
Lightweight and Trust-aware Routing in NoC based SoCs

Subodha Charles and Prabhat Mishra
Department of Computer and Information Science and Engineering

University of Florida, Gainesville, Florida, USA

Abstract—Increasing System-on-Chip (SoC) design complex-
ity coupled with time-to-market constraints have motivated
manufacturers to integrate several third-party Intellectual
Property (IP) cores in their SoC designs. IPs acquired from
potentially untrusted vendors can be a serious threat to the
trusted IPs when they are connected using the same Network-
on-Chip (NoC). For example, the malicious IPs can tamper
packets as well as degrade SoC performance by launching
DoS attacks. While existing authentication schemes can check
the data integrity of packets, it can introduce unacceptable
overhead on resource-constrained SoCs. In this paper, we
propose a lightweight and trust-aware routing mechanism to
bypass malicious IPs during packet transfers. This reduces the
number of re-transmissions due to tampered data, minimizes
DoS attack risk, and as a result, improves SoC performance
even in the presence of malicious IPs. Experimental results
demonstrate significant improvement in both performance and
energy efficiency with minor impact on area overhead.

Keywords-system-on-chip; network-on-chip; security

I. INTRODUCTION

Reusable hardware Intellectual Property (IP) based
System-on-Chip (SoC) design has emerged as a perva-
sive design practice in the industry to dramatically reduce
design/verification cost while meeting aggressive time-to-
market constraints [1]. Growing reliance on these pre-
verified hardware IPs, often gathered from untrusted third-
party vendors, severely affects the security and trustworthi-
ness of SoC computing platforms [2; 3]. Since the malicious
third party IPs share the same Network-on-Chip (NoC) with
secure IPs, malicious IPs can adversely affect the communi-
cation between the secure IPs. Figure 1 shows an NoC-based
SoC divided into secure and non-secure zones similar to the
architecture proposed in ARM TrustZone architecture [4].
An IP in one secure zone (top left) communicates secure
information with a secure IP in the other zone (bottom right).
Since the packets traverse through the non-secure zone, the
presence of a malicious IP can tamper the packets.

Consider a scenario where the integrity of exchanged data
is ensured using a message authentication code (MAC) . The
sender IP sends a packet together with an authentication
tag, and the receiver re-computes the tag to check for data
integrity. If it doesn’t match, the packet has been tampered
during communication, and a re-transmission is required.
This method of error correction is widely employed in NoC-
based SoCs [5]. However, re-transmissions due to corrupt
packets can lead to several problems:

• Increased latency because of re-transmission as well as
additional stall cycles introduced by the IP cores while
waiting for the requested data.

• This can increase the number of packets traversing the
network, and as a result, increased energy consumption
and performance penalty [6].

• In MAC-then-encrypt protocols [7]1, authentication tag
is computed on the plaintext, appended to the data, and
then tag and plaintext are encrypted together. When
MAC is computed in this way, the receiver IP has
no way of knowing whether the message was indeed
authentic or tampered until the message is decrypted.
Therefore, the resources spent to decrypt a tampered
packet is wasted.

Figure 1: Overview of a typical SoC architecture with secure
and non-secure zones.

Systematic exploitation of error correction protocols, such
as the one explained above, can lead to Denial-of-Service
(DoS) attacks. For example, a malicious IP can corrupt data
on purpose and cause continuous re-transmissions leading to
a DoS attack [8]. Specifically, our threat model is as follows.

Threat Model: Figure 1 shows a standard NoC-based
many-core architecture with IPs connected in a Mesh topol-
ogy. Each IP connects to a router via a network interface.
The network interface accommodates the authentication
scheme which implements MAC-based authentication [9].
A packet originating from a source IP (src) in a secure
zone has to traverse through the non-secure zone in order
to reach the destination IP (dest) in another secure zone.
The IPs in the non-secure zone are potentially malicious.
In reality, out of all the potentially malicious IPs, only a
small fraction is actually malicious. We call them malicious
IPs (MIP) in this paper. If the packet traverses through
such an MIP, it can tamper with the packet and therefore,

1MAC-then-encrypt is the standard method used in TLS [7].

at dest, the authentication tag computation will not match
and the packet will be dropped. The src will re-transmit
the packet since a response is not received from the dest
within the time-out period. The problem of minimizing this
impact gets aggravated due to two challenges. (1) The MIP
will not always behave maliciously. In other words, it will
tamper packets only in sporadic intervals. (2). Since the src
depends on the response from the dest to know whether the
packet was received or not, the MIP can tamper the packet
between src and dest or tamper the response packet between
dest and src, and both of these scenarios lead to the same
outcome from the src’s point of view. We consider both
of these challenges when proposing our solution. A similar
threat model was used in a previous study that proposed
countermeasures for DoS attacks [8].

Previous work on securing NoC explored lightweight
encryption and authentication [9], route randomization, data
scrambling and node obfuscation [10]. DoS attack mitigation
has also been studied in the context of NoC [11]. However,
none of these solutions are capable of mitigating the perfor-
mance and energy overhead caused by MIPs during an attack
under the given threat model. In this paper, we propose
a trust-aware routing protocol that avoids MIPs when two
secure IPs are communicating with each other. Our proposed
approach leads to less re-transmissions, and as a result,
improved performance and energy efficiency. Trust-aware
routing can complement existing NoC attack detection and
mitigation techniques by allowing on-chip communication
even in the presence of an adversary while minimizing the
energy and performance overhead.

Our major contributions can be summarized as follows;

1) We propose a “trust model” that effectively calculates
trust between neighboring routers and propagates trust
values through the NoC.

2) We have developed a routing protocol that uses the trust
values between routers to make routing decisions such
that the MIPs are avoided by packets when routing from
source to destination.

3) We have evaluated the effectiveness of our approach us-
ing both real benchmarks and synthetic traffic patterns
to demonstrate that it leads to significant improvement
in both performance and energy efficiency.

The paper proposes a routing protocol that avoids MIPs
in the NoC rather than detecting them. Therefore, our
approach can be used together with any MIP detection
mechanism while increasing the overall performance and
energy efficiency. The remainder of the paper is organized
as follows. Section II discusses the related approaches
to highlight the need for our proposed work. Section III
presents our proposed NoC trust model. Section IV describes
our trust-aware routing protocol that utilizes the NoC trust
model. Section V presents the experimental results. Finally,
Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

In this section, we first survey the related approaches.
Next, we demonstrate why the existing approaches can lead
to unacceptable design overhead.

A. Related Work

Previous research on securing the NoC has proposed
lightweight security schemes [12; 13], DoS attack mitigation
techniques [11; 14; 15], and methods to prevent side-channel
attacks [16; 10]. Most of the methods try to exploit the
unique characteristics offered by the structure of the NoC
and traffic transferred through the NoC when developing
security schemes [17]. The SurfNoC architecture utilized the
unique nature of NoC communication by time multiplexing
the links for different domains [18]. This allows packets of
one type to traverse the network without interfering with
packets from other domains, and as a result, it improves
performance and minimizes DoS attack risk. Solutions to
address the challenges associated with side channel attacks
on NoC try to use route randomization, data scrambling
and node obfuscation [10]. ARM presented the TrustZone
architecture which divides the NoC as secure and non-secure
zones [4]. However, to the best of our knowledge, none
of the previous work address the scenarios outlined in this
paper.

The concept of “trust” between inter-connected entities
has been studied before in the networking domain [19].
It tries to enhance the security of distributed networks
such as ad-hoc networks by identifying attacks against trust
evaluation systems and building defense techniques based on
trust models. Concepts such as “web-of-trust” and “pretty-
good-privacy” (PGP), which are widely used in internet
communication, establish a similar notion that discuss the
authenticity of binding a public key to the owner [20]. The
OpenPGP email protocol is one such example [21]. Being
tightly coupled together, entities on an NoC interact heavily
with each other when facilitating on-chip communication.
Yet, the concept of trust when packets are routed through
the NoC has not yet been explored.

B. Motivation

Lightweight authentication schemes implemented on
NoC-based SoCs, try to provide desired security while con-
suming minimum number of cycles. However, if the MAC
fails to match at the receiver’s end, the src has to re-transmit
again, leading to wasted effort in repeated NoC traversal and
MAC calculation [5]. The challenge is aggravated in MAC-
then-encrypt protocols because MAC can only be calculated
and matched after decryption is done. If the packet is
tampered, time and energy spent on decryption is wasted.
To analyze these overheads, we ran FFT, RADIX (RDX),
FMM and LU benchmarks from the SPLASH-2 benchmark
suite on an 8 × 8 Mesh NoC-based SoC with 64 cores
which implements a MAC-then-encrypt security protocol

and XY routing protocol. The behavior of an MIP was
simulated by one of the IPs along the routing path dropping
n consecutive packets after every p (period) packets. NoC
delay (total NoC traversal delay for all packets) including
encryption/decryption and MAC calculation time, execution
time and number of packets injected were recorded with and
without the presence of an MIP. The encryption/decryption
and authentication process is assumed to take 20 cycles per
transmission [22]. Results are shown in Figure 2a, Figure 2b,
and Figure 2c, respectively. We observed 67.2% increase in
NoC delay and a 4.7% increase in execution time on average
across all benchmarks. The number of packets injected
increased by 60.1%. The combination of execution time
and number of injected packets directly affect the energy
consumption since both time spent to execute the task and
dynamic power are increased.

(a) NoC delay (b) Execution time

(c) No. of packets injected

Figure 2: NoC delay, execution time and number of packets
injected comparison with and without the presence of an
MIP when p = 20 and n = 14.

It is evident that in addition to checking data integrity,
a mechanism to avoid MIPs when routing through the non-
secure zone can lead to less re-transmissions, and as a result,
increased performance and energy efficiency.

III. NOC TRUST MODEL

This section describes our proposed trust model to quan-
titatively measure the trust between two nodes. Trust is
established between two nodes to handle packets without
tampering with the data. In particular, one node trusts the
other node to perform the intended action on the received
packet (in the case of routing, forward the packet to the
next hop). In this paper, the first node is referred to as
the producer (α) and the second node as the consumer
(β). We introduce the notation {producer → consumer}
(α → β) to denote a trust relationship2. Trust can be
established in two ways - (1) delegated trust, and (2) direct

2The producer and consumer notations are different from src and dest
since any two routers along the routing path can be producer/consumer
whereas src and dest refer to the origin of the packet and its destination,
respectively.

trust. Direct trust is established when a node calculates trust
about one of its neighbors. Trust is said to be delegated
when one node recommends a consumer node to another
producer node that is not directly connected to the consumer.
The recommending node is referred to as recommender.
Figure 3a shows such an example. In this three node setup,
direct trust can be established between B and C, and A and
B. But, trust between A and C can only be established via
B’s recommendation. Therefore, A → C has a delegated
trust relationship.

(a)
(b)

(c) (d)

Figure 3: Trust delegation across NoC. The values on the
arrows represent the trust. For example, T1 in (a) denotes
T

(a)
A→B where the superscript (a) corresponds to figure 3a.

To quantify trust between two entities, a measure of trust
is required. Keeping a binary value per node (either trusted
or not) doesn’t capture the entire trust model due to several
reasons: (i) Trust can be delegated (in the example in Figure
3a, the amount of trust A places on C depends on how much
A trusts B), (ii) a malicious node might not launch an attack
at first, but do so after a while or periodically. Therefore, we
assign a value (denoted Tα→β) between -1 and 1 for each
trust relationship (−1 ≤ Tα→β ≤ 1) to indicate a trust value
in the “potentially malicious” spectrum. The two bounds are
defined as follows:

• When the producer is confident that the consumer will
always function correctly: Tα→β = 1.

• When the producer is confident that the consumer is
definitely malicious: Tα→β = −1

In addition to the two bounds, Tα→β = 0 implies that
the producer has no idea whether the consumer is malicious
or not. Therefore, at the beginning of network packet trans-
mission, all trust relationships are initialized to the value
of zero. During operation, with information received from
nodes, trust values are calculated. It is important to note that,
when B recommends C to A (delegated trust), T (a)

A→C can be
established only if T (a)

A→B ≥ 0. In other words, A should not
trust its enemy to recommend someone as trustworthy. Once
this condition is met, we present three axioms such that the
trust delegation calculation adheres to those. The remainder
of this section describes these axioms (Section III-A) and
elaborate how delegated trust (Section III-B) and direct trust
(Section III-C) are calculated.

A. Axioms for Trust Delegation

Axiom 1: In delegated trust, trust value between producer
and consumer should not be higher than the trust between
producer and recommender as well as the trust between
recommender and consumer. This can be formalized using
Figure 3a; ∣∣∣T (a)

A→C

∣∣∣ ≤ min(T (a)
A→B , T

(a)
B→C) (1)

Axiom 2: Producer receiving the same recommendation
about the same consumer via multiple different recom-
menders should not reduce the trust between producer and
consumer. In other words, the producer will be more certain
about the consumer or at least maintain the same level of
certainty if the producer obtains an extra recommendation
that agrees with the producer’s current opinion. For example,
Figure 3a and Figure 3b show two scenarios where A in
first figure establishes trust with C via only one path and in
the second scenario, trust with C is established through two
same-trust paths.

T
(b)
A→C ≥ T

(a)
A→C ≥ 0, for T1 > 0 and T2 ≥ 0 (2)

T
(b)
A→C ≤ T

(a)
A→C ≤ 0, for T1 > 0 and T2 < 0 (3)

This holds only if the multiple paths give the same recom-
mendations.

Axiom 3: In a setup similar to Figure 3c, it is possible to
receive multiple recommendations from a single node (B).
Compared to that, recommendations from independent nodes
such as the ones shown in Figure 3d (B and E) should
always be trusted more. In other words, recommendations
from independent nodes can reduce uncertainty more ef-
fectively than the recommendations from correlated nodes.
Formally;

T
(d)
A→C ≥ T

(c)
A→C ≥ 0, if T

(c)
A→C ≥ 0 (4)

T
(d)
A→C ≤ T

(c)
A→C ≤ 0, if T

(c)
A→C < 0 (5)

B. Delegated Trust Calculation

The calculation of trust from the point of view of any
given node should adhere to the above axioms. For the ex-
ample shown in Figure 3a, we established that the necessary
condition is to satisfy Axiom 1. To achieve this, trust can
be calculated by concatenation as T (a)

A→C = T
(a)
A→B · T

(a)
B→C .

In general;
Tα→β = Tα→γ · Tγ→β (6)

where γ is the recommender. As mentioned before, this can
only be calculated if Tα→γ ≥ 0. It can be noticed that if α
has no idea about the trustworthiness of γ (Tα→γ = 0), no
matter how much γ trusts β, α won’t trust β (Tα→β = 0).

In case of multi-path trust delegation such as the example
in Figure 3b, axioms 2 and 3 have to be satisfied in addition
to Axiom 1. When α can establish trust with β via two

paths, one via δ and another via ε (α−δ−β and α−ε−β),
we combine the ratios of trust concatenation.

Tα→β = z1 · (Tα→δ · Tδ→β) + z2 · (Tα→ε · Tε→β) (7)

where

z1 =
Tα→δ

Tα→δ + Tα→ε
, and z2 =

Tα→ε
Tα→δ + Tα→ε

(8)

C. Direct Trust Calculation

We calculate direct trust based on the sigmoid function
(1
1+e−x), where x keeps track of the number of successful

transmissions at a given router. Since the sigmoid function
ranges between 0 and 1, we scaled it to range between -1
and 1 (Figure 4).

S(x) = 2 · 1

1 + e−x
− 1 (9)

Assume that α and β are neighbors. Initially, α has no
trust information about β. Therefore, x = 0, and as a result,
S(x) = 0. When α learns about β’s behavior, it changes
the value x and re-calculates S(x). For example, if α gets
a positive feedback about β’s trust, direct trust is calculated
as Tα→β = S(x + δ) where δ is a small positive number.
Since S(x) is an increasing function as shown in Figure 4,
α’s trust about β is now increased. Similarly, to reduce trust,
Tα→β = S(x− δ). Therefore, direct trust is calculated as;

x = x± δ, Tα→β = S(x) (10)

Figure 4: Sigmoid function S(x) variation with input x.

IV. TRUST-AWARE ROUTING

Once the trust values are established, they are used by
our proposed routing protocol. The basic idea is to route
packets through highly trusted nodes so that MIPs are
avoided. It is important to note that, trust values have to be
dynamically updated during SoC execution since MIPs shift
between malicious and non-malicious behavior according to
our threat model. The following subsections explain in detail
how direct trust and delegated trust are updated at each
router (Section IV-A and Section IV-B, respectively) and
how those trust values are used in routing (Section IV-C).

A. Updating Trust

According to the threat model described in Section I, if a
src IP doesn’t receive a response to the packet sent, it can
be because of two reasons;

• Message was lost between src and dest: In this case,
a response is never received. The src times out after
a while and re-transmits the packet. The routers along
the routing path observe that this is a re-transmission
and reduces the direct trust of their next-hop neighbors.
Direct trust is reduced since a packet took that path
before and it was tampered. Direct trust re-calculation
is done every time a re-transmission is observed. Once
the trust values go down compared to the other possible
paths, the packet takes an alternate path avoiding the
MIP according to the routing protocol and is received
at the dest.

• Response was lost between dest and src: This means
that the packet was received at dest, but the response
was not received by src. Again, src sends a re-
transmission which is received by dest. dest observes
that this is an address that was previously served and
sends the response again. Again, routers along the path
observes that this is a re-transmission and reduces direct
trust. This process is repeated until the response is
received by src. This causes the routers between src
to dest to reduce trust unnecessarily (false negative).
However, we don’t try to correct it because to do that,
src has to keep track of all the paths the re-transmitted
packets took to reset trust values. Furthermore, the
routers should also maintain previous trust values.
Therefore, we allow false negatives to happen. With
several ongoing communications overlapped between
routers, the false negatives will regain trust over time.

Considering these scenarios, we use an event-driven ap-
proach to update trust. The overview of our algorithm is
shown in Algorithm 1. To keep track of the re-transmissions
and to increase/decrease direct trust according to that,
we implement a separate data structure at each router-
Communication Table (ComTable). It stores each pending
communication using src, dest, address of corresponding
memory location (addr), timestamp to indicate when the
entry was added to the table and a re-transmission flag (rtx
flag). When a new packet arrives at a router, it checks to see
if there is a pending communication between the same src
and dest by matching src and dest fields in the packet header
to entries in the ComTable (line 1). If yes, it can either
be for the same address (line 3) or for a different address.
If it is for a different address, it means that the previous
communication has completed successfully. If it is for the
same address, then it is identified as a re-transmission. The
rtx flag is set to indicate this (line 4) and direct trust with the
next hop (getNextHop routine elaborated in Section IV-C)
is reduced (line 6). If it is a new communication, the rtx
flag is checked to see whether the previous communication
between the same src and dest has not been flagged as a re-
transmission before (line 9). If it has not been flagged before,
the path can be trusted. Then the direct trust with next hop

router is increased (line 11) and the trust is delegated (line
12) to other neighbors as explained in Section IV-B. If it has
already been flagged as a re-transmission, no further action
is taken since it has already been penalized and as a result,
direct trust has been reduced in a previous iteration (lines
4-6). In both cases, when it is a new communication, the
ComTable is updated by removing the old entry and adding
the new one (line 14). If it is the first communication that is
passing through that router for that src and dest pair, a new
entry is added in the ComTable (line 18). The ComTable
also records a timestamp for each entry. The timestamp is
used to stop the exponential growth of the ComTable by
removing old entries after a certain time threshold.

One limitation of this model is that it assumes that an
IP will only send a second request to the same destination
once the first one is served. For architectures that support
multiple pending requests, we can easily extend this scheme.
The sender maintains a list of pending requests and adds a
header bit in the next packet to indicate that this is another
request with the same src, dest, but has a different address.
Then, the routers check this bit before removing the previous
entry and trust is increased only if this bit is not set. The
rest of the methodology remains the same.

B. Delegating trust in the NoC

Once a communication is successfully completed, trust
about the next-hop (Tα→β) is delegated to nearby routers
by each router (delegateTrust routine in Algorithm 1).
This is done by broadcasting a packet that contains Tα→β
with a pre-defined time-to-live (τ) value in the header in all
directions except for the direction of the next hop router. In
our experiments, we set τ = 1. This causes the trust about
the next hop router to be delegated to all other neighbouring
routers. An illustrative example of this mechanism is shown
in Figure 5. Once router α completes a communication
where according to the routing protocol, the next hop router
is β, it sends the direct trust value (Tα→β) to B,D and E.
These three routers now calculate TB→β , TD→β and TE→β ,
which are delegated trust values, according to the trust model
in Section III-B (Equations 6). As a result, B,D and E learn
about the trustworthiness of a router (β) two hops away from
them.

It is possible that this delegated trust packet itself is
tampered and in that case, delegated trust will not be
updated. This has no impact since a delegated trust packet
being dropped means an MIP is on that path and its trust
value will be negative. Delegated trust is updated only when
it comes from a trusted source with a positive trust value
according to Equation 6.

C. Routing Protocol

The goal of the routing protocol is to avoid MIPs in
the non-secure zone while routing through the most trusted
routers. Each router stores the trust values of routers that

Algorithm 1: Updating direct and delegated trust
/* This routine is called by each router every time

a packet arrives. */
/* Input: packet. */
/* Current node is assumed to be α */

1 entry ← checkComTable(packet)
2 if entry 6= NULL then
3 if entry.addr = packet.addr then
4 entry.rtxF lag ← 1
5 β ← getNextHop(packet)
6 Tα→β ← S(x− δ)
7 end
8 else
9 if entry.rtxFlag 6= 1 then

10 β ← getNextHop(packet)
11 Tα→β ← S(x+ δ)
12 delegateTrust()
13 end
14 updateComTable(packet)
15 end
16 end
17 else
18 updateComTable(packet)
19 end

/* Routine:checkComTable */
/* Input: packet */

20 for entry ∈ comTable do
21 if entry.src = packet.src & entry.dest = packet.dest then
22 return entry
23 end
24 end
25 return NULL

/* Routine:updateComTable */
/* Input: packet */

26 for entry ∈ comTable do
27 if entry.src = packet.src & entry.dest = packet.dest then
28 comTable.delete(entry)
29 end
30 end
31 newEntry.src← packet.src, newEntry.dest← packet.dest
32 newEntry.addr ← packet.addr, newEntry.rtxF lag ← 0
33 newEntry.timestamp← 0
34 comTable.add(newEntry)

are one (direct trust) and two hops away from it (delegated
trust). When a router receives a packet, it first updates the
trust values according to Algorithm 1. Next, the packet is
forwarded to the next hop. Both forwarding and Algorithm 1
use the getNextHop routine, which works as follows;

• Read the dest ID of the packet
• Compare dest and current router IDs

– If dest is located in the same row or column as the
current router, next hop is the neighbouring router
along that row or column towards dest.

– Else, check the sum of trust values of routers one and
two hops towards the dest, and select the neighbor
along the path which has the largest trust value as
the next hop. If two paths have the same largest trust
value, randomly pick one.

For example, in Figure 5, assume a packet arrives at router
B with the destination G. Since B is not in the same row
or column as G, next hop is selected based on trust values.
When considering routers that are one and two hops away
from B in the direction of G, there are three possible paths:

Figure 5: NoC with routers connected in a 3 × 3 Mesh
topology. Illustrative example showing that once a commu-
nication completes, the direct trust between α and β (Tα→β)
is delegated to nodes one hop away from α.

B−α−β, B−α−E, and B−C−E. Therefore, B calculates
max(TB→α+TB→β , TB→α+TB→E , TB→C +TB→E) and
if TB→C+TB→E gives the maximum trust value, next hop is
C. Considering nodes that are always towards the destination
(in the example, B only considers α and C as next hops)
ensures that the packet traverses the network following only
one of the shortest paths. This together with the use of
bi-directional links ensures the deadlock and livelock free
nature of the routing algorithm. Our routing protocol is
identical to the congestion-aware routing protocol presented
in [23] except that we are using trust values instead of
congestion values. Therefore, we can show that our routing
protocol is also is also deadlock-free and livelock-free using
the same arguments from [23].

It is important to note that our trust-aware routing protocol
works even if all the IPs in the non-secure zone are malicious
or, MIPs isolate the untrusted zone into several disconnected
sub zones of secure IPs. If all the neighbors of a router has
a trust value of −1 (all routers are malicious) it will still
be routed through that path since −1 is the largest value.
Therefore, the packet is guaranteed to reach the destination,
but might be corrupted. If there is a path from source to
destination that doesn’t contain an MIP, our approach is
guaranteed to find that path and deliver the packets without
being corrupted.

V. EXPERIMENTAL RESULTS

This section explores the feasibility and effectiveness
of our approach by presenting experimental results and
discussing the overheads associated with it.

A. Experimental Setup

We modeled an 8 × 8 Mesh NoC-based SoC with 64
cores using the gem5 cycle-accurate full-system simula-
tor [24; 25]. The interconnection network was built on top
of “GARNET2.0” model that is integrated with gem5 [26].
Each router in the Mesh topology connects to four neighbors
and a local IP via bidirectional links. Each IP connects to the
local router through a network interface, which implements
the MAC-then-encrypt protocol. The default XY routing
protocol was modified to implement our trust-aware routing

protocol. In our experiments, we used δ = 0.5 (Equation 10)
when increasing/reducing direct trust. The value 0.5 was
chosen experimentally such that the algorithm chooses al-
ternative paths as quickly as possible while minimizing the
impact of false negatives.

We tested the system using 4 real benchmarks (FFT,
RADIX, FMM, LU) from the SPLASH-2 benchmark suite
and 7 synthetic traffic patterns (uniform random (URD),
tornado (TRD), bit complement (BCT), bit reverse (BRS),
bit rotation (BRT), shuffle (SHF), transpose (TPS)). When
running both real benchmarks and synthetic traffic patterns,
each IP in the top (first) row of the Mesh NoC instantiated
an instance of the task. Real benchmarks used 8 memory
controllers that provide the interface to off-chip memory
which were connected to the bottom eight IPs. As synthetic
traffic patterns don’t use memory controllers, the destination
of injected packets were selected based on the traffic pattern.
For example, uniform random selected the destination from
the IPs at the bottom row with equal probability. Source
and destination modelling was done this way to mimic the
secure and non-secure zones. Four MIPs were modeled and
assigned at random to IPs in the other six rows. To simulate
the sporadic behavior of the MIPs as discussed in the threat
model, each MIP corrupted n consecutive packets after every
p (period) packets. According to our architecture model, the
IPs in the top row (secure zone) communicate with the IPs
in the bottom row (secure zone) through the other 6 rows
(non-secure zone) of IPs out of which, 4 are malicious. Our
approach will work the same for any other secure, non-
secure zone selection and MIP placement. The output of
the gem5 simulation statistics was fed to the McPAT power
modelling framework to obtain power consumption [27].

B. Performance Improvement

Figure 6 shows results related to performance improve-
ment when running real benchmarks. The figure compares
performance results without the presence of MIPs (Without
MIP), with the presence of MIPs when default XY routing
is used (With MIP-Default), and when our approach is used
with the presence of MIPs (With MIP-Our Approach). We
can observe that our approach reduces NoC delay by 53%
(43.6% on average) compared to the default XY routing
protocol. Execution time and number of packets injected
are reduced by 9% (4.7% on average) and 71.8% (66% on
average), respectively. When the MIPs corrupt packets, re-
transmissions are caused and its trust is reduced. As a result,
alternative paths are chosen. The performance improvement
depends on how quickly the algorithm chooses an alternative
path once an attack is initiated.

In addition to real benchmarks, we experimented with
synthetic traffic traces as well. Results related to synthetic
traffic patterns are shown in Figure 7. The comparison is
the same as that of Figure 6. It shows that NoC delay
and number of packets injected on the NoC are reduced by

(a) NoC delay (b) Execution time

(c) No. of packets injected

Figure 6: NoC delay, execution time and number of packets
injected with and without our trust-aware routing model
when running real benchmarks. p = 20 and n = 14. This
figure is an extension of Figure 2.

57.1% (51.2% on average) and 56.7% (50.1% on average),
respectively.

(a) NoC delay (b) No. of packets injected

Figure 7: Execution time and number of packets injected
with and without our trust-aware routing model when run-
ning synthetic traffic patterns. p = 20, n = 14.

C. Energy Efficiency Improvement

As a result of reduced execution time and reduced number
of re-transmissions, the energy consumption of the SoC
also reduces. Figure 8 shows the energy consumption com-
parison. Note that 47.4% (28.3% on average) less energy
is consumed by real benchmarks when routing using our
approach compared to the default XY routing in the presence
of MIPs. Synthetic traffic demonstrate energy savings of up
to 75.6% (67.6% on average). Compared to real benchmarks,
synthetic traffic patterns show more energy reduction since
synthetic traffic focuses only on network traversals unlike
real benchmarks which goes through the entire processor
pipeline including instruction execution, NoC traversal and
memory operations.

D. Overhead Analysis

To implement our routing protocol, additional hardware is
required at each router. This includes extra memory to store
trust values and hardware to calculate, update and propagate
trust. To accommodate a row in the ComTable, 10 bytes
of memory is required (6-bit src, 6-bit dest, 32-bit addr,

Figure 8: Energy consumption with and without our trust-
aware routing model when running real benchmarks and
synthetic traffic patterns. p = 20, n = 14.

1-bit rtx flag, 32-bit timestamp). The maximum size of the
ComTable during our experiments was 24. This leads to 240
bytes of extra memory requirement per router.

We used the default 5-stage router pipeline (buffer write,
virtual channel allocation, switch allocation, switch traversal
and link traversal) implemented in gem5. Once separate
hardware is implemented, computations related to trust can
be carried out in a pipelined fashion in parallel to the
computations in the router pipeline. To evaluate the area
overhead, we modified the RTL design of an open source
NoC router [28] and synthesized the design with 180nm
GSCLib library from Cadence using Synopsis Design Com-
piler. This resulted in an area overhead of 6% compared
to the default router. This shows that the proposed trust-
aware routing protocol is lightweight and can be effectively
implemented at routers in an NoC-based SoC.

VI. CONCLUSIONS

In this paper, we proposed a trust-aware routing protocol
that is capable of routing packets by avoiding malicious IPs
in NoC-based SoCs. The routing protocol is implemented
based on a trust model that calculates how much a neigh-
boring node can be trusted to route packets through that
router. We proposed an effective trust model that can be
easily scaled to any number of IPs. The experiments con-
ducted by using both real benchmarks and synthetic traffic
patterns demonstrated significant performance and energy
efficiency improvements compared to traditional XY routing
in the presence of a MAC-then-encrypt security protocol.
Overhead analysis has revealed that the area overhead to
implement the routing protocol is only 6%. This approach
can be integrated with any existing authentication scheme as
well as other threat mitigation techniques, to secure the SoC
while minimizing the performance and energy efficiency
degradation caused by a malicious IP tampering packets.

ACKNOWLEDGMENT

This work was partially supported by the National Science
Foundation (NSF) grant SaTC-1936040.

REFERENCES

[1] Y. J. Yoon et al., “System-level design of networks-on-chip
for heterogeneous systems-on-chip,” in NOCS, 2017, p. 9.

[2] P. Mishra, S. Bhunia, and M. Tehranipoor, Hardware IP
security and trust. Springer, 2017.

[3] F. Farahmandi, Y. Huang, and P. Mishra, System-on-Chip
Security: Validation and Verification. Springer Nature, 2019.

[4] (2008) Security on arm trustzone. [Online]. Available:
https://www.arm.com/products/security-on-arm/trustzone

[5] S. Murali et al., “Analysis of error recovery schemes for
networks on chips,” Design & Test, vol. 22, no. 5, pp. 434–
442, 2005.

[6] S. Charles et al., “Efficient cache reconfiguration using
machine learning in noc-based many-core cmps,” TODAES,
vol. 24, no. 6, pp. 1–23, 2019.

[7] T. Dierks and E. Rescorla, “The transport layer security (tls)
protocol version 1.2,” Tech. Rep., 2008.

[8] T. Boraten et al., “Secure model checkers for network-on-chip
(noc) architectures,” in GLVLSI, 2016, pp. 45–50.

[9] H. K. Kapoor et al., “A security framework for noc using
authenticated encryption and session keys,” CSSP, vol. 32
(6), pp. 2605–2622, 2013.

[10] L. S. Indrusiak et al., “Side-channel attack resilience through
route randomisation in secure real-time networks-on-chip,” in
ReCoSoC, 2017, pp. 1–8.

[11] R. JS et al., “Runtime detection of a bandwidth denial attack
from a rogue network-on-chip,” in NOCS, 2015, p. 8.

[12] S. Charles et al., “Lightweight anonymous routing in noc
based socs,” in DATE, 2020.

[13] S. Charles and P. Mishra, “Securing network-on-chip using
incremental cryptography,” ISVLSI, 2020.

[14] S. Charles et al., “Real-time detection and localization of
distributed dos attacks in noc based socs,” TCAD, 2020.

[15] S. Charles et al., “Real-time detection and localization of dos
attacks in noc based socs,” in DATE, 2019.

[16] Y. Lyu and P. Mishra, “A survey of side-channel attacks
on caches and countermeasures,” Journal of Hardware and
Systems Security, vol. 2, no. 1, pp. 33–50, 2018.

[17] B. Lebiednik et al., “Architecting a secure wireless network-
on-chip,” in NOCS, 2018, pp. 1–8.

[18] H. M. Wassel et al., “Surfnoc: a low latency and prov-
ably non-interfering approach to secure networks-on-chip,”
in ACM SIGARCH Computer Architecture News, 2013.

[19] Y. L. Sun et al., “A trust evaluation framework in distributed
networks: Vulnerability analysis and defense against attacks.”
in INFOCOM, vol. 6, 2006, pp. 1–13.

[20] P. Zimmerman, “Pretty good privacy v2. 62,” Online.
Ftp://net-dist. mit. edu, 1995.

[21] J. Callas et al., “Openpgp message format,” Tech. Rep., 2007.
[22] D. Engels et al., “Ultra-lightweight cryptography for low-cost

rfid tags: Hummingbird algorithm and protocol,” CARC Tech.
Rep., 2009.

[23] M. Li et al., “Dyxy: a proximity congestion-aware deadlock-
free dynamic routing method for network on chip,” in DAC,
2006.

[24] N. Binkert et al., “The gem5 simulator,” SIGARCH Computer
Architecture News, 2011.

[25] S. Charles et al., “Exploration of memory and cluster modes
in directory-based many-core cmps,” in NOCS, 2018.

[26] N. Agarwal et al., “GARNET: A detailed on-chip network
model inside a full-system simulator,” ISPASS, 2009.

[27] S. Li et al., “Mcpat: an integrated power, area, and timing
modeling framework for multicore and manycore architec-
tures,” in MICRO, 2009, pp. 469–480.

[28] A. Monemi et al., “ProNoC: A low latency network-on-
chip based many-core system-on-chip prototyping platform,”
Microprocessors and Microsystems, 2017.

