-driven test generation technique for pipelined

processors. To make ADL-driven test generation applicable to realistic embedded

109

processors, three important steps must be automated using efficient techniques. First,

the processor model generation from the specification needs to be automated. Second,

there is a need for a comprehensive functional coverage metric that can be used to

generate test programs. Finally, an efficient test generation technique is needed that

can model complex designs and enable fast generation of functional test programs.

6.1.1 Test Generation Methodology

Figure 6.1 shows our graph based functional test program generation methodology.

The processor architecture is specified in an ADL. The graph model of the processor

is generated from the ADL specification. The properties are generated based on the

graph coverage metric discussed later in this section. The properties are applied at the

module level using the SMV model checker [28]. The counter examples are analyzed

to generate test programs at the processor level. We apply these test programs to the

simulator of the processor to ensure that the coverage criteria is met. If necessary,

additional properties can be added manually. This technique reduces the time and

space required for generating test programs by applying properties at the module

level and composing the responses in sequence by traversing the pipeline graph.

Algorithm 7 presents our specification driven test generation procedure. A prop-

erty prop is applied to a module corresponding to node n in the graph model. The

framework actually generates the negation of the properties that we want to verify.

For example, to generate a testcase for assigning a value 5 to a register R7, the prop-

erty states that “R7 != 5”. The SMV model checker produces a counterexample for

the property prop. The counter example is analyzed to find the input requirements

for the node n. If these inputs are not the primary inputs of the processor, the output

requirements for the parent node of n are computed. The property is modified based

on the output requirements and applied to the parent node. This iteration continues

until primary input assignments are obtained. The primary input assignments are

converted into test programs (instruction sequences) by putting random values in the

un-assigned inputs. The complexity of the algorithm is O(n × p), where n is the

number of nodes in the graph model and p is the number of properties.

Property
(for node N)

(Graph node N)

N
 =

 P
ar

en
t o

f N

N
 =

 P
ar

en
t o

f N

SMV Description

NoNo

Yes

ADL Specification

Extract i/p assignment

Generic
SMV Models

Graph Model

SMV
Model Checker

Simulator

Additional Properties

(SMV Description)
Properties

Testcases
Coverage Report

Architecture Specification

Counterexamples

(for parent of N)
Generate o/p requirement

(SMV Description)

Manual
Automatic

Is Primary Input?

(for node N)

(English Document)

Figure 6.1: Test program generation methodology

111

Algorithm 7: Test Program Generation

Inputs: ADL specification of the pipelined processor

Outputs: Test programs to verify the pipeline behavior.

Begin

Generate graph model of the architecture.

Generate properties based on the graph coverage

for each property prop for graph node n

inputs = φ

while (inputs != primary inputs)

Apply prop on node n using SMV model checker

inputs = Find i/p requirements for n from counterexample

if inputs are not primary inputs

Extract output requirements for parent of node n

prop = modify prop with new output requirements

n = parent of node n

endif

endwhile

Convert primary input assignments to a test program

Generate the expected output using a simulator.

endfor

return the test programs

End

Graph Coverage

Measuring progress is an important task that enables the designer to decide when

to end the verification effort. We propose a coverage metric based on functional

coverage of the pipeline. We define all possible interactions between operations (in-

structions) and pipeline stages (paths) through graph coverage.

We define graph coverage using graph node coverage and graph edge coverage.

A node in the graph is called covered if it has been in all of the four states: active,

stalled, exception and flushed. A node is active when it is executing an instruction.

A node can be stalled due to structural or data hazards. A node can be in exception

state if it generates an exception while executing an instruction. It is possible to have

multiple exception scenarios and stall conditions for a node. However, our current

node coverage requires only one scenario in each case. A node is in the flushed state

if an instruction in the node is flushed due to the occurrence of an exception in any

of its successor nodes.

Similarly, an edge in the graph is called covered if it has been in all of the three

states: active, stalled and flushed. An edge is active when it is used to transfer an

operation in a clock cycle. An edge is stalled if it does not transfer an operation in a

clock cycle from a parent node to a child node. An edge is flushed if the parent node

is flushed due to the exception in the child node. The edge coverage conditions are

redundant if a node has only one child. However, if a node has multiple children (or

parents), edge coverage conditions are necessary.

Our test generation algorithm traverses the pipeline graph and generates prop-

erties based on the graph coverage described above. For example, consider the test

generation for a feedback path (edge) from MUL7 to IALU for the DLX architecture

shown in Figure 3.6. To generate a test for making the feedback path active, two

properties are generated: i) make the node MUL7 active in clock cycle t, and ii) make

the node IALU active in clock cycle (t+1). This would lead to a test program that

has a multiply operation followed by six NOPs (no operation), and finally an add

operation.

6.1.2 A Case Study

In a case study we successfully applied the proposed methodology to the DLX

processor [22]. Figure 3.6 shows the graph model of the DLX processor. The DLX

architecture has five pipeline stages: fetch, decode, execute, memory (MEM), and

writeback. First, we present the test program generation results for the DLX pro-

cessor. Next, we describe a test generation scenario using an illustrative example to

demonstrate the efficiency of our technique.

Test Generation Results

This section describes the number of test cases generated for the DLX processor

using the graph coverage described in Section 6.1.1. The DLX processor shown in

113

Figure 3.6 has 20 nodes and 24 edges (except feedback paths). We have described all

the 91 instructions of the DLX processor [22].

Table 6.1: Number of test programs in different categories

Node Coverage Edge Coverage
Active Stalled Flushed Exception Active Stalled Flushed

91 20 20 20 24 24 24

Table 6.1 shows the number of test programs generated for node and edge cover-

age of the DLX processor. Although, 20 testcases would suffice for the active node

coverage, we use 91 test cases in this category to cover all the instructions. Also, there

are many ways of making a node stalled, flushed or in exception condition. We chose

one such scenario. If we consider all possible scenarios, the number of test programs

will increase. In this case, our algorithm generated 223 test programs in 91 seconds

on a 333 MHz Sun UltraSPARC-II with 128M RAM.

Table 6.2: Reduced number of test programs

Node Coverage Edge Coverage
Active Stalled Flushed Exception Active Stalled Flushed

4 14 2 20 4† 14† + 3 2†

As mentioned earlier, some of the test programs are redundant. For example,

since there are four pipeline paths, we need only four test programs that exercise the

four paths. These four test programs will make all the nodes active. Similarly, if we

assume VLIW DLX, the decode node will be stalled if any one of its four children is

stalled. Furthermore, if the MEM node is stalled, all of its four parents will also be

stalled. This implies that we need only 14 testcases for node stalling. Likewise, if the

MEM node is in exception, the instructions in all the previous nodes will be flushed.

Hence, we need only 2 testcases for flushing. Finally, some of the node coverage

testcases also satisfies the edge coverage. We need a total of 43 test programs in this

case. Table 6.2 shows the number of reduced test programs in different categories.

† Same testcases as in the node coverage.

Test Program Generation: An Example

Example 6.1: Consider a fragment of the DLX pipeline containing three internal

registers of the division unit (DIV) as shown in Figure 6.2. The goal is to initialize

two registers Ain and Bin with values 2 and 3 respectively at clock cycle 9.

In this section we describe our test generation approach using Example 6.1. The

two internal input registers for DIV unit are Ain and Bin. The internal output register

for DIV unit is Cout. The input instruction is divInst and the output is result. In this

particular scenario, Ain and Bin receive data from the first and second source operands

of the input instruction (divInst) i.e., Ain = divInst.src1 and Bin = divInst.src2;

Cout returns the result of the division i.e., Cout = Ain ÷ Bin; finally the output is fed

from Cout i.e., result = Cout.

Fetch

MUL1 FADD1

PC

Decode

IALU Ain Bin

Cout

DIV

operation

InstMemory

RegFile

result

divInst

Figure 6.2: A fragment of the DLX architecture

The following property generates the instruction sequence to initialize Ain and

Bin with values 2 and 3 respectively at clock cycle 9. The property is written using

the SMV language [28]. Informally speaking, it implies that if current clock cycle is

8, in the next cycle DIV.Ain should not be 2 or DIV.Bin should not be 3:

assert G((cycle = 8) -> X((DIV.Ain ~= 2) | (DIV.Bin ~= 3)));

If this property is applied to the complete description of the processor, SMV takes

375.98 seconds on a 333 MHz Sun UltraSPARC-II with 128M RAM, and requires

1928568 BDD nodes to generate the counterexample. In the remainder of this section,

we illustrate how our test generation methodology improves both time and space

requirements for the Example 6.1.

115

We modify this global property to make it applicable at module level (as shown

below) and apply to the division unit (DIV) using SMV:

assert G((cycle=8) -> X((Ain ~= 2) | (Bin ~= 3)));

The next step is to analyze the counterexample produced by SMV to extract the

input requirements for the division unit. For example, in this case the input require-

ments are simple: divInst.src1 = 2 and divInst.src2 = 3. These input requirements

are used to generate the expected output assignments for the decode unit (parent of

the division unit). Also, the cycle count requirement is modified for the decode unit.

The modified property (shown below) is applied to the decode unit.

assert G((cycle = 7) -> X((divInst.src1 ~= 2) | (divInst.src2 ~= 3)));

The counterexample is analyzed to extract the input requirements for the decode

unit. The decode has two inputs: operation and RegFile. For example, in this case the

input requirements are: operation.opcode = DIV, operation.src1 = 1, operation.src2

= 2, RegFile[1] = 2, and RegFile[2]=3. This indicates that the operation should be

a division operation with src1 as R1 and src2 as R2. It also implies that the register

file should have the values 2 and 3 at locations 1 and 2 respectively. There are two

tasks to be done here. First, initialize a register file location with a specific value at

a given clock cycle t. It is done using a move-immediate instruction fetched at (t-5).

In this case, the move-immediate operations should be done at clock cycle 2 and 3 to

make the data available at cycle 8. The second task is to convert the remaining input

requirements as the expected outputs for the fetch unit (parent of the decode). The

modified property (shown below) is applied to the fetch unit.

assert G((cycle=6) -> X((operation.opcode ~= DIV) | (operation.src1 ~= 1) |

(operation.src2 ~= 2)));

The counterexample is analyzed to extract the input requirements for the fetch

unit. The fetch unit has two inputs: PC and instruction memory. The expected

value for PC is 5 and InstMemory[5] has instruction: DIV Rx R1 R2. These are

primary inputs of the processor. The final test program, shown below, is constructed

by putting random values in the unspecified fields:

Fetch Cycle Opcode Dest Src1 Src2 Comments

----------- ------ ---- ---- ---- --------------

1 NOP R0 is always 0

2 ADDI R1, R0, #2 R1 = 2

3 ADDI R2, R0, #3 R2 = 3

4 NOP

5 NOP

6 NOP

7 DIV R3, R1, R2

For this example, the system took less than a second to come up with the coun-

terexample on a 333 MHz Sun UltraSPARC-II with 128M RAM. This time includes

the time taken by SMV in verifying three module level properties. It also includes the

time taken by our system in traversing the graph and generating the new properties

with input/output computations using counterexamples. The total number of BDD

nodes allocated is 5600.

If the property is applied to the complete description of the processor, SMV takes

375.98 seconds and requires 1928568 BDD nodes to generate the counterexample.

Clearly, our technique reduced the test generation time and the required BDD size

by an order of magnitude.

6.2 Functional Coverage driven Test Generation

Several coverage measures are commonly used during design validation, such as

code coverage, toggle coverage and fault coverage. Unfortunately, these measures do

not have any direct relationship to the functionality of the device. For example, none

of these determine if all possible interactions of hazards, stalls and exceptions are

tested in a processor pipeline. There is a need for a coverage metric based on the

functionality of the design. To define a useful functional coverage metric, we need

to define a fault model of the design that is described at the functional level and

independent of the implementation details.

In this section, we present a functional fault model for pipelined processors. The

117

fault model should be applicable to the wide varieties of today’s microprocessors from

various architectural domains such as RISC, DSP, VLIW, and superscalar. These

architectures differ widely in terms of their structure (organization) and behavior

(instruction-set). We have developed a graph-theoretic model that can capture a

wide spectrum of pipelined processors, coprocessors, and heterogeneous memory sub-

systems. We have defined functional coverage based on the effects of faults in the fault

model applied at the level of the graph-theoretic model. This allows us to compute

functional coverage of a pipelined processor for a given set of random or constrained-

random test sequences. We present test generation procedures that accept the graph

model of the pipelined processor as input and generate test programs to detect all

the faults in the functional fault model.

6.2.1 Functional Fault Models

The universe of design errors consists of many types of faults including functional

(logical) faults that affect the logic function, and timing faults that effect the op-

erating speed of the system. We only consider the functional faults. The set of

possible functional faults (bugs) is dependent on the functionality of the design. In

this section, we present fault models for various functions in a pipelined processor.

We categorize various computations in a pipelined processor into register read/write,

operation execution, execution path and pipeline execution. We outline the underlying

fault mechanisms for each fault model, and describe the effects of these faults at the

level of the graph-based architecture model presented in Section 3.1.1.

Fault Model for Register Read/Write

To ensure fault-free execution, all registers should be written and read correctly.

In the presence of a fault, reading of a register will not return the previously written

value. The fault could be due to an error in reading, register decoding, register

storage, or prior writing. The outcome is an unexpected value. If VRi is written in

register Ri and read back, the output should be VRi in fault-free case. In the presence

of a fault, the output is not equal to VRi .

Fault Model for Operation Execution

All operations must execute correctly if there are no faults. In the presence of

a fault, the output of the computation is different from the expected output. The

fault could be due to an error in operation decoding, control generation or final

computation. Erroneous operation decoding might return an incorrect opcode. This

can happen if incorrect bits are decoded for opcode. Selection of incorrect bits will also

lead to erroneous decoding of source and destination operands. Even if the decoding

is correct, due to an error in control generation incorrect computation unit can be

enabled. Finally, the computation unit can be faulty. The outcome is an unexpected

result.

Let vali, where vali = fopcodei(src1, src2, ...), denote the result of computing the

operation “opcodei dest, src1, src2, ...”. In the fault-free case, the destination will

contain the value vali. Under a fault, the content of the destination is not equal to

vali.

Fault Model for Execution Path

During execution of an operation in the pipeline, one pipeline path and one or

more data-transfer paths get activated1. We define all these activated paths as the

execution path for that operation. An execution path epopi is faulty if it produces an

incorrect result during execution of operation opi in the pipeline. The fault could be

due to an error in one of the paths (pipeline or data-transfer) in the execution path.

A path is faulty if any one of its nodes or edges is faulty. A node is faulty if it accepts

valid inputs and produces incorrect outputs. An edge is faulty if it does not transfer

the data/instruction correctly.

Without loss of generality, let us assume that the processor has p pipeline paths

(PP = ∪pi=1ppi) and q data-transfer paths (DP = ∪qj=1dpj). Furthermore, each

pipeline path ppi is connected to a set of data-transfer paths DPgrpi (DPgrpi ⊆ DP).

During execution of an operation opi in the pipeline path ppi, a set of data-transfer

paths DPopi (DPopi ⊆ DPgrpi) are used (activated). Therefore, the execution path

1pipeline and data-transfer paths are described in Section 3.1.1

119

epopi for operation opi is, epopi = ppi ∪DPopi . Let us assume, operation opi has one

opcode (opcodei), m sources (∪mj=1srcj) and n destinations (∪nk=1destk). Each data-

transfer path dpi (dpi ∈ DPopi) is activated to read one of the sources or write one of

the destinations of opi in execution path epopi .

Let vali, where vali = fopcodei(∪
m
j=1srcj), denote the result of computing the opera-

tion opi in execution path epi. The vali has n components (∪nk=1val
k
i). In the fault-free

case, the destinations will contain correct values, i.e., ∀k destk = valki . Under a fault,

at least one of the destinations will have an incorrect value, i.e., ∃k destk 6= valki .

Fault Model for Pipeline Execution

The previous fault models consider only one operation at a time. An implementa-

tion of a pipeline is faulty if it produces incorrect result due to execution of multiple

operations in the pipeline. The fault could be due to incorrect implementation of

the pipeline controller. The faulty controller might have erroneous hazard detection,

incorrect stalling, erroneous flushing, or wrong exception handling schemes.

Let us define the stall set for a unit u (say SSu) as all possible ways to stall that

unit. Therefore, the stall set for the architecture StallSet = ∪∀uSSu. Let us also de-

fine the exception set for a unit u (ESu say) as all possible ways to create an exception

in that unit. We define the set of all possible multiple exception scenarios as MESS.

Hence, the exception set for the architecture ExceptionSet = ∪∀uESu ∪MESS. We

consider two types of pipeline interactions: stalls and exceptions. Therefore, all pos-

sible pipeline interactions (PIs) can be defined as: PIs = StallSet ∪ ExceptionSet.
Let us assume a sequence of operations opspi causes a pipeline interaction pi (i.e.,

pi ∈ PIs), and updates n storage locations.

Let valpi denote the result of computing the operation sequence opspi. The valpi

has n components (∪nk=1val
k
pi). In the fault-free case, the destinations will contain

correct values, i.e., ∀k destk = valki . Under a fault, at least one of the destinations

will have an incorrect value, i.e., ∃k destk 6= valki

6.2.2 Functional Coverage Estimation

We define functional coverage based on the fault models described in Section 6.2.1.

◆ a fault in register read/write is covered if the register is written first and read

later.

◆ a fault in operation execution is covered if the operation is performed, and the

result of the computation is read.

◆ a fault in execution path is covered if the execution path is activated, and the

result of the computation is read.

◆ a fault in pipeline execution is covered if the fault is activated due to execution

of multiple operations in the pipeline, and the result of the computation is read.

We compute functional coverage of a pipelined processor using the traditional

definition of coverage. The functional coverage for a given set of test programs is

computed as the ratio between the number of faults detected by the test programs

and the total number of detectable faults in the fault model.

6.2.3 Test Generation Techniques

In this section, we present test generation procedures for detecting faults covered

by the fault models presented in Section 6.2.1. Different architectures have specific

instructions to observe the contents of registers and memories. In our framework, we

use load and store instructions to make the register and memory contents observable

at the output data bus.

We first describe a procedure createTestProgram (Procedure 1) that is used by

the test generation algorithms. Procedure 1 accepts a list of operations as input and

returns the modified list of operations. First, it assigns appropriate values to the un-

specified locations (opcodes or operands). Next, it creates initialization instructions

for the uninitialized source operands. It also creates instructions to read the desti-

nation operands. Finally, it returns the modified list that contains the initialization

operations, modified input operations, and the read operations (in that order).

121

Procedure 1: createTestProgram

Input: An operation list operList.

Output: Modified operation list with initializations.

begin

resOperations = {};
for each operation oper in operList

if there are unspecified fields in oper

assign appropriate opcode/operands;

endif

for each source src of oper

if (src is a register or memory location) then

initOper: initialize src with appropriate value;

resOperations = resOperations ∪ initOper;

endif

endfor

resOperations = resOperations ∪ oper;

readOper: create an operation to read the destination of oper;

resOperations = resOperations ∪ readOper;

endfor

return resOperations.

end

Consider an input list with one operation ADD dest/reg R1 src2/imm. The op-

eration has two unspecified fields: dest and src2. Procedure 1 assigns a register R3

to dest field and an immediate value to src2 field. It also creates an initialization

operation for the source R1. Finally, it creates an operation to read the destination.

The modified list consists of three operations (in that order): MOVI R1 0×5, ADD

R3 R5 0×23, and STORE R3 R6 0×0.

Test Generation for Register Read/Write

Algorithm 8 presents the procedure for generating test programs for detecting

faults in register read/write functions. The fault model for the register read/write

function is described in Section 6.2.1. For each register in the architecture, the al-

gorithm generates an instruction sequence consisting of a write followed by a read

for that register. The function GenerateUniqueValue returns unique value for each

register based on register name. A test program for register Ri will consist of two

assembly instructions: “MOVI Ri, #vali” and “STORE Ri, Rj, 0×0”. The move-

immediate (MOVI) instruction writes vali in register Ri. The STORE instruction

reads the content of Ri and writes it in memory addressed by Rj (offset 0).

Algorithm 8: Test Generation for Register Read/Write

Input: Graph model of the architecture G.

Output: Test programs for detecting faults in register read/write.

begin /*** TestProgramList = {} ***/

for each register reg in architecture G

valuereg = GenerateUniqueValue(reg);

writeInst = an instruction that writes valuereg in register reg.

testprogreg = createTestProgram(writeInst)

TestProgramList = TestProgramList ∪ testprogreg;
endfor

return TestProgramList.

end

Theorem 6.2.1 The test sequence generated using Algorithm 8 is capable of detecting

any detectable fault in the register read/write fault model.

Proof Algorithm 8 generates one test program for each register in the architecture.

A test program consists of two instructions - a write followed by a read. Each register

is written with a specific value. If there is a fault in register read/write function, the

value read would be different than the written value.

Test Generation for Operation Execution

Algorithm 9 presents the procedure for generating test programs for detecting

faults in operation execution. The fault model for the operation execution is described

in Section 6.2.1. The algorithm traverses the behavior graph of the architecture, and

generates one test program for each operation graph using createTestProgram. For

example, a test program for the operation graph with opcode ADD in Figure 3.3 has

123

four operations: two initialization operations (“MOV R3 0×333”, “MOV R5 0×212”)

followed by the ADD operation (“ADD R2 R3 R5”), followed by the reading of the

result (“STORE R2, Rx, 0×0”).

Algorithm 9: Test Generation for Operation Execution

Input: Graph model of the architecture G.

Output: Test programs for detecting faults in operation execution.

begin /*** TestProgramList = {} ***/

for each operation oper in architecture G

testprogoper = createTestProgram(oper);

TestProgramList = TestProgramList ∪ testprogoper;
endfor

return TestProgramList.

end

Theorem 6.2.2 The test sequence generated using Algorithm 9 is capable of detecting

any detectable fault in the operation execution fault model.

Proof Algorithm 9 generates one test program for each operation in the architecture.

If there is a fault in operation execution, the computed result would be different than

the expected output.

Test Generation for Execution Path

Algorithm 10 presents the procedure for generating test programs for detecting

faults in execution path. The fault model for the execution path is described in

Section 6.2.1. The algorithm traverses the structure graph of the architecture, and

for each pipeline path it generates a group of operations supported by that path. It

randomly selects one operation from each operation group. There are two possibilities.

If all the edges in the execution path (containing the pipeline path) are activated

by the selected operation, the algorithm generates all possible source/destination

assignments for that operation. However, if different operations in the operation

group activate different set of edges in the execution path, it generates all possible

source/destination assignments for each operation in the operation group.

Algorithm 10: Test Generation for Execution Path

Input: Graph model of the architecture G.

Output: Test programs for detecting faults in execution path.

begin /*** TestProgramList = {} ***/

for each pipeline path path in architecture G

opgrouppath = operations supported in path.

execpath = path and all data-transfer paths connected to it

operpath = randomly select an operation from opgrouppath

if (operpath activates all edges in execpath) opspath = operpath

else opspath = opgrouppath endif

for all operations oper in opspath

for all source/destination operands opnd of oper

for all possible register values val of opnd

newOper = assign val to opnd of oper.

testprogoper = createTestProgram(newOper).

TestProgramList = TestProgramList ∪ testprogoper;
endfor

endfor

endfor

endfor

return TestProgramList.

end

Theorem 6.2.3 The test sequence generated using Algorithm 10 is capable of detect-

ing any detectable fault in the execution path fault model.

Proof The proof is by contradiction. The only way a detectable fault will be missed if

a pipeline or data-transfer edge is not activated (used) by the generated test programs.

Let us assume, an edge epp is not activated by any operation. If the epp is not part of

(connected to) any pipeline path, the fault is not detectable. Let us further assume,

epp is part of pipeline path pp. If the pipeline path epp does not support any operations,

the fault is not detectable. If it does support operations, Algorithm 10 will generate

operation sequences that exercises this pipeline path and all the data-transfer paths

connected to it. Since, the edge epp is connected to pipeline path pp, it is activated.

125

Test Generation for Pipeline Execution

Algorithm 11 presents the procedure for generating test programs for detecting

faults in pipeline execution. The fault model for the pipeline execution is described

in Section 6.2.1. The first loop (L1) traverses the structure graph of the architecture

in a bottom-up manner, starting at leaf nodes. The second loop (L2) computes test

programs for generating all possible exceptions in each unit using templates. The

third loop (L3) computes test programs for creating stall conditions due to data

and control hazards in each unit using templates. The fourth loop (L4) creates test

programs to generate stall conditions using structural hazards. Finally, the last loop

(L5) computes test sequences for multiple exceptions involving more than one units.

The composeTestProgram function uses ordered2 n-tuple units and combines their test

programs. The function also removes dependencies across test programs to ensure

generation of multiple exceptions during execution of the combined test program.

Theorem 6.2.4 The test sequence generated using Algorithm 11 is capable of detect-

ing any detectable fault in the pipeline execution.

Proof Algorithm 11 generates test programs for all possible interactions during

pipeline execution. The first for loop (L1) generates all possible hazard and exception

scenarions for each functional unit in the pipeline. The test programs for creating

all possible exceptions in each node are generated by the second for loop (L2). The

third for loop (L3) generates test programs for creating all possible data and control

hazards in each node. Similarly, the fourth loop (L4) generates tests for creating

all possible structural hazards in a node. Finally, the last loop (L5) generates test

programs for creating all possible multiple exception scenarios in the pipeline.

6.2.4 A Case Study

We have applied our methodology on two pipelined architectures: a VLIW imple-

mentation of the DLX architecture [22], and a RISC implementation of the SPARC

V8 architecture [32].

2The unit closer to completion has higher order.

Algorithm 11: Test Generation for Pipeline Execution

Input: Graph model of the architecture G.

Output: Test programs for detecting faults in pipeline execution.

begin /*** TestProgramList = {} ***/

L1: for each unit node unit in architecture G

L2: for each exception exon possible in unit

templateexon = template for exception exon

testprogunit = createTestProgram(templateexon);

TestProgramList = TestProgramList ∪ testprogunit;
endfor

L3: for each hazard haz in {RAW, WAW, WAR, control}
templatehaz = template for hazard haz

if haz is possible in unit

testprogunit = createTestProgram(templatehaz);

TestProgramList = TestProgramList ∪ testprogunit;
endif

endfor

L4: for each parent unit parent of unit

operparent = an operation supported by parent

resultOps = createTestProgram(operparent);

testprogunit = a test program to stall unit (if exists)

testprogparent = resultOps ∪ testprogunit
TestProgramList = TestProgramList ∪ testprogparent;

endfor

endfor

L5: for each ordered n-tuple (unit1, unit2, ..., unitn) in graph G

prog1 = a test program for creating exception in unit1

.....

progn = a test program for creating exception in unitn

testprogtuple = composeTestProgram(prog1 ∪ ... ∪ progn);

TestProgramList = TestProgramList ∪ testprogtuple;
endfor

return TestProgramList.

end

127

Experimental Setup

We have developed our test generation and coverage analysis framework using

Verisity’s Specman Elite [93]. We have captured executable specification of the ar-

chitectures using Verisity’s “e” language. This includes description of 91 instructions

for the DLX, and 106 instructions for the SPARC V8 architecture. We refer these

as specifications. We have implemented a VLIW version of the DLX architecture

(shown in Figure 3.6) using Verisity’s “e” language. It contains five pipeline stages:

fetch, decode, execute, memory and writeback. The execute stage has four parallel

execution paths: an ALU, a four-stage floating-point adder, a seven-stage multiplier,

and a multi-cycle divider. We have used the LEON2 processor [43] that is a VHDL

model of a 32-bit processor compliant with the SPARC V8 architecture. We refer

these models (VLIW DLX and LEON2) as implementations.

Our framework generates test programs in three different ways: random, con-

strained random, and our approach. Specman Elite [93] is used to generate both

random and constrained-random test programs from the specification. Several con-

straints are used for constrained-random test generation. For example, we have used

the highest probability for choosing register-type operations in DLX to generate test

programs for register read/write. Since, register-type operations have three register

operands, the chances of reading/writing registers are higher than immediate type

(two register operands) or branch type (one register operand) operations. The test

programs generated by our approach uses the algorithms described in Section 6.2.3.

To ensure that the generated test programs are executed correctly, our framework

applies the test programs on the implementation as well as the specification, and

compares the contents of the program counter, registers and memory locations after

execution of each test program.

The Specman Elite framework allows definition of various coverage measures that

enables us to compute the functional coverage described in Section 6.2.2. We defined

each entry in the instruction definition (e.g. opcode, destination and sources) as a

coverage item in Specman Elite. The coverage for the destination operand gives the

measure of which registers are written. Similarly, the coverage of source operands

gives the measure of which registers are read. We have used a variable for each

register to identify a read after a write. Computation of coverage for operation ex-

ecution is done by observing the coverage of the opcode field. The computation of

coverage for execution path is performed by observing if all the registers are used for

computation of all/selected opcodes. This is performed by using cross coverage of

instruction fields in Specman Elite that computes every combination of values of the

fields. Finally, we compute the coverage for pipeline execution by maintaining vari-

ables for stalls and exceptions in each unit. The coverage for multiple exceptions is

obtained by performing cross coverage of the exception variables (events) that occur

simultaneously.

Results

In this section, we compare the test programs generated by our approach against

the random and constrained-random test programs generated by the Specman Elite.

Table 6.3: Test programs for validation of DLX architecture

Fault Models Test Generation Techniques
Random Constrained Our Approach

Register Read/Write 3900 (100%) 750 (100%) 128 (100%)
Operation Execution 437 (100%) 443 (100%) 91 (100%)

Execution Path 12627 (100%) 1126 (100%) 160 (100%)
Pipeline Execution 30000 (25%) 30000 (30%) 322 (100%)

Table 6.3 shows the comparative results for the DLX architecture. The rows in-

dicate the fault models, and the columns indicate test generation techniques. An

entry in the table has two numbers. The first one represents the number of opera-

tions generated by that test generation technique for that fault model. The second

number (in parenthesis) represents the functional coverage obtained by the generated

test programs for that fault model. The number 100% implies that the generated

test programs covered all the faults in that fault model. For example, the Random

technique covered all the faults in “Register Read/Write” function using 3900 tests.

The number of test programs for operation execution are similar for both random

129

and constrained-random approaches. This is because the constraint used in this case

(same probability for all opcodes) may be the default option used in random test

generation approach.

Table 6.4: Test programs for validation of LEON2 processor

Fault Models Test Generation Techniques
Random Constrained Our Approach

Register Read/Write 1746 (100%) 654 (100%) 128 (100%)
Operation Execution 416 (100%) 467 (100%) 106 (100%)

Execution Path 1500 (100%) 475 (100%) 96 (100%)
Pipeline Execution 30000 (48%) 30000 (50%) 56 (100%)

Table 6.4 shows the comparative results for different test generation approaches

for the LEON2 processor. The trend is similar in terms of number of operations and

functional coverage for both the DLX and LEON2 architectures. The random and

constrained-random approaches have obtained 100% functional coverage for the first

three fault models using an order of magnitude more test vectors than our approach.

We have analyzed the cause for the low functional coverage in pipeline execution for

the random and constraint-driven test generation approaches. These two approaches

covered all the stall scenarios and majority of the single exception faults. However,

they could not activate any multiple exception scenarios. Due to the bigger pipeline

structure (larger set of pipeline interactions) in the VLIW DLX, it has lower fault

coverage than the LEON2 architecture in pipeline execution.

6.3 Chapter Summary

Specification-driven test program generation is a promising approach for func-

tional validation of pipelined processors. In this chapter, we presented two test gen-

eration techniques. The first half of the chapter presented a model checking based

functional test program generation technique for pipelined processors. Our method-

ology accepts an ADL specification of the processor as input. A graph model of the

pipelined processor is generated from the ADL specification. We defined the func-

tional coverage of the pipeline behavior in terms of the graph coverage. We presented

a test program generation algorithm that traverses the pipeline graph to generate test

programs based on the coverage metric. Our technique reduced the test generation

time and the required BDD size by an order of magnitude.

The second half of the chapter presented a functional coverage based test gener-

ation technique for pipelined architectures. The methodology made two important

contributions. First, we presented a functional fault model that is used in defining

the functional coverage. Second, we presented test generation procedures that accept

the graph model of the microprocessor as input and generate test programs to detect

all the faults in the functional fault model. We are able to measure the goodness of a

given set of random test sequences using our functional coverage metric. We applied

this technique on two pipelined architectures: DLX and LEON2. Our experimental

results demonstrate that the required number of test sequences generated by our al-

gorithms to obtain a given fault (functional) coverage is an order of magnitude less

than the random or constrained-random test programs.

131

Chapter 7

Conclusions and Future Work

There is no argument that validation is one of the most important problems in

today’s SOC design methodology. A significant bottleneck in the validation of pro-

grammable embedded systems is the lack of a golden reference model. As a result,

many existing approaches employ a bottom-up validation approach by using a com-

bination of simulation techniques and formal methods. This thesis presented a top-

down validation methodology for programmable architectures that complements the

existing bottom-up techniques. This chapter draws the conclusions from the research

results obtained, and looks at some future work on specification-driven validation and

related issues.

7.1 Conclusions

This thesis investigates several issues related to top-down validation of programmable

embedded systems consisting of processor core, coprocessors, and memory subsystem.

There are four important problems to be addressed in a specification-driven validation

methodology:

❐ Specification: How to capture a wide variety of programmable architectures

using a specification language? The language should be powerful enough to

specify the wide spectrum of contemporary processor, coprocessor, and memory

features. On the other hand, the language should be simple enough to allow

correlation of the information between the specification and the architecture

manual.

❐ Specification Validation: How to validate the architecture specification to

ensure it is golden? Specification analysis and validation would be an easier

task if the specification language has formal semantics.

❐ Model Generation: How to generate hardware, simulation models, and mod-

els for other validation techniques from the given specification?

❐ Design Validation: What are the bottom-up validation techniques that the

top-down methodology can complement?

This thesis examines all of the problems mentioned above. We used the EXPRES-

SION ADL [20] to specify the architecture. It can capture the structure and behavior

of a wide variety of programmable architectures including RISC, DSP, VLIW, and

superscalar. The validation techniques, we developed, are applicable to any specifica-

tion language that captures both the structure and the behavior of the architecture.

We developed validation techniques to ensure that the static behavior of the

pipeline is well-formed by analyzing the structural aspects of the specification using

a graph based model. The dynamic behavior is verified by analyzing the instruc-

tion flow in the pipeline using a FSM-based model to validate several architectural

properties such as determinism and in-order execution in the presence of hazards and

multiple exceptions. These properties are by no means complete to prove the correct-

ness of the specification. The designer can add new architecture specific properties

and easily integrate it in our validation framework.

A major challenge in top-down validation methodology is the ability to generate

executable models from the specification for a wide variety of programmable architec-

tures. We defined a functional abstraction technique to enable generation of models

for simulation, hardware generation, and property checking from the ADL specifi-

cation. The generated simulation and hardware models are used for design space

exploration of programmable architectures.

133

This thesis explored two top-down validation scenarios that complement existing

bottom-up techniques: design validation and test generation. The generated hardware

is used as a reference model for verifying the hand-written RTL implementation using

a combination of symbolic simulation and equivalence checking. We also developed

specification-driven test generation techniques based on the functional coverage of the

pipelined architectures.

7.2 Future Research Directions

Top-down validation of programmable embedded systems is a major problem. We

believe that we explored only the tip of the iceberg. There are many challenges

remaining to make this approach viable in practice. The work presented in this thesis

can be extended in the following directions:

➤ ADLs allow ease of specification for programmable architectures. Formal lan-

guages allow specification in a rigorous form. An interesting direction is to

develop a specification language that combines the benefits of both. Such a

language would make specification validation a easier problem.

➤ There are two important problems that needs to be investigated during specifi-

cation validation. First, it is necessary to develop architecture specific properties

such as validation of execution style for an out-of-order superscalar processor.

Second, it is important to develop a completeness criteria (to establish both

necessary and sufficient conditions) for specification validation.

➤ The functional abstraction based approach we developed in this thesis allows

model generation for uni-processor architectures. There is a need for a method-

ology to generate models from the specification of programmable architectures

containing multiple processor cores.

➤ Further studies can be done in the design space exploration of architectures.

We have done processor-memory exploration using small and medium sized

benchmarks and observed many interesting trade-offs. Further experiments can

be performed using larger applications, to study the impact of different parts of

the application (such as loop nests) on the memory organization behavior and

overall performance, as well as on system power.

➤ Our synthesis-driven exploration framework can be used for generating hard-

ware models for real-world architectures. We have not considered the optimiza-

tion and resource sharing issues of our data path components yet. As a result,

the execution units consumes 60-70% of the total area and power of the gener-

ated hardware model. Future research can enable generation of optimized data

path components with shared resources.

➤ Specification-driven hardware generation and validation of design implementa-

tion using generated hardware model has one limitation: the generated hard-

ware model (reference) should have a structure similar to the implementation.

The requirement is primarily due to the limitation of the equivalence checkers

available today. It is an easier task for the tool when the module boundaries

are same. Equivalence checking is not possible using these tools if the designs

are large (in the order of a million gates) and the reference and implementation

designs are drastically different. In reality, the implementation goes through

numerous optimizations due to various requirements such as cost, area, power

and performance. As a result, the final implementation might not have similar

structure as intended in the original specification. There is a need for a new

validation technique that would enable reference model generation and design

validation without any knowledge of the implementation details.

➤ The generated test programs are applied to a cycle-accurate simulator. It would

be interesting to perform functional validation of RTL implementation using the

generated test programs. We have investigated the applicability of our technique

on two simple pipelined processors: DLX and LEON2. Applicability of these

techniques can be investigated on today’s microprocessors. It is necessary to

perform further comparative studies with our functional coverage metric against

existing coverage measures, such as code coverage and stuck-at coverage.

135

➤ This thesis considered programmable embedded systems consisting of processor

core, coprocessor, and memory subsystem. Traditional embedded systems con-

tain many more components including DMAs, input/output devices, specific

hardwares, buses, and so on. It is necessary to extend the current methodol-

ogy for specification, model generation, and top-down validation of embedded

systems.

Bibliography

[1] A. Aharon, D. Goodman, M. Levinger, Y. Lichtenstein, Y. Malka, C. Metzger,

M. Molcho, and G. Shurek. Test program generation for functional verification

of PowerPC processors in IBM. In Proceedings of Design Automation Conference

(DAC), pages 279–285, 1995.

[2] H. Akaboshi. A Study on Design Support for Computer Architecture Design.

PhD thesis, Dept. of Information Systems, Kyushu University, Japan, Jan 1996.

[3] H. Akaboshi and H. Yasuura. Behavior extraction of MPU from HDL description.

In Proceedings of Asia Pacific Conference on Hardware Description Languages

(APCHDL), 1994.

[4] D. Anastasakis, R. Damiano, H. Ma, and T. Stanion. A practical and efficient

method for compare-point matching. In Proceedings of Design Automation Con-

ference (DAC), pages 305–310, 2002.

[5] ARC. http://www.arccores.com. ARC Cores.

[6] Axys. Axys Design Automation. http://www.axysdesign.com.

[7] Chris Basoglu, Woobin Lee, and John Setel O’Donnell. The MAP1000A VLIW

Mediaprocessor, 2000.

[8] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A framework for architectural-

level power analysis and optimizations. In Proceedings of International Sympo-

sium on Computer Architecture (ISCA), pages 83–94, 2000.

137

[9] R. Bryant. Symbolic simulation - techniques and applications. In Proceedings of

Design Automation Conference (DAC), pages 517–521, 1990.

[10] R. Bryant and C. Seger. Formal verification of digital circuits using symbolic

ternary system models. In Proceedings of Computer Aided Verification (CAV),

pages 121–146, 1990.

[11] J. Burch and D. Dill. Automatic verification of pipelined microprocessor control.

In D. Dill, editor, Proceedings of Computer Aided Verification (CAV), volume

818 of LNCS, pages 68–80. Springer-Verlag, 1994.

[12] D. Campenhout, T. Mudge, and J. Hayes. High-level test generation for design

verification of pipelined microprocessors. In Proceedings of Design Automation

Conference (DAC), pages 185–188, 1999.

[13] H. Chockler, O. Kupferman, R. Kurshan, and M. Vardi. A practical approach

to coverage in model checking. In Proceedings of Computer Aided Verification

(CAV), volume 2102 of LNCS, pages 66–78. Springer-Verlag, 2001.

[14] Paul C. Clements. A survey of architecture description languages. In Proceedings

of International Workshop on Software Specification and Design (IWSSD), pages

16–25, 1996.

[15] D. Cyrluk. Microprocessor verification in PVS: A methodology and simple ex-

ample. Technical report, SRI-CSL-93-12, 1993.

[16] C. Ejik. Sequential equivalence checking without state space traversal. In Pro-

ceedings of Design Automation and Test in Europe (DATE), pages 618–623, 1998.

[17] M. Freericks. The nML machine description formalism. Technical Report TR

SM-IMP/DIST/08, TU Berlin CS Dept., 1993.

[18] P. Grun, A. Halambi, N. Dutt, and A. Nicolau. RTGEN: An algorithm for

automatic generation of reservation tables from architectural descriptions. In

Proceedings of International Symposium on System Synthesis (ISSS), pages 44–

50, 1999.

[19] G. Hadjiyiannis, S. Hanono, and S. Devadas. ISDL: An instruction set description

language for retargetability. In Proceedings of Design Automation Conference

(DAC), pages 299–302, 1997.

[20] A. Halambi, P. Grun, V. Ganesh, A. Khare, N. Dutt, and A. Nicolau. EXPRES-

SION: A language for architecture exploration through compiler/simulator re-

targetability. In Proceedings of Design Automation and Test in Europe (DATE),

pages 485–490, 1999.

[21] A. Halambi, A. Shrivastava, N. Dutt, and A. Nicolau. A customizable compiler

framework for embedded systems. In Proceedings of Software and Compilers for

Embedded Systems (SCOPES), 2001.

[22] J. Hennessy and D. Patterson. Computer Architecture: A Quantitative Approach.

Morgan Kaufmann Publishers Inc, San Mateo, CA, 1990.

[23] P. Ho, A. Isles, and T. Kam. Formal verification of pipeline control using con-

trolled token nets and abstract interpretation. In Proceedings of International

Conference on Computer-Aided Design (ICCAD), pages 529–536, 1998.

[24] R. M. Hosabettu. Systematic Verification Of Pipelined Microprocessors. PhD

thesis, Department of Computer Science, University of Utah, 2000.

[25] http://www-cad.eecs.berkeley.edu/Software/software.html. Espresso.

[26] http://www-ee.engr.ccny.cuny.edu/notes/ee210/eqntott man.html. Eqntott.

[27] http://www.coware.com. CoWare LISATek Products.

[28] http://www.cs.cmu.edu/˜modelcheck. Symbolic Model Verifier.

[29] http://www.lucent.com/micro/Starcore. Starcore, Next Generation DSPs.

[30] http://www.motorola.com. MPC7450 Microprocessor.

[31] http://www.sgi.com. MIPS R10000 Microprocessor.

139

[32] http://www.sparc.com/resource.htm#V8. The SPARC Architecture Manual,

Version 8.

[33] http://www.ti.com/sc/docs/products/dsp/C6000/index.htm.

TMS320C6000TM DSP.

[34] A. Inoue, H. Tomiyama, F. Eko, H. Kanbara, and H. Yasuura. A programming

language for processor based embedded systems. In Proceedings of Asia Pacific

Conference on Hardware Description Languages (APCHDL), pages 89–94, 1998.

[35] H. Iwashita, S. Kowatari, T. Nakata, and F. Hirose. Automatic test pattern

generation for pipelined processors. In Proceedings of International Conference

on Computer-Aided Design (ICCAD), pages 580–583, 1994.

[36] J. Paakki. Attribute grammar paradigms - a high level methodology in language

implementation. ACM Computing Surveys, 27(2):196–256, June 1995.

[37] R. Jhala and K. L. McMillan. Microarchitecture verification by compositional

model checking. In G. Berry et al., editor, Proceedings of Computer Aided Veri-

fication (CAV), volume 2102 of LNCS, pages 396–410. Springer-Verlag, 2001.

[38] N. Jouppi. Improving direct-mapped cache performance by the addition of a

small fully-associative cache and prefetch buffers. In Proceedings of International

Symposium on Computer Architecture (ISCA), pages 364–373, 1990.

[39] A. Kejariwal, P. Mishra, J. Astrom, and N. Dutt. HDLGen: Automatic HDL

generation driven by an architecture description language. Technical Report

CECS 03-04, University of California, Irvine, 2003.

[40] A. Khare, N. Savoiu, A. Halambi, P. Grun, N. Dutt, and A. Nicolau. V-SAT: A

visual specification and analysis tool for system-on-chip exploration. In Proceed-

ings of EUROMICRO Conference, pages 1196–1203, 1999.

[41] N. Krishnamurthy, M. Abadir, A. Martin, and J. Abraham. Design and devel-

opment paradigm for industrial formal verification tools. IEEE Design & Test

of Computers, 18(4):26–35, July-August 2001.

[42] D. Lanneer, J. Praet, A. Kifli, K. Schoofs, W. Geurts, F. Thoen, and G. Goossens.

CHESS: Retargetable code generation for embedded DSP processors. In Code

Generation for Embedded Processors., pages 85–102. Kluwer Academic Publish-

ers, 1995.

[43] LEON2 Processor. http://www.gaisler.com/leon.html.

[44] R. Leupers and P. Marwedel. Retargetable generation of code selectors from

HDL processor models. In Proceedings of European Design and Test Conference

(EDTC), pages 140–144, 1997.

[45] R. Leupers and P. Marwedel. Retargetable code generation based on structural

processor descriptions. Design Automation for Embedded Systems, 3(1):75–108,

1998.

[46] J. Marques-Silva and T. Glass. Combinational equivalence checking using satis-

fiability and recursive learning. In Proceedings of Design Automation and Test

in Europe (DATE), pages 145–149, 1999.

[47] N. Medvidovic and R. Taylor. A framework for classifying and comparing ar-

chitecture description languages. In M. Jazayeri and H. Schauer, editors, Pro-

ceedings of European Software Engineering Conference (ESEC), pages 60–76.

Springer–Verlag, 1997.

[48] MIPS Technologies, Inc. MIPS R4000 Microprocessor User’s Manual, 1994.

[49] P. Mishra, J. Astrom, N. Dutt, and A. Nicolau. Functional abstraction of pro-

grammable embedded systems. Technical Report UCI-ICS 01-04, University of

California, Irvine, January 2001.

[50] P. Mishra and N. Dutt. Automatic functional test program generation for

pipelined processors using model checking. In Proceedings of High Level Design

Validation and Test (HLDVT), pages 99–103, 2002.

141

[51] P. Mishra and N. Dutt. Modeling and verification of pipelined embedded pro-

cessors in the presence of hazards and exceptions. In Proceedings of Distributed

and Parallel Embedded Systems (DIPES), pages 81–90, 2002.

[52] P. Mishra and N. Dutt. Automatic modeling and validation of pipeline speci-

fications. ACM Transactions on Embedded Computing Systems (TECS), 3(1),

2004.

[53] P. Mishra and N. Dutt. Functional coverage driven test generation for validation

of pipelined processors. Technical Report CECS 04-05, University of California,

Irvine, 2004.

[54] P. Mishra and N. Dutt. Graph-based functional test program generation for

pipelined processors. In Proceedings of Design Automation and Test in Europe

(DATE), 2004.

[55] P. Mishra, N. Dutt, N. Krishnamurthy, and M. Abadir. A top-down methodology

for validation of microprocessors. IEEE Design & Test of Computers, 2004.

[56] P. Mishra, N. Dutt, and A. Nicolau. Automatic validation of pipeline specifica-

tions. In Proceedings of High Level Design Validation and Test (HLDVT), pages

9–13, 2001.

[57] P. Mishra, N. Dutt, and A. Nicolau. Functional abstraction driven design space

exploration of heterogeneous programmable architectures. In Proceedings of In-

ternational Symposium on System Synthesis (ISSS), pages 256–261, 2001.

[58] P. Mishra, N. Dutt, and A. Nicolau. Specification of hazards, stalls, interrupts,

and exceptions in EXPRESSION. Technical Report UCI-ICS 01-05, University

of California, Irvine, 2001.

[59] P. Mishra, N. Dutt, and A. Nicolau. A study of out-of-order completion for the

MIPS R10K superscalar processor. Technical Report UCI-ICS 01-06, University

of California, Irvine, January 2001.

[60] P. Mishra, N. Dutt, and H. Tomiyama. Towards automatic validation of dynamic

behavior in pipelined processor specifications. Kluwer Design Automation for

Embedded Systems, 8(2-3):249–265, June-September 2003.

[61] P. Mishra, P. Grun, N. Dutt, and A. Nicolau. Processor-memory co-exploration

driven by an architectural description language. In Proceedings of International

Conference on VLSI Design, pages 70–75, 2001.

[62] P. Mishra, A. Kejariwal, and N. Dutt. Rapid exploration of pipelined processors

through automatic generation of synthesizable RTL models. In Proceedings of

Rapid System Prototyping (RSP), pages 226–232, 2003.

[63] P. Mishra, A. Kejariwal, and N. Dutt. Synthesis-driven exploration of pipelined

embedded processors. In Proceedings of International Conference on VLSI De-

sign, 2004.

[64] P. Mishra, M. Mamidipaka, and N. Dutt. A framework for memory subsystem

exploration. Technical Report CECS 02-19, University of California, Irvine, 2002.

[65] P. Mishra, M. Mamidipaka, and N. Dutt. Processor-memory co-exploration using

an architecture description language. To appear, ACM Transactions on Embed-

ded Computing Systems (TECS), 3(1), 2004.

[66] P. Mishra, F. Rousseau, N. Dutt, and A. Nicolau. Architecture description lan-

guage driven design space exploration in the presence of coprocessors. In Pro-

ceedings of Synthesis and System Integration of Mixed Technologies (SASIMI),

2001.

[67] P. Mishra, F. Rousseau, N. Dutt, and A. Nicolau. Coprocessor codesign for

programmable architectures. Technical Report UCI-ICS 01-13, University of

California, Irvine, April 2001.

[68] P. Mishra, H. Tomiyama, N. Dutt, and A. Nicolau. Architecture description lan-

guage driven verification of in-order execution in pipelined processors. Technical

Report UCI-ICS 01-20, University of California, Irvine, 2000.

143

[69] P. Mishra, H. Tomiyama, N. Dutt, and A. Nicolau. Automatic verification of

in-order execution in microprocessors with fragmented pipelines and multicy-

cle functional units. In Proceedings of Design Automation and Test in Europe

(DATE), pages 36–43, 2002.

[70] P. Mishra, H. Tomiyama, A. Halambi, P. Grun, N. Dutt, and A. Nicolau. Auto-

matic modeling and validation of pipeline specifications driven by an architecture

description language. In Proceedings of Asia South Pacific Design Automation

Conference (ASPDAC) / International Conference on VLSI Design, pages 458–

463, 2002.

[71] J. M. Mulder, N. T. Quach, and M. J. Flynn. An area model for on-chip memories

and its application. IEEE Journal of Solid State Circuits, SC-26(1):98–105, Feb

1991.

[72] S. Pasricha, P. Biswas, P. Mishra, A. Shrivastava, A. Mandal, N. Dutt, and

A. Nicolau. A framework for GUI-driven design space exploration of a MIPS4K-

like processor. Technical Report CECS 03-17, University of California, Irvine,

2003.

[73] P. Paulin, C. Liem, T. May, and S. Sutarwala. FlexWare: A flexible firmware

development environment for embedded systems. In Prof. of Dagstuhl Workshop

on Code Generation for Embedded Processors, pages 67–84, 1994.

[74] V. Rajesh and Rajat Moona. Processor modeling for hardware software codesign.

In Proceedings of International Conference on VLSI Design, pages 132–137, 1999.

[75] J. Sawada and W. D. Hunt. Processor verification with precise exceptions and

speculative execution. In A. Hu and M. Vardi, editor, Proceedings of Computer

Aided Verification (CAV), volume 1427 of LNCS, pages 135–146. Springer-Verlag,

1998.

[76] C. Seger and R. Bryant. Formal verification by symbolic evaluation of partially-

ordered trajectories. In Formal Methods in System Design, volume 6, pages

147–189, March 1995.

[77] J. Shen, J. Abraham, D. Baker, T. Hurson, M. Kinkade, G. Gervasio, C. Chu,

and G. Hu. Functional verification of the equator MAP1000 microprocessor. In

Proceedings of Design Automation Conference (DAC), pages 169–174, 1999.

[78] SIA. National technology roadmap for semiconductors: Technology needs. Semi-

conductor Industry Association, 1998.

[79] C. Siska. A processor description language supporting retargetable multi-pipeline

DSP program development tools. In Proceedings of International Symposium on

System Synthesis (ISSS), pages 31–36, 1998.

[80] J. Skakkebaek, R. Jones, and D. Dill. Formal verification of out-of-order exe-

cution using incremental flushing. In A. Hu and M. Vardi, editor, Proceedings

of Computer Aided Verification (CAV), volume 1427 of LNCS, pages 98–109.

Springer-Verlag, 1998.

[81] M. Srivas and M. Bickford. Formal verification of a pipelined microprocessor. In

IEEE Software, volume 7(5), pages 52–64, 1990.

[82] StrongArm. StrongARM Processors. http://developer.intel.com, 2000.

[83] SUN Microsystems. UltraSPARC IIi User’s Manual, 1997.

[84] Synopsys. http://www.synopsys.com.

[85] Synopsys Formality. http://www.synopsys.com.

[86] Synthesizable DLX. http://www.eda.org/rassp/vhdl/models/processor.html.

[87] Target. http://www.retarget.com. Target Compiler Technologies.

[88] Tensilica. http://www.tensilica.com. Tensilica Inc.

[89] Texas Instruments. TMS320C6201 CPU and Instruction Set Reference Guide,

1998.

[90] Trimaran. The MDES User Manual. http://www.trimaran.org, 1997.

145

[91] S. Ur and Y. Yadin. Micro architecture coverage directed generation of test

programs. In Proceedings of Design Automation Conference (DAC), pages 175–

180, 1999.

[92] M. Velev and R. Bryant. Formal verification of superscalar microprocessors with

multicycle functional units, exceptions, and branch prediction. In Proceedings of

Design Automation Conference (DAC), pages 112–117, 2000.

[93] Verisity. http://www.verisity.com.

[94] L. Wang, M. Abadir, and N. Krishnamurthy. Automatic generation of assertions

for formal verification of PowerPC microprocessor arrays using symbolic trajec-

tory evaluation. In Proceedings of Design Automation Conference (DAC), pages

534–537, 1998.

[95] www.intel.com. IA-64 Architecture.

[96] V. Zivojnovic, S. Pees, and H. Meyr. LISA - machine description language and

generic machine model for HW/SW co-design. In IEEE Workshop on VLSI

Signal Processing, pages 127–136, 1996.

	Cover
	Table of Contents
	Introduction
	Traditional Bottom-Up Validation Flow
	Proposed Top-Down Validation Methodology
	Thesis Contributions
	Thesis Organization

	Architecture Specification
	Architecture Description Languages
	Behavioral ADLs
	Structural ADLs
	Mixed ADLs

	Specification using EXPRESSION ADL
	Processor Specification
	Coprocessor Specification
	Memory Subsystem Specification
	Specification of Interrupts and Exceptions

	Chapter Summary

	Validation of Specification
	Validation of Static Behavior
	Graph-based Modeling of Pipelines
	Validation of Pipeline Specifications
	Experiments

	Validation of Dynamic Behavior
	FSM-based Modeling of Processor Pipelines
	Validation of Dynamic Properties
	A Case Study

	Chapter Summary

	Model Generation using Functional Abstraction
	Survey of Contemporary Architectures
	Summary of Architectures Studied
	Similarities and Differences

	Functional Abstraction
	Structure of a Generic Processor
	Behavior of a Generic Processor
	Structure of a Generic Memory Subsystem
	Generic Controller
	Interrupts and Exceptions

	Reference Model Generation
	Design Space Exploration
	Simulator Generation and Exploration
	Hardware Generation and Exploration

	Chapter Summary

	Specification-driven Validation
	Design Validation
	Property Checking using Symbolic Simulation
	Equivalence Checking

	Experiments
	Property Checking of a Memory Management Unit
	Equivalence Checking of the DLX Architecture

	Chapter Summary

	Functional Test Generation
	Test Generation using Model Checking
	Test Generation Methodology
	A Case Study

	Functional Coverage driven Test Generation
	Functional Fault Models
	Functional Coverage Estimation
	Test Generation Techniques
	A Case Study

	Chapter Summary

	Conclusions and Future Work
	Conclusions
	Future Research Directions

