
TEST GENERATION FOR SYSTEM-ON-CHIP SECURITY VALIDATION

By

YANGDI LYU

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA

2020

© 2020 Yangdi Lyu

ACKNOWLEDGMENTS

Firstly, I would like to express my sincere appreciation to my advisor, Prof. Prabhat

Mishra, who provided the persistent support and guidance for my Ph.D. study. His patience,

motivation and immense knowledge helped me in all aspects of research and writing this

dissertation. He is the person who made my Ph.D. research and this dissertation come true.

Besides my advisor, I would like to thank the rest of my Ph.D. committee members

(Prof. Sartaj Sahni, Prof. My Thai, and Prof. Swarup Bhunia) for their constructive

recommendations and insightful critiques. Their diverse expertise and knowledge helped

me improve the quality of my research and this dissertation.

I thank my fellow labmates: Yuanwen Huang, Farimah Farahmandi, Subodha Charles,

Alif Ahmed, Zhixin Pan, Daniel Volya, Hasini Witharana, and Jonathan Cruz. It was my great

pleasure to collaborate with them.

Last but not least, I sincerely acknowledge the support and great love of my parents, my

wife and my son. This dissertation would not be possible without their unconditional support

and love. I would like to offer my special appreciation to my wife, Xiaojie, who contributes a

lot to the family and encouraged me to make the decision to start my Ph.D. Our happy family

and the beautiful UF campus have made the five-year doctoral journey so delightful. I dedicate

this dissertation to them.

3

TABLE OF CONTENTS
page

ACKNOWLEDGMENTS . 3

LIST OF TABLES . 8

LIST OF FIGURES . 9

ABSTRACT . 12

CHAPTER

1 INTRODUCTION . 13

1.1 SoC Validation Methods . 17
1.1.1 Formal Methods . 17
1.1.2 Simulation-based Validation . 18
1.1.3 Side-channel Analysis . 18

1.2 SoC Security Validation Challenges . 19
1.2.1 A Wide Variety of Vulnerabilities . 20
1.2.2 Controllability and Observability . 20
1.2.3 Lack of Effective and Scalable Validation Techniques 21

1.3 Research Contributions . 25
1.4 Dissertation Organization . 28

2 BACKGROUND AND RELATED WORK . 30

2.1 SoC Security Validation using Formal Methods 30
2.2 SoC Security Validation using Simulation-based Validation 30

2.2.1 Random/Constrained-Random Simulation 31
2.2.2 Directed Test Generation using Formal Methods 31
2.2.3 Statistical Methods . 32
2.2.4 Concolic Testing . 35

2.2.4.1 Concolic Testing of Software Designs 36
2.2.4.2 Concolic Testing of Hardware Designs 36

2.3 SoC Security Validation using Side-channel Analysis 37
2.3.1 Dynamic Current based Side-Channel Analysis 37
2.3.2 Path Delay based Side-Channel Analysis 39

2.4 Summary . 40

3 SYSTEM-ON-CHIP SECURITY ASSERTIONS . 41

3.1 Assertion-based Validation . 42
3.1.1 Assertion Languages . 43
3.1.2 Automated Assertion Generation . 43

3.2 SoC Security Vulnerabilities . 44
3.2.1 Permissions and Privileges . 44

4

3.2.2 Resource Management . 45
3.2.3 Illegal States and Transitions . 45
3.2.4 Buffer Issues . 45
3.2.5 Information Leakage . 45
3.2.6 Numeric Exceptions . 46
3.2.7 Malicious Implants . 46

3.3 SoC Security Assertions . 46
3.3.1 Embedding of Security Assertions . 46
3.3.2 Generation of Security Assertions . 47

3.4 Case Studies . 49
3.4.1 Arbiter . 50
3.4.2 PCI . 51
3.4.3 USB Protocol . 51
3.4.4 A Simplified Memory Design . 52
3.4.5 Gaussian Noise Generator (GNG) . 54
3.4.6 AES . 55

3.5 Summary . 56

4 SCALABLE CONCOLIC TESTING OF RTL MODELS 58

4.1 Overview and Problem Formulation . 59
4.1.1 Modeling of Targets . 60
4.1.2 Overview . 60

4.2 Test Generation using Concolic Testing . 61
4.2.1 RTL Code Instrumentation . 61
4.2.2 Contribution-aware Edge Realignment 63
4.2.3 Distance Computation . 67
4.2.4 Path Exploration . 69

4.2.4.1 Dynamic Distance Update 71
4.3 Optimizations for Covering Multiple Targets 72

4.3.1 Target Pruning . 73
4.3.2 Target Clustering . 75

4.4 Experiments . 77
4.4.1 Experimental Setup . 77
4.4.2 Performance Comparison . 77
4.4.3 Scalability Comparison . 80
4.4.4 Effect of Target Pruning . 82
4.4.5 Effect of Edge Realignment . 84

4.5 Summary . 84

5 TEST GENERATION FOR ACTIVATION OF ASSERTIONS 86

5.1 Problem Formulation . 88
5.2 Conversion of Assertions to Branches . 89

5.2.1 Simplified Abstract Syntax Tree . 90
5.2.2 Adjust AST with Timing . 91

5

5.2.3 Conversion of AST to Branch Target 92
5.2.4 Complexity Analysis . 93

5.3 Test Generation using Concolic Testing . 94
5.3.1 Overview . 94
5.3.2 Selection of Alternate Branches in CFG 95

5.4 Experiments . 96
5.4.1 Experimental Setup . 96
5.4.2 Benchmarks and Assertions . 97
5.4.3 Test Generation Results . 97

5.5 Summary . 99

6 TEST GENERATION FOR VALIDATION OF CACHE COHERENCE PROTOCOLS 100

6.1 Background . 101
6.2 Test Generation for Validation of Cache Coherence Protocols 102
6.3 Scalable Test Generation using Quotient Space 103
6.4 Experiments . 109

6.4.1 Experimental Setup . 109
6.4.2 Test Generation for Quotient Protocol 112

6.5 Summary . 114

7 SCALABLE ACTIVATION OF RARE TRIGGERS 115

7.1 Motivation . 116
7.1.1 Maximal Clique Problem . 118

7.2 Scalable Activation of Rare Triggers . 120
7.2.1 Definition and Notations . 120
7.2.2 Mapping Trigger Activation to Clique Cover Problem 122
7.2.3 Directed Test Generation Scheme . 123
7.2.4 Test Generation Algorithms . 125

7.2.4.1 Test Generation using Clique Enumeration 125
7.2.4.2 Efficient Test Generation using Clique Sampling and Lazy

Construction . 127
7.2.5 Scalable TRAMAC by Parallelization of Clique Sampling 128
7.2.6 Effectiveness of Random Clique Sampling 129

7.3 Experiments . 132
7.3.1 Experimental Setup . 132
7.3.2 The Effects of Trigger Points . 133
7.3.3 Performance Evaluation . 134
7.3.4 Parallelism Evaluation . 138
7.3.5 Compactness and Efficiency . 139
7.3.6 Trigger Coverage . 141

7.4 Summary . 143

6

8 TROJAN DETECTION USING CURRENT-BASED SIDE-CHANNEL ANALYSIS . . 145

8.1 Problem Formulation and Motivation . 146
8.1.1 Problem Formulation . 146
8.1.2 An Illustrative Example . 147
8.1.3 Motivation and Research Challenges 148

8.2 Generation of Effective Test Patterns . 149
8.2.1 Generation of the First Patterns . 150
8.2.2 Searching for the Best Succeeding Pattern 151

8.2.2.1 Initialization . 153
8.2.2.2 Fitness Computation . 154
8.2.2.3 Selection . 154
8.2.2.4 Crossover and Mutation . 154

8.2.3 Selection of TriggerLimit . 155
8.3 Experiments . 156

8.3.1 Experimental Setup . 156
8.3.2 Generation of Hardware Trojans . 157
8.3.3 Performance Evaluation . 158

8.3.3.1 Sensitivity comparison . 160
8.3.3.2 Detected Trojans . 162
8.3.3.3 Test generation time . 163

8.3.4 Evaluation of Original Switching . 163
8.3.5 Concurrency of MaxSense . 166

8.4 Summary . 167

9 TROJAN DETECTION USING DELAY-BASED SIDE-CHANNEL ANALYSIS 168

9.1 Test Generation for Path Delay Analysis . 169
9.1.1 Test Generation for Path Delay Maximization 170
9.1.2 Hamming-distance based Reordering 172

9.2 Experimental Results . 174
9.2.1 Experimental Setup . 174
9.2.2 Path Delay Computation . 175
9.2.3 Evaluation Criteria . 176
9.2.4 Statistical Evaluation . 176

9.3 Summary . 180

10 CONCLUSIONS AND FUTURE WORK . 181

10.1 Conclusions . 181
10.2 Future Research Directions . 184

APPENDIX: LIST OF PUBLICATIONS . 186

REFERENCES . 188

BIOGRAPHICAL SKETCH . 198

7

LIST OF TABLES
Table page

1-1 Seven classes of SoC security vulnerabilities . 20

3-1 Commonly used temporal operators in LTL [1] . 43

3-2 Types of vulnerabilities explored in the six benchmarks. 50

4-1 The results of satisfiability checking in line 10 of Algorithm 1 for the target BB7. . . 67

4-2 Comparison of target coverage using [2], [3] and our approach on 20 targets. 79

4-3 Comparison of memory requirement using EBMC and our approach on one target. . 81

4-4 The number of iterations that each block is selected as the best alternative block
in exploring paths for Listing 4.1. 84

5-1 Performance comparison of our approach with EBMC [4] in activating assertions. . . 98

6-1 Gem5 simulation parameters . 110

7-1 Comparison of TARMAC with random simulation and MERO for trigger activation
coverage over 1000 randomly sampled 8-trigger conditions. 136

7-2 Comparison of TARMAC with random simulation and MERO for trigger activation
coverage over 1000 randomly sampled 8-trigger conditions. 137

8-1 Comparison of MaxSense with NDT+GA [5] and MERS-s [6] over 1000 Trojans. . . 159

9-1 Performance comparison of our approach with random simulation and ATPG over
1000 randomly sampled Trojans. 178

9-2 Test generation time of our approach in all benchmarks. 179

8

LIST OF FIGURES
Figure page

1-1 Various applications of IoT devices. [7] . 13

1-2 An SoC design integrates a wide variety of IPs in a chip. 14

1-3 Among the recorded vulnerabilities in 2015 from MITRE/NIST CVE website, 43%
were software-assisted hardware vulnerabilities. [8] 15

1-4 The impact of vulnerabilities and the hardness of patching increase from software,
firmware to hardware. 15

1-5 Hardware vulnerabilities come from careless designers and buggy EDA tools in hardware
design, and untrusted foundries in manufacturing. 16

1-6 The overview of my research. 17

1-7 Four major categories of formal verification methods. [9] 18

1-8 Simulation-based validation. 18

1-9 Side-channel analysis. 19

1-10 Poor observability in hardware validation. [10] . 21

1-11 Full system FSM of three processor MESI-based system. [11] 23

1-12 An example hardware Trojan. 24

1-13 Random simulation cannot guarantee the coverage of all targets. 25

1-14 Dissertation outline. 29

2-1 The frameworks of MERO [12] and MERS [6]. 33

2-2 The main steps of concolic testing. 34

2-3 Alternative branch selection in concolic testing. 35

2-4 Side-channel analysis detects hardware Trojans by comparing the difference of side
channel signatures. 38

2-5 Two types of impact on path delay from hardware Trojans [13]. 39

3-1 The framework for defining and utilizing SoC security assertions. 42

3-2 Overview of our assertion generation framework for different classes of vulnerabilities. 46

3-3 Comparison of detected vulnerabilities by our assertions and Goldmine [14]. 49

3-4 A simple arbiter with four inputs (clk not shown) and two outputs. 50

9

4-1 Comparison of four approaches in covering two targets T1 and T2. 59

4-2 The overview of our test generation framework using concolic testing. 60

4-3 Comparison of edge realignment by our approach and [3]. 63

4-4 The distance between a basic block and the target in realigned CFGs. 69

4-5 CFG for the design in Listing 4.2. T0, T1, and T2 represent three targets. 73

4-6 Two simulation paths for the design in Listing 4.2 (unrolled for three cycles). 75

4-7 The comparison of memory requirements of our approach and EBMC. 82

4-8 The number of targets that are pruned. 83

5-1 Our approach converts assertions to branch targets and activates them non-vacuously. 87

5-2 AST adjustment with timing. Logic operator, implication and delay are non-terminal
nodes (oval), and others are terminals (rectangle). 91

5-3 Overview of our framework to activate the branches converted from assertions. . . . 94

5-4 Chaining of related blocks in CFGs to assist alternative branch selection. 95

5-5 Memory requirement with respect to the total lines of code in custom benchmarks. . 99

6-1 State transitions for a cache block in MSI protocol. 101

6-2 The decomposition of the state space of SI protocol with 3 cores. 103

6-3 The tests generated by Euler traversal of the upper right sub-structure of hypercube. 103

6-4 The original state space and its corresponding quotient space of SI with 3 cores. . . 106

6-5 Complexity of quotient protocol with respect to number of orbits α. 107

6-6 Evaluation framework of our experiment. 111

6-7 Test generation time (left y-axis) and coverage (right y-axis) in the original space
(MESI with 32 cores) of PMESI protocol with different number of orbits. 112

6-8 Total cost vs. number of orbits (α) for PMESI protocol with 64 cores. 113

6-9 Transition coverage vs. time cost for PMESI protocol with 64 cores and 15 orbits. . 114

7-1 A simple combinational Trojan with 3 triggers. 116

7-2 The number of times each rare signal is activated by by MERO. 119

7-3 The percentage of rare signals that are activated at least N times by MERO. 119

7-4 Overview of our proposed (TARMAC) paradigm. 120

10

7-5 A hardware Trojan with a trigger condition constructed by three rare signals. 121

7-6 The satisfiability graph with 4 PTS (A,B,C,D) from Figure 7-5, with logic expressions
and rare values in parentheses. 122

7-7 The relative size of trigger conditions compared to maximal SAT cliques. 131

7-8 Experimental setup for evaluation of TARMAC compared to N−detect approach. . 133

7-9 Trigger condition coverage of TARMAC and MERO on c2670 and MIPS with respect
to the number of test vectors and the number of trigger points. 135

7-10 The time of Algorithm 8 applied in MIPS with different number of threads. 139

7-11 Trigger coverage with respect to the number of test vectors. 140

7-12 The distribution of rare signal hits by the generated test set in all benchmarks. . . . 142

8-1 The two objectives to maximize the sensitivity in current-based side-channel analysis. 146

8-2 The example of a Trojan inserted into c17. 147

8-3 The overview of our framework MaxSense. 149

8-4 The first iteration of GA for generating the best second pattern for u = 11100. . . . 153

8-5 The average sensitivity of two benchmarks with respect to the length of tests. . . . 161

8-6 The distributions of sensitivities by three approaches over 1000 Trojans. 162

8-7 The distribution of the original switching in the golden design. 164

8-8 Hamming distance of all pairs of test patterns by MaxSense. 165

8-9 The test generation time of MaxSense with multi-core platforms for MIPS processor. 166

9-1 Path delay measurement using shadow registers [15]. 169

9-2 The small delay difference by existing approaches with the same critical path. 171

9-3 Our approach maximizes delay difference by changing critical paths. 171

9-4 The constraints to ensure a critical path from the trigger to the output layer. 173

9-5 A longer path may mask the delay from the Trojan. 174

9-6 The number of detected Trojan given the noise of ±7.5% noise. 177

11

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

TEST GENERATION FOR SYSTEM-ON-CHIP SECURITY VALIDATION

By

Yangdi Lyu

May 2020

Chair: Prabhat Mishra
Major: Computer Science

Hardware security validation is crucial to ensure the integrity of System-on-Chip

(SoC) designs. Attackers take advantage of SoC security vulnerabilities to inject malicious

functionality into the design. Validation of SoC security is challenging due to increasing SoC

complexity coupled with utilization of a wide variety of third-party components from potentially

untrusted suppliers. There are two major problems in SoC security validation. While there

is extensive research in defining software-level vulnerabilities, there is very limited effort in

classifying the potential SoC security vulnerabilities. Moreover, there is a lack of efficient

techniques for simulation-based security validation as well as side-channel analysis.

In this dissertation, I propose efficient test generation techniques for SoC security

validation. I have classified SoC security vulnerabilities into seven major categories, and

proposed an assertion-based approach to address these vulnerabilities. To activate these

security assertions, I have developed a scalable test generation framework interleaving concrete

simulation and symbolic execution. I have shown that clique cover can be utilized to develop

efficient tests to detect malicious implants (hardware Trojans). I have also developed an

efficient test generation technique to detect hardware Trojans using current-based as well

as delay-based side-channel analysis. Experimental results demonstrate that the proposed

test generation techniques are effective in validation of SoC security vulnerabilities using an

effective combination of simulation-based validation and side-channel analysis.

12

CHAPTER 1
INTRODUCTION

We are living in a connected world where a wide variety of computing and sensing

components interact with each other. Reliability, safety and privacy are essential in the fabric

of Internet-of-Things (IoT) as intelligent computing devices are increasingly embedded in every

possible device in our daily life such as wearable devices (e.g, fitness trackers, smart watches,

and medical devices), autonomous vehicles and smart homes, as shown in Figure 1-1. Many

of these devices collect real-time data using sensors, and share data with other devices or the

cloud without human intervention. Any failure of security and trust requirements of IoT devices

may cause severe damages to critical infrastructure, endangering human life, or violating

personal privacy. Since IoT devices are connecting to each other as well as communicating

to the cloud to provide the required services, even one vulnerable edge device can expose the

whole cluster to potential attacks. IoT applications also bring important considerations such as

long application life and dynamic use-case scenarios. These IoT devices are making the world

smarter, but raising the concern of security and privacy of human life.

Figure 1-1. Various applications of IoT devices. [7]

13

System-on-Chip (SoC) is the brain behind the computing devices today. Unlike

micro-controller based designs in the past, even resource constrained IoT devices nowadays

incorporate one or more complex SoCs. A typical SoC consists of multiple Intellectual Property

(IP) cores including processor, memory, controllers, converters, debug infrastructure, etc. As

shown in Figure 1-2, a typical IoT device collects data from various types of sensors, converts

the data using an analog-to-digital converter (ADC), and shares the computed results to the

clouds through different forms of network protocols.

Figure 1-2. An SoC design integrates a wide variety of IPs in a chip.

The risk of attacks on IoT devices has increased more than anytime before. The attackers

can explore a wide variety of vulnerabilities on these devices to mount attacks in different

levels, such as hardware level, firmware level, and software level. Based on the data from

MITRE/NIST Common Vulnerability Exposure (CVE) website, 43% of all vulnerabilities

in 2015 were software-assisted hardware vulnerabilities [8], as shown in Figure 1-3. Among

the vulnerabilities from different levels, the vulnerabilities from hardware level are the most

dangerous for two reasons as shown in Figure 1-4.

1. Significant Impact: Hardware vulnerabilities allow attackers to mount attacks to a
wide variety of IoT devices using the same hardware design. Tools such as anti-virus
are not viable to protect from these attacks as these vulnerabilities are in the level
of hardware. For example, Spectre [16] and Meltdown [17] explore the out-of-order
execution and speculative execution in modern processors to steal information across
isolated applications. These two attacks are shown to be successful in a lot of desktops,
laptops, cloud servers, as well as smartphones.

14

2. Difficult to Fix: In contrast to a software vulnerability which can be modified after
deployment, fixing a hardware vulnerability becomes significantly difficult and expensive.
Existing approaches try to mask some of the vulnerabilities using firmware patching or
utilizing in-built reconfigurable primitives. However, these approaches may not work in all
scenarios.

Due to these two reasons, an attack that explores hardware vulnerabilities can be

successfully repeated on every instance of IoT devices using the same vulnerable hardware.

Figure 1-3. Among the recorded vulnerabilities in 2015 from MITRE/NIST CVE website, 43%
were software-assisted hardware vulnerabilities. [8]

Figure 1-4. The impact of vulnerabilities and the hardness of patching increase from software,
firmware to hardware.

Hardware vulnerabilities may come from three main sources. (i) As the design process

contains many steps, starting from specification, synthesis, integration, to manufacturing, there

are a lot of parties and tools involved. Errors and vulnerabilities can be introduced by careless

designers and buggy electronic design automation (EDA) tools, as shown in the upper part

of Figure 1-5. (ii) Drastic increase in SoC complexity has led to popularity in IP-based design

approach. SoC design companies tend to outsource IPs to third parties to meet aggressive

time-to-market constraints and reduce design cost. The vulnerabilities may be introduced by

15

these pre-verified hardware IPs from untrusted third-party vendors as well as the untrusted

manufacturers, as shown in the lower part of Figure 1-5. (iii) The running environments of

these devices are heterogeneous and possibly connected and unprotected. Vulnerabilities in one

device may open a backdoor in other devices. SoC validation tries to ensure that the integrated

design is free of vulnerabilities and meets all constraints including area, power, and timing

overhead.

Figure 1-5. Hardware vulnerabilities come from careless designers and buggy EDA tools in
hardware design, and untrusted foundries in manufacturing.

In this dissertation, I develop approaches for both simulation-based validation and

side-channel analysis to detect hardware security vulnerabilities. Specifically, the focus of

this dissertation is to generate high quality tests to achieve high validation coverage as well

as maximize the side-channel anomaly, as shown in Figure 1-6. First, I develop a taxonomy

of SoC security vulnerabilities and generate assertions for each of them. Second, I develop

a test generation framework to activate all the assertions by converting assertions into

equivalent branches and generating tests to activate the branches using concolic testing. Third,

16

I develop test generation approaches for both simulation-based validation and side-channel

analysis to detect hardware Trojans. The proposed test generation framework combines

advantages of both logic testing and side-channel analysis to improve the side-channel

sensitivity. The rest of this chapter is organized as follows. Section 1.1 introduces existing

hardware validation techniques. Section 1.2 outlines the hardware security validation challenges

in SoCs. Section 1.3 summarizes the contributions of this dissertation. Finally, Section 1.4

describes the structure of this dissertation.

Figure 1-6. The overview of my research.

1.1 SoC Validation Methods

Validation is widely acknowledged as a major bottleneck in today’s SoC design

methodology. Various studies suggest that validation and verification consume about 70%

of the overall SoC design effort (cost and time) [18]. There are three broad categories of

SoC validation techniques: formal verification, simulation-based validation, and side-channel

analysis.

1.1.1 Formal Methods

There are various types of formal methods in SoC validation, such as satisfiability (SAT)

solving, property (model) checking, equivalence checking, and theorem proving [9], as shown

in Figure 1-7. The goal of formal methods is to provide mathematical guarantees about the

17

correctness of a design. For example, property checking converts the design into mathematical

representation, and formally proves the correctness of the design with respective to specific

properties. A major challenge in formal methods is that it needs to covert the design into a

specific formal language, which is can be error-prone. Most importantly, formal methods face

the state explosion problem for large designs.

Formal Methods

Satisfiability Solving Property Checking Equivalence Checking Theorem Proving

Figure 1-7. Four major categories of formal verification methods. [9]

1.1.2 Simulation-based Validation

Simulation-based validation applies tests to the design and checks the functional

outputs, as shown in Figure 1-8. It is widely used for functional validation to cover various

features such as all statements, all branches, etc. The quality of tests are critical to achieve

high (or complete) coverage of functional scenarios. While simulation using random and

constrained-random tests is scalable, it cannot guarantee full coverage of all functional

scenarios. Directed test generation approaches have been proposed to generate high quality

tests to achieve high coverage for simulation-based validation [19].

Figure 1-8. Simulation-based validation.

1.1.3 Side-channel Analysis

In contrast to simulation-based validation which relies on the functional outputs of

a design, side-channel analysis compares side-channel signatures, such as power, current,

18

electromagnetic radiation, path delay, etc., as shown in Figure 1-9. When the side-channel

difference between the golden design and the design-under-test (DUT) exceeds a threshold, the

DUT is likely to be different from the golden design. The threshold exists due to the variation

introduced by the manufacturing process and the noise from the measurement environment.

Therefore, if the applied tests is not able to generate a large difference in side-channel

signatures (higher than the threshold), side-channel analysis will fail to give any conclusion

regarding the DUT.

Figure 1-9. Side-channel analysis.

In this dissertation, I mainly focus on simulation-based validation and side-channel

analysis. In particular, I develop novel tools and techniques to improve coverage in simulation-based

validation as well as signature difference in side-channel analysis.

1.2 SoC Security Validation Challenges

There are some similarities as well as differences between SoC functional validation

and SoC security validation. Some functional validation techniques can be used to detect

security vulnerabilities. For example, branch coverage in functional validation can help to find

hardware Trojans when they are hidden inside rare branches. Similarly, finite state machine

coverage in functional validation can also help find hardware Trojans since hardware Trojans are

likely to change certain states and transitions when they are triggered. However, there is one

fundamental difference that introduces significant challenge to SoC security validation, i.e., the

unknown nature of these vulnerabilities. Unlike functional validation where the coverage goal

is well defined, security vulnerabilities are typically unknown. This section describes the major

challenges in SoC security validation.

19

1.2.1 A Wide Variety of Vulnerabilities

While there is extensive research in defining software-level vulnerabilities, there is very

limited effort in developing a comprehensive classification of potential SoC vulnerabilities.

A lot of work has been done in the area of hardware Trojans, but it only represents a

small fraction of the SoC vulnerability space. Specifically, it belongs to one of the many

classes of vulnerabilities that I have summarized after reviewing a wide variety of security

vulnerabilities listed in the National Vulnerability Database [20]. Table 1-1 shows the seven

types of vulnerabilities that will be discussed in Chapter 3 in detail. As listed in Table 1-1, the

vulnerabilities in SoC are so diverse that great validation efforts are needed to analyze, detect

and remove all of them.

Table 1-1. Seven classes of SoC security vulnerabilities
Vulnerability Example
Permissions and Privileges Insufficient privilege/access checking
Resource Management Illegal access to resources, misuse of design-for-debug

infrastructures
Illegal States and Transitions Illegal states and transitions, backdoor of undefined

states/transitions
Buffer Issues Unexpected behavior of heterogeneous buffers
Information Leakage Information leaks from secure world to non-secure world
Numeric Exceptions Erroneous/illegal behaviors (e.g., divide by zero)
Malicious Implants Hardware Trojans, inserted by untrusted third party

1.2.2 Controllability and Observability

One challenge in hardware validation is the low controllability and observability of internal

signals. Controllability represents the ability to control any internal signal, which requires the

debug engineers to generate the correct stimulus for primary inputs. For example, it is hard

to activate the trigger signal of a hardware Trojan whose trigger condition is extremely rare.

Observability for validation represents the ability to reveal the internal bugs, which is also

hard since the internal bugs may be hidden before it reaches the primary outputs or other

observable structures, as shown in Figure 1-10. Even with the help of Design-for-Debug (DfD)

architecture, the visibility is very limited for internal signals (e.g., 256 signals can be traced

20

Figure 1-10. Poor observability in hardware validation. [10]

for 2048 cycles in a multi-million gate design) during post-silicon execution. Assertion-based

validation is a common practice in industry for functional validation. The embedded assertions

can catch any unexpected behavior which increases the observability of internal activities

inside the design. For example, an assertion can check that the output of an adder is equal

to the sum of its inputs whose implementation may be different in different designs. Any

bug in the design that violates the predefined properties in assertions can be easily detected.

The observability of internal states enables faster localization of errors, which reduces the

overall validation time significantly. Although assertions have been successful in functional

validation, it is not clear if non-functional behaviors (e.g., security) can be posed as constraints

(assertions). For example, security validation needs to check the vulnerability of potential

information leakage. However, there are no easy constraints to ensure that there is no path to

leak information from secure world to unsecure world.

1.2.3 Lack of Effective and Scalable Validation Techniques

Similar to functional validation, security vulnerabilities can also be detected using

simulation-based approaches and side-channel analysis. Simulation using random and

constrained-random tests is widely used in traditional validation methodology. Unfortunately,

21

even billions or trillions of constrained-random tests cannot cover many complex and

corner-case scenarios in today’s industrial designs. Another problem in random and constrained-random

tests is the slow speed of simulation. With billions or trillions of tests, it is expected

to take months to finish simulation. Directed tests are promising as they can achieve

comparable coverage with significantly less tests. Directed testing is also promising in covering

specific cases that are not covered by random or constrained-random tests. In contrast to

simulation-based approaches which focus on the functionality of the design, side-channel

analysis checks if a vulnerability exists by comparing the side-channel signatures from the

golden design and the design-under-test. However, the sensitivity of side-channel analysis

achieved by state-of-the-art approaches is too small to detect vulnerabilities under current

process variations and environmental noise.

There are promising formal approaches to solve specific problems related to hardware

security vulnerabilities, such as equivalence checking in arithmetic circuit to detect hardware

Trojans [9], and bounded model checking for activating security assertions. However, these

approaches are not effective and scalable to detect a wide variety of vulnerabilities in SoC

security validation due to three fundamental challenges: increasing complexity of finite state

machines, stealthy nature of security vulnerabilities, and exponential validation space. The

remainder of this section describes these challenges in detail.

Complex Finite State Machines: For the ease of illustration, I use cache coherence

protocol as an example to explain why complex finite state machine is a challenge for SoC

security validation. System designers incorporate multi-core processors to meet the increasing

performance requirements. To address the memory bottleneck, caching has been the most

effective approach to reduce the memory access time for several decades. When the same data

is cached by different processors, cache coherence protocols are employed to guarantee that a

read always returns most recently written data. This rule requires the whole system to monitor

every copy of the same data across multiple processors. To boost the overall performance

and reduce the number of flushing and loading, the design of cache coherence protocols is

22

also becoming more and more complex, from the simplest MSI to MESI and MOSI, then to

MOESI [21] and MESIF [22]. With the increasing number of cores and complexity of cache

coherence protocols, the compound state and transition space is getting exponentially complex.

The first complexity comes from the exponentially growing number of states and transitions.

For example, in 8-core and 16-core MESI protocols, there are 5 thousands and 2.6 million

transitions, respectively. It is infeasible to generate tests and traverse every state with more

cores. The second complexity comes from the obscure structures. Although the FSM of each

cache controller is easy to understand, the product finite state machine for modern cache

coherence protocols is quite obscure. For example, Figure 1-11 shows the obscure finite state

machine of a MESI protocol with only three cores. With more cores, the structure of the FSM

is expected to be too obscure to apply any analysis.

Figure 1-11. Full system FSM of three processor MESI-based system. [11]

Stealthy Nature of Vulnerabilities: To illustrate the stealthy nature of vulnerabilities,

I use malicious implants as an example. Hardware Trojans [23, 24] are malicious modifications

incorporated during the System-on-Chip (SoC) design cycle [23, 25–28]. As IC design and

fabrication process becomes more and more globalized, the threat of hardware Trojan attacks

is increasing due to potential malicious modifications at different stages of the design and

fabrication process [25, 29]. A Trojan normally consists of a rare trigger condition and a

23

payload, as shown in Figure 7-1. Trigger condition is carefully crafted such that it is only

activated under extremely rare conditions, and the functionality of a design remains exactly the

same as the golden design under most of the running cases. The inherent stealth of trigger

condition makes hardware Trojan detection a challenging problem. The number of choices to

construct trigger conditions grow exponentially with the complexity of SoCs. For example, even

for a small ISCAS benchmark (c880 with only 451 gates) [30], there are approximately 1011

triggers possible with only four trigger points. The number would be exponentially higher if we

consider triggers with different number of trigger points. Clearly, it is infeasible to generate and

apply so many directed tests to activate Trojan triggers even for a tiny benchmark.

x1

x2

x3

x4
x5

C

D

B

A

trigger

payload

Figure 1-12. An example hardware Trojan.

Exponential Validation Space: As the complexity of SoC designs grows exponentially,

the validation efforts also grow exponentially to achieve reasonable coverage analysis. Millions

of random or constrained-random tests are able to quickly cover majority of functional

scenarios (targets). However, it is not always possible to cover all scenarios using these

tests and the number of remaining targets can be huge (hundreds or thousands) in case of

today’s industrial designs. For specific targets, random simulation cannot guarantee to detect

them within debug budgets. For example, Figure 1-13 shows the scenario that three random

simulation paths can cover the target T1 but cannot cover the target T2. Verification engineers

usually manually write test cases to cover the remaining hard-to-activate scenarios. Due to

the increasing design complexity, the number of remaining hard-to-activate scenarios can be

exponential. While such manual test case development is possible for small designs, it would be

24

infeasible to develop directed test for large designs. Coming up with manual test cases can be

both error-prone and time-consuming due to many trial-and-error iterations.

T 1 T 2

Figure 1-13. Random simulation cannot guarantee the coverage of all targets.

Automated test generation is necessary to achieve full coverage of all remaining targets

that are not covered by random simulation. There has been extensive research in test

generation for code coverage in RTL models using formal methods [31, 32]. Although formal

methods can cover specific scenarios directly, they require tedious and error-prone translation

from real design to their own languages and suffer from state explosion for large designs.

Semi-formal approach, such as concolic testing, is promising to address the scalability problem

by combining the advantages of random simulation and formal methods to activate targets

efficiently. The idea of concolic testing comes from software testing domain [33, 34]. It uses

depth-first-search (DFS) or breadth-first-search (BFS) to quickly find input patterns to activate

specific bugs in software. However, none of these search strategies can work for large programs

due to path explosion problem.

1.3 Research Contributions

Directed test generation is a promising and efficient method for hardware security

validation. Compared to random simulations, directed test generation can reach a specific

goal with a drastically small number of tests. This dissertation mainly focuses on directed test

generation for validation of hardware security. Specifically, it makes the following fundamental

contributions: (1) the taxonomy of SoC security vulnerabilities, (2) simulation-based validation

by exploring the specification, structures and functionality, and (3) side-channel analysis based

25

on dynamic current and path delay to detect malicious implants (hardware Trojans). The

reminder of this section outlines these contributions.

Taxonomy of Security Vulnerabilities: Existing SoC validation techniques mainly

focus on the functional behaviors defined in the specification. Traditionally, SoC security

vulnerabilities are not considered as expected functional behaviors. For example, an unspecified

transition in finite state machine (FSM) is one of the main sources of security vulnerabilities.

While assertion-based validation (ABV) is the de facto standard for functional validation, there

are no prior efforts to define and monitor SoC security vulnerabilities. Given the importance of

SoC security, I classify security vulnerabilities into seven categories, and propose a framework

for defining and utilizing SoC security assertions to detect each category of vulnerabilities.

Code Coverage for Multiple Targets: Concolic testing is promising to cover the rare

scenarios that are not covered by millions of random tests. It addresses the state explosion

problem in formal methods. However, existing concolic testing approaches in RTL model are

not effective in path selection and not scalable due to overlapping search. To address these

two problems, an efficient technique for multi-target test generation using concolic testing

is proposed. It fully utilizes information from the previous search. Specifically, this approach

improves the overall performance by the following optimizations: (i) efficient pruning of targets

that can be covered by the tests generated for activating other targets, (ii) clustering of related

targets to drastically reduce the test generation time, where targets in the same cluster usually

share a common simulated path, and (iii) a novel edge realignment technique to effectively

evaluate the distance between a simulated path and a target.

Assertion Coverage by Concolic Testing: While existing test generation using model

checking is promising in activating assertions, it cannot generate directed tests for large designs

due to the state space explosion problem. I propose an automated and scalable mechanism to

generate directed tests using a combination of symbolic execution and concrete simulation of

RTL models. The proposed methodology consists of two major steps. The first step converts

these assertions to branch statements and embeds them into the design. Then, it utilizes

26

concolic testing to generate a compact test set to efficiently cover (activate) the target

branches (assertions). The generated test vectors are guaranteed to activate the corresponding

assertions non-vacuously. Compared to the exponentially growing memory requirements in

model checking, the memory requirement grows linearly in the proposed approach.

Scalable Cache Coherence Protocol Validation: To address the scalability concerns

in validating FSM of cache coherence protocols with many cores, my research combines

on-the-fly test generation technique [35] with a quotient space based approach. This approach

first analyzes the state space structure of their corresponding global FSMs and decomposes

them into several components with simple structures. Then, it utilizes the symmetric structure

of protocol state space to efficiently cover all states and transitions. Next, quotient space

based scalable test generation algorithms trade-off between functional coverage and verification

effort to cover important state transitions within limited verification budget. Quotient space

guarantees selection of important transitions by utilizing equivalence classes, and omits only

similar transitions to provide scalable test generation framework. The experimental results

demonstrated the effectiveness on systems with many cores and complex cache coherence

protocols, making it suitable for future multi-core architectures.

Trigger Coverage using Clique Cover: Trigger activation is a major challenge due

to the exponentially large space that an adversary can exploit to construct trigger conditions.

Conventional validation approaches using millions of random test vectors or ATPG test vectors

are not effective in activating extremely rare and unknown trigger conditions. To address the

fundamental challenge of activating rare triggers, I propose a new test generation paradigm

for Trigger Activation by Repeated Maximal Clique sampling (TARMAC). The basic idea is

to utilize a satisfiability modulo theories (SMT) solver to construct a test corresponding to

each maximal clique. It makes three fundamental contributions: (1) it proves that the trigger

activation problem can be mapped to clique cover problem, and the test vectors generated by

covering maximal cliques are complete and compact, (2) it proposes efficient test generation

algorithms to activate trigger conditions by repeated maximal clique sampling, and (3) it

27

outlines an efficient mechanism to run the clique sampling in parallel to significantly improve

the scalability of our test generation framework.

Current-based Side-Channel Analysis: I propose an efficient test generation technique

to facilitate side-channel analysis utilizing dynamic current. My proposed approach effectively

searches for efficient tests that can drastically improve the side-channel sensitivity - making

Trojan detection feasible in practice. To increase the overall sensitivity, my approach exploits

the input affinity to identify test patterns that can maximize switching in the suspicious

(target) region while minimize switching in the rest of the circuit in order to significantly

improve the side-channel sensitivity. This approach shows significant improvement in sensitivity

to detect the majority of Trojans, while the state-of-the-art approaches can detect less than 1%

Trojans.

Delay-based Side-Channel Analysis: Existing delay-based side-channel analysis

techniques have two major bottlenecks: (i) they are not suitable in detecting Trojans since

the delay difference between the golden design and a Trojan inserted design is negligible, and

(ii) they are not effective in creating robust delay signatures due to reliance on random and

ATPG based test patterns. In this dissertation, I propose an efficient test generation technique

to detect Trojans using delay-based side channel analysis. First, I design a lightweight and

effective logic testing algorithm to generate tests for delay-based side-channel analysis. The

generated tests assume no preliminary information about critical paths or trigger conditions.

Next, I perform a Hamming-distance based reordering of the generated tests. The reordering

is based on a distance evaluation method that can increase the probability of constructing a

critical path from the trigger to the payload.

1.4 Dissertation Organization

The rest of this dissertation is organized as follows. Chapter 2 surveys existing security

validation approaches. In Chapter 3, a wide variety of common SoC security vulnerabilities

are identified and their corresponding classes of assertions are proposed. Chapter 4 describes

an automated test generation technique for activating multiple targets in RTL models using

28

SoC Security Validation

Threat Model
(Chapter 3)

Permissions and Privileges

Resource Management

Illegal States and Transitions

Buffer Issues

Information Leakage

Numeric Exceptions

Malicious Implants

Simulation-based Validation

Branch Coverage
(Chapter 4)

Assertion Coverage
(Chapter 5)

Finite State Machine Coverage
(Chapter 6)

Trigger Coverage
(Chapter 7)

Side-channel Analysis

Dynamic Current
(Chapter 8)

Path Delay
(Chapter 9)

Figure 1-14. Dissertation outline.

concolic testing. Chapter 5 shows how concolic testing can be applied to RTL models to

activate assertions. Chapter 6 presents a scalable on-the-fly test generation technique to

validate the FSM of cache coherence protocols. Chapter 7 demonstrates an effective test

generation approach to activate trigger conditions by mapping it to the problem of clique

covering. Chapter 8 and Chapter 9 describe an efficient test generation technique for detecting

hardware Trojans using dynamic current and path delay, respectively. Finally, Chapter 10

concludes this dissertation.

29

CHAPTER 2
BACKGROUND AND RELATED WORK

There are extensive research efforts for hardware security validation. These approaches

can be broadly classified into three categories: formal methods, simulation-base validation, and

side-channel analysis. This chapter reviews these existing approaches that are related to this

dissertation.

2.1 SoC Security Validation using Formal Methods

Instead of relying on the quality of generated tests to reveal the vulnerabilities in a design,

formal methods utilizes mathematical models to verify that the design (implementation)

satisfies its specification. There are four widely used forms of formal verification methods.

• Satisfiability solving determines if a given Boolean formula can be true. There are
many validation problems that can be converted into satisfiability problem. For example,
to validate if an implementation is equivalent to its specification, a Boolean formula can
be constructed by computing (XOR) of the functional outputs of these two designs. If
the SAT solver returns assignments to the variables that make the formula to be true,
the implementation and the specification are different.

• Equivalence checking [9, 36, 37] verifies if two designs are equivalent or not. There are
two common types of techniques for equivalence checking. The first type utilizes model
checking to verify the equivalence using Binary Decision Diagrams (BDDs). The other
type utilizes SAT solvers to return a counter-example if the two designs are different by
converting the designs to Conjunctive Normal Form (CNF).

• Property checking [38] verifies if a design satisfies a set of properties. The design and
properties are first converted to formal languages. Both the design and the properties are
fed into a model checker. The model checker either finds a counter-example or proves
that the property holds in the design. Property checking can be implemented using
BDDs as well as SAT-based bounded model checking.

• Theorem proving [39] builds mathematical formulas to represent the behavior of a
design (implementation) and evaluate these formulas against a specific requirement
(security specification). It needs to formulate a theorem to describe the requirement.
Next, it needs to prove the theorem using a set of axioms and facts that can be derived
from the specification.

2.2 SoC Security Validation using Simulation-based Validation

Simulation-based validation aims at developing tests to simulate the design and

achieve high coverage goals. There are different methods to generate tests, including

30

random/constrained-random approaches, directed testing generation using formal methods,

statistical methods, and concolic testing which interleaves simulation and formal methods.

2.2.1 Random/Constrained-Random Simulation

Simulation using random and constrained-random tests is widely used in both industry and

academia due to its good scalability. For example, random/constrained-random approaches

are widely used to validate the states and transitions in FSM. Wood et al. [40] used random

tests to verify the memory subsystem of SPUR machine. Genesys Pro test generator [41] from

IBM extended this direction with complex and sophisticated test templates. To reduce the

search space, Abts et al. [42] introduced space pruning technique during their verification of

the Cray processor. Wagner et al. [11] designed the MCjammer tool which can get higher state

coverage than normal constrained random tests. Since an uncovered transition can only be

visited by taking a unique action at a particular state, it may not be feasible for a random test

generator to eventually cover all possible states and transitions. To address this problem, some

random testers are equipped with a small amount of memory, so that the future search can be

guided to the uncovered regions. Unfortunately, unless the memory is large enough to hold the

entire state space, it is hard to achieve full coverage by such guided random testing.

2.2.2 Directed Test Generation using Formal Methods

In spite of the fast test generation time in random and constrained-random approaches,

their coverage/performance is poor. Validation using billions or trillions of random tests

cannot provide 100% coverage. The uncovered scenarios will likely be hard-to-detect (rare)

branches and corner-case scenarios in today’s industrial designs. Verification engineers usually

write specific (directed) test cases manually to cover the remaining hard-to-activate scenarios

such as corner cases and rare events. While manual test development is possible for small

designs, it would be infeasible to develop directed tests manually for complex SoC designs.

Moreover, manual development of test cases can be both error-prone and time-consuming due

to many trial-and-error iterations in complex designs. Automated test generation is necessary

to overcome these issues.

31

Formal methods, such as model checking [4, 35, 43–45], is effective in automated

generation of directed tests for property checking. To activate a specific target (functional

behavior), the negated version of a property (functional behavior) is fed into a model checker,

which will return a counterexample as the test that can activate the target. Binary Decision

Diagrams (BDD) based BMC [46] and SAT-based BMC [38] are two widely used model

checking methods [47]. From non-deterministic finite automata (NFA), Tong et al. [44]

utilized model checking to generate test for assertions with the assumption that the signals

in assertions refer to the primary inputs. This type of approaches have a few bottlenecks. In

order to enable test generation, they restrict the assertions to have variables of only specific

types (e.g., primary inputs). Model checking is also used to validate the correctness of a cache

coherence protocol. It can prove mathematically whether the description of certain protocol

violates a required property [48].

There are two major problems in applying formal methods directly to the design. First,

formal methods expect formal specification and require translation from specifications

or Hardware Description Language (HDL) models to their supported formats. The extra

procedure of conversion to formal specification may introduce errors. Second, the complexity

of real world designs usually exceeds the capacity of the model checking tools, leading to

state space explosion. Extensive research has been devoted to reduce the model checking

complexity during test generation using various design/property decomposition as well as

learning techniques [35, 49, 50]. In spite of these extensive efforts, it is infeasible to generate

directed tests using model checking based approaches due to inherent state explosion problem

while dealing with complex properties as well as large designs.

2.2.3 Statistical Methods

Logic testing [12, 51–54] is the main approach to detect hardware Trojans by comparing

the outputs of an implementation to a golden specification. ATPG based logic testing

is an effective method to find tests of a design using fault simulation. With the help of

Design-for-Testability (DfT) structures, such as scan chain, ATPG treats all sequential logic

32

gates as combinational logic gates under full scan mode and is able to generate test efficiently.

Logic testing needs to fully activate the Trojan and propagate its effects to observable outputs.

Given the exponential test space complexity, directed testing may not be feasible to directly

activate a rare trigger condition and propagate the Trojan effects to observable outputs.

Statistical test generation techniques (e.g., N-detect approach [12]) are promising for unknown

Trojans. The basic idea is to activate all rare signals as much as possible (one or more at a

time) to increase the likelihood of activating the actual (unknown) trigger consisting of rare

signals. Extensive research has been done on statistical test generation combining ATPG and

N-detect paradigm [12, 55]. The authors observed that if the generated test patterns are able

to satisfy all rare values N times (N-detect criterion), it is highly likely that the unknown rare

trigger conditions are satisfied when N is sufficiently large.

(R)v

R v

Input: circuit netlist,
rareness threshold, N

Sort test patterns based on the number
of rare values being satisfied

rare switching
Flip bits to increase Flip bits to increase

Evaluate test patterns over randomly
sampled Trojans

MERO MERS

Simulate netlist with random test
patterns

Figure 2-1. The frameworks of MERO [12] and MERS [6].

In [12], the authors proposed a tool named MERO to generate N-detect test for logic

testing. The framework of MERO (N-detect) [12] is shown in the left part of Figure 2-1.

33

MERO is a constrained-random approach to achieve the N-detect criterion through flipping

bits. It starts from a large number of random test patterns. Then, it simulates the netlist

with each random test pattern and gets the number of rare values being satisfied (Rv). Next,

these patterns are sorted based on Rv. The profitable test patterns (with greater Rvs) are

visited earlier than the ones with smaller Rvs. For each random test pattern, each bit is

flipped one after the other to improve its quality. If the flipping of some bit can improve the

N-detect criterion, the flipping is accepted. Otherwise, the flipping is reversed. The modified

test pattern is put into the final test set if it is helpful in improving the N-detect criterion.

MERO is shown to be effective in small designs (e.g., ISCAS benchmarks [30, 56]) with

relatively easy-to-activate trigger conditions (with four rare signals, and larger than 0.1 rareness

threshold). However, MERO is unsuitable for large designs (scalability problem) as well as

hard-to-detect triggers [57]. Another problem in N-detect approach is the long test generation

time, since it needs one simulation for each bit flipping. It is important to note that N-detect

criterion is a globally evaluated requirement, which needs each rare signal to be activated by at

least N times. Therefore, the checking of improvement on N-detect criterion needs to consider

all the generated test patterns together. This global evaluation method prevents N-detect

approach from running in parallel.

Design

Simulation Path

Is target
covered?

Select an
alternative branch

Input Test

Solve
Constraints

Build
Constraints

Done
Yes

No

Figure 2-2. The main steps of concolic testing.

34

2.2.4 Concolic Testing

Concolic testing is a promising semi-formal test generation technique by interleaving

concrete simulation and symbolic execution. Unlike formal method based approaches that

explore all possible (exponential) execution paths at the same time (and lead to state

space explosion), concolic testing explores only one execution path at a time and reaches

a target statement by alternating one branch. The major steps of path exploration are

simulate, generate constraints, select a new path and solve constraints, as shown in Figure 2-2.

After obtaining a concrete path from simulation, concolic testing executes the given design

symbolically by updating variables with assignments and constraints obtained from the

concrete path. To explore new paths, an alternative branch is selected from previous path and

symbolically solved by constraint solvers. If the new constraints are satisfiable, an input vector

will be returned and used to generate a new simulated path. If the simulated path covers

the target, the input vector is added to the test set. As concolic testing examines one path

at a time, it addresses state explosion problem associated with test generation using formal

methods [19]. However, the performance of concolic testing is decided by how the new path is

selected, or alternate branch selection (Figure 2-3). When profitable branches are selected,

the simulated path will quickly reach the target. On the other hand, selecting wrong branches

may lead to longer test generation time, or even failure to activate the target. Another factor

that affects concolic testing is the initial path that we choose to start concolic testing, which

is usually a random test or a manually developed test. When the initial path is already closer

to the target, it is easier to reach the target and less likely to be lost in the large search space.

in > 10

in > 20 in > 0

in > 10

in > 20 in > 0

Figure 2-3. Alternative branch selection in concolic testing.

35

2.2.4.1 Concolic Testing of Software Designs

There are extensive research efforts in applying concolic testing on software designs to

cover functional events [33, 34, 58]. Each approach utilizes different path selection heuristics

and optimizations to achieve specific coverage goals. To quickly cover targets, structural

information from control flow graph (CFG) is analyzed to guide path exploration [59, 60].

Another semi-formal method that is similar to concolic testing in generating test for a specific

target is called symmetric backward execution [61–63], which explores paths from a target back

to an entry point. Instead of trying to improve overall coverage, such as KLEE [58], its goal

is typically to satisfy all preconditions to execute a specific statement. While these approaches

are successful in software domain, they are not directly applicable on hardware (SoC RTL

models) designs since they have to deal with unrolling multiple CFGs with complicated

communication between different models and different clock domains.

2.2.4.2 Concolic Testing of Hardware Designs

Concolic testing has been shown effective in hardware/software co-validation on virtual

platforms [64–67] and high-level modeling using SystemC [68]. While there are some early

efforts on applying concolic testing to RTL models [69, 70], they are applicable on simple

designs with restricted Hardware Description Language (HDL) features. There are some

recent efforts in applying concolic testing on RTL models. Approaches based on uniform test

generation techniques utilize various search techniques, such as depth-first search (DFS),

breadth-first search (BFS), etc., to cover as many branches as possible. Ahmed et al. [2]

proposed QUEBS to balance exhaustive and restrictive search techniques by limiting the

number of times a branch can be selected. While uniform test generation is promising, it

suffers from the exponentially growing number of paths which makes exhaustive searching

impractical (path explosion problem) for covering a number of selected targets. As a result, is

it not suitable for large designs. Another promising approach utilizes static analysis of CFGs to

guide searching of alternate branches [3]. As demonstrated in Chapter 4, it leads to exploration

of undesired paths in many scenarios, and as a result, it still faces path explosion problem.

36

I propose an efficient path exploration scheme to improve the quality of explored paths to

address the path explosion problem in concolic testing. Moreover, I propose clustering and

learning techniques to minimize wasted efforts in overlapping searches while generating tests to

activate multiple targets.

2.3 SoC Security Validation using Side-channel Analysis

Side-channel analysis has been widely used for hardware Trojan detection [6, 13, 71–79].

It examines side effects of the inserted Trojans, such as power, dynamic current, and path

delay. Compared to functional validation for hardware Trojan detection, side-channel analysis

does not require the Trojan to be fully activated or to propagate its effect to the observable

outputs. However, it faces the challenge from the process variation and environmental noise.

As transistor dimensions continue to shrink, it introduces increasing process variations across

integrated circuits (ICs) of the same design. Since the sizes of hardware Trojans are small

(e.g., few gates in a million-gate IC), the deviation introduced by the Trojans is typically

negligible with respect to process variation and environmental noise. A measured small

deviation in side-channel signature cannot conclude the existence of a Trojan. The challenge

is how to automatically generate high quality test patterns that can maximize the anomalies

in side-channel signatures, e.g., maximizing switching difference for current-based analysis,

or sensitizing critical paths for delay-based analysis. In this section, I will introduce existing

approaches based on two commonly used side-channel signatures in hardware Trojan detection.

2.3.1 Dynamic Current based Side-Channel Analysis

Dynamic current based side-channel analysis measures transient current both in the golden

design and the design under test, as shown in Figure 2-4. If the measured signals from these

two designs vary by a threshold, a Trojan is suspected to be present. Huang et al. [6, 80]

tried to combine the advantages of logic testing and side-channel analysis by extending the

idea of N-detect test for side-channel analysis. They proposed a test generation framework

called MERS to maximize the sensitivity of dynamic current. The frameworks of MERS and

MERO are similar, as shown in Figure 2-1. MERS generates compact test patterns to let each

37

Figure 2-4. Side-channel analysis detects hardware Trojans by comparing the difference of side
channel signatures.

rare node switch from its non-rare value to its rare value N times, increasing the probability

of partially or fully activating a Trojan. After generating MERS test patterns, the authors

proposed simulation based reordering (called MERS-s) to decide the order of applying test

patterns to maximize side-channel sensitivity. Although MERS improves the sensitivity by

1033% over random test patterns [6], the increase in side-channel sensitivity is marginal, which

is less than 1% in the majority benchmarks [6] whereas process variations can be 7-17% [81] in

today’s CMOS circuits. The low side-channel sensitivity in [6] is due to the inherent restriction

of reordering within the set of test patterns generated by MERS. The other disadvantage

of MERS is that it inherits the same bad performance of the N-detect approach and makes

the test generation time even longer by reordering tests. The reordering step of MERS in

maximizing side-channel sensitivity requires a large number of simulations and is not able to

run in parallel (the same problem as the N-detect approach). Chapter 8 proposes an approach

to effectively search for efficient tests that can drastically improve the side-channel sensitivity,

and allow the searching process run in parallel - making Trojan detection feasible for large

designs in practice.

38

2.3.2 Path Delay based Side-Channel Analysis

Path delay based side-channel analysis is beneficial compared to other side-channel

parameters as the delay of each output can be measured independently, and an inserted Trojan

may affect multiple observable outputs. The delay is expected to be greater than the delay in

the golden design with extra gates inserted.

A hardware Trojan has two types of effects over path delay. The first one comes from the

change of fan-out. In Figure 2-5A, as the trigger points connect to an extra gate compared to

the golden design, the gates that produce these signals will change their capacitive load. As

a result, the propagation delay of these gates will change. The other type of impact is from

the extra gates that are inserted by the payload. For example, the XOR gate in Figure 2-5B

is inserted to change the value of the original signal when the trigger is activated. This extra

XOR gate adds to the total path delay of any path passing through it. The delay anomalies

introduced by the extra gates are typically larger than delay anomalies introduced by capacitive

loading effects of fan-out HT gates [13]. As path delays cannot be measured directly, most

existing research use static timing analysis tools to measure delay. One common approach

is to generate Standard Delay Format (SDF) file that contains information of each gate and

connection in the design, and then utilize gate-level simulation to compute the delays. Process

variations can be added either in the SDF file or in the simulation phase.

A Fan-out HT gate B payload HT gate

Figure 2-5. Two types of impact on path delay from hardware Trojans [13].

The main challenge in path delay based approach is to find suitable input patterns (tests)

that can reveal delay difference introduced by the Trojan. Existing approaches apply a static

analysis on the design to find all possible paths, and use Automatic Test Pattern Generation

39

(ATPG) tools to generate test patterns that are able to sensitize these paths. For example, Jin

et al. [72] used Synopsys TetraMAX to analyze the design and generate test patterns to cover

every path. However, this approach is time-consuming and not scalable for large designs since

the number of possible paths grows exponentially with the size of the design. In addition, the

small delay difference introduced by hardware Trojans is likely to be dominated by large process

variation and environmental noise. In Chapter 9, I propose an approach to significantly increase

the delay difference by changing the critical paths to offset possible noise.

2.4 Summary

This chapter surveyed a wide variety of SoC security validation techniques. Specifically, it

provided a comprehensive review of existing SoC validation approaches using formal methods,

simulation-base validation as well as side-channel analysis.

40

CHAPTER 3
SYSTEM-ON-CHIP SECURITY ASSERTIONS

Existing SoC validation techniques mainly focus on the functional behaviors defined in

the specification. Traditionally, SoC security vulnerabilities are not considered as expected

functional behaviors. For example, an unspecified transition in finite state machine (FSM) is

one of the main sources of security vulnerabilities. Assertions are widely used for functional

validation as well as coverage analysis for both software and hardware designs. Assertions

enable runtime error detection as well as faster localization of errors. While there is a vast

literature on both software and hardware assertions for functional validation, there are no prior

efforts to define and utilize assertions to monitor System-on-Chip (SoC) security vulnerabilities.

Given the importance of SoC security, in this chapter, we identify common SoC security

vulnerabilities by analyzing the design. To monitor these vulnerabilities, we define several

classes of assertions to enable runtime checking of security vulnerabilities. Our experimental

results demonstrate that the security assertions generated by our proposed approach can detect

all the inserted vulnerabilities while the functional assertions generated by state-of-the-art

assertion generation techniques fail to detect most of them.

The framework for defining and utilizing SoC security assertions is shown in Figure 3-1.

The framework consists of two main steps. First, it performs vulnerability analysis on a

given SoC design and identifies potential vulnerabilities. Next, security assertions are

generated from the vulnerabilities and inserted into the SoC design. The purpose of this

chapter is not to provide a laundry list of vulnerabilities for SoC design. Instead, this chapter

identifies some representative vulnerabilities and propose assertions for them to show how SoC

security assertions can be defined and integrated in an existing SoC validation methodology.

Specifically, this chapter makes three major contributions:

1. We perform a comprehensive review of the literature to identify the common SoC
security vulnerabilities.

2. We propose security assertions corresponding to each vulnerability.

41

Figure 3-1. The framework for defining and utilizing SoC security assertions.

3. We demonstrate that existing assertion-based validation is not capable of detecting
security vulnerabilities.

The remainder of this chapter is organized as follows. Section 3.1 and Section 3.2

provide an overview of assertion-based validation and SoC security vulnerabilities, respectively.

Section 3.3 describes the framework for assertion generation for a given set of security

vulnerabilities. Section 3.4 presents six case studies. Finally, Section 3.5 concludes the chapter.

3.1 Assertion-based Validation

Assertion-Based Verification (ABV) has been widely used in SoC pre-silicon verification

[10]. Synthesized assertions and associated checkers are utilized for post-silicon (as well

as runtime) coverage analysis of critical events [82]. Assertions are used to capture the

intent of the specification [10]. For example, a functional assertion can check that the

output of an adder is equal to the sum of two inputs irrespective of the implementation. In

addition to checking the inputs and outputs, assertions can also increase the observability of

internal states. Compared to pre-silicon simulation where every signal can be monitored, the

observability is very limited during post-silicon validation. As a result, debugging a post-silicon

failure can take numerous iterations of trials and errors to localize an error using a small set of

observable signals recorded in a trace buffer. Assertions, on the other hand, are able to detect

any undesired behavior either from the design or from the environment (e.g., fault injection),

and expose the location of errors directly.

42

3.1.1 Assertion Languages

Temporal logic is powerful in representing assertions, by introducing the notion of timing

to propositional logic [83]. There are mainly two types of languages, i.e., Linear Temporal

Logic (LTL) [84] and Computational Tree Logic (CTL) [85]. LTL can be used to describe a

sequences of transitions between states. The most commonly used operators to describe these

transitions are given in Table 3-1 [1], where p and q represent propositions that are either true

or false at any given time. CTL allows for path quantifiers, such as E (“there exist a path”) or

A (“for all paths”). Linear time and path qualifiers can be combined, e.g. EX or AX.

Table 3-1. Commonly used temporal operators in LTL [1]
Operator Semantics
X p (“next” state): p is true in the next state of the path.
G p (“always” or “globally”): p is true at every state on the path.
F p (“eventually” or “in the future”): p is true at some future state on the path.
p U q (“until”): q is true at some future state, and at every preceding state on path, p

is true.

There are mainly two types of approaches for defining hardware assertions: language-based

and library-based [86]. Language-based approaches provides syntax for formally defining

assertions. Two of the most popular assertion specification languages are Property Specification

Language (PSL) [87] and System Verilog Assertions (SVA) [88]. Both of these languages

support temporal assertions and formally is an extension of temporal logic [83]. Some other

examples are ForSpec [89], SALT [90], a SystemC extension [91], etc. On the other hand,

library-based approaches add assertion support to existing languages. One such example

is Open Verification Library (OVL) [92]. OVL has support for Verilog, VHDL, PSL and

SystemVerilog. Library-based approaches can be used to quickly write common types of

assertions. Unfortunately, they are not generic enough to cover all possible scenarios.

3.1.2 Automated Assertion Generation

Assertion generation is mostly manual effort - it is time-consuming to insert enough

assertions into an industrial SoC design. Many research efforts have been devoted to

automated generation of functional assertions. Rogin et al. [93] proposed to generate

43

properties of a design by analyzing simulation traces. Hertz et al. [14] improved the analysis

process using data mining and developed a tool named Goldmine. The generated rules from

simulation traces are passed through a formal verification tool to verify the correctness in the

design. As the simulation data is inherently incomplete and nondeterministic, the quality of

mined assertions cannot be guaranteed. Moreover, these functional assertions are not suitable

for detecting security vulnerabilities.

3.2 SoC Security Vulnerabilities

There is significant prior effort in classifying software-level vulnerabilities [20, 94]. While

a lot of work has been done in hardware Trojan detection, it represents only a small fraction

of the SoC vulnerability space. Specifically, it belongs to one of the seven classes (the last

category) of vulnerabilities outlined in this section. We reviewed a wide variety of security

vulnerabilities listed in the National Vulnerability Database [20], and developed the following

seven classes of vulnerabilities that are related to SoCs. Note that there is a fundamental

difference between exceptions and security vulnerabilities. The exceptions are defined today

by SoC designers based on the point of view of functional correctness, whereas the security

vulnerabilities outlined in this proposal are solely from security and trust perspectives. For

example, a vulnerable design may trigger (e.g., using a Trojan) an exception (e.g., divide by

zero) even when the event does not happen. As exceptions are normally handled in a higher

privilege level, the user would get access to the registers that should not be granted. The

remainder of this section describes our proposed seven vulnerability classes.

3.2.1 Permissions and Privileges

Permissions and privileges are the main components of the access control subsystem.

Specifically, different resources are controlled by different permissions and privileges. For

example, in ARM7 processor, seven different modes are defined, such as user mode, interrupt

mode, and supervisor mode. It is critical to check whether the conditions for triggering

privileged modes are satisfied before changing modes.

44

3.2.2 Resource Management

Certain resources should be protected against any illegal access, including accessing

special hardware from non-privileged modes, misuse of design-for-debug infrastructures during

normal usage, and so on. For example, JTAG allows engineers to trace secure memory during

post-silicon validation and debug of security features. However, JTAG should never be enabled

during normal usage.

3.2.3 Illegal States and Transitions

The behavior of an SoC can be modeled as a finite state machine (FSM). The valid states

or transitions can be verified during functional validation. Attackers are more interested in

the backdoor that allows undefined states/transitions. To verify the existence of illegal states

and transitions, we can use both the assertions of the valid states and transitions to show the

violation, and enumerate the invalid states and transitions to show the existence of specific

vulnerabilities.

3.2.4 Buffer Issues

Modern SoCs consist of advanced features (e.g., out-of-order execution and speculative

execution) as well as a large number of heterogeneous buffers. Similar to software buffer errors,

these buffers in deeper pipelines require significant validation efforts to detect any remaining

flaws. For example, prefetched instructions in buffers should be flushed if the branch prediction

is incorrect. Otherwise, these flaws can be exploited to mount an attack.

3.2.5 Information Leakage

Modern SoCs provide the isolation between a secure world and a non-secure world.

Information from the secure world should never be leaked to non-secure world directly. ARM

uses TrustZone as an approach to provide the secure world [95]. There should be safeguards

present to prevent non-secure world from accessing TrustZone directly.

45

3.2.6 Numeric Exceptions

Numeric exceptions represent the erroneous/illegal behaviors (e.g., divide by zero) during

arithmetic computations. Even if the program does not lead to illegal numeric computation, an

attacker can make it happen, and utilize it to create a vulnerability.

3.2.7 Malicious Implants

In software community, code injection means allowing attackers to run arbitrary code.

Similarly, hardware Trojans, inserted by untrusted third party, allows attackers to execute

an arbitrary path after applying specific input patterns. This can lead to information

leakage or other unintended consequences. Trojans are usually inserted in hard-to-detect

and rare-to-activate areas, making it hard to detect them during validation.

Figure 3-2. Overview of our assertion generation framework for different classes of
vulnerabilities.

3.3 SoC Security Assertions

This section mainly addresses two important questions: i) how to generate the security

assertions, and ii) how to embed them in the SoC design (RTL models).

3.3.1 Embedding of Security Assertions

There are two orthogonal ways of embedding assertions in the RTL model of the SoC

design: immediate and concurrent assertions. Please note that immediate assertions can be

converted to concurrent assertions by modifying the antecedent. However, as described below,

it would be natural to use a specific one depending on the type of security vulnerability.

46

Immediate Assertions: Immediate assertions are powerful in detecting vulnerabilities such

as numeric errors. Immediate assertions are flexible and can vary based on the potential

statements or blocks. For immediate operations, it is important to find out the exact location,

the relevant variable (e.g., trigger) α, and the assertion, assert (P (α)), can be inserted.

Immediate assertions are inherent for checking specific operations, such as divide-by-zero

checking and out-of-boundary checking.

Concurrent Assertions: Concurrent assertions, on the other hand, are checked each clock cycle,

representing expected properties of SoCs. Concurrent assertions are useful to express any FSM

related vulnerabilities (e.g., illegal states and transitions). Each concurrent assertion can be

defined using assert property (P). The property P should be derived from the specification of

SoCs and vulnerability classes.

3.3.2 Generation of Security Assertions

We use static (code) analysis to generate security assertions to detect the existence of the

vulnerabilities outlined in Section 3.2, as shown in Figure 3-2. In this section, we briefly outline

the assertion generation for each vulnerability class.

Permissions and Privileges: By analyzing the specification, we need to figure out the variable

that represents the privilege level, e.g., CPSR in ARMv7. For each entry to a privileged

operation block, we need to generate an assertion. For the ease of illustration, we use user

to represent current privilege, and admin to represent root privilege. For each possible

entry into the privileged operation block, we need to generate the immediate assertion as:

assert(user == admin).

Resource Management: Concurrent assertions are powerful in protecting resources from

misuse in an unexpected way. For example, to protect JTAG from getting used during normal

operation mode, we need to generate the assertion as: assert property (normal |− >

!JTAG_enable).

47

Illegal States and Transitions: The behaviors of modules as well as their interactions

(protocols) can be expressed in FSMs. Therefore, we can express both valid and invalid

(illegal) transitions as security assertions. For example, if there is a valid transition from state

A to state B when variable a is true, it can be encoded as an assertion: assert property (A &&

a |− > B). Similarly, the assertion, assert property (!(C|− > A)) can be used to ensure that

no transitions are allowed from state C to state A.

Buffer Issues: Assertions can be generated for all boundary cases related to buffers. To

prevent access of the buffer index beyond its limits, immediate assertions should be added

before each buffer access. Before accessing Buffer[index], the variable index needs to

satisfy assert (index >= 0 && index <= limit). In many scenarios, we may require

concurrent assertions to ensure global interactions. For example, to ensure the flush of

instruction buffer (IB) after branch prediction failure, we can use the assertion assert property

(Pre_fail |− > IB_Empty).

Information Leakage: To protect secret information from directly leaking to non-secure world,

tagging is one potential solution. It assumes that the results of secure world can only be

passed to non-secure world through special interface (privileged instructions). For each normal

operation consisting of both secure and non-secure variables, we need to check if the result is

assigned to a non-secure variable as expected. If s is a secure variable, the assignment of s to

a variable v needs to check the tag of v as assert(v_t == secure_tag).

Numeric Exceptions: Numeric exceptions are more relevant to the implementation of SoC

designs. We need to generate one assertion for each possible numeric exception during

arithmetic computation. For example, in case of a divide-by-zero exception, we can generate an

immediate assertion as: assert(divisor != 0).

Malicious Implants: Malicious modifications (e.g., hardware Trojans) can be inserted during

pre-silicon or post-silicon stage. In the pre-silicon stage, hardware Trojans are usually hidden

in rare-to-activate branches or rare execution of concurrent statements. For example, we can

48

generate assertions for each rare branch by adding an assertion for each rare trigger condition

as: assert(rare_trigger).

The security assertions are generated based on the vulnerabilities outlined in Section 3.2.

More assertions can be added based on designer inputs or application-specific considerations.

0%

20%

40%

60%

80%

100%

Arbiter PCI USB MEM GNG AES

%
of

De
te

ct
ed

vu
ln

er
ab

ilit
ies

Our approach Goldmine

Figure 3-3. Comparison of detected vulnerabilities by our assertions and Goldmine [14].

3.4 Case Studies

To demonstrate the necessity of security assertions, we analyzed six benchmarks and

inserted security assertions introduced in Section 3.3. Then, Goldmine [14] was applied on

all the benchmarks to generate as many assertions as possible. To evaluate the effectiveness

of our security assertions, we randomly inserted 10 vulnerabilities into the design to form 10

vulnerable instances and applied directed test to activate these vulnerabilities. If any assertion

generated by the two methods (ours versus Goldmine) got activated during simulation, we

claim the corresponding method detects the vulnerability. The types of potential vulnerabilities

of each benchmark and the detected instances are shown in Table 3-2 and Figure 3-3,

respectively. Note that the number of instances are more than the number of vulnerability

types, as each type may contain multiple instances. In the remainder of this section, we

describe each type of vulnerability and inserted instances in detail. Overall, our approach is

able to detect all of the vulnerabilities while the assertions generated by Goldmine fail to detect

most of them.

49

Table 3-2. Types of vulnerabilities explored in the six benchmarks.
Vulnerability Arbiter PCI USB MEM GNG AES
Permissions and Privileges ✓
Resource Management ✓ ✓
Illegal States & Transitions ✓ ✓ ✓
Buffer Issues ✓
Information Leakage ✓
Numeric Exceptions ✓
Malicious Implants ✓

req1
gnt1

rst
gnt2

state

0

req2

Figure 3-4. A simple arbiter with four inputs (clk not shown) and two outputs.

3.4.1 Arbiter

We first analyzed a simple design, Arbiter, as shown in Figure 3-4. For this simple design,

we inserted the vulnerability of invalid states and transitions. Even for this small design,

careless design, fault injections, or transient errors can make it behave differently. For example,

if the security of whole design relies on the gnt1 and gnt2 not asserted together, assert(!(gnt1

& gnt2)) should be added to the design. However, the number of invalid states and transitions

would be exponential when time is involved. For example, when we consider two consecutive

cycles, assert(!(gnt1 | => (gnt2 != req2))) should hold. We limit the number of assertions to

10 in this example.

The assertions generated by Goldmine are shown in Listing 3.1. As Goldmine analyzes the

golden design by mining the traces of random simulation, it is able to capture reachable states

and transitions by the specific simulation.

50

Listing 3.1. Assertions of Arbiter by Goldmine
(s t a t e == 1 & req2 == 1) |−> (gnt1 == 0)

(req1 == 1 & s t a t e == 0) |−> (gnt1 == 1)

(req1 == 0) |−> (gnt1 == 0)

(req1 == 1 & req2 == 0) |−> (gnt1 == 1)

(req1 == 1 & s t a t e == 0) |−> (gnt2 == 0)

(req2 == 1 & s t a t e == 1) |−> (gnt2 == 1)

(req2 == 0) |−> (gnt2 == 0)

(req2 == 1 & req1 == 0) |−> (gnt2 == 1)

The 10 vulnerability instances are generated by mimicking the behavior of fault injection,

i.e., randomly inverting one signal in Figure 3-4. From Figure 3-4, we can see that Goldmine is

good at detecting vulnerabilities involving finite state machines in this small design.

3.4.2 PCI

Top module pci_master32_sm from Opencores [96] contains eight modules such as

pci_frame_crit and pci_irdy_out_crit. To mimic SoC design, which contains different parts

from untrusted third party, we inserted invalid states and transitions to the subordinate

modules (8 out of 10) as well as the top modules (2 out of 10). Goldmine generated 19

assertions. To generate vulnerable instances, we randomly changed operators in all the

modules. As shown in Figure 3-3, Goldmine was able to capture the two vulnerabilities, but

failed to detect the remaining eight vulnerabilities.

3.4.3 USB Protocol

USB protocol defines the packet fields and its corresponding operations. We analyzed the

USB protocol module usbf_pa.v along with CRC module from Opencores [96] and identified

two types of vulnerabilities. The USB protocol depends on the packet ID (PID) to identify the

types of packets including token, data, handshake, and special. For each type of packets, PIDs

will not overlap. In the module, the output of PID is stored in tx_data whose value depends on

the input selectors. The two types of vulnerabilities are shown below:

51

1. Resource management: As the PIDs define the resources of USB, it is critical to make
sure that each type of packet gets expected PID. For example, a token packet should
not get any of the PIDs belonging to data packets, such as DATA0, DATA1. Similarly, a
handshake packet should stick to its own type, e.g., ACK, NAK. We inserted 8 assertions
of this type.

2. Invalid states and transitions: We inserted one vulnerability in CRC module and one
vulnerability in the top module. As this is a common vulnerability in almost every design,
we will skip inserting this type of vulnerability in the remaining benchmarks.

The vulnerable instances were generated accordingly. As shown in Figure 3-3, while

Goldmine can only detect one vulnerability from state transition in top module, our assertions

can detect all of them.

3.4.4 A Simplified Memory Design

This design is created to mimic the behavior of a simplified Trusted Hardware (TH)

implementation of memory, as shown in Listing 3.2. Trusted Hardware, e.g., Intel’s Software

Guard Extensions (SGX) [97], allows remote clients to upload private computation and data to

a secure container of a server with a TH. One key implementation of SGX is the introduction

of Process Reserved Memory and Enclave Page Cache (EPC), inhibiting invalid accesses even

from the kernel. The simplified design is shown in Listing 3.2 which contains input signal sc to

denote whether it is a secure access or not. The memory space is denoted by an array named

mem with size of 1MB.

1. Permissions and privileges. Assume the lower 1kB of memory is allocated to EPC.
Since EPC should be accessed through secure container/process, each access to the
lower 1kB should be checked. Although one conditional checking is already in place,
assertions may also help when implementation error, fault injection or Hardware Trojans
exist, e.g., assert(address <= 1024 | => sc) can be inserted before any access to
memory.

2. Information leakage. In this simplified memory implementation, it does not explicitly
describe the state of out signal when we want to write. For a buggy CPU design which
connects to this memory, a process may be able to read the previous access of another
process from the out port (including secure processes) with interleaved memory access.
We may add a concurrent assertion with (assert property (wr | => out == 0)).

3. Buffer errors. Memory as one type of buffer should be checked for buffer errors. Each
access to memory should be checked with assertions to test if address is in the range of

52

memory size. In this example, the memory size is 1MB (220) and the length of address is
20 bits. We need assert(address < 2 ∗ ∗20) to avoid errors such as careless typo.

Listing 3.2. Simplified Memory of Trusted Hardware

module mem(c lk , r s t , wr , sc , add re s s ,

in , out) ;

input c l k , r s t , wr , s c ;

input [1 9 : 0] a d d r e s s ;

input [7 : 0] i n ;

output reg [7 : 0] out ;

reg [7 : 0] mem[2∗∗20 −1 :0] ;

always @ (posedge c l k)

i f (a d d r e s s >= 1024 | | s c) begin

i f (wr) mem[a d d r e s s] <= i n ;

e l s e out <= mem[a d d r e s s] ;

end

endmodule

For the permissions and privileges, we inserted a vulnerability by removing sc checking

in the first if statement. For the buffer errors, we assume a typo in the length of address

definition. The remaining vulnerabilities are about information leakage. We assume that

attackers are able to connect one specific location to out when it is a write operation.

Experimental results show that Goldmine failed to detect any of these vulnerabilities while our

approach can detect all of them.

53

Listing 3.3. GNG_interp

module gng_ in te rp (

input c l k , r s t n , v a l i d _ i n ,

input [6 3 : 0] data_in ,

output reg va l i d_out ,

output reg [1 5 : 0] data_out

) ;

wire [3 3 : 0] mul1 ;

wire signed [1 3 : 0] mul1_new ;

reg [1 7 : 0] c0_r5 ;

reg signed [1 8 : 0] sum2 ;

reg [1 4 : 0] sum2_rnd ;

ass ign mul1_new = mul1 [3 2 : 1 9] ;

always @ (posedge c l k)

sum2 <= $s i gned ({1 ’ b0 , c0_r5 }) + mul1_new ;

always @ (posedge c l k)

sum2_rnd <= sum2 [1 7 : 3] + sum2 [2] ;

. . .

endmodule

3.4.5 Gaussian Noise Generator (GNG)

We next inspected a computation-intensive design called Gaussian Noise Generator

(GNG). The design is downloaded from Opencores [96]. One possible numeric error in this

design is the assignments between signed and unsigned values as shown in the snippet of

code in Listing 3.3. The first assignment assigns an unsigned variable to a signed variable.

Next assignment is the computation between signed values. The final assignment assigns

a signed value to an unsigned value. We are concerned with the automatic transformation

between signed and unsigned values. For example, when the 32th bit of mul1 is 1, mul1_new

54

is interpreted as a negative value using a two’s complement representation. Then mul_new

is added to a positive number and converted to an unsigned number again. The behavior

may or may not be the original intention of this code. We want to generate assertions, e.g.,

assert(mul1[32] != 1), and guide the test plan of debug. The developer should decide if it is

a numeric error or the expected behavior. Since we view this design as “buggy” by itself, we

did not generate vulnerable instances for it. Rather, we use 10 direct tests to force mul1[32]

to become 1 and check if the assertions by Goldmine can catch the potential vulnerability. As

shown in Figure 3-3, Goldmine failed to detect any of them since it only analyzes the traces of

random simulation but never inspects the specification/implementation.

3.4.6 AES

Advanced Encryption Standard (AES) is a very commonly used crypto core, consisting of

ten rounds of block ciphers (substitution permutation networks). The substitution is shown in

Listing 3.4. We also inserted JTAG to dump internal variables during debug. The identified

vulnerabilities are:

1. Resource management: As JTAG is for debug purpose only, it should be disabled
during normal usage. As a result, the dump signal should contains nothing related to
any internal signals. We inserted an concurrent assertion assert property (!JTAG |->
(JTAG_out != in)) to prevent attackers from bypassing the JTAG checking and dump
internal signals to infer the plaintext.

2. Malicious implants: As module S contains a lot of rare branches, attackers are able
to construct rare trigger conditions for hardware Trojans. For example, the probability
of (out == 32’h7c7c7c7c) is 2−32 when (in == 8’h01) is true for all S_0, S_1, S_2
and S_3 together. Assertions like assert(out != 32’h7c7c7c7c) in module S4 can guide
the designer of a test plan to cover this specific potential trigger condition. As the
combinations of rare branches are potentially infinite, we restricted the number of
assertions to be 10.

One of our vulnerable instances is a design bypassing JTAG checking directly. For the

other 9 instances, we construct random hardware Trojans from the rare branches. As shown in

Figure 3-3, our approach is able to detect the vulnerabilities. Goldmine cannot detect any of

them.

55

Listing 3.4. AES table

module S4 (c lk , JTAG, in , out , JTAG_out) ;

input c l k , JTAG ;

input [3 1 : 0] i n ;

output [3 1 : 0] out ;

output reg [3 1 : 0] JTAG_out ;

S

S_0 (c lk , i n [3 1 : 2 4] , out [3 1 : 2 4]) ,

S_1 (c lk , i n [2 3 : 1 6] , out [2 3 : 1 6]) ,

S_2 (c lk , i n [1 5 : 8] , out [1 5 : 8]) ,

S_3 (c lk , i n [7 : 0] , out [7 : 0]) ;

always @ (posedge c l k)

i f (JTAG) JTAG_out <= i n ;

endmodule

module S (c lk , in , out) ;

always @ (posedge c l k)

case (i n)

8 ’ h00 : out <= 8 ’ h63 ;

8 ’ h01 : out <= 8 ’ h7c ;

. . .

endcase

endmodule

Overall, the security assertions generated by our approach are able to detect all the

security vulnerabilities whereas the assertions generated by state-of-the-art technique

(Goldmine) fail to detect most of them.

3.5 Summary

SoCs are widely used today in both embedded systems and IoT devices. While SoC

security is paramount, there are no prior efforts in defining and detecting a wide variety

56

of SoC security vulnerabilities. In this chapter, we developed seven classes of SoC security

vulnerabilities. Based on these vulnerabilities, we proposed a framework for generating security

assertions. Using a diverse set of benchmarks, we demonstrated that the functional assertions

generated by state-of-the-art assertion generation technique cannot eliminate the need for

our dedicated security assertions. Specifically, our security assertions are able to detect all the

implanted security vulnerabilities while the state-of-the-art method failed to detect most of

them. We envision that the SoC designers will embed security assertions in their designs in the

near future as part of their assertion-based security validation methodology.

57

CHAPTER 4
SCALABLE CONCOLIC TESTING OF RTL MODELS

Simulation is widely used for validation of Register-Transfer-Level (RTL) models. While

simulating with millions of random or constrained-random tests can cover majority of the

targets (functional scenarios), the number of remaining targets can still be huge (hundreds

or thousands) in case of today’s industrial designs. While directed test generation techniques

using formal methods are promising in such cases, it is infeasible to apply them on large

designs due to state space explosion. The application of concolic testing on hardware designs

has shown some promising results in improving the overall coverage. However, existing concolic

testing approaches are not designed to activate specific targets such as uncovered corner cases

and rare functional scenarios. In other words, these approaches address state space explosion

problem but lead to path explosion problem while searching for the uncovered targets. Uniform

test generation [2] tries to maximize the overall branch/statement coverage but ignores the

priority of activating specific targets, leading to longer test generation time, as shown in

Figure 4-1B. As the number of paths grow with unrolled cycles, uniform test generation will

suffer from path explosion problem and will not be able to finish within the time limit. Ahmed

et al. [98] proposed a promising approach to guide path exploration to reach a specific target.

As demonstrated in Section 4.2.2, their approach leads to exploration of undesired paths in

many scenarios.

In this chapter, we propose a fully automated and scalable approach for generating

directed tests using concolic testing of RTL models. Our proposed approach maps directed

test generation problem to target search problem while avoiding overlapping searches involving

multiple targets. We first propose an efficient path exploration scheme to improve the quality

of explored paths and coverage of a specific target. We call it single-target method. However,

single-target method is not suitable for scenarios when thousands of targets (not covered

by millions of random simulation) need to be activated since a lot of effort is wasted in

overlapping searches, as shown in Figure 4-1C. To reduce the number of overlapping searches,

58

we propose efficient learning and clustering techniques activate multiple targets. Our approach

utilizes information from the previous searches, as shown in Figure 4-1D.

T 1 T 2

A Random simulation
cannot guarantee the
coverage of all targets
in a reasonable time.

T 1 T 2S

B Uniform strategy
can take very long time
(may be infeasible) to
cover all the targets.

T 1 T 2S

C Single-target method
can lead to wasted
effort (overlapping
search) to cover targets.

T 1 T 2S

D Multi-target method
utilizes the previous
search and starts from a
profitable path.

Figure 4-1. Comparison of four approaches in covering two targets T1 and T2.

In this chapter, we make two major contributions:

1. We propose a scalable test generation technique using concolic testing of RTL models
to activate a specific target. We develop a novel contribution-aware edge realignment
technique to effectively evaluate the distance between a simulated path and a specific
target. The realigned edges are used to guide alternative branch selection to improve
both functional coverage and test generation efficiency. Based on the realigned edges, we
propose a path exploration algorithm to quickly activate the targets by searching “close”
alternative branches.

2. In order to exploit learning across test generation instances involving multiple targets,
we explore two optimization techniques to effectively utilize previous search results. We
utilize target pruning to eliminate targets that are covered by the tests generated for
activating other targets. We also minimize the overlapping search efforts by employing
clustering of related targets to drastically reduce the overall test generation time.

The remainder of the chapter is organized as follows. The overview of our framework

is outlined in Section 4.1. Section 4.2 presents our proposed test generation approach for

activating a specific target. Section 4.3 describes various optimizations for activating multiple

targets. Section 4.4 presents experimental results. Finally, Section 4.5 concludes the chapter.

4.1 Overview and Problem Formulation

Given an RTL description of a hardware design, our proposed approach will generate a

set of compact tests to cover all the hard-to-activate branch targets. This section is organized

as follows. We first describe the modeling of targets. Next, we provide an overview of our

proposed approach and outline the organization of the remainder of this chapter.

59

Edge Realignment

Distance
Computation

Testing
ConcolicTarget

Clustering

Target
Pruning

(RTL model)
Design

(Branches)
Targets

D
ir

ec
te

d
T

es
tInstrumentation

Section 4.2Section 4.3

Figure 4-2. The overview of our test generation framework using concolic testing.

4.1.1 Modeling of Targets

In this chapter, a validation target (target, in short) in RTL model represents a branch

condition that the verification engineer would like to cover during validation of RTL models.

Specifically, we are interested in the hard-to-activate branches in a traditional simulation-based

validation methodology. In addition to branch target in the design, our approach can also be

used to validate other scenarios that can be converted to equivalent branch statements, such

as assertions [99].

4.1.2 Overview

Figure 4-2 shows the overview of our framework. We first simulate the design with

random test vectors to find out the hard-to-activate branch targets. To activate a specific

target, we apply three steps to preprocess the RTL code, i.e., instrumentation, edge

realignment and distance computation as shown in Figure 4-2. The instrumentation is to

provide simulation information to symbolic solver by adding print statements to the design.

The goal of edge realignment is to directly connect each basic block to the assignments that

control the entry condition to this block. After edge realignment, distance computation is

able to determine the most profitable alternative branches to activate a target. In summary,

the main goal of preprocessing is to assist alternative branch selection in concolic testing (see

Figure 2-2). The details are discussed in Section 4.2. For multiple targets, we apply target

60

pruning and target clustering to reduce overlapping searches, by pruning targets that are

covered during searching paths for other targets, and finding the most profitable initial path for

the remaining targets. These optimizations are discussed in Section 4.3. The generated tests

are validated in the original design (without instrumentation and edge realignment) to check if

the desired targets are covered.

4.2 Test Generation using Concolic Testing

A major challenge in concolic testing is how to efficiently explore profitable paths to

activate a specific target. As shown in Figure 4-2, our test generation framework to activate a

single target consists of four major steps: instrument the code to add print statements, realign

edges to reveal contributions of each assignment, compute distance and explore different paths

to cover the target. With the help of edge realignment, we are able to heuristically evaluate

the distance between a path and the target. As shown in Figure 4-1, both random and uniform

test generation do not consider the quality of a selected path. In contrast, our directed path

selection tries to explore paths that are “closer” to a specific target. This section describes

these steps in detail.

4.2.1 RTL Code Instrumentation

The first step is to instrument the original design. The goal of instrumentation is to

provide information of a concrete path for symbolic execution. There are two possible ways to

do symbolic execution. One option is to modify the RTL simulator directly such that symbolic

execution is performed along with concrete simulation. The other one is to instrument the

original design such that path execution information can be dumped. After simulation is done,

the symbolic execution engine will parse and analyze the dumped traces. Our framework

utilizes the latter method, since it is more adaptive to different simulators and languages. The

simulation traces would be the same irrespective of the simulator. Note that the instrumented

RTL code is just for test generation. In our experimental evaluation, the original design is used

to verify that the generated tests activate the expected branches.

Listing 4.1. Example 1

61

module top (c l ock , r e s e t , in , out) ;

reg [7 : 0] a , b ;

reg out = 1 ' b0 ;

always @(posedge c l o c k) begin

i f (r e s e t == 1 ' b1) begin

a <= 8 ' h80 ; b <= 8 'h8A ;

$d i sp lay (”BB1”) ;

end

e l s e case (i n)

8 ' h01 : a <= a − 1 ; $d i sp lay (”BB2”) ;

8 ' h23 : a <= a + 1 ; $d i sp lay (”BB3”) ;

8 ' h45 : b <= b − 1 ; $d i sp lay (”BB4”) ;

8 ' h67 : b <= b + 1 ; $d i sp lay (”BB5”) ;

de fau l t : $d i sp lay (”BB6”) ;

endcase

end

always @(posedge c l o c k) begin

i f (a > b) begin

out <= 1 ' b1 ; $d i sp lay (”BB7”) ;

end

e l s e begin

$d i sp lay (”BB8”) ;

end

end

endmodule

Our framework first parses the design and constructs its control flow graph. Then, it

marks each basic block with a unique identifier (BBi for the ith basic block). The unique

identifiers of basic blocks help symbolic engine build the constraints which contain all the

assignments inside each basic block. Then, we instrument the design by adding a print

statement at the end of each basic block. The example of an instrumented design is shown

62

in Listing 4.1 with the added print statements shown in gray. Its corresponding CFG is shown

in Figure 4-3 (without dashed lines). At the same time, our framework generates a testbench

module that is able to read the tests generated by our approach and provide the stimuli to the

instrumented design. After simulating one input vector, a trace showing the executed basic

blocks is dumped and analyzed. For example, with a random input test, it is highly likely to

get a trace [BB1, BB8, BB6, BB8, BB6, BB8, ...]. After reconstructing the simulation path

from the trace, next step of concolic testing is to choose a new path to explore and generate a

corresponding test to exercise the path.

4.2.2 Contribution-aware Edge Realignment

a <= 8’h80

b <= 8’h8A NOP

BB8

a<=a+1

BB2 BB3 BB4

NOP

in

BB5 BB6

reset

BB1

a<=a−1 b<=b−1 b<=b+1 out <= 1

BB7

a>b

A Our contribution-aware edge realignment. Realign each block to the assignments that con-
tribute to the activation of that block.

a <= 8’h80

b <= 8’h8A NOP

BB8

a<=a+1

BB2 BB3 BB4

NOP

in

BB5 BB6

reset

BB1

a<=a−1 b<=b−1 b<=b+1 out <= 1

BB7

a>b

B [3] realigns each block to the assignments that are satisfiable.

Figure 4-3. Comparison of edge realignment by our approach and [3].

Our framework tries to explore paths that can take it “closer” to a specific target.

Alternative branch selection in concolic testing is essentially “forcing” the next execution path

to pass through a specific block. When a “good” alternative branch (block) is selected, the

simulation path will get closer to the target. On the other hand, a “bad” alternative branch

(block) will lead the simulation trace randomly or far away from the target. The goal of our

edge realignment is to figure out the contribution of each block in activating a specific target.

63

In this section, we propose a contribution-aware edge realignment scheme to enable smart

selection of profitable alternative branches while exploring new paths.

efore we describe the details of the process, let us use an example to show the results of

edge realignment. Let us consider the example in Listing 4.1 to activate the branch in BB7

with the branch condition of (a>b). We note that the original CFG in Figure 4-3 (without

dashed lines) provides no information about which block is good or bad. To manually write

a test to activate BB7, a test writer tries all blocks containing the assignments for signals

a and b. While this manually backward tracking is viable for small designs, it is not feasible

for large designs due to scalability issues. Instead of manually figuring out which basic blocks

are relevant in activating BB7, we create reference edges to directly connect the blocks with

profitable assignments to our target block. For example, the dashed lines in Figure 4-3(a)

connect BB3 and BB4 to our target block BB7. These realigned edges instruct our concolic

testing framework to prefer BB3 and BB4 to other blocks in selecting alternative branches.

Intuitively, the paths across these two blocks are more likely to activate BB7 than the other

blocks.

For the ease of illustration, we use the following notations. We use s to represent a

global state, containing a snapshot of the values of all registers and wires in a specific time.

Let g(·) be the guard condition of a basic block. For example, the global state s0 = {a0 =

8′h80, b0 = 8′h8A}1 after executing BB1. The subscript of a variable is used to keep

track of the different values during the whole simulation. In other words, the subscript of

a variable increments by 1 whenever an assignment to the variable is executed. The guard

condition for BB7 is g(·) = a > b. If we evaluate the guard condition directly on s0,

i.e., g(s0) = (a0 > b0) = False, it represents that BB7 cannot be visited right after

1 For the simplicity of explanation, we only show the relevant variables to our condition g
in s. For example, when g is a > b, we only show the variables a and b. In our framework, all
variables are kept in the global state.

64

executing BB1. We use f(·) : s → s′ to represent any assignment that may change the

global state. For the assignment f = (a <= a + 1), it changes the global state s0 to

s′ = f(s0) = {a1 = 8′h81, b0 = 8′h8A}, where only the value of a is changed. For

the ease of representation, a sequence of assignments is represented using composition, i.e.,

s′ = s ◦ f1 ◦ f2... ◦ fn, where the assignments f1, ...fn are executed in order. The goal of

concolic testing is to find a viable sequence of assignments f1, ..., fn that will hit a specific

target, i.e., g(s′) = True.

A naive way to realign edges was proposed in [3] by simply checking the satisfiability

of one assignment and the guard condition of a block. For example, assuming the guard

condition of a target is (v & 0 == 0), which requires v to be an even number, the naive edge

realignment will realign the target to all blocks where v is possibly assigned an even number.

While this approach is promising in connecting simple conditions to a single assignment, the

naive checking introduces a large number of redundant edges which can mislead path selection.

The result of applying the naive edge realignment to Listing 4.1 is shown in Figure 4-3(b).

Compared to our expected results in Figure 4-3(a), the naive approach has two major

problems. The first one is that the naive approach lacks the checking of contribution. The

naive edge realignment scheme in [3] connects the target to all satisfiable assignments of its

variables, e.g., BB7 is connected to BB2 in Figure 4-3(b). It is due to the satisfiability of the

guard condition a > b and the assignment a <= a − 1, i.e., ((a1 == a0 − 1) and (a1 > b0))

is satisfiable. However, it is easy to see that selecting this assignment is not profitable in

achieving the target BB7. When a0 > b0 + 1 before the assignment is executed, the target BB7

is already activated. Otherwise, the assignment will lead the search path to be far away from

BB7. The second problem is the level of satisfiability checking. The naive edge realignment

checks the contribution of each individual assignment, rather than all assignments inside a

block. For example, assignment level satisfiability checking will connect BB7 to the block

containing the assignment a <= 8′h80 (BB1). However, when we consider all the assignments

inside BB1 together, it is clear to see that executing BB1 will never help to activate the target

65

BB7. While it is possible to manually check the contribution for small designs, it is infeasible

when the design is large and the condition is complex. We propose a contribution-aware

block-level edge realignment in Algorithm 1.

Algorithm 1 Edge Realignment
1: procedure Realign(CFG, Target Queue (TQ))
2: Push all targets to block queue BQ
3: while BQ is not empty do
4: Current block, bb← BQ.pop()

▷ Update edge for block bb
5: g ← expanded guard condition of bb
6: for variables v ∈ g do
7: for assignments f to v do
8: bb′ ← the block of f
9: f1, f2, ..., fn ← all the assignments of bb′

10: if g(s) = False and g(s ◦ f1 ◦ f2 ◦ ... ◦ fn) = True for any s then
11: Add bb′ to bb.predecessors
12: BQ.push(bb′) if bb′ is not visited
13: end if
14: end for
15: end for
16: end while
17: return Realigned CFG
18: end procedure

In this algorithm, the block queue BQ maintains all the basic blocks that need to be

aligned. Initially, BQ contains all the targets. We first expand the guard condition g for the

current block bb to get all the related variables. Then we check all the assignments that are

related to any of these variables. For each of these assignments f , we first find out the basic

block bb′ that contains f . Then, we evaluate its contribution to the guard condition g based on

Definition 4.1.

Definition 4.1. A basic block B has a contribution to a guard condition g, if there exists

some initial global state s, such that s does not satisfy the guard condition g, but the state

after executing all assignments inside B satisfies the guard condition. Assume that f1, f2, ..., fn

are the assignments inside B. The contribution of B to the guard condition g can be checked

by the satisfiability, g(s) = False and g(s ◦ f1 ◦ f2 ◦ ... ◦ fn) = True.

66

Contribution checking forces guard condition g to be false in the beginning, followed by

executing all the assignments inside a basic block B, and then checks if g will be satisfied. If it

is satisfiable, the block B has a contribution to g. For example, the block BB3 contains only

one assignment f = (a <= a + 1). It has a contribution to the guard condition g = (a > b),

because ((a0 ≤ b0) and (a1 = a0 + 1) and (a1 > b0)) has at least one solution. On the

contrary, the block BB2 with the assignment f = (a <= a − 1) has no contribution to the

guard condition, as the satisfiability equation ((a0 ≤ b0) and (a1 = a0 − 1) and (a1 > b0)) has

no solution. Similarly, BB1 has no contribution since ((a0 ≤ b0) and (a1 = 8′h80) and (b1 =

8′h8A) and (a1 > b1)) has no solution. The results of satisfiability checking for the block BB7

are shown in Table 4-1.

Table 4-1. The results of satisfiability checking in line 10 of Algorithm 1 for the target BB7.
Block Equation SAT
BB1 (a0 ≤ b0) ∧ (a1 = 8′h80) ∧ (b1 = 8′h8A) ∧ (a1 > b1) UNSAT
BB2 (a0 ≤ b0) ∧ (a1 = a0 − 1) ∧ (a1 > b0) UNSAT
BB3 (a0 ≤ b0) ∧ (a1 = a0 + 1) ∧ (a1 > b0) SAT
BB4 (a0 ≤ b0) ∧ (b1 = b0 − 1) ∧ (a0 > b1) SAT
BB5 (a0 ≤ b0) ∧ (b1 = b0 + 1) ∧ (a0 > b1) UNSAT

After finding a good block bb′, we add it to the predecessors of bb, i.e., creating an edge

to connect bb′ and bb. For example, as the block BB3 has a contribution to a > b, it is added

to the predecessors of BB7. Since BB3 is not visited before, it will be added to the end of

BQ. In some future iteration, BB3 will be selected as the current block, and our algorithm

will realign good assignments for its guard condition. It is easy to see that Algorithm 1 is fast

since no basic block needs to be visited more than once. A good edge realignment scheme is

important because even a single bad realigned edge will waste a lot of searching time in finding

good alternative paths during path exploration, and it can lead to a wrong direction, which will

be demonstrated in Section 4.4.5.

4.2.3 Distance Computation

Edge realignment connects a target to the blocks that have direct contributions. To

quantify the contribution of all blocks, we use a distance measurement based on the realigned

67

control flow graph. A block with lower distance means it is closer to the target, i.e., more likely

to contribute to the activation of the target.

First, we define the distance between a basic block and the target. With the realigned

CFG in Figure 4-3(a), we start from our target BB7 and perform breadth-first traversal in the

direction along the predecessors. For BB7, we initialize the distance as 0, and increment the

distance by 1 when we traverse an edge. The distances of the basic blocks in the first always

block of Listing 4.1 are shown in Figure 4-4, which is unrolled for three cycles. Note that the

distances of basic blocks that are never visited are not shown, which will be initialize to ∞ in

our framework. For each basic block bb, the distance of bb is denoted as bb.distance. Next, we

define the distance between a path and the target in Definition 4.2.

Definition 4.2. Assume a simulation path is constructed by a trace {{bb11, bb12, . . . , bb1i1},

{bb21, . . . , bb2i2}, . . ., {bbk1, . . . , bbkik}}, where bbji represents the ith basic block in jth clock cycle.

The distance between the path and a target is the minimum distance among all blocks, i.e.,

min
i,j

bbji .distance.

Figure 4-4 shows the example of three paths. As all the blocks along P1 and P3 have the

distance ∞, their distances to the target are ∞. On the other hand, as P2 passes through

BB3 in the second clock cycle, the distance of P2 is 1. When we inspect the final state

after executing these three paths, P2 is “closer” to the target, since P2 executed one more

a <= a + 1. In other words, the distance is a good quality indicator of a path. This distance

definition also emphasizes the importance of good edge realignment schemes. If we realign the

CFG using the naive approach (as shown in Figure 4-3(b)), the path P3 will have distance 1,

same as P2. However, since P3 executed a <= a − 1, the final state is actually further away

from our target. These realigned edges will mislead directed path exploration as described in

the next section.

68

a <= 8’h80

b <= 8’h8A a<=a+1

BB2 BB3 BB4

NOP

in

BB5 BB6

reset

BB1

a<=a−1 b<=b−1 b<=b+1

a <= 8’h80

b <= 8’h8A a<=a+1

BB2 BB3 BB4

NOP

in

BB5 BB6

reset

BB1

a<=a−1 b<=b−1 b<=b+1

a <= 8’h80

b <= 8’h8A a<=a+1

BB2 BB3 BB4

NOP

in

BB5 BB6

reset

BB1

a<=a−1 b<=b−1 b<=b+1

1 1

11

1 1

P1P3
P2

Figure 4-4. The distance between a basic block and the target in realigned CFGs.

4.2.4 Path Exploration

In this section, we present a greedy path exploration scheme in activating a specific target

based on our distance heuristic. We illustrate the usefulness of distance information in our

automated path exploration scheme.

Algorithm 2 describes our greedy path exploration to quickly reach a specific target by

selecting the most profitable alternative branch. To better illustrate how we select alternative

branches and explore new paths, we use the example in Figure 4-4. It first computes the

distance for all blocks as introduced in Section 4.2.3. Assume that the initial path p is P1.

Next, it builds constraints vector from the simulation trace of p, S = {{a1 = 8′h80, b1 =

8′h8A}, {}, {}}, where each inner vector represents all executed statements one clock cycle.

69

Algorithm 2 Path Exploration
1: procedure PathExplore(realigned CFG, Target Queue TQ, search limit limit, unrolled

cycles unroll)
2: for target ∈ TQ do
3: Compute the distance from target for all blocks
4: Random simulation and get the path p
5: iteration = 0
6: clock = 0
7: while iteration < limit do
8: Build constraints vector S from the trace of p
9: AB ← all valid alternative branches (blocks) after cycle clock

10: Sort AB by distance and clock
11: Randomly choose one of the best alternative branches (blocks) to flip
12: clock ← the clock of the chosen branch
13: Build the new constraints vector
14: Use a constraint solver to solve the constraints
15: Simulate the design with returned test and get a new path p
16: iteration = iteration+ 1
17: if p activates the target then
18: Add the test to T
19: Break
20: end if
21: if clock == unrolled then
22: Increment the distance of all blocks in p
23: clock = 0
24: end if
25: end while
26: end for
27: Return A test set T = {t1, t2, . . . , tn}
28: end procedure

Then, we try all alternative branches2 from current path p and check if they are viable. For

example, we want to check if BB7 is a valid block in clock 2. A new constraints vector is

built by combining all constraints before BB8 in clock 2 and the new chosen branch, i.e.,

{{a1 = 8′h80, b1 = 8′h8A}, {a1 > b1}}. As it is not satisfiable, BB7 is not a valid block

in clock 2. On the other hand, BB2 in clock 2 is a valid block, as {{a1 = 8′h80, b1 =

2 We assume the first clock is only used to reset all signals. Therefore, we will skip the first
clock cycle in finding alternative branches.

70

8′h8A}, {in2 == 8′h01}} is satisfiable. In this way, we can find all valid alternative blocks,

which are BB2, BB3, BB4 and BB5 in both clock 2 and clock 3. The next step is to sort these

blocks by the distance and clock cycle. Since BB3 and BB4 have smaller distance than BB2

and BB5, one of the possible order is {BB32,BB42,BB33,BB43,BB22,BB52,BB23,BB53},

where the order of BB3 versus BB4 and the order of BB2 versus BB5 in the same clock are

random since each pair has the same distance. Assume that we select BB3 in clock 2 as our

best alternative block in line 11. A new constraints vector will be constructed, consisting

of all constraints from the beginning to BB3 in clock 2. We solve the constraints to get a

test and simulate it. Let us assume that the new path is P2. Before searching in the next

iteration, we set clock = 2 such that only the sub-path after clock 2 is checked in searching

for valid alternative branches for P2, i.e., the sub-path (first two clocks) of P2 is locked. A new

iteration will repeat the process until the target is activated. There are two key ideas in our

algorithm.

1. The usage of our distance metric defined in Section 4.2.3 provides our greedy algorithm
a heuristic to explore relatively “close” paths to the targets. For example, in our first
iteration, we would prefer P2 over P3 in Figure 4-4 since P2 has smaller distance than
P3.

2. The usage of clock maximizes the exploitation of previous good choices, and avoids
toggling best alternative blocks when multiple blocks have the same distance. If the
clock is not enforced in our algorithm, the best alternative blocks would toggle between
BB32 and BB42 in the following iterations of the previous example. If the explored path
could not cover the target, which is likely since we allow the input signal to be random in
the remaining cycles, the process will continue until one lucky test activates the target by
chance.

4.2.4.1 Dynamic Distance Update

One important thing in our algorithm is the usage of clock. The intuition behind clock

is that since we have made so much effort in finding the best alternative branch (block), we

do not want it to be replaced until we have tried enough possibilities and could not find a

solution. Whenever we find an alternative block in line 11, we set clock to the clock cycle of

the chosen block. Therefore, the sub-path from the beginning to the chosen block is “locked”

71

in the following iterations. The next alternative branch is chosen from the remaining cycles.

After clock reaches the unrolled cycle, we reset the clock and increment the distance of

current path p in line 21-23.

The intuition behind dynamic distance update is that we cannot fully rely on the distance

given by our static analysis of CFG. Since the distance is statically computed, it is likely that

all paths through a block with a small distance could not activate our target, which is almost

impossible to examine because the number of possible paths is exponential. Therefore, we stick

with the reasonable evaluation (block-level satisfiability) and apply dynamic distance update to

mitigate the shortsighted nature of our edge realignment scheme.

In Algorithm 2, distance is updated when clock reaches unrolled cycles and the target

is not covered (line 21). In previous iterations, we have greedily chosen a few profitable

alternative branches. We increment the distance of all blocks in the current path p, which

contains all the chosen blocks in previous iterations. Through dynamic distance update, our

approach is able to explore other blocks instead of exploiting the good blocks from static

realignment all the time. For example, assume the distance of BB2 is 10, rather than ∞ in

Figure 4-4. After 10 times of trying BB3 and failing to activate the target, the distance of BB2

would be smaller than BB3. Therefore, in the next iteration, BB2 will have higher priority of

being chosen as the alternative branch than BB3. Combining the usage of clock and dynamic

distance update, our approach balances the exploration and exploitation during path selection.

4.3 Optimizations for Covering Multiple Targets

To extend our test generation framework to handle multiple targets, we propose two

optimization techniques: target pruning and target clustering. The focus of these techniques

is to effectively utilize the structure of the design and previous search information to generate

tests efficiently as shown in Figure 4-1(d). The key idea behind these two techniques are

summarized below:

1. Target pruning is designed to reduce the number of targets without sacrificing the
coverage. While existing target pruning techniques try to remove redundant targets after

72

reset

inputa <= 0
b <= 0
c <= 0 a | b

a <= 0

c

a <= 1
c <= 1c <= 0

T2 NOP

T0

BB1

BB2 BB3

BB4
BB5

BB7BB6

T1

Figure 4-5. CFG for the design in Listing 4.2. T0, T1, and T2 represent three targets.

generating test for all of them, we utilize CFGs and the order of targets to efficiently
prune targets prior to and during test generation.

2. Proposed target clustering connects each target with the closest simulated path,
therefore, improves initial path selection. One problem of iteratively applying Algorithm 2
is that it ignores all precious search information while activating previous targets,
leading to wasted effort in overlapping searches (see Figure 4-1(c)). Target clustering
dynamically groups the remaining targets into different clusters. Each cluster has its own
closest simulated path. When one target is selected as the current target, we use the
closest simulated path as the initial path to replace line 4 in Algorithm 2.

4.3.1 Target Pruning

To accelerate the speed of concolic testing in multi-target scenarios, we prune redundant

targets by analyzing the CFG and controlling the order of targets. We exploit both static and

dynamic pruning to minimize the number of targets. To illustrate the static process using CFG,

consider the simple RTL design in Listing 4.2 as an example. Figure 4-5 shows its CFG with

T0, T1 and T2 to represent the three targets. If T2 is reachable, we can safely remove T0

from the target list. Formally, we can prune all the dominator nodes of the targets. Suppose

the initial set of targets is TS. For each target T ∈ TS, let the dominators of T be the set

DM(T). Therefore, the effective target set after pruning, TS ′ = TS − ∪T∈TSDM(T).

However, this approach may not work when T2 is not reachable, but T0 is reachable. In

this case, removing T0 from the target list does not make sense. Rather, we should remove

T2. One engineering choice would be to prune targets as usual, but keep track of the pruned

73

targets. If a test cannot be generated for a target (e.g., in a reasonable time), add back the

dominators that were pruned because of this target. To avoid directly pruning targets for both

efficiency and coverage, we topologically sort the targets. The order ensures that the target Td

is always behind the target To in the target queue, where Td is a dominator of To. This way,

test generation for Td will only be done if it is not covered by previously generated tests for To.

For targets in a dominator chain, the deep targets in CFG will always be in front of the shallow

ones. For examples, if the original target queue is <T0, T1, T2>, it would become <T1, T2,

T0> after target pruning.

Listing 4.2. Example 2
module top (c l ock , r e s e t , in , out) ;

i f (r e s e t == 1 ' b1) begin

a <= 0 ; b <= 0 ; c <= 0 ;

end

e l s e case (input)

2 ' b00 :

i f (a | b) $d i sp lay (” Target T1”) ;

e l s e c <= 0 ;

2 ' b10 , 2 ' b01 : begin

a <= 1 ; c <= 1 ;

end

2 ' b11 : begin

$d i sp lay (” Target T0”) ;

a <= 0 ;

i f (c) $d i sp lay (” Target T2”) ;

end

endcase

Dynamic target pruning also takes advantage of the order of targets to fully utilize

previously explored paths. When the explored paths of a target can cover the other targets, the

latter can be pruned. However, it is unknown which targets can be pruned in the beginning.

74

reset

inputa <= 0
b <= 0
c <= 0

a <= 0
a | b

c

reset

inputa <= 0
b <= 0
c <= 0

a <= 0
a | b

c

reset

inputa <= 0
b <= 0
c <= 0

a <= 0
a | b

c

a <= 1
c <= 1c <= 0

T2 NOP

T1

BB1−2

BB5−2

BB7−2

a <= 1
c <= 1c <= 0

T2 NOP

T1

BB1−3

BB5−3

BB7−3

a <= 1
c <= 1c <= 0

T2 NOP

T1

BB1−1

BB5−1

BB7−1BB6−1

BB6−2

BB6−3

BB3−3

BB3−2

BB3−1BB2−1

BB2−2

BB2−3

BB4−1

BB4−2

BB4−3

P2 P1

Figure 4-6. Two simulation paths for the design in Listing 4.2 (unrolled for three cycles).

Therefore, we propose a round-robin scheduling in selecting targets. Instead of trying to solve

one target until timeout in one round, we split the iteration limit into multiple rounds. If a

target cannot be activated in one round, we put it to the end of the target queue. There are

two advantages of this scheduling. First, the pruned target may be covered while generating

tests for other targets. Second, target clustering may find a better initial path for this target in

the following rounds, as introduced in next section.

4.3.2 Target Clustering

Our approach learns target clustering dynamically, and utilizes the clustering to achieve

the most profitable initial path for concolic testing. There are mainly two advantages in

75

selecting a profitable initial path. The first is to improve test generation efficiency. When

the initial path is already close to the target, fewer concolic iterations are needed to activate

the target compared to initial paths that are far away. The second advantage is to improve

coverage. Although coverage is mainly controlled by how an alternative branch is selected, a

better initial path means fewer concolic iterations, reducing the probability of getting lost in a

large number of misleading alternative branches.

Since current designs separate different functionalities into independent modules, one

random simulation path may be far away from our desired target (e.g., if it involves interaction

of multiple modules). On the other hand, many targets from the same module or the same

finite state machine may share a common path. For these targets, search paths for one target

may be close to the other targets. To better utilize the effort of previous explorations, we

propose a dynamic clustering approach to learn the most profitable initial path. For each

target, we keep the simulated path with the smallest distance evaluated based on the CFGs

after edge realignment, called the closest simulated path. We place targets in one cluster if

they share a common closest simulated path. Initially, all targets are in the same cluster with

the closest simulated path being a random path. The simulated path in concolic iteration is

used to split clusters into smaller ones.

We use the example in Figure 4-6 which shows the first two steps of exploring paths for

the target T1 in Listing 4.2. Assume that the design is unrolled for 3 cycles and input is 2′b00

for all clock cycles. Then, the initial path is P1. As BB4 has the smallest distance to T1 and

it is reachable in the second cycle of P1, the alternative branch (bold solid line) is taken and

an input vector is returned by the constraint solver. Assume P2 is the simulated path of the

returned input vector. At the same time, targets are dynamically clustered as follows. T1

and T2 are initially in the same cluster with the closest simulated path being P1. After one

concolic iteration, P2 is found and used to update the cluster. As P2 visited BB4 in the second

clock cycle, it is closer to T2 than P1. Then the cluster and the closest simulated path is

updated for T2. When T2 is selected as the current target, we want to start with its closest

76

simulated path (P2) to avoid overlapping search. This technique effectively eliminates the

overlapping search problem. Target clustering also emphasizes the importance of a good edge

realignment and distance evaluation scheme. With an incorrect distance evaluation, a target

may start from a path that is worse in activating the target, resulting in longer test generation

time or failure to activate the target.

4.4 Experiments

4.4.1 Experimental Setup

To evaluate the effectiveness and efficiency of our approach, we compared the performance

of our proposed approach with state-of-the-art techniques including uniform test generation

(QUEBS) [2] and bounded model checking (EBMC) [4, 100]. The experiments were conducted

in a server machine with Intel Xeon CPU E5-2698 @2.20GHz. Our approaches utilize the Icarus

Verilog Target API [101] for parsing and generation of abstract syntax tree of RTL code. Prior

to applying the framework, the design is first flattened using flattenverilog tool from Design

Player Toolchain [102]. Yices SMT solver is used for constraint solving [103].

4.4.2 Performance Comparison

In this experiment, we compared the performance of our approach to EBMC [4, 100]

and QUEBS [2]. A variety of benchmarks are selected from ITC99 [104], TrustHub [105],

and OpenCores [96] as shown in Table 4-2. We omit or1200 in the names of the benchmarks

or1200_ICache, or1200_DCache and or1200_Exception from OpenCores [96], and omit AES

in the names of AES-T1100 and AES-T2000 from TrustHub [105] for simplicity. All these

benchmarks contain hard-to-activate branch targets, providing a reasonable test generation

complexity. For target selection, we first ran the benchmarks with one million random tests.

Then, we selected 20 rarest branches as our targets. For each Trojan-inserted benchmark

form TrustHub (AES-T1100, AES-T2000), the selected targets contain 5 rare branches

from the Trojan area. There is one rare branch from AES-T2000 that is not included, as it

can only be covered after 2127 clock cycles. The number of unrolled cycles are chosen such

that the hard-to-activate branches can be covered. In practice, a designer can start with a

77

reasonable number of unroll cycles, and increment it in an iterative fashion until all the targets

are covered. The number of unroll cycle problem is the same as the bound determination in

bounded model checking [4]. Therefore, after we decided the number of unrolled cycles, we

set the same number for the bound in EBMC. We set a new target for EBMC each time, and

report the accumulated performance. Since the goal of QUEBS [2] is to cover all branches,

we terminated it once it covered all of our selected targets. For the round-robin scheduling of

selecting targets in our approach, we set the iteration limit to be 20 in each round.

78

Table 4-2. Comparison of target coverage using [2], [3] and our approach on 20 targets.
EBMC [100] QUEBS [2] Our Approach Impro. / EBMC Impro. / QUEBS

Bench cycle lines cvr time mem cvr time mem cvr time mem time mem time mem
b10 30 182 20 4.1s 31MB 20 0.12s 9MB 20 0.02s 9.5MB 205x 3.3x 6x -1.1x
b14 50 698 20 243s 467MB 20 21.6s 34MB 20 1.3s 15MB 187x 31x 17x 2.3x
ICache 50 258 20 6.3s 48MB 20 4371s 1.6GB 20 0.15s 18MB 42x 2.7x 29140x 89x
DCache 10 562 20 20s 138MB 20 1.27s 13MB 20 0.34s 16MB 59x 8.6x 3.7x -1.2x
Exception 15 666 20 6.9s 40MB 20 3.3s 15MB 20 2.2s 23MB 3.1x 1.7x 1.5 -1.5x
usb_phy 20 1039 20 3.1s 26MB 12 8.2s 34MB 20 134s 138MB -50x -5.3x -16x -4.1x
T1100 10 544k 20 2386s 8.1GB - - - 20 55s 1.2GB 43x 6.8x - -
T2000 10 456k † † † - - - 20 74s 1.2GB - - - -
Average∗ - - 20 381s 1264MB 19 734s 284MB 20 33s 327MB 69x 7x 4859x 13.9x
†EBMC produced errors and did not finish this benchmark.
∗During average computation, we omitted the benchmarks that did not finish.

79

The performance comparison is shown in Table 4-2. The second column shows the

number of unrolled cycles for each benchmark and the third column represents the number of

lines of code in each flattened design. For each approach, we report the number of covered

targets (cvr), the test generation time (time) and memory usage (mem). All 20 targets are

covered in three approaches except that QUEBS only covers 12 branch targets in usb_phy.

Although the main idea of QUEBS is to uniformly cover all branches using BFS or DFS, it fails

to cover some branch targets due to the trade-offs made by the authors [2] to balance repeated

search and overall coverage. Compared to our approach, QUEBS performed worst in two of

the benchmarks - b14 and ICache. For ICache, our approach gains 29140 times improvement

in test generation time and 89 times improvement in memory usage. This is because these

two benchmarks are unrolled 50 cycles. If the number of unrolled cycles keeps growing,

QUEBS is expected to face path explosion problem since the total number of branches grows

exponentially with the number of unrolled cycles. The scalability issue of QUEBS becomes

worse with the complexity of designs. For two Trojan-inserted AES designs (T1100 and T2000)

with around 500k lines of code after flattening, QUEBS cannot finish within the time limit

(one week). Compared to EBMC, our approach is both time efficient and memory efficient.

Note that EBMC reported some errors in AES-T2000, hence the comparison does not include

AES-T2000. For the largest benchmark, AES-T1100, our approach can activate 20 targets

in 55 seconds with 1.2GB memory usage, while EBMC takes around 40 minutes to finish and

consumes 8.1GB memory. For larger benchmarks, we will discuss in Section 4.4.3 to explore

the scalability of these two approaches. Overall, our approach provides significant improvement

compared to EBMC in both test generation time (69x on average, up to 205x) and memory

usage (7x on average, up to 31x improvement).

4.4.3 Scalability Comparison

In this experiment, we examined the scalability of our approach and EBMC. In particular,

we compared the memory requirement of our approach to EBMC, since the main challenge

of applying model checking to large benchmarks is the state explosion problem. As QUEBS

80

faces path explosion problem for benchmarks larger than AES, we omitted QUEBS in this

experiment and only compared our approach to EBMC. In other words, QUEBS is less scalable

than EBMC due to path explosion problem in covering branch targets. Note that the memory

requirement is also dependent on the complexity of the design and the branch target. For

example, b14 and or1200_Exception have similar number of lines of code. However, the

memory requirements of EMBC vary significantly as shown in Table 4-2, with 467MB for b14

and 40MB for or1200_Exception. Therefore, to minimize the impact of other factors and focus

on the size of the benchmarks, we used six custom AES benchmarks as shown in Table 4-3.

These benchmarks differ only on the number of rounds, which are indicated in the names. For

example, aes_20 has 20 rounds compared to 10 rounds in a typical 128-bit AES. By changing

the number of rounds, the size of these benchmarks are easily controlled to demonstrate the

scalability. The number of lines of code and the total number of branches are shown in the

third and fourth columns, respectively. In each benchmark, we inserted one Trojan in the same

way as AES-T1100, and created a branch to check if the Trojan is activated. This branch is

selected as the target and it is not covered by millions of random simulations. The number of

unrolled cycles are five cycles more than the number of rounds to ensure that the branches in

all rounds have a chance to be activated.

The experimental results are shown in Table 4-3. As we can see, the average memory

reduction of our approach compared to EBMC is 10 times. For the largest benchmark aes_40

with 1.7 million lines of code after flattening, EBMC needs at least 34GB memory while our

Table 4-3. Comparison of memory requirement using EBMC and our approach on one target.
total Memory Requirements (GB)

Bench cycles lines branches EBMC Our Reduction
aes_15 20 544k 123k 6.4 0.9 7.1x
aes_20 25 668k 164k 10.3 1.3 7.9x
aes_25 30 886k 205k 15.0 1.6 9.4x
aes_30 35 1003k 246k 20.7 2.1 9.9x
aes_35 40 1169k 287k 27.1 2.5 10.8x
aes_40 45 1693k 328k 34.3 3.0 11.4x
Average - 994k 225k 19 1.9 10x

81

400 600 800 1000 1200 1400 1600 1800

Number of lines of code (x 1000 lines)

0

5

10

15

20

25

30

35
M

em
or

y
re

qu
ire

m
en

t
(G

B
)

aes_15

aes_20

aes_25

aes_30

aes_35

aes_40
EBMC
Our Approach

Figure 4-7. The comparison of memory requirements of our approach and EBMC.

approach only requires 3GB. Another observation is that the reduction of memory requirements

grows with the size of the benchmarks. For the smallest benchmark, our memory reduction

is 7.1 times, and it goes up to 11.4 times for the largest benchmark. The trend of memory

requirements can also be viewed from Figure 4-7. The x-axis represents the number of lines of

code after flattening, and the y-axis represents the minimum memory requirement. As we can

see, EBMC has a much steeper slope than our approach due to its state explosion problem. It

is expected that when the size of the benchmarks keep growing, EBMC will give up running

much faster than our approach. In other words, our approach is more scalable compared to

state-of-the-art model checking tools as well as concolic testing approaches in RTL models.

4.4.4 Effect of Target Pruning

Due to target pruning, some targets are covered by the explored paths for the other

targets. The number of pruned targets are shown in Figure 4-8. We also compared the number

of targets that can be pruned by EBMC. If a target is already activated by a test that is

generated by EBMC to cover a previous target, this target is omitted and counted as a pruned

target. Therefore, the number of pruned targets by EBMC is partially affected by the order of

targets. For a fair comparison, we fed the targets to EBMC in the same order as our approach.

82

b10 b14 ICache DCache Exception usb_phy T1100
0

5

10

15

20

#
of

Pr
un

ed
Ta

rg
et

s

EBMC Our Approach

Figure 4-8. The number of targets that are pruned.

As shown in Figure 4-8, both our approach and EBMC pruned over half of the targets for most

of the benchmarks. However, our approach achieves consistently better results compared to

EBMC. In particular, for the small benchmarks, such as b10 and ICache, the number of pruned

targets are similar. On the other hand, the gap of pruned targets is becoming larger when the

benchmarks become larger. There are two primary reasons for the success of our approach.

First, EBMC is used as a directed test generation scheme. The generated test can cover the

branch targets that reside in the same simulation path of the test. As a result, our approach

is highly likely to cover these branch targets as well by our simulation. Second, our approach

explores many paths from the initial path to our final path to activate one specific target.

These paths may come from different parts of the design, and therefore, it is likely to cover

other targets (target pruning) or be close to some future targets (target clustering).

For small benchmarks, the hard-to-activate branches are prone to reside in the same rare

area. Therefore, EBMC performed well in small benchmarks. However, the hard-to-activate

branches in large benchmarks are scattered in different parts of the design. The directed

tests generated by EBMC pruned less targets in this scenario. On the other hand, targets are

possible to be covered by some paths when our approach is searching for solutions for previous

targets. The number of pruned targets reflects the effectiveness of target pruning. It also

demonstrates that the extremely hard-to-activate targets dominate the overall test generation

time.

83

4.4.5 Effect of Edge Realignment

To demonstrate the contribution of an efficient edge realignment in our framework

compared to a naive edge realignment [3], we applied our approach on the example shown

in Listing 4.1 with BB7 as our target. We profiled the number of times each block is chosen

as the best alternative block through all iterations in Table 4-4. Assume that the number

of selections of BB2, BB3, BB4 and BB5 are x2, x3, x4 and x5, respectively. The target is

activated only when x3 + x4− x2− x5 > 10 by statically analyzing the code in Listing 4.1. The

first row shows the selection of [3], where the first four blocks are selected almost randomly,

as expected from the realignment results shown in Figure 4-3(b). With this random selection,

the target is not covered. On the other hand, our approach activated the target in 11 iterations

with BB3 and BB4 being selected by 6 and 5 times, respectively.

4.5 Summary

Test generation is an important step during validation and debugging of hardware designs.

Conventional validation methodology using random and constrained-random tests can lead to

unacceptable functional coverage under tight deadlines. While application of concolic testing

on hardware designs has shown some promising results in improving the overall coverage,

they are not designed for covering specific targets such as uncovered corner cases and rare

functional scenarios. In this chapter, we proposed a scalable test generation framework using

concolic testing to automatically activate targets in RTL models. This chapter made two

important contributions. (1) We proposed a directed test generation framework in activating

a single target utilizing contribution-aware edge realignment and effective path exploration.

(2) We developed two optimization techniques to drastically reduce the overall test generation

effort involving multiple targets: (i) target pruning to remove the targets that can be covered

Table 4-4. The number of iterations that each block is selected as the best alternative block in
exploring paths for Listing 4.1.

Blocks BB2 BB3 BB4 BB5 BB6 Cover
[3] 20 19 18 18 5 No
Our approach 0 6 5 0 0 Yes

84

by the tests generated for other targets, and (ii) target clustering to minimize the overlapping

searches by utilizing learning from previous searches. Experimental results demonstrated that

our approach is significantly faster compared to state-of-the-art test generation techniques.

Compared to QUEBS, our approach provides significant speedup in test generation time (up

to 29140X, 4859X on average). Similarly, compared to EBMC, our approach provides drastic

improvement in test generation time (up to 205X, 69X on average) and an order-of-magnitude

reduction in memory requirement.

85

CHAPTER 5
TEST GENERATION FOR ACTIVATION OF ASSERTIONS

One major challenge in assertion-based validation is to efficiently activate all assertions.

Coverage of all assertions is fundamentally different from code coverage due to the vacuity

problem. For example, in the formula p −→ q, it is vacuously valid if p is always false.

Assertion coverage requires p to be true and q to be false when executing this line, while

coverage coverage does not impose this requirement. In practice, designers need to manually

write directed test patterns to cover many hard-to-activate assertions. As expected, manual

test writing can be time consuming and error prone (requiring numerous trials and errors) -

may not be feasible for large designs. Directed tests are promising in activating assertions since

a significantly smaller number of directed tests can achieve the same coverage goal compared

to random or pseudo-random tests. While existing test generation using model checking is

promising, it cannot generate directed tests for large designs due to state space explosion.

Simulation-based verification can handle large designs but cannot guarantee activating the

assertions due to exponential input space complexity (test patterns). In transaction-level,

Ferro et al. [106] proposed a framework for supervising SystemC TLM simulation of PSL

temporal properties. Combinatorial testing tools are used to generate test set, which contains

all combinations of the values identified by the test engineer. In register-transfer level (RTL),

Pal et al. [107] assumed that assertions are defined over the interface of a module (input and

output) and proposed an approach to bias random test generation for assertion coverage.

In this chapter, I propose a test generation framework to activate SoC security assertions

that does not impose any restriction on assertions variables, and enables test generation for

activating security assertions by converting assertions to equivalent branches and activating

them utilizing concolic testing. While early work of applying concolic testing to activate

functional on RTL models is promising, there are no prior efforts in activating RTL assertions

using concolic testing.

86

Design

(RTL model)

Concolic Testing

Design with

Assertions

Assertion−based Validation

Assertions
Branch

Targets

Tests

Figure 5-1. Our approach converts assertions to branch targets and activates them
non-vacuously.

Our proposed methodology consists of two major steps as shown in Figure 5-1. The first

step converts these assertions to branch statements and embed them into the design. Then,

it utilizes concolic testing to generate a compact test set to efficiently cover (activate) the

target branches (assertions), as illustrated in Chapter 4. While formal methods try to explore

all possible paths at the same time (can lead to state space explosion), concolic testing has the

inherent advantage of scalability since it explores one execution path at a time. Note that the

embedded branch targets are used for test generation purpose only. Once test generation is

completed, these branch targets should be removed from the design (RTL model) and replaced

with the original assertions. This chapter makes two important contributions:

1. We map the problem of activating assertions non-vacuously to the problem of concolic
testing by converting assertions to branch targets (Section 5.2).

2. We propose an efficient test generation method using concolic testing to cover the
generated branch targets. The generated test vectors are guaranteed to activate the
corresponding assertions (Section 5.3.1).

3. To address the path explosion problem in concolic testing, we efficiently select the most
profitable branches to quickly reach the target (Section 5.3.2).

The remainder of the chapter is organized as follows. We present the problem formulation

in Section 5.1. Section 5.2 describes the conversion from assertions to branch targets.

Section 5.3 presents our test generation framework using concolic testing to activate the

branch targets (assertions). Section 5.4 presents experimental results. Finally, Section 5.5

concludes the chapter.

87

5.1 Problem Formulation

In this chapter, activation of assertions refers to finding counter-examples that

fails the assertions non-vacuously. Vacuity is defined in [108] as follows: if there exist a

sub-formula ψ of a formula ϕ such that ψ can be replaced with arbitrary formula and does not

affect the outcome of model checking, the formula ϕ is vacuous in model M . For example, in

the formula p −→ q, it is vacuously valid if p is always false, since we can replace q with any

sub-formula. We address the vacuity problem by converting the formulas into specific branch

targets and applying concolic testing to activate them.

Listing 5.1 shows the branches that are converted from two types of assertions (immediate

assertions and concurrent assertions) in Arbiter. Note that the conversions from assertions to

branches are the same for these two types, except that an individual concurrently running block

is needed to wrap the branches from concurrent assertions. In Listing 5.1, the first assertion is

an immediate assertion and its corresponding branch is directly embedded in the same place

as the assertion. On the other hand, the second assertion is converted into an always block

that is running concurrently with all the other blocks. To find counter-examples that make

the assertions fail non-vacuously, we need to generate tests to activate branch targets that are

converted from the assertions.

88

Listing 5.1. An example of branch conversion in Arbiter
module arb (c l k , r s t , req1 , req2 , gnt1 , gnt2) ;

input c l k , r s t , req1 , req2 ;

output gnt1 , gnt2 ;

reg s t a t e , gnt1 , gnt2 ;

always @ (posedge c l k or posedge r s t)

i f (r s t)

s t a t e <= 0 ;

e l s e

s t a t e <= gnt1 ;

always @ (∗)

i f (s t a t e) begin

gnt1 = req1 & ~ req2 ;

gnt2 = req2 ;

// A s s e r t 1 : a s s e r t (req2 == gnt2)

i f (req2 != gnt2)

// t a r g e t 1

end

e l s e begin

gnt1 = req1 ;

gnt2 = req2 & ~ req1 ;

end

// A s s e r t 2 : a s s e r t p r o p e r t y (gnt1|−>~gnt2)

always @ (∗)

i f (gnt1)

i f (gnt2)

// t a r g e t 2

endmodule

5.2 Conversion of Assertions to Branches

To generate a test to activate assertion P , we first map the assertion activation problem

to branch coverage problem in concolic testing. Algorithm 3 shows our procedure to convert

89

assertion P to blocks containing a corresponding branch target. Section 5.3 will demonstrate

how to use concolic testing to generate tests to cover branch targets. In this section, we

introduce the details of converting assertions to branches. In this chapter, we consider

assertions with logic operator, implication (|− >) and delay (##). Other operations are not

described due to space limitation, but can be converted to branches in similar ways.

Algorithm 3 Assert to Branch conversion
1: procedure Assert2Branch(assertion P)
2: Construct simplified AST for assertion P
3: Readjust AST with delay information
4: Empty stack S
5: for Post-order traversal readjusted AST do
6: if current node n is an implication then
7: Convert implication to logic operator
8: end if
9: if current node n is a variable then

10: Push n to S
11: end if
12: if current node n is delay then
13: Pop variable a from S
14: Add delay to a
15: Push the modified variable to S
16: end if
17: if current node n is a logic operator then
18: Pop all variables of its children from S
19: Combine the children with its operator
20: Push the result to S
21: end if
22: end for
23: Create branch to test the variable in S
24: return B containing generated blocks
25: end procedure

5.2.1 Simplified Abstract Syntax Tree

To understand the meaning of one assertion, we parse the assertion and build an abstract

syntax tree (AST) for it. Three types of operators are selected as non-terminal for our

simplified AST, i.e., logic operator, implication and delay. Others are treated as terminals. For

example, if the original assertions is assert (a ##7 b |− > ##[4 : 9] c), which means if a is 1

90

in clock 0 and b is 1 in clock 7, then c must be 1 in any clock between clock 11 and clock 16.

The simplified AST for this assertion is shown in Figure 5-2A.

|− >

&& ##[4 : 9]

a ##7 c

b

A Simplified AST for assert
(a ##7 b |− > ##[4 : 9] c).

|− >

##− 9

&&

##[−5 : 0]

##− 7

a

##0

c

b

B Readjusted AST with timing. All
delays are converted to local history
values.

Figure 5-2. AST adjustment with timing. Logic operator, implication and delay are
non-terminal nodes (oval), and others are terminals (rectangle).

5.2.2 Adjust AST with Timing

As delays represent the future events, which cannot be evaluated in the current clock

cycle, we transform delays into retrieving history values. We assume that there exists a global

clock counter (as shown in Listing 5.2), and the design remembers all the “necessary” history

values. We use a[clk_cnt] to represent the history value of a in clock clk_cnt. Figure 5-2B

shows the readjusted AST for Figure 5-2A. There are two things to consider:

1. Adjustment is local to its own children for each non-terminal nodes. For example, the
left sub-tree in Figure 5-2A (a ##7 b) adjusts the delay of 7 to its left child. If we look
at the whole expression, the history values of a should be at least 11 cycles ahead of c.
This localization property make adjustment efficient.

2. For delay range, we adjust the longest delay to the left side and modify the range
appropriately, e.g., ##[4 : 9] in Figure 5-2A rotates the ## − 9 to the left side and
adjusts itself to ##[−5 : 0].

Listing 5.2. Global clock counter
always @(posedge c l o c k) begin

c l k_cn t <= c lk_cnt + 1 ;

end

91

5.2.3 Conversion of AST to Branch Target

After we adjust AST with timing, each node is attached with non-positive delay (implicitly

0 delay). From adjusted AST, we construct branches by post-order traversal of the adjusted

AST with the help of a stack S. Each part of the clause is represented by a unique variable

except for the clauses which can be directly accessed. Stack S contains the visited variables

that have not been combined by other clauses. Algorithm 3 shows how the target branch is

generated (in italic bold text) with the help of stack S. The generated code of Figure 5-2B is

shown in Listing 5.3. As shown in Algorithm 3, RTL code is generated based on the root type

of each sub-tree. We consider the following three root types:

Listing 5.3. The branch converted from Figure 5-2B
always @(posedge c l o c k)

begin

// p1 = ##−7 a && b

p1 [c l k_cn t] = a [c l k_cn t − 7] && b [c l k_cn t] ;

// p2 = ##[−5:0] c

p2 [c l k_cn t] = 0 ;

f o r (i : [c l k_cn t − 5 , c l k_cn t])

p2 [c l k_cn t] = p2 [c l k_cn t] | c [i] ;

// p3 = ##−9 p1 |−> p2

p3 [c l k_cn t] = 1 ;

i f (p1 [c l k_cn t − 9])

i f (! p2 [c l k_cn t])

p3 [c l k_cn t] = 0 ;

// branch t a r g e t

i f (! p3 [c l k_cn t])

$d i sp lay (” A s s e r t i o n f a i l ”) ;

end

Delay: For a single delay, we retrieve the history value of the variable, e.g., when we visit

the node ## − 7 in Figure 5-2B, the node a is in the top of stack S. We pop a from S, and

push back a[clk_cnt - 7]. A delay range represents an OR operation on all the values, e.g.,

92

##[−5 : 0]c means c[−5]|c[−4]|...|c[0]. Listing 5.3 shows the expansion of ##[−5 : 0]c using

for-loop and uses variable p2 to represent this part. When a single delay is applied, we skip

generating a new variable for the clause, e.g., ## − 7a directly utilizes the history value of a

instead of generating a new variable.

Logic Operator: When the root is a logic operator, Algorithm 3 combines all its children

(contains delay information) using the operator. As each child is already represented by a

single variable in the stack S, we just pop all of them from S, and use a new variable to

represent the combined result.

Implication: Implication, A |− > B, contains two parts: A is called the antecedent,

and B is called the consequent. There are two implication operators in SVA, i.e., overlapped

implication (|− >) tests consequent sequence at the clock when its antecedent sequence is

activated, while nonoverlapped implication (| =>) tests the consequent in the next clock

cycle. The latter one can be converted to the previous one by adding one cycle delay to the

consequent sequence. As shown in Listing 5.3, we convert the implication node into variable

p3.

When we finish traversing the readjusted AST, the assertion expression is represented as a

single variable in top of stack S, e.g., p3 in Listing 5.3. A branch target is created by checking

the value of the final variable.

5.2.4 Complexity Analysis

For the ease of representation, we assumed that the design remembers all “necessary”

values in the previous iterations. To achieve memory efficiency, the clk_cnt can be as small

as the largest delay in the whole assertion, e.g., 9 for assert(a ##7 b |− > ##[4 : 9] c),

as a result of introducing new variables. If we look at the code in Listing 5.3, the impact of

a[clk_cnt - 16] is already stored in p1[clk_cnt - 9]. Thus, remembering older values than the

longest delay is a waste of memory. After determining the largest delay, we add a module

operation to Listing 5.2, i.e., clk_cnt<= clk_cnt mod (9 + 1), with an extra one to

remember the current clock. Assume that b is the longest delay and n is the length of the

93

RTL design
with assertions

Instrument

Instrumented
RTL design

Simulate

Activated?

Test

Assert2Branch

CFG with
Branch Targets

Solve

Branch Selection

Yes

Test

No

Co
ns
tra

in
ts

Figure 5-3. Overview of our framework to activate the branches converted from assertions.

assertion. The memory requirement complexity is O(bn) since the memory usage of the tree

structure, the stack S, and required new variables are linear to the length of assertion. The

running time of Algorithm 3 is dominated by post-order traversal of the AST, compared to the

AST construction and adjustment. For each node, the running time is linear to the number of

children. Then, each node contributes twice to the total running time. Since the number of

nodes in AST is linear to the length of the assertion, the running time complexity is O(n).

5.3 Test Generation using Concolic Testing

Once the assertions are converted to branches, we apply concolic testing to generate tests

to cover the generated branch targets. This section is organized as follows. First, we provide

an overview of our test generation framework. Next, we briefly discuss efficient selection of

alternate branches.

5.3.1 Overview

Figure 5-3 shows the overview of our test generation framework. Concolic testing

combines concrete simulation and symbolic execution, as shown in Figure 5-3. The left side

shows the concrete simulation part, and the right side shows the symbolic execution part. To

instruct symbolic execution, the concrete path needs to provide every branch it takes. Instead

94

Figure 5-4. Chaining of related blocks in CFGs to assist alternative branch selection.

of changing simulator to execute symbolically in each branch and assignment, we use existing

tools for simulation, and instrument the RTL design with display statement to show which

branch the simulation has taken. For example, the instrumented first block of Listing 5.1 is

shown in Listing 5.4.

Based on Algorithm 1, the assertions in RTL design are converted into branch targets

in control flow graph (CFG). For every test that is generated by symbolic execution,

simulation will give the concrete execution and report every branch it takes. Based on the

branch information, constraints are constructed together with all the assignments inside

the corresponding blocks. The most important step in concolic testing is to find the best

alternative branch to flip, which will be discussed in the next section. With the selected

alternative branch, new constraints are constructed, and solved by an SMT solver to generate

a new test for simulation. The general idea is to efficiently explore different paths to get closer

to the branch target converted from a specific assertion.

5.3.2 Selection of Alternate Branches in CFG

To help alternative branch selection, we first chain the relative blocks together in control

flow graph. We use the second assertion in Listing 5.1 as an example. The branch target is

controlled by the condition gnt1 & gnt2. Therefore, the target block is chained to the blocks

where either gnt1 or gnt2 might be assigned ‘1’. Similarly, since the blocks in the second CFG

are controlled by the value of state, the blocks are chained to the blocks in the first CFG, as

shown in Figure 5-4.

95

Listing 5.4. Instrumented first block in Arbiter
always @ (posedge c l k or posedge r s t)

i f (r s t) begin

$d i sp lay (” arb2 branch 1 taken ”) ;

s t a t e <= 0 ;

end

e l s e begin

$d i sp lay (” arb2 branch 2 taken ”) ;

s t a t e <= gnt1 ;

end

This chaining process helps alternative branch selection concentrating only on related

branches. When we consider the relevance of one branch with the target, we calculate the

distance from the immediate block following the alternate branch to the target. In each

iteration, the most relevant and reachable branch is selected as the alternative branch to

construct new constraints and generate a new test.

5.4 Experiments

This section is organized as follows. First, we describe our experimental setup and an

example of inserted assertions. Next, we present our test generation results.

5.4.1 Experimental Setup

To evaluate our test generation technique in activating assertions non-vacuously, we

implemented our framework in C++ using Icarus Verilog Target API [109] with Yices [103] as

the constraint solver. As shown in Section 5.3, our framework first converted all assertions to

branches and inserted them into modified designs. Next, it applied concolic testing to generate

test to activate the branches. Finally, we simulated the assertion-inserted instances (before

converting to branches) to validate the correctness of generated test sets. Our framework

is compared with EBMC [4] to show the performance improvement. All the experiments are

performed on a machine with Intel E5-2698 v4 @ 2.20GHz CPU.

96

5.4.2 Benchmarks and Assertions

We selected 12 benchmarks to evaluate our framework. The first three benchmarks,

wb_conmax-T200, AES-T1000 and AES-T1100, are from TrustHub [105]. The remaining

benchmarks are custom benchmarks of AES, named as cb_aes_n, where n is the number of

rounds in AES. We varied the number of rounds to easily control the size of our benchmarks.

To show the inserted assertions, we use AES-T1000 as an example. Listing 5.5 shows

the Trojan_Trigger module from AES-T1000 benchmark [105]. The inserted assertion is

assert property(rst == 0)|− > (trig == 0). In most scenarios, the extremely rare branch

in Listing 5.5 is never executed. As a result, traditional testing approaches using millions of

random tests will not activate this assertion non-vacuously. For other benchmarks, we inserted

assertions in the same way.

Listing 5.5. Trojan_Trigger module in AES-T1000 [105]
module Tro jan_Tr igge r (r s t , s t a t e , t r i g) ;

input r s t ;

input [1 2 7 : 0] s t a t e ;

output t r i g ;

always @ (r s t , s t a t e)

i f (r s t == 1 ’ b1) t r i g <= 1 ’ b0 ;

e l s e begin

i f (s t a t e ==128’ h00112233445566778899aabbccddeef f)

t r i g <= 1 ’ b1 ;

end

endmodule

5.4.3 Test Generation Results

In this experiment, we applied our framework to generate tests for assertions. The

performance comparison is shown in Table 5-1. The number of unrolled cycles is just enough

to activate the assertions. For example, the number of unrolled cycles is n+ 5 for each custom

97

Table 5-1. Performance comparison of our approach with EBMC [4] in activating assertions.
EBMC [4] Our Approach

Benchmark Time (s) MEM (GB) Time (s) Time Imp. MEM (GB) MEM Imp.
wb_conmax 5.42 0.74 6.86 -1.3x 0.13 5.7x
AES-T1000 116 7.99 8.91 13x 0.60 13x
AES-T1100 116 7.99 21.43 5.4x 0.69 12x
cb_aes_01 2.89 0.17 0.90 3.2x 0.06 2.9x
cb_aes_10 58.4 3.42 12.81 4.6x 0.59 5.8x
cb_aes_15 113 6.42 27.9 4.1x 0.88 7.3x
cb_aes_20 178 10.3 63.7 2.8x 1.23 8.4x
cb_aes_25 260 15.0 127 2.1x 1.58 9.5x
cb_aes_30 411 20.7 230 1.8x 1.97 11x
cb_aes_35 478 27.1 372 1.3x 2.36 12x
cb_aes_40 617 34.3 578 1.1x 2.81 12x
Average 214 12.2 132 3.5x 1.17 9.1x

AES benchmark cb_aes_n as it requires n cycles to get results from output. As shown in

Table 5-1, our approach is significantly faster (up to 5.4x, 3.5x on average) than EBMC.

Our approach is also more efficient in memory usage. As shown in Table 5-1, our

approach is up to 13x (9.1x on average) more efficient in memory usage compared to EBMC.

To better visualize the relationship between the memory requirement with respect to the size

of the design, we plot the memory requirement of two approaches for our custom benchmarks

in Figure 5-5. Note that the number of lines for each custom AES benchmark is the total

lines after hierarchy flattening. As we can see, the memory requirement of EBMC grows

exponentially with the lines of code. It is due to the state space explosion problem of model

checking. On the other hand, the memory requirement of our approach grows linearly with

the lines of code since it explores one path at a time, which is linear to the code size. For the

benchmark cb_aes_40 (around 1.3 million lines of code), EBMC requires over 34GB memory,

while our approach only needs 2.8GB. Due to exponential memory requirement, EBMC is

expected to fail for larger and more complex designs, while our approach is expected to be

scalable since memory requirement increases linearly.

98

0 200 400 600 800 1,000 1,200 1,400

0

10

20

30

aes_01
aes_10

aes_05
aes_20

aes_25
aes_30

aes_35

aes_40

Lines of code (×103 lines)

M
em

or
y

re
qu

ire
m

en
t(

GB
) EBMC

Our Approach

Figure 5-5. Memory requirement with respect to the total lines of code in custom benchmarks.

5.5 Summary

Assertions are widely used in validation of hardware designs (RTL models). A major

challenge in assertion-based validation is how to activate all the assertions to ensure that they

are valid. While existing model checking based directed test generation is promising, it cannot

generate tests for large designs due to state space explosion. We presented an automated and

scalable mechanism to generate directed tests using concolic testing to activate assertions

non-vacuously. Using a diverse set of benchmarks, our experimental results demonstrated that

our test generation approach is significantly faster (up to 5.4x, 3.5x on average) compared

to state-of-the-art test generation methods. Most importantly, our approach is scalable since

it has linear memory requirement, while state-of-the-art directed test generation method has

exponential memory requirement.

99

CHAPTER 6
TEST GENERATION FOR VALIDATION OF CACHE COHERENCE PROTOCOLS

Computing systems utilize multi-core processors with complex cache coherence

protocols to meet the increasing need for performance and energy improvement. It is a

major challenge to verify the correctness of a cache coherence protocol since the number of

reachable states grows exponentially with the number of cores. Simulation using random and

constrained-random tests is widely used in industry because of its good scalability. However,

the random nature of test sequences also introduces unacceptable time requirement to cover

all possible state transitions in modern cache coherence protocols with many cores. Clearly,

it is inefficient to use breadth-first search (BFS) on this product FSM to achieve full state or

transition coverage, because a large number of transitions may be unnecessarily repeated, if

they are on the shortest path to many other states. Directed tests, on the other hand, are

promising to achieve high coverage with a drastically small number of tests [110]. Therefore,

they can be applied in addition to random tests to further improve the chances of capturing

potential bugs. However, directed test generation is not practical in this case since the time

and memory requirements can be prohibitive. Qin and Mishra [35] proposed an on-the-fly test

generation technique for cache coherence protocols by analyzing the state space structure

of their corresponding global FSMs. Instead of using structure-independent BFS to obtain

directed tests, they decomposed complex state space into several components with simple

structures. The efficient technique is shown to achieve full state and transition coverage in

simulation based verification for a wide variety of cache coherence protocols. While their

on-the-fly method can reduce the numbers of required tests by half, it can still be impractical

to verify all possible transitions in the presence of large number of cores. In this chapter, we

propose scalable on-the-fly test generation techniques using quotient state space. The proposed

approach guarantees selection of important transitions by utilizing equivalence classes, and

omits only similar transitions. This approach is based on the efficient decomposition technique

of graphical state space description in [35] and Euler tour [111] traversal. Specifically, we

100

propose an efficient quotient space based test generation approach to address the scalability

concerns in existing test generation techniques. Quotient space is one of the symmetry

reduction techniques. Through defining equivalence classes of states and restricting state

space to representatives, the proposed approach enables designers to cover important state

transitions within limited verification budget. Our experimental results demonstrate that our

proposed approaches can efficiently trade-off between transition coverage and validation effort.

The rest of the chapter is organized as follows. Section 6.1 introduces the background

of cache coherence. Section 6.2 briefly introduces the on-the-fly test generation algorithms

from [35]. Section 6.3 proposes scalable on-the-fly test generation using quotient space.

Experimental results are presented in Section 6.4. Finally, Section 6.5 concludes the chapter.

6.1 Background

In modern computer systems, each processing unit usually maintains its local copy of the

main memory, or cache for fast access. One major problem of caching is that when the same

data, memory block, is cached in two or more different places, any modification should be

propagated to all the cached copies. Cache coherence protocols are used to define the correct

behavior of each cache controller.

Other LD

I S

M

Self LD

Self ST
Self ST

Other LD

Eviction

Eviction
Other ST

Other ST

Self LD
ST=Store
LD=Load

Self LD

Figure 6-1. State transitions for a cache block in MSI protocol.

One of the simplest cache coherence protocol is the MSI snoopy protocol [112]. The

behavior of the cache controller in a processing unit is modeled as an FSM (Figure 6-1). The

state of a cache block (line) can be either “Invalid”(I), “Modified”(M), or “Shared”(S). At the

beginning, all cache blocks are in the invalid state. When a load request (Self LD) arrives, the

101

cache controller requests the data from the main memory and switches to shared state. When

the core issues a store request (Self ST), the cache controller first broadcasts an invalidate

request on the bus and then changes to modified state. Such an invalidate request will inform

all the other cache controllers that are in shared or modified states to change to invalid state.

A cache block may also change to invalid state, when it is evicted by another cache block,

which is mapped to the same location in the cache, or when other cores issue store requests

(Other ST).

Although MSI protocol can guarantee the coherence of the cache system, it causes some

unnecessary delay and traffic on the communication channels. Researchers have designed many

cache coherence protocols for different platforms and architectures, such as MSI, MESI, MOSI,

MOESI, MESIF [22], MEUSI [113] and many other variations.

6.2 Test Generation for Validation of Cache Coherence Protocols

As cache coherence protocols are becoming more and more complex, it is getting harder

to verify their implementations. From the validation perspective, it is always desirable to

activate all possible state transitions of the entire multicore cache system. Directed test

generation is promising to provide full coverage of the whole finite state machine. Given the

FSM description of any cache coherence protocol, traditional directed test generation is able

to compose a test suite which can activate all states and transitions using two steps: 1) for

each state, it determines the instruction sequence to reach it by performing a BFS on the

global FSM; 2) for each transition, it creates the test by appending the required instructions

after the instruction sequence to reach the initial state of this transition. However, such a

naive approach has two problems. 1) Transitions close to the initial state are visited many

times. Thus, a large portion of the overall test time is wasted. 2) Since it has to remember

all visited states in BFS, its runtime memory requirement also grows exponentially. Therefore,

traditional breadth-first search is not scalable to large designs due to exponential memory and

time requirements. To overcome this problem, Qin and Mishra [35] proposed an on-the-fly test

generation algorithms to drastically reduce the test generation time and memory requirements.

102

Their approach is based on a global FSM and exploits the highly symmetric and regular

structure of the state space and design a deterministic test generation algorithm. Structures

like hypercubes and cliques can be traversed by visiting each transition exactly once. For

example, after decomposing SI protocol into sub-structures as shown in Figure 6-2, Euler

traversing is applied to each sub-structure as shown in Figure 6-3.

SSS

III

ISS

SIS

SII

ISI

SSI

IIS

A State space of SI protocol with 3
cores.

SIS

IIS

III
SSS

ISS

SSI

SII

ISI

T2

T1

T3

B A decomposition to 3 isomorphic
trees. [35].

Figure 6-2. The decomposition of the state space of SI protocol with 3 cores.

1
load0

No. Core Instr.

SIS

IIS

III

SSS

ISS

SSI

SII

ISI
2

3

4

5

6
7

8
load1

load
load

0

1 evict
2
1
1 evict
2 evict

evict

1
2
3
4
5
6
7
8

Figure 6-3. The tests generated by Euler traversal of the upper right sub-structure of
hypercube.

6.3 Scalable Test Generation using Quotient Space

Since the number of states in coherence protocols grows exponentially as the number of

core increases, it may not be realistic to cover all possible transitions of many-core designs

within given verification budget. A widely used technique to address this limitation is to

perform verification on quotient space. By grouping states into equivalent sets and checking

103

only the representative state per set, the total validation effort is greatly reduced by eliminating

similar transitions. However, since the original state space is prohibitively large to explore,

validation on quotient space still faces two critical challenges: 1) how to maximize the

utilization of each transition by avoiding revisit of the same transition unnecessarily, and 2)

how to make the test simulation/execution time configurable to provide trade-off between

state/transition coverage (confidence) and verification budget (available time).

In this section, we are going to address these challenges by extending on-the-fly test

generation techniques in [35] to support test generation for many-core coherence protocols

using quotient space. For the ease of presentation, we are going to employ several group theory

terminology in the following discussion.

Definition 6.1. Let X be a finite set. A permutation of X is a bijection from X to X. The

set of all permutations of X forms a group under composition of mappings. Any subgroup of

this group is called a permutation group acting on the set X. We denote permutations using

cycle notation. For example, G0 = (0, 2)(1, 3, 4) acting on X0 = {a0, a1, a2, a3, a4} repeatedly

performs the following permutation: a0 → a2, a2 → a0, a1 → a3, a3 → a4, a4 → a1.

Definition 6.2. Given a permutation group G acting on a finite set X, for x ∈ X the set

{π(x) : π ∈ G} is called the orbit of x under G, denote [x]G. G0 = (0, 2)(1, 3, 4) divides X0

into two orbits: {a0, a2} and {a1, a3, a4}.

Given a set of nodes and a permutation group, we define orbit state as follows: the orbit

is in

1. I state, if all nodes in the orbit are in I state.

2. S state, if all nodes in the orbit only contain I or S state, and at least one node is in S
state.

3. E state, if at least one node in the orbit is in E state.

4. O state, if at least one node in the orbit is in O state.

5. M state, if at least one node in the orbit is in M state.

104

Let [s]G be the global orbit state of s, where each element of [s]G is the state of

corresponding orbit. We use α to denote the number of orbits.

Definition 6.3. The quotient protocol PG of protocol P with respect to permutation group

G is a tuple PG = (SG, TG), where SG = {[s]G : s ∈ S} (S is the state space of P),

TG = {([s]G, [t]G) : (s, t) ∈ T} (T is the transition rule of P). We denote the quotient

protocol of certain standard protocol by adding prefix ‘P’ to the protocol name. For instance,

the quotient protocol of MSI is denoted as PMSI.

Theorem 6.1. The state space of quotient protocol PSI with n cores and α orbits is equiva-

lent to the state space of an SI protocol with α cores.

Proof. First, it is easy to see that the global orbit state [s]G contains α elements, which is the

same as the number of elements in the state of SI protocol with α cores. Then, we prove that

every state/transition in SI protocol also exists in PSI protocol.

For any state s in the state space of SI protocol, suppose si1 , si2 , ..., sik = S. To achieve

the corresponding state in PSI protocol, we can randomly choose one node from each orbit i1,

i2, ..., ik and let their states be S. So, every state in SI protocol exists in PSI protocol.

For any transition from state s to s′ in SI, s′ either is s itself, or contains one different

element. Suppose sj = S and s′j = I. To get the corresponding transition in PSI protocol,

we first construct the corresponding state of s by the above method. As the above method

makes at most one node in each orbit to be in S state, suppose node t in orbit j is in S

state. A transition s to s′ is achieved by the evict operation of node t. Similarly, we can get

corresponding transition if sj = I and s′j = S. So, every transition in SI protocol exists in PSI

protocol.

We can follow the similar arguments to prove that every state/transition in PSI protocol

also exists in SI protocol. Therefore, the state space of quotient protocol PSI with n cores and

α orbits is equivalent to the state space of an SI protocol with α cores.

Example 1: Consider PSI protocol with 3 cores and permutation group G = (0, 1)(2).

{II} in PSI represents {III} in SI, {IS} in PSI represents {IIS, ISI, ISS} in SI, {SI} in PSI

105

represents {SII} in SI, and {SS} in PSI represents {SIS, SSI, SSS} in SI. Figure 6-4a shows the

state space of the original SI protocol with 3 cores and Figure 6-4b shows the corresponding

PSI protocol. It is easy to verify that the state space of PSI is equivalent to that of SI protocol

with 2 cores. Every transition in PSI is a Cartesian product of the respective set of states

(excluding invalid transitions) in the SI protocol. For example, II-IS in PSI represents {III-IIS,

III-ISI, III-ISS} in SI protocol. Therefore, if we traverse II-IS in PSI protocol, we can guarantee

that we have covered one of the transitions in {III-IIS, III-ISI, III-ISS} in SI protocol. In

other words, we mark {III-IIS, III-ISI, III-ISS} as similar transitions, and want to cover the

representative of the three transitions within verification budget.

SSS

III

ISS

SIS

SII

ISI

SSI

IIS

A SI protocol with 3 cores.

IS

SS SI

II

B PSI protocol with 3 cores
and permutation group G =
(0, 1)(2).

Figure 6-4. The original state space and its corresponding quotient space of SI with 3 cores.

We can prove similar arguments for PMSI vs MSI protocol. However, it is important to

note that the state space of PMESI, PMOSI and PMOESI are no longer exactly the same

as that of MESI, MOSI and MOESI protocols, respectively. This is because there are more

transitions in the quotient protocol than the original one. For example, in a system with 4

nodes and permutation group G = (0, 1)(2, 3), IIEI to IISS, IISO to IISI and IIIM to IISO will

look like IE to IS, IO to IS, IM to IO, respectively, from the state space of quotient protocols.

We call these transitions as extra transitions. Fortunately, the number of extra transitions is

only O(α), which does not change the asymptotic size of the generated trace.

106

The total number of transitions can be computed by adding the extra transitions to

the original transitions. The results are shown in Figure 6-5. As we can see, the number of

transitions increase exponentially with the number of orbits α.

100

105

1010

1015

1020

1025

4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64

N
um

be
ro

fT
ra

ns
iti

on
s

α (Number of Orbits)

PMSI
PMESI
PMOSI

PMOESI

Figure 6-5. Complexity of quotient protocol with respect to number of orbits α.

The basic idea for verification using quotient protocol is to mark certain states as

equivalent, i.e., acting permutation group G to partition the original nodes into α orbits, then

define state on orbits. Transitions in quotient space are representatives of similar transitions

in equivalence classes. When choosing α to be equal to the number of cores, full coverage is

guaranteed. However, the number of total transitions grows so quickly that for large number

of cores, it is unrealistic to verify all transitions, even using directed tests (one-to-one mapping

between transitions and instruction sequences). Our quotient protocol identifies equivalence

classes and selects the transitions to trade-off between transition coverage and validation time.

For fixed number of cores, choosing larger number of orbits (α) means covering exponentially

more representative transitions in the original protocol space, but it comes at the cost of

increased validation effort. If we can cover all states and transitions in the quotient protocol

with a test suite, the same test suite should be able to cover the most important transitions in

the original protocol. The advantage of using orbits lies in the flexibility of grouping “similar”

states. The way of forming orbits can be changed based on the verification budget and the

107

functionality of the cores. In order to increase the probability of covering the transitions of an

important node, we may construct one orbit containing the important core, and group the rest

randomly.

To illustrate how to perform test generation using quotient protocol, we start our

discussion from SI protocol. For simplicity, we assume that the n nodes are evenly partitioned

into α orbits, i.e., choose G = (0, ..., k − 1)(k, ..., 2k − 1)...((α − 1)k, ..., n − 1) where

k = ⌈n/α⌉. We use R(s) to represent the global orbit state of s, where pth element of R(s) is

Rp(s) =

 S ∃ pk ≤ i < (p+ 1)k, si = S

I otherwise

It is easy to see that R(s) has α elements and the pth element of R(s) is shared if and

only if there exists i such that pk ≤ i < (p + 1)k and si is shared. Conceptually, quotient

protocol PSI reduces the number of states by performing an “or” operation per k nodes in the

original global state. The transitions in PSI are “abstract” transitions in the quotient state

space. They cannot be directly executed or simulated in the actual design. Therefore, we

design Algorithm 4 to generate corresponding feasible transitions for original protocol SI.

Algorithm 4 Test generation for quotient SI protocol with n cores
1: procedure CreateTestsSI(n)
2: for r = 0 to α− 1 do
3: VisitHypercube(α, r)
4: end for
5: end procedure
6: procedure V isitHypercube(m, r)
7: p = (m+ r) mod α
8: q = rand(k)
9: Output “load(pk + q)”

10: for i = 1 to m− 1 do
11: VisitHypercube(i, r)
12: end for
13: Output “evict(pk + q)”
14: end procedure

108

Algorithm 4 introduces randomness in “load” and “evict” operations using rand(k) which

returns i.i.d. random integers uniformly distributed between 0 and k − 1. It is introduced to

provide fairness among equivalent states. If we view the generated transition sequence from

the state space of PSI, the sequence corresponds to a deterministic Euler tour of PSI’s state

space (Theorem 6.2). The randomness introduced by rand(k) does not affect the transition,

because pk + rand(k) actually belongs to the same orbit regardless of the return value of

rand(k). Therefore, the generated sequence covers the entire state space of PSI with no

wasted transitions.

Theorem 6.2. The test sequence constructed by Algorithm 4 does perform an Euler tour of

quotient protocol PSI’s state space.

The space complexity of Algorithm 4 is linear with the number of orbits α, because this

algorithm requires a stack with at most α − 1 levels. The time complexity is linear to the

number of transitions α ∗ 2α. Clearly, it is asymptotically faster than on-the-fly approach [35]

which has time complexity of O(n2n). This is obvious considering that PSI has asymptotically

smaller state space with only 2α states.

Similarly, randomization within orbits can be applied to generate efficient transition

sequence with minimum wasted transitions for PMSI. Although PMESI, PMOSI and PMOESI

are no longer strict MESI, MOSI and MOESI protocols, respectively, our test generation

algorithms for MESI, MOSI and MOESI protocols can also be modified to support the quotient

version by taking care of the extra transitions with additional efforts. As the number of extra

transitions is only O(α), the asymptotic size of the generated traces does not change.

6.4 Experiments

6.4.1 Experimental Setup

To analyze the effectiveness of our proposed test generation framework, we conducted

a number of experiments using Gem5 simulator [114] with Ruby memory subsystem. As we

generate our test vectors to cover cache states and transitions using a certain path, correctness

is verified by checking that the simulation using these vectors traverses the cache states and

109

Table 6-1. Gem5 simulation parameters
parameter value
architecture X86
cpu type timing
clock frequency 1GHz
ruby true
instruction cache size (L1) 4kB
data cache size (L1) 4kB
L1 hit latency 2ns
cache line size 4
memory size 4GB
number of cores 8, 16, 32, 64
debug flag ProtocolTrace

transitions following this exact same path. Ruby memory subsystem implements MESI and

MOESI cache coherence protocols by default, and provides interface to define other protocols.

The detailed parameters for the simulation is shown in Table 6-1.

The overview of our evaluation framework is shown in Figure 6-6. We first use our

test generation algorithms to generate the load/store/evict sequence and expected state

sequence. The output sequence is fed into a program (TestSeqRunner in Figure 6-6)

that we have designed to run inside the Gem5 and Ruby framework. TestSeqRunner is

compiled using gcc with m5threads (to support barriers to synchronize all the threads) to

run in Gem5. For N -core system, we create N + 1 threads: the main thread to read from

the output of our algorithm, and the other N threads (one in each core) to execute the

designated load/store instructions. For example, when the main thread gets an instruction

“0, load” from the test sequence, it will set current to be the pid of thread 1 (run in core 0).

When the first pthread_barrier_wait of main thread is executed, it will wait on the second

pthread_barrier_wait. At the same time, all the other threads will execute the if statement

after their first pthread_barrier_wait. Only thread 1 will execute the load instruction as

current matches its pid. After all the threads finish the if statement, the main thread will

move on and read the next instruction.

110

pthread_barrier_wait(&barrier)

while(1)

pthread_barrier_wait(&barrier)

execute(instr)

if current == mypid

pthread_barrier_wait(&barrier)

while(1)

pthread_barrier_wait(&barrier)

execute(instr)

if current == mypid

case ’load’: a = buffer[0]

case ’store’: buffer[0]++

case ’evict’: a = buffer[K]
main

(any core)

Test Generation

Algorithm

0 load

Core Instr.

... ...

load

load

1
1
2

evict

Test sequence

. . .

current = childpid[core]

Thread 1

(core 0)

Thread N

(core N−1)

switch (instr)

TestSeqRunner

local char a

global char array buffer[N]

void execute(instr)

pthread_barrier_wait(&barrier)

pthread_barrier_wait(&barrier)

while(!eof)

core, instr = Next_Test

Figure 6-6. Evaluation framework of our experiment.

We monitor the cache behaviors with respect to a certain memory location. We first

initialize an array that is larger than our cache. As shown in Figure 6-6, we first define a global

char array buffer , and buffer [0] is our location of interest. The load and store are done by

reading from and writing to buffer [0], respectively. While the evict operation is achieved by

loading a different memory address buffer [4096] which is also mapped to the same location

in the cache as the cache block under test. Since the cache size is 4K bytes, having the

least significant 12 bits being the same ensures that buffer [0] and buffer [4096] map to the

same cache block. The protocol trace of Gem5 contains intermediate states, which are not

considered in our approach. So we remove these states before comparing with the expected

outputs.

111

The remainder of this section is organized as follows. First, we present coverage results

(by choosing the number of orbits (α) to be the number of cores) using on-the-fly test

generation techniques outlined in Section IV. Then, we present the results using quotient space

(by varying α) to trade-off between functional coverage and verification efforts.

6.4.2 Test Generation for Quotient Protocol

Transition coverage in quotient state space is an effective way for test size reduction.

With our quotient space based test generation techniques, verification engineers can pick the

number of orbits α according to their verification budget and protocol complexity without

losing any important transitions.

To compare the transition coverage in the original state space with different number of

orbits (α), we vary α = 4, 8, 12, 16 for MESI protocol with 32 cores. For α = 4, 8, 16, we

simply divided all the cores evenly into α orbits. While for α = 12, we choose 4 orbits with 4

cores, and 8 orbits with 2 cores. The test generation time and coverage in the original space

are shown in Figure 6-7. Note that the coverage and test generation time grow exponentially

with the number of orbits. As shown in Example 5, our approach guarantees the selection of

important transitions and omits similar transitions by utilizing equivalence classes.

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

4 6 8 10 12 14 16

−10

−9

−8

−7

−6

−5

lo
g
1
0
(G

en
er

at
io

n
tim

e
in

se
co

nd
s)

lo
g
1
0
(C

ov
er

ag
e

in
or

ig
in

al
pr

ot
oc

ol
)

α (Number of orbits)

Time
Coverage

Figure 6-7. Test generation time (left y-axis) and coverage (right y-axis) in the original space
(MESI with 32 cores) of PMESI protocol with different number of orbits.

112

100
101
102
103
104
105
106
107
108

4 6 8 10 12 14 16To
ta

lC
os

t
(N

um
be

ro
fT

ra
ns

iti
on

s)

α (Number of Orbits)

Our Approach
BFS

MCjammer
Random

Figure 6-8. Total cost vs. number of orbits (α) for PMESI protocol with 64 cores.

To select the suitable α for a given verification budget, we first gather the total cost to

achieve full coverage in the quotient space with different number of orbits (α). An important

feature of our quotient space protocol is that it can be applied on top of any existing test

generation algorithms. We configure BFS, MCjammer and Random algorithm to run on

the quotient protocols. For the MCjammer and Random algorithm, the mean of multiple

measurements are used to reduce the variation introduced by randomization. The experimental

result is shown in Figure 6-8. As expected, choosing a lower α would require less transitions to

achieve 100% coverage in quotient space, but achieves exponentially smaller coverage in the

original protocol space as shown in Figure 6-7. For the same α, our method requires the least

amount of cost to achieve full coverage in quotient space, and outperforms other approaches

by several orders-of-magnitude. For example, for α = 8, our approach requires about 104

transitions, while BFS requires twice as much, and MCjammer and Random algorithm require

about 105 and 106 transitions, respectively.

In the experiment, we consider MESI with 64 cores. We did not provide results for other

coherence protocols since they lead to similar observations in terms of reduction in validation

effort. Let us assume that the verification budget is 107, i.e., total number of transitions

cannot exceed 107. Based on Figure 6-8, our quotient protocol PMESI chooses α = 15.

113

0%

20%

40%

60%

80%

100%

0 2e+06 4e+06 6e+06 8e+06 1e+07

Tr
an

sit
io

n
co

ve
ra

ge

Cost (Total transitions)
Our approach
BFS

MCjammer
Random

Figure 6-9. Transition coverage vs. time cost for PMESI protocol with 64 cores and 15 orbits.

Now, we would like to compare transition coverage of our test generation approach with

other approaches on quotient protocols given the same α. Figure 6-9 shows the relation

between transition coverage and testing cost on the quotient protocol. As we can see, our test

generation approach achieves full coverage quickly taking advantage of Euler traversals, while

none of the existing approaches can achieve full coverage within 107 transitions budget and 15

orbits. Clearly, our test generation approach on quotient protocol significantly outperforms the

existing test generation approaches by providing higher design quality (coverage) within specific

verification budget.

6.5 Summary

In this chapter, we presented quotient space based scalable test generation algorithms

that can trade-off between functional coverage and verification effort. Quotient space

guarantees selection of important transitions by utilizing equivalence classes, and omits

only similar transitions to provide scalable test generation framework. Our experimental results

demonstrated the effectiveness of our approach on systems with many cores and complex cache

coherence protocols, making it suitable for future multicore architectures.

114

CHAPTER 7
SCALABLE ACTIVATION OF RARE TRIGGERS

Hardware Trojans are malicious modifications incorporated in simple Integrated Circuits

(ICs) or complex System-on-Chip (SoC) designs [24] from the outsourcing and integration of

third-party hardware IPs. These small malicious modifications hide behind complex SoCs with

millions of gates. Hardware Trojans are designed in such a way that they are inactive under

majority of normal usage conditions and be activated in extremely rare conditions. However,

once triggered, they are able to alter the original functionality or leak secret information to

the outside. Therefore, detection of hardware Trojans from untrusted manufacturers is an

important step in security validation.

A Trojan consists of a trigger and a payload. In order to evade conventional testing

such as simulation-based validation using random or constrained-random tests, an intelligent

adversary is likely to design hardware Trojans in a way that they can only be triggered by

extremely rare circuit conditions [12] called trigger conditions. Trigger conditions can be

combinational when the Trojan could be triggered using a combination of data buses satisfying

their rare values, or sequential when the Trojan could be triggered by a number of times a

rare value is satisfied. The payload decides the effect of the Trojan after being triggered. By

altering the value of payload, undesired functional behavior can happen, such as changing

the content of memory locations, or leaking the secret information to the outside. A simple

3-triggered Trojan is shown in Figure 7-1, where signals A, B, C and D are called rare nodes

with their rare values being 0, 1, 0 and 1, respectively. Assume each value is satisfied for less

than 10% of total time, the trigger condition is activated with a probability less than 10−3 if

these three signals are relatively independent. Conventional testing using millions of random

tests is expected to fail in activating trigger condition with more rare-to-activate signals.

To address the fundamental challenge of activating rare triggers, we propose a new test

generation paradigm for Trigger Activation by Repeated Maximal Clique sampling (TARMAC).

We solve the trigger activation problem by mapping it to the problem of covering maximal

115

x1

x2

x3

x4
x5

C

D

B

A

trigger

payload

Figure 7-1. A simple combinational Trojan with 3 triggers.

cliques in a graph. Then, we utilize a satisfiability modulo theories (SMT) solver to construct

a test corresponding to each maximal clique activate extremely rare trigger conditions that can

be covert during traditional validation. The major contributions of this chapter are as follows:

1. To the best of our knowledge, our approach is the first attempt to map trigger activation
problem to maximal clique cover problem. We prove that the test vectors generated by
covering maximal cliques are complete and compact considering trigger coverage and test
length.

2. We propose an efficient test generation algorithm for Trigger Activation by Repeated
MAximal Clique sampling (TARMAC).

3. We outline an algorithm to support concurrent execution of time-consuming computations
to improve the scalability of TARMAC.

4. Experimental results demonstrate that TARMAC outperforms the state-of-the-art test
generation techniques by several orders-of-magnitude for extremely rare-to-activate
trigger conditions in large designs.

The rest of this chapter is organized as follows. In Section 7.1, we motivate the need for

this work by highlighting the drawbacks of N−detect paradigm as well as the limitations of the

state-of-the-art test generation approaches. Section 7.2 describes our proposed test generation

framework. Section 7.3 presents the experimental results. Finally, Section 7.4 concludes this

chapter.

7.1 Motivation

N−detect paradigm has been successful in both logic testing [12, 55] and side-channel

analysis [6]. N−detect paradigm requires the test set to activate each rare signal N times

and is statistically effective for trigger activation given “sufficiently” large N [12]. The

116

probability of activating trigger conditions will significantly decrease when the trigger condition

is composed of very rare signals. It is expected that increasing N can increase the chances of

hitting trigger conditions. However, larger N will significantly deteriorate the test generation

performance and increase the required test length. MERO incorporated N−detect idea [12]

with deterministic flipping method as shown in Algorithm 5, and the quality of generated

test vectors is highly dependent on the quality of the initial random vectors. MERO has the

following two major problems that make it ineffective for activating hard-to-detect trigger

conditions in large designs.

Algorithm 5 MERO [12]
1: procedure MERO(R,N)
2: Tests = {}
3: simulate design with R random vectors
4: sort random vectors by the number of rare signal hits
5: for each vector u in random vectors do
6: for each bit ui in u do
7: Flip ui and simulate the design
8: if N−detect criteria does not improve then
9: reverse flipping

10: end if
11: end for
12: Tests = Tests ∪ u, if u improves N -detect criteria
13: end for
14: end procedure

Scalability Problem: Although MERO claimed to implement N−detect, the generated

test vectors cannot guarantee that each rare signal is activated at least N times. With the

same configuration (R = 100K,N = 1000) for the same ISCAS benchmarks [12] and

(R = 1M,N = 1000) for MIPS processor from [96], we examined the number of times

each rare signal is activated by MERO as shown in Figure 7-2. There are some extremely rare

signals (outliers below the green line) that are almost never activated in most benchmarks,

while some signals (outliers above the green line) are activated more than N times. To ensure

N−detect for all rare signals, the number of initial random vectors should be extremely large

even for small benchmarks. To show how the number of random vectors affects N−detect

117

in MERO, we set N = 1000 and vary the number of random vectors. The percentage of

rare signals that are activated more than 1000 times is shown in Figure 7-3. As expected, the

percentage of N−detect rare signals grows rapidly when the number of random vectors is

small, but very slowly beyond a specific number. It is expected that for large designs, billions

of random vectors are required to satisfy N = 1000. MERO requires one simulation per bit

flipping, the total number of simulations would be in the order of billions or trillions, which

makes this approach impractical for large designs.

Poor Trigger Coverage: MERO uses a vague notion of N being “sufficiently” large

to ensure high trigger coverage. In fact, MERO simply selected N = 1000 in [12] for

all benchmarks. Despite the fact that all rare signals are activated at least 1000 times in

the small benchmark, such as c5315, (see Figure 7-2), the trigger coverage is only 50.6%

(see Section 7.3.3). In other words, N = 1000 is not “sufficiently” large for such a small

benchmark. For larger designs with more trigger points and lower rareness threshold, larger

N is required to reach even a reasonable coverage by MERO, which needs drastically larger

number of initial random vectors as discussed above, making scalability issue even worse.

Given the poor trigger coverage and scalability issue of MERO and N−detect, new

paradigms are need to solve trigger activation problem. In this chapter, we address the

fundamental challenge of trigger activation by mapping it to clique cover problem and finding

the test patterns to cover maximal cliques, as outlined in the next section.

7.1.1 Maximal Clique Problem

Clique decision problem is listed as one of Karp’s 21 NP-complete problems [115].

Maximal clique problem [116] is the problem that given a set of vertices and their connectivity,

find the maximal clique that no other vertex can be added. As proved by Moon and

Moser [117], the number of maximal cliques is O(3n/3) for n vertices in the worst case.

Therefore, the effort of listing all maximal cliques is exponential to the number of vertices.

Many efficient and parallel approaches [118–120] exist in practice. Bron–Kerbosch algorithm [118]

is a widely used approach to list all maximal cliques in a graph. It is a recursive procedure that

118

c2670 c5315 c6288 c7552 s13207 s15850 s35932 MIPS
Benchmarks

0

2500

5000

7500

10000

12500

15000

17500
H
it
n
u
m
b
er

o
f
ea
ch

ra
re

si
g
n
a
l

Figure 7-2. The number of times each rare signal is activated by by MERO.

0%

20%

40%

60%

80%

100%

2 4 6 8 10 12 14 16 18 20Pe
rc
en
ta
ge

of
N

de
te
ct

Number of random vectors (x 104)

c2670
c7552
s13207

Figure 7-3. The percentage of rare signals that are activated at least N times by MERO.

keeps track of three disjoint sets R, P and X, representing constructed clique, candidate

vertices and excluded vertices, respectively. The existence of X ensures that maximal cliques

are not repeated. Each recursive call adds one vertex from P to R and reports maximal clique

when P and X are both empty. The worst-case running time matches the largest number

119

Design (netlist)

Satisfiability Graph (SG)

Maximal Satisfiable Cliques

MSC1 MSC2 . . . MSCm

Tests
t1 t2 . . . tm

Figure 7-4. Overview of our proposed (TARMAC) paradigm.

of maximal cliques in [117]. In this chapter, we utilize maximal clique to solve the trigger

activation problem as described in Section 7.2.

7.2 Scalable Activation of Rare Triggers

In this section, we propose a new test generation paradigm (TARMAC) to solve trigger

activation problem by mapping it to maximal clique cover problem, as shown in Figure 7-4.

Our approach first constructs a satisfiability graph based on the design (e.g., gate-level

netlist). Next, it finds maximal satisfiable cliques (MSCs) in the satisfiability graph. Finally,

it utilizes a SAT solver [121] to generate one test for each maximal satisfiable clique. This

section is organized as follows. We first define a few terms that are used in the chapter.

Next, we describe the mapping of trigger activation to clique cover problem and prove that

the generated test set is complete and compact. Finally, we describe three test generation

algorithms to find and cover maximal satisfiable cliques using directed clique enumeration

(Algorithm 2), random sampling and lazy construction of satisfiability graph (Algorithm 3), and

scalable TARMAC with multi-threaded execution (Algorithm 4), respectively.

7.2.1 Definition and Notations

Without any loss of generality, in this chapter, we consider gate-level implementation of

designs. We call the graph level representation of the design a Design Graph (DG), where each

vertex represents a signal and each edge represents the connectivity (via a gate). For each

120

x1

x2

x3

x4
x5

C

D

B

A

trigger

payload

Figure 7-5. A hardware Trojan with a trigger condition constructed by three rare signals.

signal, we compute its logic expression (le) from its corresponding logic cone. For example,

the logical expression of vertex A in Figure 7-5 is A.le = x1 ∨ x4. For sequential circuits, we

assume that design-for-debug architecture (e.g., scan chain) exists and the logic expression can

be formulated using any register values.

For each design, trigger conditions can be constructed from a subset of its signals and

their corresponding rare value rv, which we refer as potential trigger signals (PTS).

PTS could be any subset of signals. In [12], PTS is the set of rare signals that are used to

construct hard-to-activate trigger condition. A trigger signal is activated if it satisfies its rare

value. We define satisfiability graph as follows.

Definition 7.1. A Satisfiability Graph (SG) consists of vertices representing PTS and their

satisfiability connections, SG = {V , E} where V == PTS. If (u.le == u.rv) ∧ (v.le == v.rv)

is satisfiable, then there exists an edge between u and v, i.e., u ∈ E(v) and v ∈ E(u).

Let us consider the example in Figure 7-5 with four PTS (A, B, C, D) and their

corresponding rare values (0, 1, 1, 0). To construct the satisfiability graph for this example, we

need to use their logical expressions described above and determine their connectivity. To find

out if there is an edge between any two vertices, we check if any input (test) pattern exists

that satisfies both rare values. For example, the edge between A and B exists since input

pattern 01000 satisfies the condition (x1 ∨ x4 == 0)∧ (x2 ∧¬x3 == 1). In other words, 01000

can activate both A and B at the same time with their respective rare values. On the other

hand, there is no input pattern that satisfies (¬(x3 ∨ x4) == 1)∧ (¬(x3 ⊕ x4)∨ x5 == 0), i.e.,

there is no edge between C and D. The constructed satisfiability graph is shown in Figure 7-6

121

A(x1 ∨ x4, 0)

B(x2 ∧ ¬x3, 1)
C(¬(x3 ∨ x4), 1)

D(¬(x3 ⊕ x4) ∨ x5, 0)

Figure 7-6. The satisfiability graph with 4 PTS (A,B,C,D) from Figure 7-5, with logic
expressions and rare values in parentheses.

(logic expressions and rare values are shown inside parentheses). It is easy to see that SG is an

undirected graph.

7.2.2 Mapping Trigger Activation to Clique Cover Problem

A fundamental contribution of this chapter is to show that trigger activation problem can

be mapped to clique cover problem. First, we show that any valid trigger condition forms a

clique in satisfiability graph SG.

Lemma 1. For any valid trigger condition with k rare signals {v1, v2, ..., vk}, the vertices

{v1, v2, ..., vk} form a k−clique in the satisfiability graph SG.

Proof. We prove Lemma 1 by contradiction. Assume that there is no edge between vi and

vj. By definition, condition (vi.le == vi.rv) ∧ (vj.le == vj.rv) is not satisfiable. Therefore,

there will be no test that can activate vi and vj together, invalidating the trigger condition.

Since there is an edge between any pair of vertices, {v1, v2, ..., vk} form a k−clique in the

satisfiability graph SG.

Note that it is possible to have a clique in the satisfiability graph that does not represent a

valid trigger condition. For example, consider the clique ABD in Figure 7-6. There is no input

pattern that satisfies the condition (x1∨x4 == 0)∧ (x2∧¬x3 == 1)∧ (¬(x3⊕x4)∨x5 == 0),

although there are edges between any two of the three vertices. In other words, ABD forms a

clique in SG, but it does not represent a valid trigger condition. Clearly, an adversary will not

use it as a Trojan trigger since it cannot be triggered. For the ease of illustration, we define

satisfiable clique in Definition 7.2. The relationship between satisfiable cliques and valid trigger

conditions is shown in Lemma 2 and Lemma 3.

122

Definition 7.2. A satisfiable clique SC is a clique in a satisfiability graph SG, where all the

vertices of SC can be activated by the same input vector.

Lemma 2. Any valid trigger condition can be represented as a satisfiable clique SC in

satisfiability graph SG.

Proof. Lemma 1 proves that any valid trigger condition forms a clique in SG. Validity of

this trigger condition ensures that all vertices can be activated by the same input vector. By

Definition 7.2, this clique is a satisfiable clique.

Lemma 3. Any satisfiable clique SC in satisfiability graph SG represents a valid trigger

condition.

Proof. For any satisfiable clique, all its vertices can be activated by a test vector by

Definition 7.2. Thus, these vertices represent a valid trigger condition.

Finally, we explore the mapping from the set of valid trigger conditions to the set of

satisfiable cliques in Theorem 7.1. It points out a new way to solve trigger activation problem,

i.e., finding test vectors to cover satisfiable cliques in a satisfiability graph.

Theorem 7.1. The mapping between the set of valid trigger conditions and the set of

satisfiable cliques is a bijection.

Proof. As different trigger conditions consist of at least one different rare signal, the

corresponding satisfiable cliques have at least one different vertex. Hence, no two valid trigger

conditions map to the same satisfiable clique, i.e., the mapping from the set of valid trigger

conditions to the set of satisfiable cliques is an injection from Lemma 2. Similarly, we can

prove that the mapping from the set of satisfiable cliques to the set of valid trigger conditions

is also an injection from Lemma 3. Therefore, we have a one-to-one mapping between these

two sets.

7.2.3 Directed Test Generation Scheme

Lemma 4. If one test vector can satisfy a satisfiable clique, all its subgraphs can be satisfied

by the same test vector.

123

Proof. Let R be a subgraph of a satisfiable clique SC. By Definition 7.2, all vertices in SC can

be satisfied by the same test vector t. All vertices of R are inherently satisfiable by t since the

vertices of R is a subset of the vertices of SC.

Lemma 5. A subgraph of a satisfiable clique is also a satisfiable clique.

Proof. For any satisfiable clique SC, its subgraph R is a clique as SC is a clique. By

Lemma 4, R is satisfiable. By definition, R is a satisfiable clique.

Therefore, if we are able to find a test vector that can satisfy a clique, it is not necessary

to generate any more test for all the trigger conditions represented by its subgraphs. Clearly,

the most profitable test vector is the one that can satisfy the largest clique. Similar to cliques

in graph theory, we define a maximal satisfiable clique in Definition 7.3.

Definition 7.3. A maximal satisfiable clique (MSC) is a satisfiable clique to which no more

vertices can be added.

Let {MSC1,MSC2, . . . ,MSCn} represents the complete set of maximal satisfiable

cliques, where n is the total number of maximal satisfiable cliques. For example, {MSC1 =

ABC,MSC2 = AD,MSC3 = BD} represents the complete set of maximal satisfiable cliques

in Figure 7-6. Next, we prove that the set of test vectors that activate all elements in {MSCi}

is optimal in activating all possible trigger conditions in the design.

Theorem 7.2. Let ti be an input pattern that activates the corresponding maximal satisfiable

clique MSCi. Then, the test set T = {ti} is complete and compact, i.e., it is the shortest test

set that can activate all valid trigger conditions.

Proof. We first prove the completeness of our test set. For any valid trigger condition, it forms

a satisfiable clique SC by Theorem 7.1. By definition of maximal satisfiable cliques, there

exists some maximal satisfiable cliqueMSCi such that SC ⊂ MSCi. As ti ∈ T satisfies

MSCi, it inherently satisfies satisfiable clique SC by Lemma 4. As T can satisfy all elements

in {MSCi}, it can satisfy any valid trigger condition.

124

Now, we prove that the test set is compact. It is easy to see that any two maximal

satisfiable cliques can never be activated by the same test vector, otherwise, they form a larger

satisfiable clique which contradicts the definition of maximal satisfiable clique in Definition 7.3.

As any maximal satisfiable clique represents a valid trigger condition by Lemma 3, a test set

that can activate all these trigger conditions need at least |{MSCi}|(= |T |) test vectors.

Hence, no test set that satisfies all trigger conditions can be shorter than T .

As a result, the problem of test generation for trigger activation can be reduced and

mapped to the problem of finding maximal satisfiable cliques and generate directed test for

them. Based on Theorem 7.2, the generated test vectors are the optimal solution considering

both trigger coverage and test length. For the example in Figure 7-6, we need exactly three

tests - t1 (01000), t2 (01100) and t3 (11010) to activate maximal satisfiability cliques ABC,

AD, and BD, respectively.

7.2.4 Test Generation Algorithms

In this section, we present two test generation algorithms to generate test patterns

by covering maximal satisfiability cliques. Algorithm 6 (Section 7.2.4.1) is guaranteed to

generate the complete test set (covers all the trigger conditions) but is not scalable since it

requires enumeration of potentially exponential number ofMSCs. In addition, it has the

bottleneck of construction of the full satisfiability graph. This algorithm is suitable when only

a small number of rare signals are in a design. To address the scalability issue, Algorithm 7

(Section 7.2.4.2) replaces the enumeration problem by randomly samplingMSCs, and it

performs lazy construction of the satisfiability graph. It is significantly faster and effective, but

cannot guarantee completeness. The reminder of this section describes these algorithms.

7.2.4.1 Test Generation using Clique Enumeration

Based on Theorem 7.2, we propose our first straightforward test generation algorithm

based on clique enumeration. The main steps of this approach are shown in Algorithm 6. The

procedure of TestGeneration first parses and constructs the design graph (DG) from the

gate-level netlist, and computes all the logic expressions. Then, the vertices of satisifiability

125

graph (SG) are initialized from PTS and the edges are constructed after testing satisfiability

of any two vertices (ConstructSatisfiabilityGraph). Next, Bron-Kerbosch algorithm [118]

is applied to find all maximal cliques in SG. For every clique C found in line 6, we need to find

all maximal satisfiable cliques inside C. Finally, test vectors are generated for each maximal

satisfiable clique.

Algorithm 6 Test Generation by Clique Enumeration
1: procedure TestGeneration(circuit netlist CN, potential trigger signals PTS)
2: DG = ConstructDesignGraph (CN)
3: Compute logic expressions for PTS in DG
4: SG = ConstructSatisfiabilityGraph(DG, PTS)
5: Clique set CS = Bron-Kerbosch(SG)
6: for each clique C in CS do
7: for each maximal satisfiable clique in C do
8: Use SMT solver to generate a test vector ti for it
9: end for

10: end for
11: return Tests = {t1, t2, . . . , tn}
12: end procedure

13: procedure ConstructSatisfiabilityGraph(DG, PTS)
14: SG.V = PTS, SG.E(u) = {}
15: for u, v ∈ SG.V do
16: SAT expression S = (u.le == u.rv) ∧ (v.le == v.rv)
17: if satisfiabile(S) then
18: SG.E(v) = SG.E(v) ∪ {u}
19: SG.E(u) = SG.E(u) ∪ {v}
20: end if
21: end for
22: return SG
23: end procedure

Next, we prove that the generated test vectors are complete. For any maximal satisfiable

clique, it must be a subgraph of some maximal clique C enumerated by Bron-Kerbisch [118].

Line 7 ensures that all maximal satisfiable cliques are found when we visit C. By Theorem 7.2,

the generated test vectors are complete.

This approach is effective in small designs, but it lacks the scalability due to the following

three major bottlenecks:

126

1. The computational problem of finding all maximal cliques is NP-hard [122]. Although
Bron–Kerbosch algorithm [118] is practical in finding all maximal cliques, it suffers from
deep recursive function calls for large graphs with the worst running time O(3n/3) [123],
where n is the number of vertices.

2. Finding all maximal satisfiable cliques inside a large clique (e.g., more than 20 vertices)
is difficult. A brute-force approach need to check the satisfiability of all possible
combinations. The running time is exponential to the size of the clique.

3. Algorithm 6 also has the bottleneck of constructing the full satisfiability graph. When
the number of vertices |SG.V| is extremely large, checking if an edge exists between
two vertices requires approximately |SG.V|2/2 calls of the SMT solver, which can be
prohibitive in terms of debug time.

7.2.4.2 Efficient Test Generation using Clique Sampling and Lazy Construction

To address both clique enumeration and satisfiability graph construction issues in

Algorithm 6, we propose an on-the-fly technique (TARMAC) in Algorithm 7 that utilizes

lazy construction of the satisfiability graph and random sampling of maximal satisfiable cliques.

The random sampling makes TARMAC scalable to large designs with the cost of completeness.

For each sampled maximal satisfiable clique, TARMAC generates one test vector for it.

Clique sampling is done by maintaining two sets of variables: cns to keep track of

constraints that are satisfiable (represents vertices that are already found in a satisfiable

clique), and P to represent candidate vertices that may potentially be added to the clique.

Initially, cns is true and P contains all the vertices. We first randomly select and remove a

vertex v from candidate set P . If cns can be augmented by v.le == v.rv, we put it into cns

and remove all vertices in P that are not connected to v (line 16). It is easy to verify that cns

represents a maximal satisfiable clique when P is empty. Parameter VN is used to control how

many times we should sample maximal satisfiable cliques, i.e., the number of generated test

vectors.

The complexity of full satisfiability graph construction is eliminated by lazy construction.

As shown in Algorithm 7, initially every vertex is connected to every other vertices in line

3. Whenever we find two vertices unsatisfiable (line 17), we remove the edge between these

two vertices. Lazy construction benefits large designs by generating test vectors as soon as

127

possible, with the cost of wasted SMT solver calls. If we look at the example in Figure 7-6,

Algorithm 6 disconnects C and D before searching for cliques, while Algorithm 7 constructs

a fully connected graph initially, which may introduce multiple wasted SMT solver calls in

the clique sampling process involving C and D. These two vertices will be disconnected in

line 17-19 only when they are selected as the first two vertices from P in line 13, with the

probability of approximately 2/|SG.V|2. Statistically, the full graph will be constructed after

|SG.V|2/2 sampling.

Algorithm 7 Test Generation using Random Sampling and Lazy Construction (TARMAC)
1: procedure TARMAC (circuit netlist CN , potential trigger signals PTS,

maxVectorNumber VN)
2: DG = ConstructDesignGraph (CN)
3: Compute logic expressions for PTS in DG
4: SG.V = PTS, SG.E(u) = SG.V \ {u}
5: for i = 1 to V N do
6: ti = CliqueSampling(SG)
7: end for
8: return Tests = {t1, t2, . . . , tV N}
9: end procedure

10: procedure CliqueSampling(SG)
11: constraints cns = true, P = SG.V
12: while P is not empty do
13: randomly pick and remove a vertex v from P
14: if satisfiabile(cns ∧ (v.le == v.rv)) then
15: cns = cns ∧ (v.le == v.rv)
16: P = P ∩ SG.E(v)
17: else if cns has one constraint u.le == u.rv then
18: SG.E(v) = SG.E(v)\{u}
19: SG.E(u) = SG.E(u)\{v}
20: end if
21: end while
22: Use SMT solver to solve cns and return the test
23: end procedure

7.2.5 Scalable TRAMAC by Parallelization of Clique Sampling

By inspecting the process of clique sampling, we can see that this process is highly

parallelizable. To further increase the efficiency of Algorithm 7, we add parallelism to clique

128

sampling, i.e., TARMAC p, as shown in Algorithm 8. Instead of generating all VN test vectors

in one thread, TARMAC p evenly splits the task into NT threads, where each thread generates

a batch of VN p = VN /NT test vectors. In order to minimize the overlapped efforts of

covering the same cliques by different threads, we feed a different random seed to each batch

sampling (line 7 and 8). Then, each thread runs batchSampling independently. It sets the

random seed, and calling the modified version of clique sampling to generate VN p test vectors.

After a thread completes its job, the generated test vectors are appended to the list of final

tests. Comparing the clique sampling in Algorithm 8 and Algorithm 7, the only differences are

line 28 and 31, where mutex is used to safely update the edges of shared satisfiability graph

SG.E . Except for this block, the data structures are either copied, e.g. SG.V in line 21, or are

only for reading, e.g., SG.E in line 26. For efficiency consideration, a simple mutex is used to

prevent multiple writing to SG.E , instead of a readers-writer lock. In other words, this simple

mechanism allows multiple threads to read SG.E (line 26) while one thread is writing to it.

The only difference compared to a readers-writer lock is that simple mutex mechanism will

read old version of SG.E in line 26, which makes P to contain one redundant vertex. It is

not critical since the redundant vertex will be removed in a future iteration anyway. When

multi-core infrastructures are provided, TARMAC p can achieve high efficiency improvement

over TARMAC due to the parallelism of constraints solving.

7.2.6 Effectiveness of Random Clique Sampling

In Section 7.2.4, we introduced two algorithms, i.e., clique enumeration (Algorithm 6),

and random clique sampling with lazy construction (TARMAC, Algorithm 7). As expected,

random sampling cannot guarantee to find all maximal satisfiable cliques as clique enumeration.

In this section, we show why random sampling is still effective.

Let us consider two scenarios shown in Figure 7-7, where the circles of C1, C2, C3

represent maximal SAT cliques, and the octagon represents the 8-trigger condition. The only

difference between Figure 7-7(a) and Figure 7-7(b) is the size of maximal SAT cliques. In

the large clique scenario (Figure 7-7(a)), the average size of maximal SAT cliques is 200,

129

Algorithm 8 Parallelization of TARMAC
1: procedure TARMAC p(circuit netlist CN , potential trigger signals PTS,

maxVectorNumber VN , number of threads NT)
2: DG = ConstructDesignGraph (VN)
3: Compute logic expressions for PTS in DG
4: SG.V = PTS, SG.E(u) = SG.V \ {u}
5: The number of vectors per thread VN p = VN /NT
6: for td = 1 to NT do // NT threads
7: seed = random()
8: Create a new thread to execute batchSampling (SG,VN p, seed)
9: Append the generated tests to Tests

10: end for
11: return Tests = {t1, t2, . . . , tV N}
12: end procedure

13: procedure batchSampling(SG, V Np, seed)
14: random.seed(seed)
15: for i = 1 to VN p do
16: ti = CliqueSampling(SG)
17: end for
18: return batchTests = {t1, t2, . . . , tVN p}
19: end procedure

20: procedure CliqueSampling(SG)
21: constraints cns = true, P = SG.V
22: while P is not empty do
23: randomly pick and remove a vertex v from P
24: if satisfiabile(cns ∧ (v.le == v.rv)) then
25: cns = cns ∧ (v.le == v.rv)
26: P = P ∩ SG.E(v)
27: else if cns has one constraint u.le == u.rv then
28: mutex.lock() // Protect shared graphs
29: SG.E(v) = SG.E(v)\{u}
30: SG.E(u) = SG.E(u)\{v}
31: mutex.unlock()
32: end if
33: end while
34: Use SMT solver to solve cns and return the test
35: end procedure

while the average size is 20 in the small clique scenario (Figure 7-7(b)). In the large clique

scenario, the 8-trigger condition is more likely to be in the overlap areas of many maximal

130

C1 C1

C C2 3C C2 3

(a) Large clique scenario (b) Small clique scenario

Figure 7-7. The relative size of trigger conditions compared to maximal SAT cliques.

satisfiable cliques as shown in Figure 7-7(a). In this case, random sampling (Algorithm 7) can

easily activate the trigger condition by generating a test vector to cover any of the maximal

satisfiable cliques that are a super set of the trigger condition. On the other hand, the size of

the 8-trigger condition is close to the average maximal clique size in the small clique scenario.

As a result, it is less likely to be activated by random sampling since it is covered by a small

number of maximal satisfiable cliques. In the extreme case, e.g., the size of trigger condition is

the same as the size of maximal SAT cliques, we need to enumerate all maximal SAT cliques

as Algorithm 6. In fact, it is the best any test generation approach for this case. In most of

the benchmarks, we observe a relatively large maximal satisfiable cliques compared to trigger

points, as shown in Section 7.3.6.

In summary, our paradigm reduced and mapped the problem of trigger activation to the

problem of covering maximal satisfiable cliques. The choice between clique enumeration and

random sampling is based on the relative size of maximal satisfiable cliques and the trigger

points. When an adversary is allowed to construct any size of trigger condition, e.g., a size

close to the maximal SAT cliques, Algorithm 6 is the optimum way to generate tests. However,

it is not realistic in practice. An adversary tends to select a small number of trigger points

considering area and power constraints in the design and to bypass side-channel analysis. In

this scenario, random sampling (Algorithm 7) further reduces the problem size by selecting

the representative maximal satisfiable cliques. As shown in the above example, each 8-trigger

131

condition could possibly be covered by a large number of maximal satisfiable cliques of average

size 200. If one of them is sampled by our algorithm, the trigger activation problem is solved.

It also points out an interesting direction to improve TARMAC. Instead of randomly sampling

each time, a biased sampling technique could be beneficial to instruct the sampling process

to cover cliques that have less overlap with already covered ones. In order to improve the

performance further, we have modified TARMAC such that multiple threads can perform clique

sampling in parallel. This will enable an efficient and scalable test generation framework for

activating rare triggers.

7.3 Experiments

7.3.1 Experimental Setup

The TARMAC framework is implemented in C++ with Z3 [121] as our SMT solver.

This framework first parses gate-level Verilog files into design graphs (DG). Then, for each

signal in PTS, we utilizes Z3 C++ API to compute its logic expression. For sequential

circuits, all registers are treated as free variables with the assumption of full scan mode.

Next, this framework constructs a satisfiability graph (SG) and continuously samples maximal

satisfiability cliques (MSC) as shown in Algorithm 7. For each sampledMSC, function call

to Z3 is used to produce a test. For multithreading (TARMACp) in Algorithm 8, C++ pthread

library is used to create different threads.

We conducted a wide variety of experiments on a server with Intel Xeon E5-2698 CPU

@2.20GHz to evaluate the performance of TARMAC compared to random test vectors and

N−detect approach (MERO [12]). In this chapter, we used the same benchmarks (ISCAS-85

[30] and ISCAS-89 [56]) from [12] to enable a fair comparison with MERO. We have also

used two large designs (memory controller from TrustHub [105] and MIPS processor from

OpenCores [96], MEM and MIPS for short) to demonstrate the scalability of our approach.

The experimental setup is shown in Figure 7-8. We first ran a number of random simulations

(100K for ISCAS and one million for MEM and MIPS) and computed the probability of each

signal. Rareness threshold is set to 0.1 for ISCAS benchmarks and 0.005 for the other designs.

132

Design

Random simulation

and profile

Rare signals

tests tests

N−detect TARMAC

triggers

DUT

ATPG

Figure 7-8. Experimental setup for evaluation of TARMAC compared to N−detect approach.

For each benchmark, 1000 trigger conditions were randomly sampled and validated using

ATPG. After sampling 1000 valid trigger conditions, each of them was individually integrated

into the original design to construct a design under test (DUT). In other words, there are 1000

DUTs from each benchmark with one trigger condition for evaluation. We applied N−detect

approach (MERO [12]), TARMAC (Algorithm 7) and TARMACp (Algorithm 8) to generate the

test sets with the rare signals as potential trigger signals (PTS). Finally, we applied test sets

to each DUT and collected trigger condition coverage. For all experiments, we fixed N = 1000

for N−detect approaches.

7.3.2 The Effects of Trigger Points

In the first experiment, we wanted to explore the effects of trigger points on the trigger

coverage of MERO and TARMAC. When a trigger condition has less trigger points (e.g., 4),

it has higher probability to be activated by random simulation. One the other hand, a trigger

condition with more rare signals is much harder to activate. For example, the probability of

activating a 16-trigger condition is less than 10−16 when these signals are independent and

rareness threshold is 0.1.

133

We evaluated both MERO and TARMAC on c2670 and MIPS, with various number of

trigger points between 4 and 16. The results of TARMAC and MERO are shown in Figure 7-9.

Each line represents trigger condition coverage with respect to the number of test vectors

applied to DUTs with a fixed number of trigger points. As the results suggest, the performance

of MERO deteriorated sharply with increasing trigger points, while TARMAC maintained high

coverage for both benchmarks. For small number of trigger points (e.g., 4), MERO can achieve

good coverage in c2670. However, its coverage for large number of trigger points (e.g., 16)

is extremely poor with less than 5% coverage. On the other hand, TARMAC can achieve

100% coverage with less than 100 test vectors even for 16-trigger conditions. As 16-trigger

condition is more rare than 4-trigger ones, TARMAC took more test vectors to achieve the

same coverage in MIPS as shown in Figure 7-9B. Therefore, TARMAC is more resilient to the

increasing number of trigger points and good at activating extremely rare-to-activate trigger

conditions. In the remaining experiments, we fix the number of trigger points to be 8 since

it is a common number of trigger points in TrustHub [105] and it allows MERO to achieve a

reasonable trigger condition coverage for comparison.

7.3.3 Performance Evaluation

In this experiment, we compared the trigger condition coverage of TARMAC to random

approach and MERO over all benchmarks. To get a fair comparison of trigger coverage, we

evaluated the trigger coverage with the same number of test vectors. Note that the length

of MERO test vectors cannot be controlled arbitrarily since it depends on the N−detect

criteria and the number of initial random vectors R. Hence, we first ran MERO with (R =

100, 000, N = 1000) for ISCAS benchmarks as suggested in [12] and (R = 100, 000, N =

1000) for two large benchmarks. After MERO finished, we ran TARMAC to generate the same

number of test vectors as MERO for each benchmark. The trigger coverage comparison of

TARMAC with random and MERO test vectors is shown in Table 7-1.

134

Trigger points

4
6

8
10

12
14

16 Nu
mb

er
of
tes
t v
ec
to
rs

0

100

200

300

400

500

T
ri
gg
er

co
ve
ra
ge

(%
)

0

20

40

60

80

100

TARMAC

MERO

A c2670 [30]

Trigger points

4
6

8
10

12
14

16 Nu
mb

er
of
tes
t v
ec
to
rs

0

200

400
600

800
1000

T
ri
gg
er

co
ve
ra
ge

(%
)

0

20

40

60

80

TARMAC

MERO

B MIPS Processor [96]

Figure 7-9. Trigger condition coverage of TARMAC and MERO on c2670 and MIPS with
respect to the number of test vectors and the number of trigger points.

135

Table 7-1. Comparison of TARMAC with random simulation and MERO for trigger activation coverage over 1000 randomly
sampled 8-trigger conditions.
No. Random MERO [12] TARMAC TARMACp(64)
of rare Test Cov. Test Cov. Time Test Cov. Imp./ Imp./ Time Time Imp./

Bench signals Len (%) Len (%) (s) Len (%) Rand MERO (s) (s) MERO
c2670 43 100K 0.3 6820 38.2 1268 6820 100 333x 2.6x 257 4.3 295x
c5315 164 100K 1.1 9232 50.6 4396 9232 98.8 89.8x 1.9x 682 13.3 330x
c6288 169 100K 18.9 5044 76.6 596 5044 95.0 5.0x 1.2x 638 10.0 60x
c7552 278 100K 0 14914 5.6 7871 14914 66.5 ∞ 11.9x 2185 41.6 189x
s13207 604 100K 0 44534 1.9 15047 44534 94.4 ∞ 49.7x 5417 105.3 143x
s15850 649 100K 0 39101 3 17000 39101 88.7 ∞ 29.6x 11337 205.4 83x
s35932 1152 100K 100 4047 100 49616 4047 100 1x 1x 1947 38.9 1275x
MEM 1306 1M 0 28542 0 89747 28542 98.6 ∞ ∞ 15753 330.5 271x
MIPS 906 1M 0 25042 0.2 273807 25042 95.6 ∞ 472x 19458 391.9 699x
average 586 300K 13.4 19697 30.7 51039 19697 93.1 >107x >71x 6408 126.8 402x136

Table 7-2. Comparison of TARMAC with random simulation and MERO for trigger activation
coverage over 1000 randomly sampled 8-trigger conditions.
MERO TARMAC
Test Cov. Time Test ReductionCov. Time Improvement

bench Length (%) (s) Length (%) (s)
c2670 6820 38.2 1268 1 6820x 51.4 0.05 25360x
c5315 9232 50.6 4396 217 42.5x 50.6 19.1 230x
c6288 5044 76.6 596 284 17.8x 76.6 34.8 17x
c7552 14914 5.6 7871 175 85.2x 5.6 31.2 252x
s13207 44534 1.9 15047 5 8907x 2.6 0.8 18809x
s15850 39101 3 17000 13 3008x 3.3 4.3 3953x
MEM 28542 0 89747 1 28542x 1.9 1.1 81588x
MIPS 25042 0.2 273807 1 25042x 0.8 1.8 152115x
average 21653 22.0 51216 87 249x 24.1 11.6 4415x

From Table 7-1, we can see that TARMAC can achieve several orders-of-magnitude

trigger coverage improvement over random test vectors in ISCAS benchmarks. TARMAC

can provide and up to 49 times improvement in trigger coverage over MERO with four times

reduction for generation of the same number of test vectors in the ISCAS benchmarks. For

most benchmarks, TARMAC covered over 90% of the trigger conditions, while random and

MERO test vectors missed most of them. In small benchmarks, such as c2670, c5315 and

c6288, MERO outperformed random test vectors and achieved reasonable trigger condition

coverage. However, in large benchmarks such as c7552, s13207 and s15850, the performance

of MERO is very poor, with less than 6% trigger coverage. TARMAC, on the other hand,

outperformed MERO in all ISCAS benchmarks with 91.9% trigger coverage on average. With

the same number of test vectors, TARMAC can cover the extremely hard-to-activate trigger

conditions that are left after applying both random test vectors and MERO with significantly

less effort.

It is interesting to find that all three approaches did a great job in covering all trigger

conditions in s35932. One of the reasons is that a lot of rare signals in s35932 can be satisfied

together as shown in Section 7.3.6. Another observation is that the quality of MERO is

partially dependent on the quality of random test vectors. For example, with 18.9% and 100%

trigger activation coverage from random test vectors for c6288 and s35932, respectively, test

137

vectors from MERO can cover 76.6% and 100%. However, for benchmarks such as c7552

and s31207, test vectors of MERO can only achieve trigger coverage of 5.6% and 1.9%,

respectively, since random test vectors cannot cover any trigger conditions. The limited

improvement from random test vectors to MERO is due to the simple bit flipping to search for

good vectors in MERO.

For the two large benchmark, MEM and MIPS, the number of rare signals are in the

order of 1000. Since each trigger condition contains 8 rare signals with rareness threshold of

0.005, the probability of trigger conditions is less than 10−18. It is expected that one million

random simulations could not achieve good coverage. The test vectors generated by MERO

also achieved poor coverage, 0% in memory controller, and 0.2% in MIPS. On the other hand,

TARMAC is able to cover majority of the trigger conditions efficiently. For example, TARMAC

covered 95.6% of trigger conditions in MIPS using the same amount of test vectors as MERO,

but finished generation in 6 hours. Note that the average test generation of TARMAC for

one test vector is less than one second. This demonstrates that TARMAC is scalable for large

designs, while MERO is not suitable for large designs.

Overall, TARMAC provides drastic improvement in both trigger coverage (more than 107x

and 71x over random test vectors and MERO, respectively) and test generation time (8x).

7.3.4 Parallelism Evaluation

In this experiment, we run Algorithm 8 with 64 threads in parallel to generate the same

amount of test vectors as MERO. The results are shown in the last two columns of Table 7-1.

Since the overall coverage of TARMAC and TARMACp are similar, the coverage of TARMACp

is omitted. Overall, TARMACp with 64 threads can achieve up to 1275x (402x on average)

improvement over MERO.

To evaluate the utilization of multi-core architectures, we applied Algorithm 8 with

different number of threads in MIPS. The result is shown in Figure 7-10. As we can see, the

utilization of multiple cores is very high. Compared to the single thread scenario, 64 threads

in parallel can achieve 49 times speedup. In other words, the overhead of protecting shared

138

1 2 4 8 16 32 64

0

10000

20000

Number of threads

Ti
m

e
(s

)

Figure 7-10. The time of Algorithm 8 applied in MIPS with different number of threads.

satisfiability graph using mutex in Algorithm 8 is negligible. As we can see, Algorithm 8 can

generate 25042 test vectors for MIPS in approximately 6.5 minutes.

7.3.5 Compactness and Efficiency

To compare the compactness and efficiency of TARMAC with MERO, we terminated

TARMAC when it just surpassed the same trigger coverage as MERO. In this experiment,

we omit the benchmarks s35932 that MERO achieved full coverage, because 100% coverage

can be achieved with much fewer test vectors but test length is not a configurable parameter

in MERO. It would be an unfair comparison if we compare the test length of TARMAC to

the number of s35932 in Table 7-1. The results of the remaining benchmarks are shown

in Table 7-2. Note that one test vector in TARMAC can outperform the trigger coverage

of MERO for c2670, MEM and MIPS. In all the other benchmarks, the difference of

corresponding trigger coverage is minimal.

139

0%
20%
40%
60%
80%
100%

0 40 80 120 160 200
(a) c2670

0 600 1200 1800 2400 3000
(b) c5315

0 600 1200 1800 2400 3000
(c) c6288

0%
20%
40%
60%
80%
100%

0 3000 6000 90001200015000
(d) c7552

0 2000 4000 6000 800010000
(e) s13207

0 2000 4000 6000 800010000
(f) s15850

0%
20%
40%
60%
80%
100%

0 40 80 120 160 200
(g) s35932

0 400 800 1200 1600 2000
(h) MEM

0 400 800 1200 1600 2000
(i) MIPS

Tr
igg

er
co
ve
ra
ge

Number of test vectors

TARMAC MERO RANDOM

Number of test vectors Number of test vectors

Tr
igg

er
co
ve
ra
ge

Number of test vectors Number of test vectors Number of test vectors

Tr
igg

er
co
ve
ra
ge

Number of test vectors Number of test vectors Number of test vectors

Figure 7-11. Trigger coverage with respect to the number of test vectors.

140

Table 7-2 suggests that test vectors generated by TARMAC are several orders-of-magnitude

more compact than MERO. For ISCAS benchmarks, the average reduction of test vectors is

in the order of hundreds to achieve the same coverage. The compactness gap becomes

larger and larger when the size of design grows. For example, while most of the reductions in

small benchmarks (combinational circuits) are within 100 times, the reductions in sequential

benchmarks grows to the order of thousands. In MEM and MIPS, the reduction even goes

beyond 25 thousands.

The improvement in test generation time follows the same trend as test length reduction.

For example, while most of the time improvements in small benchmarks are within the order

of hundreds, the improvements in sequential benchmarks grows to the order of thousands even

ten thousands. Finally, the improvement in MIPS processor even goes beyond 152 thousands.

From the perspective of debug engineer, efficiency of a test generation approach consists

of two aspects. The first one is test generation time. From Table 7-2, we can see that the

improvements of test generation time over MERO are several orders of magnitude. The

other one is test length as it decides how many simulations or emulations are needed, which

dominates debug time. As a result, a compact test set can lead to significant reduction in

overall validation effort. Combining both improvements of test generation and reduction of test

length as shown in Table 7-2, the efficiency of TARMAC is several orders of magnitude better

than MERO.

7.3.6 Trigger Coverage

For better illustration of trigger coverage, we ran all benchmarks long enough and plotted

the trigger coverage with respect to the number of test vectors in Figure 7-11. The x-axis

represents the number of tests applied to DUTs, and the y-axis represents the percentage

of activated trigger conditions. The efficiency in trigger coverage is the gradient of trigger

coverage curves. In most of the figures, TARMAC has much steeper slopes than MERO and

the curves of random approach are almost flat. The results demonstrated that TARMAC can

cover more trigger conditions faster (with significantly less test vectors) than MERO for most

141

c2670 c5315 c6288 c7552 s13207 s15850 s35932 MEM MIPS
Benchmarks

100

200

300

400

N
u
m
b
er

o
f
ra
re

si
g
n
a
l
h
it
s

A TARMAC (Our Approach)

c2670 c5315 c6288 c7552 s13207 s15850 s35932 MEM MIPS
Benchmarks

0

50

100

150

200

250

300

N
u
m
b
er

o
f
ra
re

si
g
n
a
l
h
it
s

B MERO [12]

Figure 7-12. The distribution of rare signal hits by the generated test set in all benchmarks.

of the benchmarks. For example, with 200 test vectors in c2670, TARMAC already activated

all the trigger conditions, while MERO only achieved 20% coverage.

These figures reveal that each vector in TARMAC is able to activate more potential

trigger conditions than MERO. As stated in Lemma 4, each test vector can cover all the

subgraphs of a satisfiable clique. Hence, if one test vector can activate more rare signals, it

covers a larger clique and likely to activate more potential trigger conditions. Therefore, we

142

define the quality of a test vector as the number of rare signals that it can cover (activate).

To validate whether the quality of a test vector is the reason for different trigger coverage

efficiency, we counted the number of rare signals satisfying their rare values (rare signal hits,

for short) for each test vector. Figure 7-12 shows the distribution of rare signal hits by each

test vector. The results show that the numbers of rare signal hits are significantly larger in

TARMAC (except for the comparable numbers in c6288 and s35932), which is consistent with

observations in Figure 7-11 considering the coverage of trigger conditions. From Algorithm 7,

the number of rare signal hits is the same as the size of each sampled maximal satisfiable

clique in TARMAC. While in MERO, the number of rare signal hits is the best number of hits

after one round of bit flipping from a random test vector. Clearly, the rare signal hits from

MERO should be statistically always lower than TARMAC as the rare signal hits in TARMAC

are optimal. Moreover, the quality of test vectors in MERO is not guaranteed, since it partially

depends on the initial random vectors. As a result, MERO has low rare signal hits (normally

less than 50), which is significantly smaller than rare signal hits in TARMAC.

7.4 Summary

Trigger activation is a fundamental challenge in detection of hardware Trojans. While

prior efforts using statistical test generation are promising, they are neither scalable for large

designs nor suitable for activating extremely rare trigger conditions in stealthy Trojans. In

this chapter, we introduced a new paradigm to solve trigger activation problem. This chapter

made the following important contributions. 1) Our approach is the first attempt in mapping

the problem of test generation for trigger activation to the problem of covering maximal

satisfiability cliques. 2) We proved that valid trigger conditions and satisfiability cliques are

one-to-one mapping. We also proved that the test vectors generated by our paradigm are both

complete and compact. 3) We presented efficient test generation algorithms to repeatedly

sample maximal satisfiability cliques and generate a test vector for each of them. We explored

the effectiveness of random sampling, lazy construction as well as multi-threading to improve

the test generation efficiency. Our experimental results demonstrated that our approach is both

143

scalable and effective in generating efficient test vectors for a wide variety of trigger conditions.

Our approach outperforms the state-of-the-art techniques by several orders-of-magnitude in

terms of trigger coverage, test length as well as test generation time. Our test generation

algorithms can be utilized for activating extremely rare trigger conditions to fulfill diverse

requirements such as improvement of functional (trigger) coverage as well as side-channel

sensitivity.

144

CHAPTER 8
TROJAN DETECTION USING CURRENT-BASED SIDE-CHANNEL ANALYSIS

Detection of hardware Trojans is vital to ensure the security and trustworthiness of

System-on-Chip (SoC) designs. Side-channel analysis is effective for Trojan detection by

analyzing various side-channel signatures such as power, current and delay. In this chapter,

we target the dynamic current as our side-channel signature and propose an efficient test

generation technique to maximize the side-channel sensitivity for Trojan detection. Note

that this approach can also be extended to the other side-channel parameters with suitable

modifications of the evaluation criterion. While early work on current-aware test generation

has proposed several promising ideas, there are two major challenges in applying it on large

designs: (i) the test generation time grows exponentially with the design complexity, and (ii)

it is infeasible to detect Trojans since the side-channel sensitivity is marginal compared to the

noise and process variations.

Our proposed work, referred to as MaxSense, addresses both challenges by effectively

exploiting the affinity between the inputs and rare (suspicious) nodes. We formalize the test

generation problem as a searching problem and solve the optimization using genetic algorithm.

The basic idea is to quickly find profitable ordered pairs of test patterns, T = {ti} =

{<ui,vi>}, that can maximize switching in the suspicious regions while minimize switching in

the rest of the circuit. There are two objectives of MaxSense shown in Figure 8-1. We refer ti

as an ordered pair of test patterns with ui as its first pattern and vi as its second pattern. The

first pattern in the ordered pair (ui) tries to maximize the activation of the suspicious regions.

The second pattern (vi) needs to simultaneously satisfy two objectives. The first objective is

to maximize switching in the suspicious regions, similar to Chapter 7. The second objective

is to minimize the switching in the rest of the design, such that the side-channel sensitivity

is maximized. As demonstrated in Section 8.1.3, the selections of both ui and vi are equally

important to enable efficient test generation for effective side-channel analysis. Specifically, this

chapter makes the following major contributions:

145

...
...

..........................
.................... ...
...........
....................................... ...

...
..........................

.................... ...
...........
.......................................

Objective 2:
Minimize activity in the rest of the design

Suspicious
Region n

Test Pattern

Suspicious
Region 1

Objective 1:
Maximize activity
in suspicious regions

1 0

10

1 0

< ui, vi >

Figure 8-1. The two objectives to maximize the sensitivity in current-based side-channel
analysis.

• Exploits the input affinity to identify test patterns that can maximize switching in the
suspicious (target) regions while minimizing switching in the rest of the circuit in order
to significantly improve the side-channel sensitivity.

• Proposes a fast and effective Satisfiability Modulo Theories (SMT) based approach to
increase the activation probability in the suspicious regions.

• Utilizes genetic algorithm to quickly find the profitable test patterns by exploiting affinity
of the inputs to the suspicious regions, thus improving the side-channel sensitivity.

• The significant improvement in sensitivity enabled MaxSense to detect the majority of
Trojans (out of randomly inserted 1000 Trojans), while the state-of-the-art approaches
can detect less than 2% Trojans.

The chapter is organized as follows. Section 8.1 provides problem formulation and

motivates the need for our work. Section 8.2 describes our test generation framework.

Section 8.3 presents experimental results. Finally, Section 8.4 concludes the chapter.

8.1 Problem Formulation and Motivation

8.1.1 Problem Formulation

Our goal is to generate l compact ordered pairs of test patterns {<ui,vi>} (i = 1, 2, ..., l)

that can maximize the dynamic current based side-channel sensitivity. For each pair of the test

patterns <ui,vi>, the current switching in the golden design G (called the original switching)

is measured by applying the first pattern ui followed by the second pattern vi, denoted

switchGui,vi
. The current switching in the Trojan-inserted design GT is defined in the same way,

i.e., switchGT

ui,vi
. The relative switching is computed as |switchG

ui ,vi
− switchGT

ui ,vi
|/switchG

ui ,vi
.

146

The sensitivity of a Trojan T is defined as the maximum of the relative switching over all test

patterns, as shown in Equation 8-1.

sensitivityT = max(i=1,2,...,l)(
|switchG

ui ,vi
− switchGT

ui ,vi
|

switchG
ui ,vi

) (8-1)

A

B

C

D

E

F (0)

G (0)
H

I

J

K

A The netlist of c17 from ISCAS-85 [30].

A

B

C

D

E

F (0)

G (0)
H

J

KI

T

I’

B The netlist of c17 with a Trojan inserted.

Figure 8-2. The example of a Trojan inserted into c17.

8.1.2 An Illustrative Example

To illustrate how to improve the sensitivity in dynamic current based side-channel analysis,

we first use a small benchmark c17 from ISCAS-85 [30] as an example with its netlist shown

in Figure 8-2A. We set rareness threshold to be 0.3, i.e., rare nodes are defined as the signals

whose rare values are satisfied with less than 30% probability in random simulations. For

example, F and G are two rare nodes with rare value 0 in Figure 8-2A.

Assume an attacker uses rare nodes F and G to construct the trigger condition and the

Trojan is shown using dashed lines in Figure 8-2B. For this small design, we enumerate all

possible pairs of test patterns and compute each sensitivity. The best pair of test patterns

147

is <u,v> = <11100,10100> on inputs (<A,B,C,D,E>), with only B switches from ‘1’ to

‘0’. The current switching in the golden design switchGu,v is 4 (switching of signals B, F, G,

and J) and the current switching in the Trojan inserted design switchGt

u,v is 7 (switching of

signals B, F, G, J, T, I’, and K). Thus the sensitivity is 75% in this example. An important

observation is that by flipping only a small number of relevant inputs (B in this example)

while preserving the others, the switching activities in the Trojan area are maximized while

the current switching in the golden design is minimized. In other words, if we can exploit the

affinity between inputs and the rare nodes while creating a pair of test patterns (u followed

by v), it can lead to a significant improvement in sensitivity for Trojan detection. Experimental

results in Section 8.3.4 (Figure 8-8) demonstrates that affinity is useful in practice.

8.1.3 Motivation and Research Challenges

By inspecting the capability of <11100,10100> for c17, we want to divide the task of

searching for effective pairs of test patterns into two sub-problems. (1) Generation of the first

pattern that tries to maximize activation of rare nodes with their respective rare values, e.g.,

11100 in the previous example. As the difference of current switching in designs with/without

Trojans comes from the switching of the inserted circuits, the sensitivity can be improved if

the switching activity is maximized in these suspicious regions. (2) Given the first pattern u

generated in the previous step, searching for the most profitable second pattern v which is

responsible for both maximization of switching in rare nodes and minimization of switching in

non-rare nodes, e.g., 10100 in the previous example.

However, there are three main challenges in searching for effective pairs of test patterns.

1. Randomly selected pairs may not lead to high sensitivity, even if the two patterns are
similar. For example, if we apply <u,v> = <11100,10100> to the previous example, the
switching activities in G and GT are the same, revealing no side-channel footprint.

2. The whole search space is exponentially large (2n, where n is the number of inputs in
the design). So, searching for the whole space is not feasible. Based on affinity heuristic,
the neighbor of u within a small Hamming distance (e.g., less than k) is the optimized
search space. One naive way is to use breadth-first-search (BFS) according to the
Hamming distance. However, the searching complexity is still O(nk).

148

3. There is a tradeoff between introducing switching in the rare nodes and minimizing
switching in the golden design. We need to introduce a reasonably large switching in rare
nodes, since we have no knowledge of the trigger condition. However, for a design with
thousands of rare nodes, introducing switching for all of them can lead to a significant
increase in the switching of the golden design. In that case, even if the Trojan is fully
activated, the sensitivity (tens of the extra switching divided by thousands of the original
switching) can be too small compared to the process and noise margins.

Our approach addresses these challenges by using an SMT-based first pattern generation

to maximize the activation of rare nodes and using genetic algorithm as an approximate and

optimized replacement of BFS to search for the most profitable second patterns. Based on

input affinity, we initialize GA with random test patterns that have fixed small Hamming

distance from the first pattern. By crossover and mutation, the Hamming distance is expected

to grow slowly. After several generations, the majority of the profitable test patterns in the

expected search space are likely to be visited.

A

B

C

D

E

F (0)

G (0)
H

I

J

K

A

B

C

D

E

F (0)

G (0)
H

I

J

K

A

B

C

D

E

F (0)

G (0)
H

J

KI

T

I’

1 1 1 0 0

...

1 1 1 0 0

1 0 1 0 0
...

1 0 1 0 0

Evaluation

(Section 8.2.1)

Generating initial patterns

(Section 8.2.2)

Searching for the best succeeding pattern

(Section 8.3)

Figure 8-3. The overview of our framework MaxSense.

8.2 Generation of Effective Test Patterns

Figure 8-3 shows an overview of our proposed approach (MaxSense). It has three

important steps. The first step generates the first patterns to maximize activation of

rare nodes with their respective rare values (Section 8.2.1). The next step finds the most

profitable second patterns for both maximization of switching in rare nodes and minimization

of switching in non-rare nodes (Section 8.2.2). Finally, we evaluate the quality of the generated

pairs of test patterns (Section 8.3).

149

8.2.1 Generation of the First Patterns

The sensitivity of side-channel analysis is maximized if the ordered pairs of test patterns

are able to maximize activation of rare nodes with their respective rare values, i.e., partially or

fully activate trigger conditions. The basic idea is to increase the activities of rare signals to

increase the probability of activating the unknown trigger conditions.

The test patterns generated by N-detect approach [12] is promising to achieve this goal.

However, efficiency is the main bottleneck of the N-detect approach. The N-detect approach

requires one simulation in each bit flipping of a single initial random test pattern. Therefore,

if the number of initial random test vectors are large and the design is complex, it takes long

time to finish all simulations. What is worse, the N-detect approach cannot run in parallel. It is

due to the fact that the N-detect criterion relies on the overall performance of all test vectors,

and we cannot evaluate the quality of a single test pattern without evaluating all the other

patterns. For example, if a set of test patterns already cover all but one rare signal N times,

a new test pattern that is able to cover the remaining rare signal is better than a test vector

that is able to cover hundreds of rare signals that are already activated by N times. To address

these inherent problems of N−detect approach, we propose an effective and parallelizable test

generation approach utilizing an SMT solver to produce the first patterns.

Before describing the details of our SMT-based approach, we first introduce logic

expressions for signals that will be used in our approach. For each signal, we define its logic

expression as an expression that is composed by controllable signals, such as primary inputs,

flip-flops with a scan chain. For example, the logic expression for signal F is !(A ∧ B) in

Figure 8-2. This logic expression is stored in F.expr and the rare value of F is stored in F.rv.

Algorithm 9 shows our SMT-based approach. The main part of Algorithm 9 contains

M iterations, each of which generates one test pattern by calling an SMT solver. In each

iteration, we first generate a random permutation of all rare signals in RP and initialize an

SMT expression S to be true. Then, we construct an expression ei = (rpi.expr == rpi.rv) for

each rare signal rpi ∈ RP . These expressions from rare signals in RP are added one by one

150

to our SMT expression S. To maintain S to be satisfiable, we skip every rare signal rpi when

S ∧ ei is unsatisfiable. In other words, S contains rare signals that can construct a valid trigger

condition. When we have “enough” (TriggerLimit) satisfiable rare signals in S, we get an

input pattern by solving S using an SMT solver. By choosing RP as a random permutation of

all rare signals in each iteration, Algorithm 9 tries to generate test patterns that can activate

different combinations of rare signals. At the end of Algorithm 9, M test patterns are returned

as the set of first patterns, each of which is able to activate a combination of rare signals.

The performance of Algorithm 9 depends on the total number of test patterns and the

complexity of the design. The number of iterations is controlled by the user-defined parameter

M , which is the size of test patterns. In each iteration, one random permutation of rare

signals RS is performed with time complexity O(|RS|). In the inner loop (Line 8-17), we are

looking for no more than TriggerLimit rare signals that can be satisfied together. Therefore,

the number of iterations of the inner loop is between TriggerLimit and |RS|. In the worst

case, all rare signals are tried and cannot find more than TriggerLimit satisfiable rare signals.

Therefore, the worst-case run time of Algorithm 9 is O(M×|RS|×T (SMT)), where T (SMT)

is the worst time to solve at most TriggerLimit expressions by an SMT solver. The running

time can be reduced with multi-core architectures. It is easy to see that Line 5-18 can be run

in parallel. In other words, if we want to generate M test vectors and we have C cores, each

core can generate M/C test vectors, i.e., C times speedup.

8.2.2 Searching for the Best Succeeding Pattern

The second task is to find the best succeeding pattern vi for each ui (identified in

Section 8.2.1), such that the relative switching is maximized. There are many selection

algorithms in the literature, including genetic algorithm, simulated annealing and machine

learning. While all of them provided promising results, we used genetic algorithm in our

framework primarily due to its effectiveness in exploiting affinity, and delivering profitable

second patterns in a small number of iterations as described in Section 8.3.4.

151

Algorithm 9 First Pattern Generation using SMT Solver
1: procedure SMT (circuit netlist, rare signals RS, the number of test vectors M)
2: initialize first pattern set FP = ∅
3: compute logic expression for each rare signal
4: for k = 1 to M do
5: RP = random_permutation(RS)
6: initialize SMT expression S = 1
7: the total number of satisfiable expression total = 0
8: for each rare signal rpi ∈ RP do
9: new expression ei = (rpi.expr == rpi.rv)

10: if satisfiable(S ∧ ei) then
11: S = S ∧ ei
12: total = total + 1
13: end if
14: if total > TriggerLimit then
15: break
16: end if
17: end for
18: solve S and get input pattern uk
19: FP = FP ∪ {uk}
20: end for
21: return FP
22: end procedure

Genetic algorithm forms the main part of Algorithm 10, which consists of four major

steps: initialization, fitness computation, selection, and crossover and mutation. The fitness

is defined in Equation 8-2, where rare_switchG
u,v represents the current switching of all rare

nodes in G when applying the test pattern u followed by v. A profitable test pattern should

maximize the current switching in rare nodes to increase the probability of activating a Trojan,

and minimize the total switching in the golden design. The best second pattern vi for a given

preceding ui is the one achieving the highest fitness value over all generations (line 11). The

first iteration of GA for c17 is shown in Figure 8-4, assuming 4 individuals in each generation.

fitnessu(v) =
rare_switchG

u,v

switchG
u,v

(8-2)

152

Algorithm 10 Second Pattern Generation using GA
1: procedure TestGeneration(circuit netlist, rare signals RS, first patterns FP = {ui})
2: for each first pattern ui ∈ FP do
3: Initialization of GA with ui
4: For each individual v, compute fitnessui

(v) by simulating the netlist with the pair
of test patterns (ui, v)

5: for gen = 1 to generations do
6: Selection of parents from the genth generation based on fitness values
7: Single point crossover to produce children
8: Single point mutation according to mutation rate
9: Compute fitness for the children ((gen+ 1)th generation)

10: end for
11: Select the best individual over all generations as vi
12: end for
13: return the pairs of test patterns {<ui,vi>}
14: end procedure

1 1 1 0 1

1 1 1 0 0 0 0 1 0 0 1 0 0 0 0 1 1 1 0 0

1 1 1 0 0

0 1 1 0 01 1 0 0 0

1 0 1 0 0

0 1 1 0 0

1 0 1 0 0

1 1 0 0 0

0 0 1 0 0 1 0 0 0 0 1 1 1 0 01 1 1 1 0second generation

first generation (v)

selection

crossover

mutation

crossover point

mutation
point

initial test pattern (u)

initialization

fitness 1/2 1/3 2/40

1 0 1 0 0

Figure 8-4. The first iteration of GA for generating the best second pattern for u = 11100.

8.2.2.1 Initialization

The first population is initialized with random test patterns that are similar to ui. Each

individual in the initial population has a Hamming distance k from ui. During the experiments,

we choose k to be max(0.004|ui|, 1).

153

8.2.2.2 Fitness Computation

For each individual v, the golden design G is simulated with the pair of test patterns

<ui,v>. Then the fitness of v is computed by Equation 8-2. For example, the fitness values

for four candidates are shown in Figure 8-4.

8.2.2.3 Selection

Selection is based on the fitness of each individual. An individual with a greater fitness is

more likely to be selected. The selection shown in Figure 8-4 demonstrates that the individual

with a greater fitness (such as 10100) are more likely to be selected than the one with a

smaller fitness (such as 11101).

8.2.2.4 Crossover and Mutation

A single crossover point is randomly selected and crossover is performed on parents to

produce two children. During mutation, a randomly selected position is mutated with a low

mutation rate. For example, Figure 8-4 shows only 1 mutation for 4 individuals.

Although the Hamming distance to ui is small in all individuals of the initial generation,

crossover and mutation will increase the Hamming distance from generation to generation.

Theoretically, the largest possible Hamming distance between the jth generation and ui is

at most 2j ∗ |k| considering only crossover. In order for all test patterns to be evaluated

with some probability, the total number of generations should be large enough to allow |ui|

Hamming distance. However, we may need only a small number of generations, as the affinity

heuristic suggests. During experiments, we fix the number of generations to be 5. So, the

maximum Hamming distance could be 25 × 0.004|ui| which is around 10%|ui|. By exploring

around ui with a small Hamming distance, we expect to get high quality pairs efficiently. As

demonstrated in Section 8.3.4 (Figure 8-8), the pairs of test patterns with small Hamming

distances are effective in providing a significant improvement in sensitivity.

Since line 3-11 are performing an independent GA searching for each first pattern ui, the

body of the first for-loop can run in parallel similar to Algorithm 9. Therefore, C cores will give

a speedup close to C. Combined with Algorithm 9 to generate first patterns, the whole process

154

can run in parallel. Given unlimited computing resources, we can use each core to generate one

pair and combine all pairs together. This optimistic overall running time consists of compiling

the design, generating one first pattern from Algorithm 9 and its corresponding second pattern

from Algorithm 10.

8.2.3 Selection of TriggerLimit

As introduced in Section 8.1.3, there is a tradeoff between introducing switching in the

rare nodes and minimizing switching in the golden design. We try to address this challenge by

selecting a reasonable TriggerLimit. This section illustrates why it is a challenge to select a

reasonable TriggerLimit - a larger TriggerLimit can lead to increased total switching (and

reduced sensitivity), while a smaller TriggerLimit can lead to reduced probability of Trojan

activation.

TriggerLimit in Algorithm 9 controls how many rare signals should be activated by

each first pattern u. Its second pattern generated by Algorithm 10 tends to introduce as

many switching in the rare nodes activated by u as possible to increase fitness value. First,

we show that if the TriggerLimit is too large, it may lead to sub-optimal patterns with

lower sensitivity. Assume that the inserted Trojan has 8 trigger points and we compare

TriggerLimit = 128 to TriggerLimit = 8. (i) With TriggerLimit = 128, suppose that we

generate a first pattern u′ that is able to activate 128 rare nodes (include all 8 trigger points of

the Trojan), and find a second pattern v′ by Algorithm 10 which introduces current switching

in all of these 128 rare nodes with a total switching of 1000. (ii) With TriggerLimit = 8,

suppose that we get a first pattern u∗ that is able to activate only the 8 trigger points of the

Trojan, and find a second pattern v∗ which introduces current switching in all of these 8 rare

nodes with a total switching of 500. When these two test vectors (<u′,v′> versus <u∗,v∗>)

are applied to the Trojan inserted design, the switching from the Trojan will be same, but

the sensitivity produced by <u∗,v∗> will be greater than <u′,v′> since the original switching

produced by <u∗,v∗> is smaller. Next, we show that if TriggerLimit is too small, it may be

not beneficial for Trojan detection. In the above example, the probability of the 128 rare nodes

155

activated by u′ containing all 8 trigger points of the Trojan is high, while the probability of the

8 rare nodes activated by u∗ being the exact 8 rare triggers points of the Trojan is very low. It

is obvious that if we introduce less switching in the Trojan area, the sensitivity will be smaller.

In summary, with a small TriggerLimit, e.g., 8 in the previous example, the probability

of activating unknown Trojans is extremely low compared to TriggerLimit = 128 with

the same number of test patterns. With a large TriggerLimit, e.g., 128 in the previous

example, Algorithm 10 will try to maximize the fitness value by introducing as many switching

in the rare nodes as possible, and as a result, introducing a large original switching and low

sensitivity in Equation 8-1. In practice, we set TriggerLimit to be a few times of the largest

possible trigger points. TriggerLimit is typically small since the number of trigger points is

small, otherwise, it will introduce noticeable power or area overhead, which is easier for debug

engineer to detect using side-channel analysis. In our experiments, TriggerLimit is set to be

32 for Trojans with 8 trigger points.

8.3 Experiments

To evaluate the effectiveness of our approach, we did a variety of experiments to show the

results on different benchmarks and compared the results to the state-of-the-art approach. In

addition, we also evaluated the efficiency of our approach utilizing multi-core systems. Note

that although we evaluate the effectiveness of the generated test patterns using gate-level

simulation, the test patterns generated by our approach are also applicable on post-silicon

designs (fabricated chips).

8.3.1 Experimental Setup

All algorithms of our framework are implemented in C++ and Algorithm 9 utilizes

Z3 [121] C++ as our SMT solver. Since MERS [6] is the state-of-the-art (closest to

our approach), we used the same benchmarks as MERS - a subset of ISCAS-85 [30] and

ISCAS-89 [56] gate-level benchmark circuits. We have also used two large benchmarks,

memory controller (MC) from TrustHub [105] and MIPS processor from OpenCores [96], to

demonstrate the scalability of our approach. We performed a variety of experiments on a

156

machine with Intel Xeon E5-2698 CPU @2.20GHz. We compared three approaches with the

configurations shown below:

1. MaxSense: MaxSense utilizes SMT (Algorithm 9) to generate the first patterns and
genetic algorithm (Algorithm 10) to generate the second patterns. We fixed the number
of test patterns M = 5, 000 for ISCAS benchmarks, and M = 10, 000 for MC and MIPS
in Algorithm 9. In Algorithm 10, we set the number of individuals to be 200 in each
generation, the number of generations to be 5, and mutation rate to be 0.1.

2. NDT+GA [5]: It utilized N-detect [12] to generate the first patterns and genetic
algorithm (Algorithm 10, the same configuration as GA in MaxSense) to generate the
second patterns. We fixed N=1000 for the N-detect criterion. The initial random test
patterns in MERO consists of 100,000 random patterns for ISCAS benchmarks and one
million random patterns for MC and MIPS. To increase the probability of activity in
Trojan area, we flipped two rounds of each bit for every initial random test pattern.

3. MERS-s [6]: It is the state-of-the-art approach from [6] (MERS with simulation-based
reordering) with the best settings (C = 5.0) [6]. We did not compare with random tests
and MERS (with Hamming distance) since MERS-s outperforms them.

8.3.2 Generation of Hardware Trojans

To statistically evaluate the performance of different approaches, we first generated 1000

valid Trojans for each benchmark. To make these Trojans covert under traditional validation,

we constructed each Trojan with a number of rare signals (trigger points) defined by a rareness

threshold for each benchmark. To get the list of all rare signals, we first ran 1 million random

simulations for each benchmark. We set rareness threshold to be 0.1 for ISCAS benchmarks

and 0.005 for MC and MIPS over all experiments. The number of rare signals is shown in the

second column of Table 8-1. As we can see, the number of rare signals are around 1000 for

large benchmarks. After achieving the rare signal list, different combinations of rare signals are

randomly sampled and fed into ATPG tool to check their validity. Finally, 1000 valid Trojans

are independently inserted into the benchmarks to construct design under tests (DUTs). These

constructed 1000 DUTs for each benchmark are used to evaluate the performance of different

approaches over all the experiments. It is easy to see that the probability of activating these

Trojans using random simulation is at most 10−p for ISCAS benchmarks, and 200−p for large

benchmarks, assuming each Trojan is constructed by p independent rare signals. In all of our

157

experiments, the trigger points p is set to be 8. The possible combinations that an adversary

can exploit to insert Trojans are in the order of
(
1000
p

)
with 1000 rare signals, which is around

1019 for p = 8.

8.3.3 Performance Evaluation

We applied the test patterns generated by the three approaches in Section 8.3.1 to

simulate both the golden design and all DUTs in Section 8.3.2. We computed the side-channel

sensitivity in current switching according to Equation 8-1. For each DUT, we conclude the

existence of a Trojan if the sensitivity is greater than 10% [81].

The results are shown in Table 8-1. For each approach, we report the sensitivity, the

percentage of detected Trojans and the overall running time. The sensitivity is the average

sensitivity over 1000 randomly sampled Trojans, each of which is computed using Equation 8-1

with all the test patterns. The percentage of detected Trojans shows the fraction of Trojans

whose sensitivities are above the threshold 10%. The running time of MERS-s consists of

the generation of MERS test patterns and simulation-based reordering. The running time of

NDT+GA and MaxSense consist of the running time of N-detect [12] and SMT (Algorithm 9),

respectively, and the running time of genetic algorithm (Algorithm 10). The entry marked with

dash represents test generation timeout after one week.

158

Table 8-1. Comparison of MaxSense with NDT+GA [5] and MERS-s [6] over 1000 Trojans.
MERS-s [6] NDT + GA [5] MaxSense

% of Imp. % of Imp. % of Imp.
#rare Sens- Trojans Time Sens- over Trojans Time Sens- over Trojans Time over

Bench signals itivity detected (h) itivity [6] detected (h) itivity [6] detected (h) [6]
c2670 43 5.6% 2.4% 5.1 110% 19.6x 100% 1.1 133% 23.8x 100% 0.3 4.6x
c5315 164 1.5% 0.3% 23.5 52.4% 34.9x 98.3% 4.1 163% 108.7x 99.4% 0.9 26.1x
c7552 278 1.7% 0.2% 40.3 34.5% 20.3x 82% 7.9 51.9% 30.5x 83.5% 1.4 5.1x
s13207 604 1.7% 0% 11.5 79.7% 46.9x 100% 12.9 99% 58.2x 100% 0.7 16.4x
s15850 649 1.0% 0% 16.1 54.3% 54.3x 99.5% 15.1 55.7% 55.7x 97.1% 0.9 17.9x
s35932 1152 1.0% 0.1% 10.7 52.9% 52.9x 66.6% 29.6 95.7% 95.7x 99.8% 1.8 5.9x
MC 1306 - - - - - - - 14.9% ∞ 85.2% 5.7 ∞
MIPS 906 - - - - - - - 35.1% ∞ 55.2% 13.0 ∞
Avg. 1 - 2% 0.5% 17.9 64.0% 38.2x 91.1% 11.8 99.7% 62.1x 96.6% 1 12.7x

1 Since MERS-s [6] and NDT+GA [5] cannot finish in the MC and MIPS, all average results are computed over ISCAS
benchmarks for comparison.

159

8.3.3.1 Sensitivity comparison

The sensitivity is the most important indicator of the quality of the generated test

patterns, since a larger sensitivity can help detect more Trojans directly or by sophisticated

classification approaches. As shown in Table 8-1, the overall sensitivity of MaxSense

outperforms MERS-s by 62 times, and the NDT+GA improves a factor of 38 over MERS-s.

For the ISCAS benchmarks, while the test patterns generated by MERS-s only get less than

2% sensitivity except for the smallest one c2670, NDT+GA and MaxSense improve the

sensitivity to 64% and 99.7% on average, respectively. For the two large benchmarks, MERS-s

and NDT+GA cannot finish within one week time limit due to the long running time of

N-detect approach in these two approaches and also reordering in MERS-s. On the other hand,

MaxSense is able to provide 14.9% and 35.1% sensitivity in MC and MIPS, respectively, with a

few hours of test generation time.

By comparing the performance of NDT+GA and MaxSense, we can observe that

SMT-based approach achieves 63% higher sensitivity compared to N-detect based approach.

It shows that the first patterns generated by SMT is better than N-detect in activating rare

nodes. While N-detect approach increases the activation of rare nodes by flipping bits from

random test patterns, SMT-based approach directly controls which parts of rare nodes to be

activated. Therefore, it is expected that SMT-based approach would outperform N-detect

based approach. Compared to reordering technique in MERS-s, our genetic algorithm generates

the most profitable second patterns for a given first pattern, leading to a significant reduction

in the original switching, which will be explained in Section 8.3.4.

To inspect the effectiveness of one test pattern pair, we compute the average sensitivity of

all DUTs from c7552 and s13207 after applying the first 2,000 test pattern pairs in Figure 8-5.

Both Figure 8-5A and Figure 8-5B reveal the same pattern that the average sensitivity grows

significantly faster by the test patterns from MaxSense than NDT+GA and MERS-s. When

the number of test patterns is below 500, MaxSense is already able to generate more than 30%

and 60% average sensitivity in c7552 and s13207, respectively, while NDT+GA achieves 10%

160

0 500 1000 1500 2000

#test patterns

0%

10%

20%

30%

40%

Se
ns

iti
vi

ty

MaxSense NDT+GA [5] MERS-s [6]

A c7552

0 500 1000 1500 2000

#test patterns

0%

20%

40%

60%

80%

Se
ns

iti
vi

ty

MaxSense NDT+GA [5] MERS-s [6]

B s13207

Figure 8-5. The average sensitivity of two benchmarks with respect to the length of tests.

and 40% in these two benchmarks. The average sensitivity of NDT+GA grows fast in the first

few hundreds of test patterns, but it saturates soon. MERS-s performs the worst, with less

than 2% in both benchmarks after 2,000 test patterns. Therefore, the test patterns generated

by MaxSense is more effective and more compact than NDT+GA and MERS-s. Among these

three approaches, the test patterns generated by MERS-s have the worst quality that achieve

an average sensitivity typically less than 2%, which is far less than process variation and

environment noise.

161

2−102−82−62−42−22022

0

200

400

600

800

1000

N
um

be
r

of
Tr

oj
an

s

c7552

MaxSense NDT+GA [5] MERS-s [6]

2−102−82−62−42−22022

0

200

400

600

800

1000

s13207

2−102−82−62−42−22022

Sensitivity

0

200

400

600

800

1000

N
um

be
r

of
Tr

oj
an

s

s15850

2−102−82−62−42−22022

Sensitivity

0

200

400

600

800

1000

MIPS

Figure 8-6. The distributions of sensitivities by three approaches over 1000 Trojans.

8.3.3.2 Detected Trojans

With the assumption of 10% sensitivity threshold [81], the percentage of detected Trojans

are shown in Table 8-1. Since the sensitivity from MERS-s are mostly less than 2%, MERS-s

missed almost all the Trojans. On the other hand, NDT+GA and MaxSense are able to detect

91.1% and 96.6%, respectively, of Trojans on ISCAS benchmarks.

The cumulative distributions of the sensitivities over 1000 Trojans in c7552, s13207,

s15850 and MIPS are shown in Figure 8-6. The x-axis represents the sensitivity, y-axis

represents the number of Trojans that have sensitivities greater than x, and the vertical line

represents 10% sensitivity. For example, in s13207, almost all the Trojans have sensitivities

greater than the sensitivity threshold in both MaxSense and NDT+GA, while in MERS-s this

number is 0. In other words, if we assume the process variation to be 10%, MaxSense and

162

NDT+GA can detect the majority of these randomly sampled Trojans with high confidence,

while MERS-s missed almost all of them. The exact numbers are reported in Table 8-1.

Overall, our approach can detect majority (over 90% on average) of the Trojans in most of

the benchmarks due to the higher sensitivities provided by our test patterns, whereas the test

patterns generated by MERS-s can only detect 0.5% in ISCAS benchmarks on average.

8.3.3.3 Test generation time

Finally, we compare the test generation time of the three approaches. As shown in

Table 8-1, while MERS-s and NDT+GA requires 17.9 and 11.8 hours on average, respectively,

to generate test patterns for ISCAS benchmarks, MaxSense takes only 1 hour. MaxSense is up

to 26.1x, 12.7x on average, more efficient than MERS-s. For the two large benchmarks, MC

and MIPS, MERS-s cannot finish in one week, while MaxSense can generate high quality test

in several hours. It indicates that the improvement increases when the size of design becomes

larger and larger. Furthermore, MaxSense is able to utilize multi-core platforms to reduce

the running time by several times for large designs (see Section 8.3.5), while MERS-s is not

suitable for even medium-size designs. The long running time of MERS-s is due to the usage

of N-detect approach in generating test patterns, and time-consuming simulations in reordering

test patterns. The reordering in MERS-s takes O(n2) simulations for each pair of test patterns,

where n is the number of test patterns. On the other hand, the number of simulations in our

genetic algorithm is O(n), where n is the number of first test patterns, since we evaluate 5

generations and 200 individuals for each generation. Moreover, the test patterns generated by

MaxSense is more compact than MERS-s as shown in Figure 8-5. Therefore, the linear growth

in the number of simulations in Algorithm 10 leads to significantly faster test generation than

the quadratic growth in the number of simulations in the reordering part of MERS-s.

8.3.4 Evaluation of Original Switching

Because the inserted Trojans are usually tiny compared to the whole design and the

probability of fully activating a Trojan is low, it is critical to minimize the current switching in

the original design such that the sensitivity is high enough to be detected. Figure 8-7 shows

163

c2670 c5315 c7552 s13207 s15850 s35932
Benchmarks

250

500

750

1000

1250

1500

O
ri

gi
na

ls
w

it
ch

in
g

A MERS-s [6]

c2670 c5315 c7552 s13207 s15850 s35932
Benchmarks

0

20

40

60

80

O
ri

gi
na

ls
w

itc
hi

ng

B MaxSense

Figure 8-7. The distribution of the original switching in the golden design.

the box plot of all original switching from test patterns generated by MERS-s and MaxSense

for ISCAS benchmarks. Figure 8-7A shows that the original switching from MERS-s is in the

order of several hundreds, up to 1500. Figure 8-7B shows that MaxSense achieves less than

100 original switching for all benchmarks, with the average original switching around 10 to

20. Compared to MERS-s, MaxSense is able to achieve up to more than 100 times reduction

in the original switching, e.g., the median of original switching in s35932 is around 1250 from

MERS-s and less than 10 from MaxSense. With an 8-trigger Trojan, the number of extra

current switching is typicall less than 16, assuming the Trojan is not fully activated. Therefore,

164

the large original switching becomes the main bottleneck that prevents MERS-s from achieving

a high sensitivity.

The large original switching from MERS-s is due to its reordering technique. As the

reordering of MERS-s restricts each test pattern to find its pair from the generated test

patterns, the minimum original switching that reordering can achieve is bounded by the

optimum pairs inside these test patterns. On the other hand, MaxSense fixes the first pattern

and searches an open space for profitable second patterns to minimize the original switching.

The searching process starts with test patterns that are close to the first pattern, and gradually

increases the distance using genetic algorithm. For each first test pattern u from SMT

(Algorithm 9), the best second pattern v is found by GA with 5 generations. Thus, the

maximum possible Hamming distance between u and v can be as large as 10%|u| (see

Section 8.2.2). It follows the motivation of affinity heuristic introduced in Section 8.1. We

examined the hamming distance between the generated pairs of MaxSense in Figure 8-8. It

is interesting to see that almost all of the distances are 1 in the combinational circuits from

ISCAS-85 [30]. They reveal a similar property as the example in Figure 8-2 that one bit change

can maximize the activity in the Trojan area and minimize the activity in the remaining of

the design. For the ISCAS-89 [56] benchmarks, most of the distances are less than 3 except

for s35932. The results hint that a small number of generations (faster runtime) in genetic

algorithm can provide significant sensitivity improvement.

c2670 c5315 c7552 s13207 s15850 s35932
0

1000

2000

3000

4000

5000

N
um

be
r

of
pa

ir
s

dis=1 dis=2 dis>2

Figure 8-8. Hamming distance of all pairs of test patterns by MaxSense.

165

8.3.5 Concurrency of MaxSense

As discussed in Section 8.2, N-detect approach cannot run in parallel since the N-detect

criterion relies on the overall performance of all test vectors. Although the second step of

NDT+GA can run in parallel, it does not benefit much from multi-core platforms since

N-detect part consumes the majority of test generation time. Similarly, MERS-s cannot utilize

multi-core platforms because of the N-detect criterion. What is worse, the reordering step

of MERS-s cannot run concurrently either. As a result, only MaxSense is evaluated in this

experiment, whose both steps can run in parallel.

To evaluate the performance of MaxSense in a multi-core platform, we tested the

test generation time of MIPS with 1, 2, 4, 8, and 16 threads running in different cores.

Multi-threading scheme is implemented using C++ pthread library. Each thread is responsible

to generate its own pairs of test patterns. For example, to generate 10,000 pairs of test

patterns in a 16-core platform, each thread is responsible to generate 625 pairs of test patterns

using Algorithm 9 with M = 625 followed by Algorithm 10. The overhead of multi-threading

includes compiling the design for individual simulation of each thread and returning the

generated test pattern pairs to the main thread.

1 2 4 8 16
#cores

0.0

2.5

5.0

7.5

10.0

12.5

15.0

T
im

e
(h

ou
r)

Figure 8-9. The test generation time of MaxSense with multi-core platforms for MIPS
processor.

The test generation time of MaxSense is shown in Figure 8-9. It is clear to see that

MaxSense can achieve better performance in multi-core platforms since both its pairs of test

patterns can be generated in parallel. With 2 threads, MaxSense can achieve speedup around

166

1.6x. The final speedup using 16 cores is more than 6 times, leading to less than 2 hours in

generating 10,000 test pattern pairs. It is significantly faster than MERS-s which takes longer

than one week to finish. With enough cores, the best possible performance would be the total

time for compiling the design and generating one pair of test patterns. Since compilation

time is the dominant factor and it is linearly related to the design size, the time complexity of

MaxSense would be linear with respect to the design size with enough cores.

8.4 Summary

Side-channel analysis provides a promising approach for Trojan detection. The state-of-the-art

test generation technique (e.g., MERS-s [6]) is not beneficial for large designs due to its high

runtime complexity. Most importantly, the sensitivity obtained by the existing approaches

is very low compared to environmental noise and process variations, making them useless in

practice. Our proposed approach addresses both limitations by developing an SMT-based

first pattern generation algorithm and a genetic algorithm based second pattern generation

algorithm that can increase the sensitivity drastically while significantly reduce the test

generation time. Our approach breaks down the problem into two sub-problems. The first task

generates effective test patterns to maximize the excitation of rare values. The second task

finds the best matching pair for each test pattern generated in the first task to maximize the

sensitivity. In this chapter, we demonstrated that the combination of the SMT-based approach

with the genetic algorithm can generate significantly better test patterns than MERS-s. Our

proposed test generation approach can improve both side-channel sensitivity (up to 109x,

62x on average) and test generation time (up 26x, 13x on average) compared to MERS-s.

Experimental results demonstrated that our approach can detect the majority of Trojans in the

presence of process variation and noise margins while the state-of-the-art approaches fail.

167

CHAPTER 9
TROJAN DETECTION USING DELAY-BASED SIDE-CHANNEL ANALYSIS

Side-channel analysis is widely used for hardware Trojan detection in integrated circuits by

analyzing various side-channel signatures, such as timing, power and path delay. Compared to

current-based side-channel analysis in Chapter 8, delay-based side-channel analysis is beneficial

as the delay of each output can be measured independently, and an inserted Trojan may affect

multiple observable outputs. Existing delay-based side-channel analysis techniques have two

major bottlenecks: (i) they are not suitable in detecting Trojans since the delay difference

between the golden design and a Trojan inserted design is negligible, and (ii) they are not

effective in creating robust delay signatures due to reliance on random and ATPG based test

patterns.

In this chapter, we propose an automated approach to generate high quality test patterns

for path delay based side-channel analysis to significantly improve the side-channel sensitivity.

The main observation is that the tests generated by logic testing are more likely to activate

trigger conditions, and by utilizing these tests, we can produce two completely different critical

paths for the same register in the golden design and in a Trojan-inserted design. As a result, it

can lead to significantly different path delays, compared to the negligible delay introduced by

few extra gates (from a Trojan) in a fixed critical path. In this chapter, we make the following

three important contributions:

1. We propose an efficient test generation method to maximize observable path delays by
changing critical paths.

2. We design a lightweight and effective logic testing algorithm to generate tests for
delay-based side-channel analysis. The generated tests assume no preliminary information
about critical paths or trigger conditions.

3. We perform a fast and efficient Hamming-distance based reordering of the generated
tests to maximize the delay deviation between the golden design and Trojan inserted
design. We design a distance evaluation method to increase the probability of
constructing a critical path from the trigger to the payload.

168

PI

OF

OFA
1

A

n

T

clk

clk’

combinational

... ...
...logic

A

A’
PO

trigger

IFA

AIF

m

1

A
1

A

n

SF

SF

Figure 9-1. Path delay measurement using shadow registers [15].

The remainder of the chapter is organized as follows. Section 9.1 describes our automated

test generation approach. Section 9.2 presents the experimental results. Finally, Section 9.3

concludes the chapter.

9.1 Test Generation for Path Delay Analysis

The main challenge in Trojan detection using delay-based side-channel analysis is how

to increase the observability. One of the common methods to measure path delay is using

shadow registers [15]. As shown in Figure 9-1, the original registers and shadow registers utilize

different clocks to measure delays by controlling the skew of clk and clk’. The original clk is

used to maintain the correct functionality, while the second clk’ can be tuned to find out the

exact time of a signal flipping by comparing the values in corresponding registers. As a result,

there would be no delay if the signal value does not change between two simulations. For

example, when the value of OF1
A remains the same between two simulations, SF1

A will have

the same value as OF1
A irrespective of how clk′ is tuned, thus, no delay information can be

retrieved.

169

To observe the delay caused by the inserted Trojan, the critical path of some register in

the output layer1 of A, e.g., OF1
A in Figure 9-1, needs to contain A’. Otherwise, the delay

between the input layer2 and the output layer will be almost the same between the golden

design and Trojan-inserted design (only differed slightly due to capacitance change). With the

critical path crossing A’, the signal value of A’ has to switch to reveal delay information, either

by trigger T or by asset A. In addition, there must exist a path from A’ to the output layer

where all signals need to switch. Our goal is to generate test vectors that are able to maximize

the delay difference of a critical path from the Trojan to the output layer.

9.1.1 Test Generation for Path Delay Maximization

The activation of a trigger is important in maximizing the delay difference. Existing

approaches try to find critical paths that are affected by the Trojan. However, without the

activation of a trigger, the delay difference is at most one gate difference. As shown in

Figure 9-2, the trigger signal T remains zero and the Trojan-inserted design behaves exactly

the same as the original design. As a result, any delay information from the input layer to T is

hidden and the delay of A’ is determined by A. Assume that we are able to construct a critical

path from A to the output layer using a specific test vector. Since the behaviors of the golden

design and the Trojan-inserted design are the same, two critical paths are the same except for

the extra XOR gate. On the other hand, the critical paths can change significantly when the

trigger is activated. Figure 9-3 shows the optimal scenario of maximizing the delay difference.

In Figure 9-3, the critical path in the Trojan-inserted design goes through the trigger T and

propagate the delay to the output layer, which is completely different from the path in the

golden design. As a result of two totally different critical paths, the measured delay difference

1 The output layer of a signal contains all the registers encountered in the immediately
succeeding layer in the path from the signal to primary outputs.

2 The input layer of a signal contains all the registers encountered in the immediately
preceding layer in the path from the signal to the primary inputs.

170

A’

A

T=0

A

Golden design Trojan−inserted design

Figure 9-2. The small delay difference by existing approaches with the same critical path.

A’

A

T=1

A

Trojan−inserted designGolden design

Figure 9-3. Our approach maximizes delay difference by changing critical paths.

in the output layer can be significantly larger, compared to the scenario when the trigger is not

activated in Figure 9-2.

Therefore, the goal of our test generation technique is to increase the probability of

activating trigger conditions. As the attackers are more likely to construct trigger conditions

using rare signals, we propose to use a SAT-based approach to generate test patterns in

Algorithm 11. It first parses the circuit and computes logic expressions for all rare signals.

Then, it repeats k times to generate k test vectors, where k is defined by the user to balance

debug time and performance. In the ith iteration, we first randomize the order of rare nodes

such that each time the generated tests can cover different sets of rare nodes. Next, we keep

adding rare nodes into current trigger CT if CT is still valid. Finally, we use a SAT solver

to return a test for CT . Intuitively, we want to generate a test that is able to activate as

many rare nodes as possible. Since an adversary wants to hide from side-channel analysis,

i.e., introduce the minimum delay, the number of trigger points is typically small. The test

that is able to activate many rare nodes has the high probability of covering an unknown

trigger condition. Note that the goal of our test generation partially overlaps with logic

171

testing, without the requirement of propagating the effects of payload to the primary output.

Experiments show that our lightweight algorithm is effective in delay-based side-channel

analysis. Our framework is expected to perform better in the presence of advanced logic testing

techniques.

Algorithm 11 Test Generation
1: procedure TestGeneration(circuit netlist, a set of rare nodes (R), the number of test

vectors k)
2: Parse circuit netlist, and compute logic expression for each rare node
3: Initialize T = {}
4: i = 1
5: while i <= k do
6: Current trigger CT = ∅
7: Randomize the order of rare nodes R
8: for rare node r ∈ R do
9: if CT ∪ r is a valid trigger then

10: CT = CT ∪ r
11: end if
12: end for
13: Solve CT and get a test t
14: ti = t
15: i = i+ 1
16: end while
17: return test vectors T = {t1, t2, ..., tk}
18: end procedure

9.1.2 Hamming-distance based Reordering

Activating the trigger is not a sufficient condition to introduce delay of the Trojan to

the output layer. It also requires construction of a critical path from the Trojan to the output

layer. This is a strict condition due to the following reasons. First, the trigger signal T has to

switch between two consecutive simulations. Otherwise, the critical path will not pass through

the trigger signal. Next, every signal in the critical path has to switch. Figure 9-4 shows an

example to illustrate the difficulty of creating a critical path from the trigger T to the output

layer. Assume that the payload A’ flips from 0 to 1 due to the activation of the trigger. In

order to propagate the delay, the signal P has to flip from 0 to 1, which requires signal N

to have value 0 in the beginning. When we consider all the signals in a path from A’ to the

172

output layer, more and more constraints need to be applied. Directed test generation, such as

ATPG or SAT-based approach, can be used to find the optimal solution when the payload is

known. However, as we do not know the exact place of the trigger and payload a priori, these

approaches may not work. In this section, we propose a probabilistic approach to increase the

likelihood of constructing such a critical path using Hamming-distance based reordering.

P

N 0−>0

A 0−>0
trigger

P

A’ 0−>1

N 0−>0

A 0−>0

Trojan inserted designGolden design

Figure 9-4. The constraints to ensure a critical path from the trigger to the output layer.

Algorithm 12 shows our reordering approach to statistically create a critical path and

maximize sensitivity. The main idea is to find a test vector that differs from the current test

vector mostly as its successor. We define the distance of two vectors as the summation of

two parts. The first part is the Hamming distance of the feature vector, which represents the

activation status of all rare signals. For example, assuming a test t is able to activate the first

three rare signals out of four rare signals in a design, then its feature vector is 1110. With a

larger difference in the feature vector of two test vectors, one trigger condition is less likely to

be activated by the two vectors simultaneously. The second part is the Hamming distance of

the test vectors. Large Hamming distance between the test vectors increases the probability of

signal switches in the cone area impacted by A’. As a large difference in the features vectors of

two tests ti and tj typically implies a large Hamming distance of these two test vectors, we add

a small weight (0.1 in Algorithm 12) to the Hamming distance of test vectors (the latter part).

As shown in Algorithm 12, we first simulate the design and compute the feature vector for all

test vectors. For each test vector ti, we try to find the test vector with the largest distance

among the remaining ones as its successor (line 8-17). After finding the test vector, we swap it

with ti+1 (line 18).

173

P

N 0−>1

A 0−>0 trigger

P

N 0−>1

A’ 0−>1

A 0−>0

Trojan inserted design
Golden design

Figure 9-5. A longer path may mask the delay from the Trojan.

The Hamming-distance based reordering is efficient, with k simulations and O(k2)

computations of Hamming distance, where k is the number of generated test patterns. As

the Trojan is unknown, the generated tests may not be able to sensitize the critical path from

A’ to the output layer. For example, when the signal N in the longer path switches, the delay

of P is determined by N, which masks the delay from the Trojan as shown in Figure 9-5.

As a result, there would be no difference between the delays from golden design and Trojan

inserted design. In general, for some path from A’ to the output layer, all neighbor signals

with longer delays need to remain the same value. However, without knowing the exact

Trojan, this requirement is hard to fulfill. Fortunately, as an attacker is likely to construct a

hard-to-activate trigger condition, the path from the input layer to the trigger T is typically

long. It potentially produces large delay in the trigger signal T, which leads to detection of

Trojans as demonstrated in Section 9.2.

9.2 Experimental Results

9.2.1 Experimental Setup

Implementation: All of our algorithms and simulators are implemented in C++. The

SAT expressions in Algorithm 11 are solved using Z3 [121]. The experiments are conducted

using a machine with Intel Xeon CPU E5-1620 v3 @ 3.50GHz and 16GB RAM.

Benchmarks: To evaluate the effectiveness of our approach in detecting hardware

Trojans, we selected five sequential benchmarks from ISCAS-89 [56], as well as a large

benchmark MIPS from OpenCores [96]. Trigger conditions are constructed using rare

signals. For the two small ISCAS-89 benchmarks, s1196 and s1423, each trigger condition

174

Algorithm 12 Hamming-distance based Reordering
1: procedure Reorder(circuit netlist, test vectors T = {t1, t2, ..., tk})
2: for ti in T do
3: Simulate the netlist with ti
4: Set feature vector of ti: each bit of fvi represents whether a certain rare signal is

activated or not
5: end for
6: Set weight ω = 0.1
7: for i = 1 to k do
8: Initialize best successor for ti as bestSuccessor = −1
9: Initialize the largest distance as maxdist = −1

10: for j = i+ 1 to k do
11: The distance of feature vector dist1 = Hamming(fvi, fvj)
12: The distance of test vectors dist2 = Hamming(ti, tj)
13: if dist1 + ω ∗ dist2 > maxdist then
14: maxdist = dist1 + ω ∗ dist2
15: bestSuccessor = j
16: end if
17: end for
18: Swap the test vectors of ti+1 and tbestSuccessor
19: end for
20: return reordered test vectors T
21: end procedure

is constructed by 4 trigger points, while Trojans of the other benchmarks are constructed by

8 trigger points. All trigger points are selected from rare nodes from the design, where the

rareness thresholds are 0.1 for ISCAS benchmarks and 0.005 for MIPS. The total number of

rare nodes is listed in Table 9-2. For each benchmarks, 1000 Trojans are randomly sampled.

Each Trojan is inserted into the golden design to form one DUT. In other words, there are

1000 DUTs for each benchmark to evaluate the performance.

9.2.2 Path Delay Computation

The path delay can be measured using static timing analysis of gate-level models. We

first compiled the benchmarks using Synopsys Design Compiler. Next, we generated Standard

Delay Format (SDF) file that contains delay information of each gate and net in the design by

linking with saed 90nm library [124]. Finally, SDF files are back-annotated into our simulator.

The simulator simulates all DUTs with generated test patterns, and reports delay information

175

computed using corresponding SDF files. Due to many factors in manufacturing steps, there

are process variations in ICs, resulting in different delay fingerprints of the same design. To

reflect the process variations, we added ±7.5% random variations to the SDF file of each

DUT [72].

9.2.3 Evaluation Criteria

To evaluate the effectiveness of the generated tests by all approaches in detecting Trojans,

we first simulated the golden design with the tests, and got the delay information of all

registers. We use dlfgold(t) to denote the delay for the register f of the golden design when

simulating test pattern t. Then, we simulated each DUT with these tests, and got the delay

information of all registers. Similarly, we use dlfdut(t) to denote the delay for the register f

in the DUT when simulating test pattern t. Finally, the maximum difference between the

two delays which belong to the same register f is reported as our metrics to evaluate the

performance of the tests from all approaches in (9-1).

diff = max
t,f

(|dlfdut(t)− dl
f
gold(t)|) (9-1)

Assume that the test vector t∗ produces the maximum delay difference in the register f ∗

for a given DUT, i.e., achieves the largest metric in (9-1). We define the following symbols for

the ease of illustration:

• OrigDelay (OD): the delay of f ∗ in the goden design when applying t∗, i.e., dlf∗

gold(t
∗).

• Sensitivity: the relative difference of delays in golden design and DUT, i.e., diff /dlf∗

gold(t
∗)

9.2.4 Statistical Evaluation

Table 9-1 summarizes experimental results from the application of our approach on the

benchmarks compared to random test vectors and ATPG test vectors. For random simulation,

we generated 10K random vectors for each benchmark. The number of random test vectors

is selected to balance the overall performance and simulation time. To generate ATPG

test vectors for path delays, we utilized TetraMAX with all delay faults and full sequential

mode. For our approach, we fix the number of test vectors to be 1000 for all benchmarks,

176

i.e., k = 1000 for Algorithm 11. For each approach, Table 9-1 summarizes the number of

test vectors (#), OrigDelay, delay difference (diff), and the average sensitivity over 1000

randomly sampled Trojans. From the results, we can see that random test vectors and

ATPG achieve high delay sensitivity in small designs. However, the sensitivity produced by

these two approaches are within 5% for two large benchmarks s38417 and MIPS, which is

typically introduced by the noise. In contrast, our approach is able to achieve high sensitivity

consistently. Overall, our approach can achieve 16 and 18 times improvement of sensitivity in

delay based side-channel analysis over random test vectors and ATPG, respectively.

With the huge improvements in delay difference, our approach is able to detect more

Trojans. In this experiment, a simple approach is used to declare the existence of a Trojan:

if the delay in a DUT deviates from the delay in the golden design by more than the noise

threshold (7.5%), then we declare that a Trojan exists in the DUT. Figure 9-6 shows the

number of detected Trojans by these approaches. Among the 1000 randomly sampled Trojans,

random simulation and ATPG are able to detect reasonable number of Trojans in the small

design. However, the performance of these two approaches is poor for large designs, which

detect less than 3% of all Trojans. On the other hand, our approach is able to detect more

than half of the all Trojans for all benchmarks.

s1196 s1423 s13207 s15850 s38417 MIPS
0

200

400

600

800

1,000

1,200

#
of

de
te

ct
ed

Tr
oj

an
s

Random ATPG Our approach

Figure 9-6. The number of detected Trojan given the noise of ±7.5% noise.

177

Table 9-1. Performance comparison of our approach with random simulation and ATPG over 1000 randomly sampled Trojans.
Random ATPG Our Approach
OD diff sensi- # OD diff sensi- # OD diff sensi- impro. impro.

bench (ps) (ps) tivity (ps) (ps) tivity (ps) (ps) tivity /Random /ATPG
s1196 10K 1347 702 52% 221 1622 415 26% 1000 1073 1221 114% 2.2x 4.4x
s1423 10K 1586 313 20% 103 1385 173 12% 1000 675 1456 216% 11x 17x
s13207 10K 2108 169 8% 411 1553 144 9.3% 1000 1478 931 63% 7.9x 6.8x
s15850 10K 2370 192 8.1% 472 2149 178 8.3% 1000 2249 682 30% 3.7x 3.7x
s38417 10K 31826 1279 4% 1169 28729 1161 4% 1000 14768 11738 80% 20x 20x
MIPS 10K 62998 2495 4% 1363 61751 2446 4% 1000 21156 18227 86% 22x 22x
average 10K 17039 858 5% 623 16198 753 4.6% 1000 6900 5709 83% 16x 18x

178

Note that the performance of random simulation and ATPG is becoming worse when

the design becomes large. It is due to the fact that the path between the input layer and the

output layer in the small designs are relatively small, typically consisting of less than 10 gates.

Therefore, an extra XOR gate from the Trojan can introduce reasonable delay difference to

the delay of the output layer compared to 7.5% noise. However, with the number of gates

increases in the paths, the effect of an extra gate becomes negligible. In contrast, our approach

achieves consistent good performance in the all designs, due to the selection of test vectors

that are likely to change the critical paths for the output layer entirely, as shown in Figure 9-3.

In large designs, the change of critical paths is more likely to introduce drastically different

delays.

Table 9-2. Test generation time of our approach in all benchmarks.
bench #gates #wires #rare Algo. 1 Algo. 2 total
s1196 550 568 195 33.6s 0.2s 33.8s
s1423 456 502 50 26.5s 0.05s 26.6s
s13207 2335 2504 604 150.8s 0.5s 151s
s15850 2812 3004 649 352s 0.5s 353s
s38417 23815 23844 3103 6195s 2.4s 6197s
MIPS 18123 18343 906 1058s 1s 1059s
Average 8015 8128 918 1303s 0.8s 1304s

The running time of our approach is shown in Table 9-2. The results show that our

approach is efficient in generating test vectors for both ISCAS benchmarks and MIPS. For

all benchmarks except for s38417, the total test generation time is within 20 minutes. This

relatively longer time for s38417, which is less than 2 hours, is because that the number

of rare nodes in s38417 is more than three times the number of rare nodes in all the other

benchmarks. Overall, our approach can generate 1000 test vectors efficiently.

One major problem of gate-level simulation is the slow simulation speed. Therefore,

the compactness of generated tests is critical to reduce the overall debug time. When the

generated test patterns are not compact, it usually consumes a lot more time in simulation

than in generating tests. From Table 9-1, 1000 test vectors generated by our approach are

significantly better than 10K random vectors in both coverage and compactness of tests. While

179

the tests generated by ATPG are slightly more compact in small benchmarks, its performance

is the worst among the three approaches.

9.3 Summary

Hardware Trojans are threats to assets in integrated circuits. To detect hardware Trojans,

side-channel analysis is a widely used approach. Existing path delay based side-channel analysis

techniques are not effective since the difference in path delays between the golden design and

Trojan-inserted design is negligible compared to process variation and environmental noise

margins. We presented an automated test generation approach to take advantage of logic

testing in maximizing the difference in path delays. Compared to existing research efforts that

fixes one critical path, our approach explores two different critical paths for the same register

in the two designs, resulting in significantly large difference in path delay. Our experimental

results using a diverse set of benchmarks demonstrated that our approach outperforms

state-of-the-art path delay based side-channel analysis techniques. Specifically, our approach is

able to detect most of the Trojans while state-of-the-art techniques fail to detect most of them

in large designs when process variation and noise margin is higher than 7.5%.

180

CHAPTER 10
CONCLUSIONS AND FUTURE WORK

System-on-Chip (SoC) is the brain behind the computing devices today. Unlike

microcontroller based designs in the past, even resource constrained Internet-of-Things

(IoT) devices nowadays incorporate one or more complex SoCs. Drastic increase in SoC

complexity has led to significant increase in SoC design and validation complexity. Reusable

hardware IP based SoC design has emerged as a pervasive design practice in the industry

to dramatically reduce design and verification cost while meeting aggressive time-to-market

constraints. Growing reliance on these pre-verified hardware IPs, often gathered from untrusted

third-party vendors, severely affects the security and trustworthiness of SoC computing

platforms. Hardware-level vulnerabilities should be fixed before deployment since it affects the

overall system security. This dissertation described a set of novel test generation approaches for

SoC security validation covering both simulation-based validation and side-channel analysis.

10.1 Conclusions

In Chapter 3, I defined seven classes of SoC security vulnerabilities. Based on these

vulnerabilities, I proposed a framework for generating security assertions. Using a diverse set

of benchmarks, I demonstrated that the functional assertions generated by state-of-the-art

assertion generation technique cannot eliminate the need for the dedicated security assertions.

Specifically, these security assertions are able to detect all the implanted security vulnerabilities

while the state-of-the-art method failed to detect most of them. I envision that the SoC

designers will embed security assertions in their designs in the near future as part of their

assertion-based security validation methodology. This will open up several research directions in

terms of how to generate automated tests to activate these security assertions as well as how

to utilize these security assertions (properties) for automated property checking.

In Chapter 4, I proposed a scalable test generation approach on RTL models to cover

corner cases and rare functional scenarios that are not covered by millions and billions of

random tests. It utilizes concolic testing and has two important contributions. (1) I proposed

181

a directed test generation framework that outperforms the state-of-the-art test generation

techniques in activating a single target utilizing contribution-aware edge realignment and

effective path selection. (2) I developed two optimization techniques to drastically reduce

the overall test generation effort involving multiple targets: (i) target pruning to remove the

targets that can be covered by the tests generated for other targets, and (ii) target clustering

to minimize the overlapping searches by utilizing learning from related targets. This approach

is effective and fast in covering hard-to-detect targets that can be converted to branches.

In Chapter 5, I presented an automated and scalable framework to generate directed

tests using concolic testing to activate assertions non-vacuously. This framework first

converts any assertion to a branch inside RTL code. Then, it applies concolic testing to

generate tests to activate the assertions. While existing model checking based directed test

generation can activate assertions, it cannot generate tests for large designs due to state space

explosion. Using a diverse set of benchmarks, I have shown that my test generation approach

is significantly faster compared to state-of-the-art model checking methods. Most importantly,

my approach is scalable since it has linear memory requirement, while state-of-the-art directed

test generation methods have exponential memory requirements.

In Chapter 6, I presented quotient space based scalable test generation algorithms that

can trade-off between functional coverage and verification effort. My on-the-fly approach

uses Euler traversal to cover the whole finite state machine of cache coherence protocol with

minimum repeated efforts. This approach utilizes quotient space to group similar transitions

together, selects only the representative and important transitions from equivalence classes,

and omits only similar transitions to provide scalable test generation framework. My approach

is effective on systems with many cores and complex cache coherence protocols, making it

suitable for future multicore architectures.

In Chapter 7, I proposed a new paradigm to solve trigger activation problem. This

approach is the first attempt in mapping the problem of test generation for trigger activation

to the problem of covering maximal satisfiability cliques. I have proved that valid trigger

182

conditions and satisfiability cliques are one-to-one mapping, and that the test vectors generated

by our paradigm are both complete and compact. The presented test generation algorithms

repeatedly sample maximal satisfiability cliques and generate a test vector for each of them.

It explored the effectiveness of random sampling, lazy construction as well as multi-threading

to improve the test generation efficiency. This approach is both scalable and effective in

generating efficient test vectors for a wide variety of trigger conditions. This approach can be

utilized for activating extremely rare trigger conditions to fulfill diverse requirements such as

improvement of functional (trigger) coverage as well as side-channel sensitivity.

In Chapter 8, I proposed a test generation approach to maximize the sensitivity in

current-based side-channel analysis. The state-of-the-art test generation technique, e.g.,

MERS, is not beneficial for large designs due to its high runtime complexity. Most importantly,

the sensitivity obtained by the existing approaches is very low compared to environmental noise

and process variations, making it useless in practice. I developed an SMT-based first pattern

generation algorithm and a genetic algorithm based second pattern generation algorithm that

can increase the sensitivity drastically while significantly reduce the test generation time. It

breaks down the problem into two sub-problems. The first task generates effective test patterns

to maximize the excitation of rare values. The second task finds the best matching pair for

each test pattern generated in the first task to maximize the sensitivity. The combination of

the SMT-based approach with the genetic algorithm significantly improves both side-channel

sensitivity and test generation time, leading to detection of the majority of Trojans under

typical process variation and noise margins.

In Chapter 9, I presented an automated test generation approach to take advantage of

logic testing in maximizing the difference in path delay. Existing path delay based side-channel

analysis techniques are not effective since the difference in path delay between the golden

design and Trojan-inserted design is negligible compared to process variation and environmental

noise margins. Compared to existing research efforts that fixes one critical path, my approach

183

explored two different critical paths for the same register in the two designs, resulting in

significantly large difference in path delay.

10.2 Future Research Directions

My dissertation proposed many promising approaches for SoC security validation.

Considering the increasing importance of SoCs coupled with ever changing landscape of

security vulnerabilities, the security validation problem will remain in the forefront in the near

future. I will briefly outline how to address future security validation challenges by extending

the core principles developed in this dissertation.

I defined security assertions manually by analyzing the specification. Future efforts

are needed to analyze the code and specification, and automatically generate security

assertions. In addition, current framework only defines assertions for known vulnerabilities.

For new/unknown threats in the future, my validation framework can still work as long as the

security vulnerabilities can be converted to constraints, and expressed using temporal logic

assertions.

Concolic testing is able to address the state explosion problem in formal methods. It

explores one path at a time and tries to get “closer” and “closer” to the target based on

a simple distance heuristic. For large designs and complex conditions, it may never reach

the target due to wrong hint and exploration from the heuristic. Future research can utilize

reinforcement learning to learn which new path is better to activate the target. Compared

to a distance heuristic, reinforcement learning needs to put more emphasis on the long term

rewards.

Validation of cache coherence protocols provides a way to cover only the important states

and transitions within a specific debug time. The importance of the transitions are defined

using quotient space to group similar transitions together. This approach can be extended to

validate the security of caches. Since cache has been exploited by real attacks, such as Spectre

and Meltdown, it is crucial to check the existence of side channels and security vulnerabilities.

184

This can be achieved by generating tests and ensuring that the data is stored or erased as

expected.

Finally, the proposed approaches for hardware Trojan detection can increase the probability

of activating triggers, maximizing current switching, and maximizing delay sensitivity for

unknown Trojans. My evaluations are based on randomly sampled Trojans whose trigger

conditions are combinational and are constructed using only rare signals. Future research needs

to extend this approach to sequential Trojans.

185

APPENDIX
LIST OF PUBLICATIONS

Book Chapters:

1. Yangdi Lyu, Yuanwen Huang and Prabhat Mishra, SoC Security versus Post-Silicon
Debug Conflict, Post-Silicon Validation and Debug, P. Mishra and F. Farahmandi
(editors), Springer, 2018.

Peer-Reviewed Journal Articles:

1. Subodha Charles, Yangdi Lyu and Prabhat Mishra, Real-time Detection and
Localization of Distributed DoS Attacks in NoC based SoCs, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2020.

2. Yangdi Lyu, Xiaoke Qin, Mingsong Chen and Prabhat Mishra, Directed Test Generation
for Validation of Cache Coherence Protocols, IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2018.

3. Yangdi Lyu and Prabhat Mishra, A Survey of Side-Channel Attacks on Caches and
Countermeasures, Journal of Hardware and Systems Security (HaSS), 2017.

Peer-Reviewed Conference Papers:

1. Yangdi Lyu and Prabhat Mishra, Directed Test Generation for Delay-based Side
Channel Analysis, Design Automation and Test in Europe (DATE), 2020.

2. Yangdi Lyu and Prabhat Mishra, Automated Trigger Activation by Repeated Maximal
Clique Sampling, Asia and South Pacific Design Automation Conference, 2020.

3. Yangdi Lyu and Prabhat Mishra, Automated Test Generation for Activation of
Assertions in RTL Models, Asia and South Pacific Design Automation Conference,
2020.

4. Yangdi Lyu and Prabhat Mishra, Efficient Test Generation for Trojan Detection using
Side Channel Analysis, Design Automation and Test in Europe (DATE), 2019.

5. Yangdi Lyu, Alif Ahmed and Prabhat Mishra, Automated Activation of Multiple Targets
in RTL Models using Concolic Testing, DATE, 2019. Best paper nomination

6. Subodha Charles, Yangdi Lyu and Prabhat Mishra, Real-time Detection and
Localization of DoS Attacks in NoC based SoCs, DATE, 2019.

7. Yangdi Lyu and Alper Üngör, A Fast 2- Approximation Algorithm for Guarding
Orthogonal Terrains, In Proc. of 28th Canadian Conf. on Comp. Geometry (CCCG),
2016.

186

Patents and Copyrights:

1. Prabhat Mishra, and Yangdi Lyu, Delay-based side-channel analysis for Trojan
detection, U.S. Provisional Patent Application Serial No. 62/966,657, filed Jan 28,
2020.

2. Prabhat Mishra, Subodha Charles and Yangdi Lyu, Securing System-on-Chip using
Incremental Cryptography, U.S. Provisional Patent Application Serial No. 62/874,187,
filed July 15, 2019.

3. Prabhat Mishra and Yangdi Lyu, Maximization of Side-Channel Sensitivity for Trojan
Detection, U.S. Provisional Patent Application Serial No. 62/869,288, filed July 1, 2019.

4. Prabhat Mishra and Yangdi Lyu, Trigger Activation by Repeated Maximal Clique
Sampling, U.S. Provisional Patent Application Serial No. 62/869,294, filed July 1, 2019.

5. Prabhat Mishra, Subodha Charles and Yangdi Lyu, Real-Time Detection and
Localization of DoS Attacks in NoC based SoC Architectures, U.S. Provisional Patent
Application Serial No. 62/868,258, filed June 28, 2019.

187

REFERENCES

[1] A. Pakonen, C. Pang, I. Buzhinsky, and V. Vyatkin, “User-friendly formal specification
languages-conclusions drawn from industrial experience on model checking,” in Emerging
Technologies and Factory Automation (ETFA), 2016 IEEE 21st International Conference
on. IEEE, 2016, pp. 1–8.

[2] A. Ahmed and P. Mishra, “Quebs: Qualifying event based search in concolic testing
for validation of rtl models,” in 2017 IEEE 35th International Conference on Computer
Design (ICCD). IEEE, 2017, pp. 185–192.

[3] A. Ahmed, F. Farahmandi, and P. Mishra, “Directed test generation using concolic
testing on rtl models,” in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2018. IEEE, 2018, pp. 1538–1543.

[4] R. Mukherjee, D. Kroening, and T. Melham, “Hardware verification using software
analyzers,” in 2015 IEEE Computer Society Annual Symposium on VLSI, July 2015, pp.
7–12.

[5] Y. Lyu and P. Mishra, “Efficient test generation for trojan detection using side channel
analysis,” in Design Automation and Test in Europe (DATE), Florence, Italy, March 25 -
29, 2019.

[6] Y. Huang, S. Bhunia, and P. Mishra, “Scalable test generation for trojan detection using
side channel analysis,” IEEE Transactions on Information Forensics and Security, vol. 13,
no. 11, pp. 2746–2760, Nov 2018.

[7] L. Liu, E. G. Larsson, W. Yu, P. Popovski, C. Stefanovic, and E. de Carvalho, “Sparse
signal processing for grant-free massive connectivity: A future paradigm for random
access protocols in the internet of things,” IEEE Signal Processing Magazine, vol. 35,
no. 5, pp. 88–99, Sep. 2018.

[8] L. Salmon, “System security integrated through hardware and firmware (ssith),” 2017,
https://www.darpa.mil/attachments/SSITHProposersDay20170422.pdf.

[9] F. Farahmandi, “Formal verification of hardware security and trust,” Ph.D. dissertation,
University of Florida, 2018.

[10] H. D. Foster, A. C. Krolnik, and D. J. Lacey, Assertion-based design. Springer Science
& Business Media, 2004.

[11] I. Wagner and V. Bertacco, “Mcjammer: adaptive verification for multi-core designs,” in
Proc of DATE, 2008, pp. 670–675.

[12] R. S. Chakraborty, F. Wolff, S. Paul, C. Papachristou, and S. Bhunia, “Mero: A
statistical approach for hardware trojan detection,” in Cryptographic Hardware and
Embedded Systems - CHES 2009, C. Clavier and K. Gaj, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2009, pp. 396–410.

188

https://www.darpa.mil/attachments/SSITHProposersDay20170422.pdf

[13] D. Ismari, J. Plusquellic, C. Lamech, S. Bhunia, and F. Saqib, “On detecting delay
anomalies introduced by hardware trojans,” in 2016 IEEE/ACM International Conference
on Computer-Aided Design (ICCAD), Nov 2016, pp. 1–7.

[14] S. Hertz, D. Sheridan, and S. Vasudevan, “Mining hardware assertions with guidance
from static analysis,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 32, no. 6, pp. 952–965, June 2013.

[15] J. Li and J. Lach, “Negative-skewed shadow registers for at-speed delay variation
characterization,” in 2007 25th International Conference on Computer Design, Oct 2007,
pp. 354–359.

[16] P. Kocher, J. Horn, A. Fogh, , D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom, “Spectre attacks: Exploiting
speculative execution,” in 40th IEEE Symposium on Security and Privacy (S&P’19),
2019.

[17] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, J. Horn, S. Mangard,
P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg, “Meltdown: Reading kernel memory
from user space,” in 27th USENIX Security Symposium (USENIX Security 18), 2018.

[18] P. Mishra, R. Morad, A. Ziv, and S. Ray, “Post-silicon validation in the soc era: A
tutorial introduction,” IEEE Design & Test, vol. 34, pp. 68–92, 2017.

[19] M. Chen, X. Qin, H.-M. Koo, and P. Mishra, System-Level Validation: High-Level
Modeling and Directed Test Generation Techniques. Springer Publishing Company,
Incorporated, 2012.

[20] “National vulnerability database,” https://nvd.nist.gov.

[21] “AMD64 Architecture Programmer’s Manual Volume 2: System Programming,”
http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf, 2013.

[22] M. E. Thomadakis, “The architecture of the Nehalem processor and Nehalem-EP SMP
platforms,” Resource, vol. 3, p. 2, 2011.

[23] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan taxonomy and
detection,” IEEE Design Test of Computers, vol. 27, no. 1, pp. 10–25, Jan 2010.

[24] M. Chen, X. Qin, H.-M. Koo, and P. Mishra, System-Level Validation: High-Level
Modeling and Directed Test Generation Techniques, 1st ed. Springer Publishing
Company, Incorporated, 2012.

[25] S. Bhunia, M. S. Hsiao, M. Banga, and S. Narasimhan, “Hardware trojan attacks:
Threat analysis and countermeasures,” Proceedings of the IEEE, vol. 102, no. 8, pp.
1229–1247, Aug 2014.

[26] N. Jacob, D. Merli, J. Heyszl, and G. Sigl, “Hardware trojans: current challenges and
approaches,” IET Computers Digital Techniques, vol. 8, no. 6, pp. 264–273, 2014.

189

http://developer.amd.com/wordpress/media/2012/10/24593_APM_v21.pdf

[27] S. Ghosh, A. Basak, and S. Bhunia, “How secure are printed circuit boards against trojan
attacks?” IEEE Design Test, vol. 32, no. 2, pp. 7–16, April 2015.

[28] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and M. Tehranipoor, “Hardware
trojans: Lessons learned after one decade of research,” ACM Trans. Des. Autom.
Electron. Syst., vol. 22, no. 1, pp. 6:1–6:23, May 2016. [Online]. Available:
http://doi.acm.org/10.1145/2906147

[29] F. Courbon, P. Loubet-Moundi, J. J. A. Fournier, and A. Tria, “A high efficiency hardware
trojan detection technique based on fast sem imaging,” in 2015 Design, Automation Test
in Europe Conference Exhibition (DATE), March 2015, pp. 788–793.

[30] “ISCAS85 combinational benchmark circuits,” https://filebox.ece.vt.edu/~mhsiao/
iscas85.html.

[31] A. Gargantini and C. Heitmeyer, “Using model checking to generate tests from
requirements specifications,” SIGSOFT Softw. Eng. Notes, vol. 24, no. 6, pp. 146–162,
Oct. 1999.

[32] M. Chen and P. Mishra, “Property learning techniques for efficient generation of directed
tests,” IEEE Transactions on Computers, vol. 60, no. 6, pp. 852–864, June 2011.

[33] K. Sen, D. Marinov, and G. Agha, “Cute: A concolic unit testing engine for c,”
SIGSOFT Softw. Eng. Notes, vol. 30, no. 5, pp. 263–272, Sep. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1095430.1081750

[34] P. Godefroid, N. Klarlund, and K. Sen, “Dart: Directed automated random
testing,” SIGPLAN Not., vol. 40, no. 6, pp. 213–223, Jun. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1064978.1065036

[35] X. Qin and P. Mishra, “Automated generation of directed tests for transition coverage in
cache coherence protocols,” in Design, Automation Test in Europe Conference Exhibition
(DATE), March 2012, pp. 3–8.

[36] Y. C. Randal E. Bryant, “Verification of arithmetic circuits with binary moment diagrams,”
in 32nd Design Automation Conference, 1995, pp. 535–541.

[37] M. J. Ciesielski, P. Kalla, Zhihong Zheng, and B. Rouzeyre, “Taylor expansion diagrams:
a compact, canonical representation with applications to symbolic verification,” in
Proceedings 2002 Design, Automation and Test in Europe Conference and Exhibition,
2002, pp. 285–289.

[38] A. Biere, A. Cimatti, E. Clarke, and Y. Zhu, “Symbolic model checking without bdds,”
in Tools and Algorithms for the Construction and Analysis of Systems, W. R. Cleaveland,
Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999, pp. 193–207.

[39] D. Cyrluk, S. Rajan, N. Shankar, and M. K. Srivas, “Effective theorem proving for
hardware verification,” in Theorem Provers in Circuit Design, R. Kumar and T. Kropf,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995, pp. 203–222.

190

http://doi.acm.org/10.1145/2906147
https://filebox.ece.vt.edu/~mhsiao/iscas85.html
https://filebox.ece.vt.edu/~mhsiao/iscas85.html
http://doi.acm.org/10.1145/1095430.1081750
http://doi.acm.org/10.1145/1064978.1065036

[40] D. Wood, G. Gibson, and R. Katz, “Verifying a multiprocessor cache controller using
random test generation,” IEEE Design Test of Computers, vol. 7, no. 4, pp. 13 –25, 1990.

[41] A. Adir, E. Almog, L. Fournier, E. Marcus, M. Rimon, M. Vinov, and A. Ziv, “Genesys-pro:
innovations in test program generation for functional processor verification,” IEEE Design
Test of Computers, vol. 21, no. 2, pp. 84 – 93, 2004.

[42] D. Abts, S. Scott, and D. Lilja, “So many states, so little time: verifying memory
coherence in the Cray X1,” in Proc of ISPDP, 2003.

[43] Y. Oddos, K. Morin-Allory, D. Borrione, M. Boulé, and Z. Zilic, “Mygen: Automata-based
on-line test generator for assertion-based verification,” in Proceedings of the 19th ACM
Great Lakes Symposium on VLSI, ser. GLSVLSI ’09. New York, NY, USA: ACM, 2009,
pp. 75–80. [Online]. Available: http://doi.acm.org/10.1145/1531542.1531563

[44] J. G. Tong, M. Boulé, and Z. Zilic, “Test compaction techniques for assertion-based test
generation,” ACM Trans. Des. Autom. Electron. Syst., vol. 19, no. 1, pp. 9:1–9:29, Dec.
2013. [Online]. Available: http://doi.acm.org/10.1145/2534397

[45] M. Chen, X. Qin, and P. Mishra, “Efficient decision ordering techniques for sat-based test
generation,” in 2010 Design, Automation Test in Europe Conference Exhibition (DATE
2010), March 2010, pp. 490–495.

[46] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang, “Symbolic model checking: 1020
states and beyond,” Information and Computation, vol. 98, no. 2, pp. 142 – 170, 1992.

[47] E. Clarke, O. Grumberg and D. Peled, Model Checking. Cambridge, MA: MIT Press,
1999.

[48] D. Dill, A. Drexler, A. Hu, and C. Yang, “Protocol verification as a hardware design aid,”
in Proc of ICCD, 1992, pp. 522 –525.

[49] J. Whittemore, J. Kim, and K. Sakallah, “Satire: A new incremental satisfiability engine,”
in Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232),
June 2001, pp. 542–545.

[50] O. Strichman, “Accelerating bounded model checking of safety properties,” Formal
Methods in System Design, vol. 24, no. 1, pp. 5–24, Jan 2004.

[51] F. Wolff, C. Papachristou, S. Bhunia, and R. S. Chakraborty, “Towards trojan-free trusted
ics: Problem analysis and detection scheme,” in 2008 Design, Automation and Test in
Europe, March 2008, pp. 1362–1365.

[52] A. Waksman, M. Suozzo, and S. Sethumadhavan, “Fanci: Identification of
stealthy malicious logic using boolean functional analysis,” in Proceedings of the
2013 ACM SIGSAC Conference on Computer & Communications Security, ser. CCS
’13. New York, NY, USA: ACM, 2013, pp. 697–708. [Online]. Available:
http://doi.acm.org/10.1145/2508859.2516654

191

http://doi.acm.org/10.1145/1531542.1531563
http://doi.acm.org/10.1145/2534397
http://doi.acm.org/10.1145/2508859.2516654

[53] T. F. Wu, K. Ganesan, Y. A. Hu, H. . P. Wong, S. Wong, and S. Mitra, “Tpad: Hardware
trojan prevention and detection for trusted integrated circuits,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 35, no. 4, pp. 521–534,
April 2016.

[54] A. Bazzazi, M. T. Manzuri Shalmani, and A. M. Hemmatyar, “Hardware trojan detection
based on logical testing,” J. Electron. Test., vol. 33, no. 4, pp. 381–395, Aug. 2017.
[Online]. Available: https://doi.org/10.1007/s10836-017-5670-0

[55] M. E. Amyeen, S. Venkataraman, A. Ojha, and S. Lee, “Evaluation of the quality of
n-detect scan atpg patterns on a processor,” in 2004 International Conferce on Test, Oct
2004, pp. 669–678.

[56] “ISCAS89 sequential benchmark circuits,” https://filebox.ece.vt.edu/~mhsiao/iscas89.
html.

[57] M. A. Nourian, M. Fazeli, and D. Hely, “Hardware trojan detection using an advised
genetic algorithm based logic testing,” Journal of Electronic Testing, vol. 34, no. 4, pp.
461–470, Aug 2018. [Online]. Available: https://doi.org/10.1007/s10836-018-5739-4

[58] C. Cadar, D. Dunbar, and D. Engler, “Klee: Unassisted and automatic generation of
high-coverage tests for complex systems programs,” in Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation, ser. OSDI’08. Berkeley,
CA, USA: USENIX Association, 2008, pp. 209–224.

[59] J. Burnim and K. Sen, “Heuristics for scalable dynamic test generation,” in 2008 23rd
IEEE/ACM International Conference on Automated Software Engineering, Sep. 2008, pp.
443–446.

[60] C. Zamfir and G. Candea, “Execution synthesis: A technique for automated software
debugging,” in Proceedings of the 5th European Conference on Computer Systems, ser.
EuroSys ’10. New York, NY, USA: ACM, 2010, pp. 321–334. [Online]. Available:
http://doi.acm.org/10.1145/1755913.1755946

[61] F. Charreteur and A. Gotlieb, “Constraint-based test input generation for java bytecode,”
in Software Reliability Engineering (ISSRE), 2010 IEEE 21st International Symposium on.
IEEE, 2010, pp. 131–140.

[62] S. Chandra, S. J. Fink, and M. Sridharan, “Snugglebug: a powerful approach to weakest
preconditions,” ACM Sigplan Notices, vol. 44, no. 6, pp. 363–374, 2009.

[63] P. Dinges and G. Agha, “Targeted test input generation using symbolic-concrete
backward execution,” in Proceedings of the 29th ACM/IEEE international conference on
Automated software engineering. ACM, 2014, pp. 31–36.

[64] K. Cong, F. Xie, and L. Lei, “Automatic concolic test generation with virtual prototypes for
post-silicon validation,” in 2013 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), Nov 2013, pp. 303–310.

192

https://doi.org/10.1007/s10836-017-5670-0
https://filebox.ece.vt.edu/~mhsiao/iscas89.html
https://filebox.ece.vt.edu/~mhsiao/iscas89.html
https://doi.org/10.1007/s10836-018-5739-4
http://doi.acm.org/10.1145/1755913.1755946

[65] B. Chen, K. Cong, Z. Yang, Q. Wang, J. Wang, L. Lei, and F. Xie, “End-to-end concolic
testing for hardware/software co-validation,” in 2019 IEEE International Conference on
Embedded Software and Systems (ICESS), June 2019, pp. 1–8.

[66] B. Chen, C. Havlicek, Z. Yang, K. Cong, R. Kannavara, and F. Xie, “Crete: A
versatile binary-level concolic testing framework,” in Fundamental Approaches to Software
Engineering, A. Russo and A. Schürr, Eds. Cham: Springer International Publishing,
2018, pp. 281–298.

[67] V. Herdt, D. Große, H. M. Le, and R. Drechsler, “Early concolic testing of embedded
binaries with virtual prototypes: A risc-v case study*,” in 2019 56th ACM/IEEE Design
Automation Conference (DAC), June 2019, pp. 1–6.

[68] B. Lin, K. Cong, Z. Yang, Z. Liao, T. Zhan, C. Havlicek, and F. Xie, “Concolic testing
of systemc designs,” in 2018 19th International Symposium on Quality Electronic Design
(ISQED), March 2018, pp. 1–7.

[69] L. Liu and S. Vasudevan, “Star: Generating input vectors for design validation by
static analysis of rtl,” in 2009 IEEE International High Level Design Validation and Test
Workshop, Nov 2009, pp. 32–37.

[70] ——, “Scaling input stimulus generation through hybrid static and dynamic analysis of
rtl,” ACM Transactions on Design Automation of Electronic Systems (TODAES), vol. 20,
no. 1, p. 4, 2014.

[71] D. Agrawal, S. Baktir, D. Karakoyunlu, P. Rohatgi, and B. Sunar, “Trojan detection using
ic fingerprinting,” in 2007 IEEE Symposium on Security and Privacy (SP ’07), May 2007,
pp. 296–310.

[72] Y. Jin and Y. Makris, “Hardware trojan detection using path delay fingerprint,” in 2008
IEEE International Workshop on Hardware-Oriented Security and Trust, June 2008, pp.
51–57.

[73] R. Rad, J. Plusquellic, and M. Tehranipoor, “A sensitivity analysis of power signal
methods for detecting hardware trojans under real process and environmental conditions,”
IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 18, no. 12, pp.
1735–1744, DECEMBER 2010.

[74] H. Salmani, M. Tehranipoor, and J. Plusquellic, “A novel technique for improving hardware
trojan detection and reducing trojan activation time,” IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, vol. 20, no. 1, pp. 112–125, Jan 2012.

[75] A. N. Nowroz, K. Hu, F. Koushanfar, and S. Reda, “Novel techniques for high-sensitivity
hardware trojan detection using thermal and power maps,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 33, no. 12, pp.
1792–1805, Dec 2014.

193

[76] S. Narasimhan, D. Du, R. S. Chakraborty, S. Paul, F. G. Wolff, C. A. Papachristou,
K. Roy, and S. Bhunia, “Hardware trojan detection by multiple-parameter side-channel
analysis,” IEEE Transactions on Computers, vol. 62, no. 11, pp. 2183–2195, Nov 2013.

[77] C. Bao, D. Forte, and A. Srivastava, “Temperature tracking: Toward robust run-time
detection of hardware trojans,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 34, no. 10, pp. 1577–1585, Oct 2015.

[78] S. K. Rao, D. Krishnankutty, R. Robucci, N. Banerjee, and C. Patel, “Post-layout
estimation of side-channel power supply signatures,” in 2015 IEEE International
Symposium on Hardware Oriented Security and Trust (HOST), May 2015, pp. 92–95.

[79] J. Plusquellic and F. Saqib, Detecting Hardware Trojans Using Delay Analysis. Cham:
Springer International Publishing, 2018, pp. 219–267.

[80] Y. Huang, S. Bhunia, and P. Mishra, “Mers: Statistical test generation for side-channel
analysis based trojan detection,” in Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, ser. CCS ’16. New York, NY, USA: ACM,
2016, pp. 130–141. [Online]. Available: http://doi.acm.org/10.1145/2976749.2978396

[81] B. Balaji, J. McCullough, R. K. Gupta, and Y. Agarwal, “Accurate characterization of the
variability in power consumption in modern mobile processors,” in Presented as part of
the 2012 Workshop on Power-Aware Computing and Systems. Hollywood, CA: USENIX,
2012.

[82] F. Farahmandi, R. Morad, A. Ziv, Z. Nevo, and P. Mishra, “Cost-effective analysis of
post-silicon functional coverage events,” in 2017 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2017, pp. 392–397.

[83] M. Ben-Ari, A. Pnueli, and Z. Manna, “The temporal logic of branching time,” Acta
informatica, vol. 20, no. 3, pp. 207–226, 1983.

[84] A. Pnueli, “The temporal logic of programs,” in 2013 IEEE 54th Annual Symposium on
Foundations of Computer Science. Los Alamitos, CA, USA: IEEE Computer Society, oct
1977, pp. 46–57.

[85] E. M. Clarke and E. A. Emerson, “Design and synthesis of synchronization skeletons
using branching time temporal logic,” in Logics of Programs, D. Kozen, Ed. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1982, pp. 52–71.

[86] G. Di Guglielmo, L. Di Guglielmo, A. Foltinek, M. Fujita, F. Fummi, C. Marconcini, and
G. Pravadelli, “On the integration of model-driven design and dynamic assertion-based
verification for embedded software,” Journal of Systems and Software, vol. 86, no. 8,
2013.

[87] “1850-2010 - IEEE Standard for Property Specification Language (PSL),” 2010.

[88] “1800-2012 - IEEE Standard for SystemVerilog–Unified Hardware Design, Specification,
and Verification Language,” 2012.

194

http://doi.acm.org/10.1145/2976749.2978396

[89] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T. Kanza, A. Landver,
S. Mador-Haim, E. Singerman, A. Tiemeyer et al., “The forspec temporal logic: A
new temporal property-specification language,” in International Conference on Tools and
Algorithms for the Construction and Analysis of Systems. Springer, 2002, pp. 296–311.

[90] A. Bauer and M. Leucker, “The theory and practice of salt,” in NASA Formal Methods
Symposium. Springer, 2011, pp. 13–40.

[91] D. Tabakov, G. Kamhi, M. Y. Vardi, and E. Singerman, “A temporal language for
systemc,” in 2008 Formal Methods in Computer-Aided Design, Nov 2008, pp. 1–9.

[92] H. Foster, K. Larsen, and M. Turpin, “Introduction to the new accellera open verification
library,” in DVCon’06: Proceedings of the Design and Verification Conference and
exhibition. Citeseer, 2006.

[93] F. Rogin, T. Klotz, G. Fey, R. Drechsler, and S. Rulke, “Automatic generation of complex
properties for hardware designs,” in 2008 Design, Automation and Test in Europe, March
2008, pp. 545–548.

[94] “Common weakness enumeration,” https://cwe.mitre.org/.

[95] “Arm trustzone,” https://developer.arm.com/technologies/trustzone.

[96] “Opencores,” https://www.opencores.org/.

[97] “Intel® software guard extensions,” https://software.intel.com/en-us/sgx.

[98] A. Ahmed, F. Farahmandi, Y. Iskander, and P. Mishra, “Scalable hardware trojan activation
by interleaving concrete simulation and symbolic execution,” in IEEE International Test
Conference (ITC), 2018.

[99] Y. Lyu and P. Mishra, “Automated trigger activation by repeated maximal clique
sampling,” in Asia and South Pacific Design Automation Conference (ASPDAC), Beijing,
China, January 13 - 16, 2020.

[100] D. Kroening and M. Purandare, EBMC: The Enhanced Bounded Model Checker,
http://www.cprover.org/ebmc.

[101] S. Williams, “Icarus verilog,” On-line: http://iverilog.icarus.com/, 2006.

[102] “Edautils website,” http://www.edautils.com.

[103] B. Dutertre, “Yices 2.2,” in Computer Aided Verification, A. Biere and R. Bloem, Eds.
Cham: Springer International Publishing, 2014, pp. 737–744.

[104] F. Corno, M. S. Reorda, and G. Squillero, “Rt-level itc’99 benchmarks and first atpg
results,” IEEE Design Test of Computers, vol. 17, no. 3, pp. 44–53, July 2000.

[105] “Trusthub,” https://www.trust-hub.org/, accessed: 2018-10-10.

195

https://cwe.mitre.org/
https://www.opencores.org/
http://www.edautils.com
https://www.trust-hub.org/

[106] L. Ferro, L. Pierre, Y. Ledru, and L. du Bousquet, “Generation of test programs for the
assertion-based verification of tlm models,” in 2008 3rd International Design and Test
Workshop, Dec 2008, pp. 237–242.

[107] B. Pal, A. Banerjee, A. Sinha, and P. Dasgupta, “Accelerating assertion coverage
with adaptive testbenches,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 5, pp. 967–972, May 2008.

[108] I. Beer, S. Ben-David, C. Eisner, and Y. Rodeh, “Efficient detection of vacuity in temporal
model checking,” Formal Methods in System Design, vol. 18, no. 2, pp. 141–163, Mar
2001. [Online]. Available: https://doi.org/10.1023/A:1008779610539

[109] S. Williams, “Icarus verilog,” http://iverilog.icarus.com.

[110] P. Mishra and N. Dutt, “Graph-based functional test program generation for pipelined
processors,” in Proceedings Design, Automation and Test in Europe Conference and
Exhibition, vol. 1, Feb 2004, pp. 182–187.

[111] J. Edmonds and E. L. Johnson, “Matching, euler tours and the chinese postman,”
Mathematical Programming, vol. 5, no. 1, pp. 88–124, 1973.

[112] J. Hennessy and D. Patterson, Computer Architecture: A Quantitative Approach.
Morgan Kaufmann Publishers, 2003.

[113] G. Zhang, W. Horn, and D. Sanchez, “Exploiting commutativity to reduce the cost of
updates to shared data in cache-coherent systems,” in 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), Dec 2015, pp. 13–25.

[114] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hestness, D. R.
Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib, N. Vaish, M. D. Hill, and
D. A. Wood, “The gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39, no. 2, pp.
1–7, Aug. 2011.

[115] R. M. Karp, Reducibility among Combinatorial Problems. Boston, MA: Springer US,
1972, pp. 85–103. [Online]. Available: https://doi.org/10.1007/978-1-4684-2001-2_9

[116] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo, The Maximum Clique Problem.
Boston, MA: Springer US, 1999, pp. 1–74.

[117] J. W. Moon and L. Moser, “On cliques in graphs,” Israel Journal of Mathematics, vol. 3,
no. 1, pp. 23–28, Mar 1965. [Online]. Available: https://doi.org/10.1007/BF02760024

[118] C. Bron and J. Kerbosch, “Algorithm 457: Finding all cliques of an undirected graph,”
Commun. ACM, vol. 16, no. 9, pp. 575–577, Sep. 1973.

[119] Y. Zhang, F. N. Abu-Khzam, N. E. Baldwin, E. J. Chesler, M. A. Langston, and N. F.
Samatova, “Genome-scale computational approaches to memory-intensive applications in
systems biology,” in Proceedings of the 2005 ACM/IEEE Conference on Supercomputing,
ser. SC ’05. Washington, DC, USA: IEEE Computer Society, 2005, pp. 12–.

196

https://doi.org/10.1023/A:1008779610539
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/BF02760024

[120] M. C. Schmidt, N. F. Samatova, K. Thomas, and B.-H. Park, “A scalable,
parallel algorithm for maximal clique enumeration,” Journal of Parallel and Distributed
Computing, vol. 69, no. 4, pp. 417 – 428, 2009. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0743731509000082

[121] L. De Moura and N. Bjørner, “Z3: An efficient smt solver,” in Proceedings
of the Theory and Practice of Software, 14th International Conference on Tools and
Algorithms for the Construction and Analysis of Systems, ser. TACAS’08/ETAPS’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 337–340. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1792734.1792766

[122] E. L. Lawler, J. Karel Lenstra, and A. H. G. Rinnooy Kan, “Generating all maximal
independent sets: Np-hardness and polynomial-time algorithms,” SIAM J. Comput.,
vol. 9, pp. 558–565, 08 1980.

[123] E. Tomita, A. Tanaka, and H. Takahashi, “The worst-case time complexity for generating
all maximal cliques and computational experiments,” Theoretical Computer Science, vol.
363, no. 1, pp. 28 – 42, 2006, computing and Combinatorics. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0304397506003586

[124] “Saededk90core - 90nm digital standard cell li-brary,” http://www.synopsys.com/
community/universityprogram/pages/library.aspx.

197

http://www.sciencedirect.com/science/article/pii/S0743731509000082
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://www.sciencedirect.com/science/article/pii/S0304397506003586
http://www.synopsys.com/community/universityprogram/pages/library.aspx
http://www.synopsys.com/community/universityprogram/pages/library.aspx

BIOGRAPHICAL SKETCH

Yangdi Lyu received his Ph.D. degree in the Department of Computer and Information

Science and Engineering, University of Florida, Gainesville, USA in 2020. He received his B.E.

degree in Department of Hydraulic Engineering from Tsinghua University, Beijing, China in

2011. His research interests include system-on-chip verification, hardware security validation,

and side channel attacks. He has published one book chapter, three journal papers and seven

conference papers. He has served as a reviewer of several premier international conferences and

journals.

198

	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	ABSTRACT
	1 Introduction
	1.1 SoC Validation Methods
	1.1.1 Formal Methods
	1.1.2 Simulation-based Validation
	1.1.3 Side-channel Analysis

	1.2 SoC Security Validation Challenges
	1.2.1 A Wide Variety of Vulnerabilities
	1.2.2 Controllability and Observability
	1.2.3 Lack of Effective and Scalable Validation Techniques

	1.3 Research Contributions
	1.4 Dissertation Organization

	2 Background and Related Work
	2.1 SoC Security Validation using Formal Methods
	2.2 SoC Security Validation using Simulation-based Validation
	2.2.1 Random/Constrained-Random Simulation
	2.2.2 Directed Test Generation using Formal Methods
	2.2.3 Statistical Methods
	2.2.4 Concolic Testing
	2.2.4.1 Concolic Testing of Software Designs
	2.2.4.2 Concolic Testing of Hardware Designs

	2.3 SoC Security Validation using Side-channel Analysis
	2.3.1 Dynamic Current based Side-Channel Analysis
	2.3.2 Path Delay based Side-Channel Analysis

	2.4 Summary

	3 System-on-Chip Security Assertions
	3.1 Assertion-based Validation
	3.1.1 Assertion Languages
	3.1.2 Automated Assertion Generation

	3.2 SoC Security Vulnerabilities
	3.2.1 Permissions and Privileges
	3.2.2 Resource Management
	3.2.3 Illegal States and Transitions
	3.2.4 Buffer Issues
	3.2.5 Information Leakage
	3.2.6 Numeric Exceptions
	3.2.7 Malicious Implants

	3.3 SoC Security Assertions
	3.3.1 Embedding of Security Assertions
	3.3.2 Generation of Security Assertions

	3.4 Case Studies
	3.4.1 Arbiter
	3.4.2 PCI
	3.4.3 USB Protocol
	3.4.4 A Simplified Memory Design
	3.4.5 Gaussian Noise Generator (GNG)
	3.4.6 AES

	3.5 Summary

	4 Scalable Concolic Testing of RTL Models
	4.1 Overview and Problem Formulation
	4.1.1 Modeling of Targets
	4.1.2 Overview

	4.2 Test Generation using Concolic Testing
	4.2.1 RTL Code Instrumentation
	4.2.2 Contribution-aware Edge Realignment
	4.2.3 Distance Computation
	4.2.4 Path Exploration
	4.2.4.1 Dynamic Distance Update

	4.3 Optimizations for Covering Multiple Targets
	4.3.1 Target Pruning
	4.3.2 Target Clustering

	4.4 Experiments
	4.4.1 Experimental Setup
	4.4.2 Performance Comparison
	4.4.3 Scalability Comparison
	4.4.4 Effect of Target Pruning
	4.4.5 Effect of Edge Realignment

	4.5 Summary

	5 Test Generation for Activation of Assertions
	5.1 Problem Formulation
	5.2 Conversion of Assertions to Branches
	5.2.1 Simplified Abstract Syntax Tree
	5.2.2 Adjust AST with Timing
	5.2.3 Conversion of AST to Branch Target
	5.2.4 Complexity Analysis

	5.3 Test Generation using Concolic Testing
	5.3.1 Overview
	5.3.2 Selection of Alternate Branches in CFG

	5.4 Experiments
	5.4.1 Experimental Setup
	5.4.2 Benchmarks and Assertions
	5.4.3 Test Generation Results

	5.5 Summary

	6 Test Generation for Validation of Cache Coherence Protocols
	6.1 Background
	6.2 Test Generation for Validation of Cache Coherence Protocols
	6.3 Scalable Test Generation using Quotient Space
	6.4 Experiments
	6.4.1 Experimental Setup
	6.4.2 Test Generation for Quotient Protocol

	6.5 Summary

	7 Scalable Activation of Rare Triggers
	7.1 Motivation
	7.1.1 Maximal Clique Problem

	7.2 Scalable Activation of Rare Triggers
	7.2.1 Definition and Notations
	7.2.2 Mapping Trigger Activation to Clique Cover Problem
	7.2.3 Directed Test Generation Scheme
	7.2.4 Test Generation Algorithms
	7.2.4.1 Test Generation using Clique Enumeration
	7.2.4.2 Efficient Test Generation using Clique Sampling and Lazy Construction

	7.2.5 Scalable TRAMAC by Parallelization of Clique Sampling
	7.2.6 Effectiveness of Random Clique Sampling

	7.3 Experiments
	7.3.1 Experimental Setup
	7.3.2 The Effects of Trigger Points
	7.3.3 Performance Evaluation
	7.3.4 Parallelism Evaluation
	7.3.5 Compactness and Efficiency
	7.3.6 Trigger Coverage

	7.4 Summary

	8 Trojan Detection using Current-based Side-Channel Analysis
	8.1 Problem Formulation and Motivation
	8.1.1 Problem Formulation
	8.1.2 An Illustrative Example
	8.1.3 Motivation and Research Challenges

	8.2 Generation of Effective Test Patterns
	8.2.1 Generation of the First Patterns
	8.2.2 Searching for the Best Succeeding Pattern
	8.2.2.1 Initialization
	8.2.2.2 Fitness Computation
	8.2.2.3 Selection
	8.2.2.4 Crossover and Mutation

	8.2.3 Selection of TriggerLimit

	8.3 Experiments
	8.3.1 Experimental Setup
	8.3.2 Generation of Hardware Trojans
	8.3.3 Performance Evaluation
	8.3.3.1 Sensitivity comparison
	8.3.3.2 Detected Trojans
	8.3.3.3 Test generation time

	8.3.4 Evaluation of Original Switching
	8.3.5 Concurrency of MaxSense

	8.4 Summary

	9 Trojan Detection using Delay-based Side-Channel Analysis
	9.1 Test Generation for Path Delay Analysis
	9.1.1 Test Generation for Path Delay Maximization
	9.1.2 Hamming-distance based Reordering

	9.2 Experimental Results
	9.2.1 Experimental Setup
	9.2.2 Path Delay Computation
	9.2.3 Evaluation Criteria
	9.2.4 Statistical Evaluation

	9.3 Summary

	10 conclusions and future work
	10.1 Conclusions
	10.2 Future Research Directions

	APPENDIX: LIST OF PUBLICATIONS
	REFERENCES
	BIOGRAPHICAL SKETCH

