
Securing Network-on-Chip Using Incremental Cryptography

Subodha Charles and Prabhat Mishra
Department of Computer and Information Science and Engineering

University of Florida, Gainesville, Florida, USA

Abstract—Network-on-chip (NoC) has become the standard
communication fabric for on-chip components in modern
System-on-chip (SoC) designs. Since NoC has visibility to all
communications in the SoC, it has been one of the primary
targets for security attacks. While packet encryption can
provide secure communication, it can introduce unaccept-
able energy and performance overhead due to the resource-
constrained nature of SoC designs. In this paper, we propose
a lightweight encryption scheme that is implemented on the
network interface. Our approach improves the performance of
encryption without compromising security using incremental
cryptography, which exploits the unique NoC traffic charac-
teristics. Experimental results demonstrate that our proposed
approach significantly (up to 57%, 30% on average) reduces
the encryption time compared to traditional approaches with
negligible (less than 2%) impact on area overhead.

Keywords-system-on-chip; network-on-chip; security

I. INTRODUCTION

With the growing demand for high-performance and low-
power designs, multi-core architectures are widely used in
general purpose chip multiprocessors as well as special
purpose system-on-chip (SoC) designs [1; 2]. The desired
performance improvement of multi-core architectures cannot
be fully achieved by parallelizing the applications unless an
efficient interconnect is used to connect all the heteroge-
neous components on the chip. Network-on-chip (NoC) has
become the standard interconnect solution [3; 4]. Due to
increasing SoC complexity, it is crucial to develop efficient
NoC fabrics [5]. The importance of the information passing
through the NoC has made it one of the focal points of
security attacks. Diguet et al. have classified the major NoC
security vulnerabilities as denial of service attack, extraction
of secret information, and hijacking [6]. Typically, SoCs con-
tain several assets (e.g., encryption and authentication keys,
random numbers, configuration keys, and sensitive data) that
reside in different Intellectual Property (IP) cores [7; 8].
Protecting communications between IPs, which involve asset
propagation, is a major challenge and requires additional
hardware implementing security such as on-chip encryp-
tion and authentication units. However, implementation of
security features introduce area, power and performance
overhead. Security engineers have to take into account these
non-functional and real-time constraints while designing
secure architectures to address various threats [9]. The threat
model we use in this paper is as follows:

Threat Model: Figure 1 shows a typical NoC-based
many-core architecture which encrypts packets transferred
between IP cores. When packets are sent through the NoC,
a router infected by a hardware Trojan can copy or re-route
packets and send to a malicious IP sitting on the same
NoC to leak sensitive information. Therefore, our model
assumes that some of the IPs, as well as the routers, can
be malicious. The IPs that we can trust to be non-malicious
are referred to as secure IPs. The goal is to ensure secure
communication between these secure IPs. We assume that
network interfaces (NI) that connect IPs with routers are
secure. This assumption is valid since the NIs are used to
integrate components of an SoC and are typically built in
house. A similar threat model and assumptions have been
used in previous work on NoC security, proving the validity
of the model [10; 11].

Figure 1: NoC based many-core architecture connecting IPs
on a single SoC using a 4 × 4 Mesh topology. Each node
contains an IP that connects to a router via a network
interface. Communication between two IPs (in this case, a
processor IP and a memory controller) is encrypted so that
an eavesdropper cannot extract the packet content.

Prior research on security architectures have explored
trust-zones [12; 13], lightweight encryption [14], DoS attack
detection [15; 16], side channel analysis [17; 18], etc.
However, none of the existing approaches have leveraged
the unique traffic characteristics of an NoC to design a
lightweight security architecture. In this paper, we utilize
incremental encryption to encrypt packets in NoC. Our pro-
posed solution takes advantage of the unique characteristics
of NoC traffic, and as a result, it has the ability to construct
a “lighter-weight” encryption scheme without compromising
the security. Incremental cryptography has been explored
in areas such as software virus protection [19] and code

obfuscation [20]. To the best of our knowledge, our approach
is the first attempt to utilize incremental encryption to imple-
ment a lightweight and secure NoC architecture. The goal of
using incremental encryption is to design cryptographic al-
gorithms that can reduce the effort of encryption/decryption
by reusing the previously encrypted/decrypted memory fetch
requests/responses rather than re-computing them from the
scratch. In our framework, data is encrypted at the NI of
each secure IP core. The NI is chosen to accommodate the
encryption framework so that each packet can be secured
before injecting into the NoC. Prior research on NoC secu-
rity have proposed similar architectures where the security
framework was implemented at the NI [11; 21]. Our major
contributions are as follows:
• We show that consecutive NoC packets that contain

memory fetch requests/responses differ only by a few
bits while communicating between IP cores and mem-
ory controllers in an SoC.

• We propose a lightweight encryption scheme based on
incremental cryptography that exploits the unique NoC
traffic characteristics observed above.

• We show that our solution is resilient against existing
NoC attacks, and it significantly improves the per-
formance compared to state-of-the-art NoC encryption
methods.

The rest of the paper is organized as follows. Section
II presents prior research efforts. Section III motivates the
need for our work. Section IV describe our approach for
lightweight encryption. Section V presents the experimental
results. Finally, Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we first provide a brief overview of
concepts used in this paper and present the related research
efforts to highlight the novelty of our proposed work.

A. Symmetric Encryption Scheme

A symmetric encryption scheme S = (K, E ,D) consists
of three algorithms defined as follows:
• The key generation algorithm is written as K ← K.

This denotes the execution of the randomized key
generation algorithm K and storing the return string
as K where β is the length of the key.

• The encryption algorithm E produces the ciphertext
C ∈ {0, 1}l by taking the key K and a plaintext
M ∈ {0, 1}l as inputs, where l is the length of the
plaintext. This is denoted by C ← EK(M).

• Similarly, the decryption algorithm D denoted by M ←
DK(C), takes a key K and a ciphertext C ∈ {0, 1}l

and returns the corresponding M ∈ {0, 1}l.

B. Block Ciphers

A block cipher typically acts as the fundamental building
block of the encryption algorithm (E). Formally, it is a

function (E) that takes a β-bit key (K) and an n-bit plaintext
(m) and outputs an n-bit long ciphertext (c). The values
of β and n depend on the design and are fixed for a
given block cipher. For every c ∈ {0, 1}n, there is exactly
one m ∈ {0, 1}n such that EK(m) = c. Accordingly,
EK has an inverse block cipher denoted by E−1K such
that E−1K (EK(m)) = m and EK(E−1K (c)) = c for all
m, c ∈ {0, 1}n.

Figure 2: A block cipher-based encryption scheme using
counter mode. Each block cipher (EK) encrypts an n-bit
block (mq) and b block ciphers together encrypt the entire
message M and outputs ciphertext C. This constructs E of
the encryption scheme S.

When using block ciphers to encrypt long messages, the
plaintext (M) of a given length l is divided into b substrings
(mq) where each substring is n(= l

b) bits long and n is
called the block size. Block ciphers are used in operation
modes where one or more block ciphers work together to
encrypt n-bit blocks and concatenate the outputs at the end
to create the ciphertext of l bits. Figure 2 shows the counter
mode (CM) which is a popular operation mode. CM also
uses an initialization vector (IV) which is concatenated with
a d-bit value counter (e.g., if d = 4, {1}d = 0001) before
inputting to the block cipher. This is done to create domain
separation by giving per message and per block variability.
The decryption process is shown in Algorithm 1. In fact, the
decryption process would be the inverse of the encryption
scheme shown in Figure 2.

Algorithm 1 - Decryption process of Counter Mode
Inputs: ciphertext to decrypt C
Output: plaintext corresponding to the ciphertext M
Procedure: DK

1: for all q = 1, ..., b do
2: rq ← EK(IV ||{q}d)
3: mq ← rq ⊕ cq
4: M ← m1 ‖m2 ‖ ... ‖mb

5: return M

C. Incremental Cryptography Overview

Consider a scenario that involves encrypting sensitive
files/documents. Once a file is encrypted initially, there may
be minor changes in the original file. In such a scenario, if

typical encryption is used, the previous encrypted file will
be discarded and a new encryption will be performed on
the modified file. However, since these changes are very
small in comparison to the size of the file, encrypting the
entire file again is clearly inefficient. Incremental encryp-
tion can give significant advantages in such a setup [22].
Updating an obfuscated code to accommodate patches and
video transmission of images when there are minor changes
between frames, are two similar scenarios [20]. Incremental
encryption allows to find the cryptographic transformation
of a modified input not from scratch, but as a function of the
encrypted version of the input from which the modified input
was derived. When the changes are small, the incremental
method gives considerable improvements in efficiency.

D. Related Work

Adhering to the tight power budgets and cost con-
straints, industrial and academic researchers are coming up
with lightweight security primitives specific for domains
such as NoC-based SoCs, RFID communication and IoT.
Lightweight security architectures for NoC-based SoCs were
proposed in [23; 11]. These methods try to eliminate com-
plex encryption schemes such as AES and replace them with
lightweight encryption schemes. However, these methods
encrypt each block in a packet which leads to significant
performance penalty. Intel introduced TinyCrypt - a crypto-
graphic library with a small footprint which is built for con-
strained embedded and IoT devices [14]. Several researchers
have proposed other lightweight encryption solutions in the
IoT domain [24]. Exploiting the unique characteristics of
RFID communication, Engels et al. have proposed a low-
cost encryption algorithm and a protocol [25]. None of these
security architectures exploit the unique communication
characteristics in NoC-based SoCs. Our approach utilizes
incremental encryption to create a lightweight NoC security
framework that minimizes performance overhead with minor
impact on area and power.

Bellare et al. [19] used incremental encryption to encrypt
files/documents undergoing minor changes. Rather than en-
crypting every file from scratch after each change, they
proposed to encrypt only the change(s) and send it together
with the previous encryption such that the encryption of the
modified version can be constructed. There are fundamental
challenges when using incremental encryption to encrypt
packets in the NoC. In the file setup, when a file undergoes
some number of modifications, every previous modification
becomes redundant. In other words, intermediate steps lose
their values as long as the latest version is available. How-
ever, when encrypting packets in the NoC, we cannot drop
certain packets and encrypt after some modifications because
each packet is important for the correct functionality of
the SoC. Ideas from incremental cryptography have been
adopted in other areas such as hashing and signing [22],
program obfuscation [20] and cloud computing [26]. To the

best of our knowledge, incremental cryptography has not
been used to encrypt/decrypt NoC packets. We propose a
technique that is able to use incremental encryption in the
domain of NoC and can increase the efficiency of secure
NoCs.

III. MOTIVATION

The IPs use the capabilities given by the NoC to com-
municate with each other and to request/store data from/in
memory. The packets injected into the network can be
classified into two main categories - (1) control packets
and (2) data packets. For example, a cache miss at an IP
will cause a control packet to be injected into the network
requesting for that data from the memory. The memory
controller, upon receiving the request will reply back with
a data packet containing the cache block corresponding to
the requested address. The formats of these packets are
shown in Figure 3. The NI divides the packet into flits
(fliticization) before injecting into the network. Flits are
the basic building blocks of information transfer between
routers. Sensitive data of each flit is encrypted by the NI and
injected into the network through the local router. Encryption
process of a packet consumes time as each block has to be
encrypted and concatenated to create the encrypted packet.
Depending on the parameters used for the block cipher
(block size, key size, number of encryption rounds, etc.),
the time complexity of the process differs. If each packet
is encrypted independently, it takes z × T time to encrypt
all of them, where z is the number of packets and T is the
average time needed to encrypt one packet.

Figure 3: Packet formats for control and data packets. Blue
shows header (H) which is sent as plaintext. Red shows the
payload (P) with sensitive data encrypted.

As discussed in Section II, the idea of incremental en-
cryption is to develop a scheme where the time taken to
encrypt an incoming packet should not be dependent on the
packet size, but rather on the amount of modifications done
compared to the previous packet. To explore how to use
this idea in the context of NoC, we profiled the number
of bit changes between consecutive packets generated by a
particular IP. Figure 4 shows the number of bit differences
as a percentage of memory fetch requests (control packets)
when running five benchmarks (FFT, FMM, LU, RADIX,
OCEAN) from the SPLASH-2 benchmark suite on the
gem5 full-system simulator [27]. More details about the

experimental setup is given in Section V-A. Out of the
64 bits of data to be encrypted, according to the default
gem5 packet size, the maximum number of bit difference
between consecutive packets was 13 bits in all benchmarks.
On average, 30% of the packets differed by only one bit.
This is expected since an application running on a core most
likely accesses memory locations within the same memory
page which differs by only a few bits.

Figure 4: Number of bit differences between consecutive
memory fetch requests in SPLASH-2 benchmarks.

Since encryption is done in blocks, we profiled this data
assuming a block size of 16 bits [25]. In this case, up to
16 consecutive bit differences can be considered for each
block, and the maximum number of blocks for 64 bits of
secure data is 4. The results showed that on average, 80%
of the packets differ by only one block and the other 20%
differ by two blocks for the benchmarks we used. Similar
to memory fetch requests, we profiled the response memory
data packets as well. Since the response contains a whole
cache block consisting of data modified by calculations, we
don’t observe the same optimization opportunity shown by
memory fetch requests. However, it still shows that 15% of
consecutive packets are identical. These observations show
that the encryption process can be significantly optimized
using incremental encryption.

IV. INCREMENTAL ENCRYPTION

This section describes our incremental encryption scheme
in detail. First, we give an illustrative example to demon-
strate the merit of exploiting unique traffic characteristics
using incremental encryption. Then we elaborate the major
components in our framework.

Illustrative example: Figure 5 shows an example on how
incremental encryption can improve the performance of an
NoC. It shows the encryption process of three consecutive
NoC packets (each with 16 bits) using two methods (i)
traditional encryption, (ii) incremental encryption. In tradi-
tional encryption, both packets are encrypted sequentially
using the two 8-bit block ciphers. In incremental encryption,
each packet is compared with the previous packet and
only the different blocks are encrypted. Identical blocks
are filled with zeros and header bits are added to indicate

the changed blocks. The decryption process uses previously
received packets and header information to reconstruct the
new packets. Only the first packet has to be fully encrypted
since there is no prior packet for comparison. This example
shows a speedup of 1.43 times. However, when many
packets are encrypted, the time spent to encrypt the first
packet becomes negligible and as a result, we observe a
significant performance improvement as shown in Section
V-B. A detailed description of the methodology is given in
the next three subsections.

Figure 5: Illustrative example of using incremental encryp-
tion. Assumptions: encryption takes 20 cycles for each block
cipher, comparing two bit strings to identify different blocks
take 1 cycle each.

A. Overview

Figure 6 shows an overview of our proposed NoC se-
curity framework. It consists of two main components: (i)
incremental crypto engine, and (ii) encryption scheme which
includes the block ciphers. Each packet sent from an IP
core has two main parts: (i) packet header (H) which is sent
as plaintext across the network, and (ii) payload (P) which
should be encrypted before sending to the network. Both
header and payload are sent to the incremental crypto engine
to start the incremental encryption process. We consider
the payload to be divided into b blocks. For example, the
64-bit payload of a control packet will contain four 16-bit
blocks (b = 4) numbered 1 through 4 starting from the least
significant byte. Our encryption scheme uses block ciphers
arranged in counter mode [28]. A detailed explanation of
parameters used in our experiments is given in Section V-A.

Algorithm 1 describes our incremental encryption process.
When a packet is sent from the IP core, the incremental
crypto engine first identifies which blocks are different
compared to the previous packet (line 3). This is done by
comparing with the previous packet payload (Pi−1) which
is stored in a register inside the NI. In our model, only two

Figure 6: Overview of our proposed security framework. The packet sent from source (IPs) goes through the encryption
process implemented in the network interface (NIs). It traverses the NoC, and NIt of the target IP (IPt) decrypts before
forwarding the packet to IPt.

packets are required to be stored for the two different packet
types (control and data) at the sender’s end. Similarly, the
receiver’s side also stores the most recent packet for each
packet type. In addition to that, the key (K) and initialization
vector (IV) for the encryption scheme are also stored
by both sender and receiver IPs. Once block differences
are computed, it is then sent to the encryption scheme
which encrypts only the different blocks (line 4). The final
ciphertext is derived from the encrypted blocks and block
comparison results (line 5). Additional header bits are also
computed in this step to be used by the decryption process.
Finally, the header and encrypted payload are concatenated
to create the final packet and injected into the network
(line 6). At the destination node, the inverse process takes
place. It also stores the previous packet for each packet
type, and therefore, can construct the next packet using the
stored packet and the incoming packet data. Since we store
the previous packets in special registers, we don’t have to
encrypt/decrypt the full packet. We send only the changed
blocks and the receiver replaces the changed blocks with its
modifications to construct the new packet.

Algorithm 1 - Encryption Process
Inputs: current packet packeti, previous payload Pi−1, key
K, initialization vector IV
Output: encrypted packet consisting of header Hi and en-
crypted payload Ci

Procedure: encryptPackets
1: Pi ← packeti.payload
2: Hi ← packeti.header
3: Mi, δi ← compareBlocks(Pi, Pi−1)
4: C ′ ← E(IV,K,Mi)
5: Ci ← constructCipherText(C ′, δi)
6: return Hi ‖ Ci

The remainder of this section elaborates the major compo-
nents of our NoC security framework. Section IV-B explains
the compareBlocks function which is implemented in the
incremental crypto engine. Section IV-C presents our en-
cryption scheme E and constructCipherText function in
Algorithm 3 and Algorithm 4, respectively.

B. Incremental Crypto Engine

The operation of the incremental crypto engine is outlined
in Algorithm 2. The payload (Pi) sent from the IP core
is compared with the previous payload of that type (Pi−1)
to identify the blocks that are different (Mi). This can be
implemented with a simple XOR operation in hardware (line
1). Once the bitwise differences are obtained, we split the
payload into blocks (line 2) to see which blocks are different
(lines 3-6). Only different blocks are sent for encryption.
The incremental crypto engine also sends the different block
numbers (δi) to build the complete ciphertext as well as to
set the header bits indicating the different blocks to be used
by the decryption algorithm.

Algorithm 2 - Finding Block-wise Packet Differences
Inputs: current payload Pi, previous payload Pi−1
Output: different blocks Mi, different block indices δi
Procedure: compareBlocks

1: bitDiff ← Pi⊕Pi−1
2: B[1], ..., B[k]← split(bitDiff, blockSize)
3: for all x = 1, ..., size(B) do
4: if B[x] > 0 then
5: Mi.append(B[x])
6: δi[x] = 1

7: return Mi, δi

C. Encryption Scheme

We use the counter mode for encryption which uses
an initialization vector (IV), a key and the message to
be encrypted as inputs and produces the ciphertext. The
IV ‖ {q}d string, which is the standard format of the input
nonce to counter mode, is used to give per message and
per block variability. In our framework, it is calculated
using the sequence number of the packet (let seqj be the
sequence number of packet Pj), a counter, and the IV as
IV ‖ seqj ‖ q to identify different blocks. The block cipher
ID (q ∈ {1, 2, 3, 4}) changes with each block cipher and
the sequence number seqj varies from packet to packet. As
discussed before, the performance improvement is gained
by encrypting multiple blocks in parallel. For example, if

two consecutive control packets have differences in two
blocks each, we can achieve twice the speedup by encrypting
both at the same time compared to the traditional (non-
incremental) approach where all four block ciphers will be
used to encrypt each packet. Algorithm 3 shows the major
steps of the encryption scheme.

Algorithm 3 - Encrypt Selected Blocks
Inputs: initialization vector IV , key K,
different blocks Mi

Output: encrypted blocks C ′

Procedure: E
1: for all q = 1, ..., 4 do
2: seqj ← getSequenceNumber(Pj)
3: rq ← EK(IV ‖ seqj ‖ q)
4: C ′.append(rq ⊕Mi[q])

5: return C ′

C ′ is stored in a buffer. The final ciphertext is constructed
using δi and C ′ as shown in Algorithm 4. Algorithm 4 takes
the encrypted value from the buffer for the changed blocks
(lines 2-3) and appends n (block size) zeros to identical
blocks compared to the previous packet (lines 4-5). It ensures
the construction of the same packet size, and as a result,
every other functionality from fliticization to NoC traversal
remains the same.

Algorithm 4 - Construct the Encrypted Payload
Inputs: encrypted blocks C ′, different block indices δi
Output: Encrypted payload Ci

Procedure: constructCipherText
1: for all x = 1, ..., size(δ) do
2: if δi[x] > 0 then
3: Ci.append(C

′[x])
4: else
5: Ci.append({0}n)
6: return Ci

To ensure the secure implementation of our approach, the
generation and management of keys and nonces needs to be
addressed. However, this is beyond the scope of this paper
and many previous studies have addressed this problem in
several ways [29; 30].

V. EXPERIMENTS

In this section, we first describe the experimental setup
used to evaluate our approach. Then, results are presented
to show the performance gain achieved through incremental
encryption by comparing it with traditional encryption. Next,
we discuss the security of the proposed framework and
associated overhead.

A. Experimental Setup

We validated our framework using five benchmarks cho-
sen from the SPLASH-2 benchmark suite. Traffic traces

were generated by the cycle-accurate full-system simulator
- gem5 [27]. The 4x4 Mesh NoC was built on top of
“GARNET2.0” model that is integrated with gem5 [31].
We modified the network interface (NI) to simulate the
proposed security framework. We selected the following
options to simulate architectural choices in a resource-
constrained NoC.

Packet format: For control and data packet formats,
we used the default GARNET2.0 implementations which
allocates 128 bits for a flit. This value results in control
messages fitting in 1 flit, and data packets, in 5 flits. Out of
the 128 bits, 64 bits are allocated for the payload (address)
in a control packet and data packets have a payload of 576
bits (64-bit address and 512-bit data). This motivated the use
of 16-bit blocks to evaluate the performance of our proposed
incremental encryption scheme.

Block cipher: We use an ultra-lightweight block cipher
- Hummingbird-2 as the block cipher of our encryption
scheme [25]. Hummingbird-2 was chosen in our experiments
mainly because it is lightweight and also, with the block
size being 16, other encryption schemes can be broken using
brute-force attacks in such small block sizes. However, it has
been shown in [25] that Hummingbird-2 is resilient against
attacks that try to recover the plaintext from ciphertext. It
uses a 128-bit key and a 128-bit internal state which provides
adequate security for on-chip communication. Considering
the payload and block sizes, we used four block ciphers
in counter mode for our encryption scheme. Each block
cipher is assumed to take 20 cycles to encrypt a 16-bit
block and each comparison of two-bit strings incurs a 1-
cycle delay [25]. Our framework is flexible to accommodate
different packet formats, packet sizes and block ciphers
depending on the design requirements. For example, if a
certain architecture requires 128-bit blocks, AES can be used
while keeping our incremental encryption approach intact.

B. Performance Evaluation

We present the performance improvement achieved by
our approach in two steps: (i) time taken for encryption
(Figure 7) and (ii) execution time (Figure 8). We measured
the cycles spent for encryption alone (encryption time) and
total cycles executed to run the benchmark (execution time)
including encryption time, using our approach as well as
traditional encryption. Figure 7 shows the encryption time
comparison. Our approach improves the performance of
encryption by 57% (30% on average) compared to the
traditional encryption schemes. The locality in data and the
differences in operand values affect the number of changed
blocks between consecutive packets. This is reflected in the
encryption time. For example, if an application is doing an
image processing operation on an image stored in memory,
accessing pixel data stored in consecutive memory locations
provides an opportunity for performance gain using our
approach.

Figure 7: Encryption time comparison using traditional
encryption and incremental encryption (our approach).

We also compare the total execution time using traditional
encryption as well as incremental encryption. Figure 8
presents these results. When the overall system including
CPU cycles, memory load/store delays and delays traversing
the NoC is considered, the total execution time improves
upto 10% (5% on average). Benchmarks that have significant
NoC traversals such as RADIX and OCEAN show higher
performance improvement (10%).

Figure 8: Execution time comparison using traditional en-
cryption and incremental encryption (our approach).

C. Security Analysis

When discussing the security of our approach, three
main components have to be considered: (i) incremental
encryption, (ii) encryption scheme that uses counter mode,
and (iii) block cipher.

Incremental encryption: Due to the inherent character-
istics of incremental encryption, our approach reveals the
amount of differences between consecutive packets. Studies
on incremental encryption have shown that even though
hiding the amount of differences is not possible, it is possible
to hide “everything else” by using secure block ciphers
and secure operation modes [19]. Attacks on incremental
encryption using this vulnerability relies on the adversary
having many capabilities in addition to the ones defined
in the threat model. When using incremental encryption to
encrypt documents undergoing frequent, small modifications
as explained in Section II, it is reasonable to assume that
the adversary not only has availability to the previously
encrypted versions of documents but is also able to modify
documents and obtain encrypted versions of the modified
ones. This attack model allows the adversary to launch
chosen plaintext attacks [19]. Discussing security of our
approach for known plaintext, chosen plaintext and chosen
ciphertext attacks are irrelevant in our design since the
adversary doesn’t have access to an oracle that implements

the design, nor access to known plaintext/ciphertext pairs. In
other words, as long as the block cipher and operation mode
is secure, incremental encryption doesn’t allow recovering
of plaintext from the ciphertext. The same argument has
been proven to hold true in previous work on incremental
encryption [19; 32].

Counter mode encryption: Using our approach, each
block is treated independently while encrypting, and blocks
belonging to multiple packets can be encrypted in parallel.
In such a setup, using the same IV ‖ {q}d string with the
same key K can cause the “two time pad” situation. This
is solved by setting the string to IV ‖ seqj ‖ q as shown in
Algorithm 3. It gives per message and per block variability
and ensures that the value is a nonce. Our proposed usage
of counter mode adheres to the security recommendations
outlined in [28].

Block cipher: As discussed above, the security of the
proposed framework depends on the security of the block ci-
pher. The security of the block cipher used in our framework,
Hummingbird-2, has been discussed extensively in [25]. The
first version of the Hummingbird scheme was shown to be
insecure [33] and Hummingbird-2 was developed to address
the security flaws. After thousands of hours of cryptanal-
ysis, no significant flaws or sub-exhaustive attacks against
Hummingbird-2 have been found [25]. Hummingbird-2 ap-
proach has been shown to be resilient against birthday
attacks on the initialization, differential cryptanalisys, linear
cryptanalisys and algebraic attacks. Zhang et al. presented
a related-key chosen-IV attack against Hummingbird-2 that
recovered the 128-bit secret key [34]. However, the attack
requires 228 pairs of plaintext to recover the first 4 bits of
the key adding up to a data complexity of O(232.6) [34]. As
discussed before, launching such chosen plaintext attacks is
not possible in the NoC setting. A brute force key recovery
takes 2128 attempts which is not computationally feasible
according to modern computing standards as well as for
computing power in the foreseeable future.

Our proposed approach allows easy plug-and-play of
security primitives. Any block size/key size/block cipher
can be combined with our proposed incremental encryption
approach. Note that stronger security comes at the expense
of performance. Therefore, security parameters can be de-
cided depending on the desired security and performance
requirements.

D. Overhead Analysis

We implemented our proposed incremental encryption
approach using Verilog to show the area overhead in com-
parison with the original Hummingbird-2 implementation.
Our implementation is capable of assigning blocks to idle
block ciphers and encrypting up to four payloads in parallel.
Merger and scheduler units were implemented to ensure
the correctness of final encrypted/decrypted payloads. We
conducted our experiments using the Synopsys Design Com-

piler with 90nm Synopsis library (saed90nm). Based on
our results, our proposed approach introduces less than 2%
overall area overhead with respect to the entire NoC. When
only the encryption unit is considered, the overhead is 15%.
This overhead is caused due to components responsible
for buffering and scheduling of modified blocks to idle
block cipher units as well as computations related to the
construction of the final result. Therefore, our proposed
encryption approach has a negligible area overhead and it
can be efficiently implemented as a lightweight security
mechanism for NoCs. While there is a minor increase in
power overhead due to the additional components, there is no
penalty on overall energy consumption due to the reduction
in execution time.

VI. CONCLUSIONS

In this paper, we proposed a lightweight security mecha-
nism that improves the performance of traditional encryption
schemes used in NoC while incurring negligible area and
power overhead. The security framework consists of an
encryption/decryption scheme that provides secure commu-
nication on the NoC. We used incremental encryption to
improve performance by utilizing the unique traffic charac-
teristics of packets observed in an NoC. We validated our
framework in terms of security to prove that the performance
gain is not achieved at the expense of security. Experimental
results show a performance improvement of up to 57%
(30% on average) in encryption time and up to 10% (5%
on average) in total execution time compared to traditional
encryption while introducing less than 2% overall area over-
head. In the future, we plan to explore the development of
an incremental authentication scheme that can be seamlessly
integrated with the incremental encryption scheme to ensure
data integrity.

ACKNOWLEDGMENT

This work was partially supported by the National Science
Foundation (NSF) grant SaTC-1936040.

REFERENCES

[1] S. Charles et al., “Proactive thermal management using
memory-based computing in multicore architectures,” in
IGSC, 2018.

[2] U. Gupta et al., “Dypo: Dynamic pareto-optimal configuration
selection for heterogeneous mpsocs,” TECS, vol. 16, no. 5s,
pp. 1–20, 2017.

[3] S. Charles et al., “Exploration of memory and cluster modes
in directory-based many-core cmps,” in NOCS, 2018.

[4] A. Sodani et al., “Knights landing: Second-generation intel
xeon phi product,” IEEE MICRO, 2016.

[5] S. Charles et al., “Efficient cache reconfiguration using
machine learning in noc-based many-core cmps,” TODAES,
vol. 24, no. 6, pp. 1–23, 2019.

[6] J.-P. Diguet et al., “NOC-centric security of reconfigurable
SoC,” in NOCS, 2007.

[7] F. Farahmandi, Y. Huang, and P. Mishra, System-on-Chip
Security: Validation and Verification. Springer Nature, 2019.

[8] P. Mishra, S. Bhunia, and M. Tehranipoor, Hardware IP
security and trust. Springer, 2017.

[9] S. Charles et al., “Lightweight anonymous routing in noc
based socs,” in DATE, 2020.

[10] D. M. Ancajas et al., “Fort-NOCs: Mitigating the threat of a
compromised NoC,” in DAC, 2014.

[11] J. Sepúlveda et al., “Towards Protected MPSoC Communi-
cation for Information Protection against a Malicious NoC,”
Procedia computer science, 2017.

[12] J. Winter, “Trusted computing building blocks for embedded
linux-based arm trustzone platforms,” in STC, 2008.

[13] S. Charles and P. Mishra, “Lightweight and trust-aware rout-
ing in noc based socs,” ISVLSI, 2020.

[14] “Using TinyCrypt Library, Intel Developer Zone, Intel, 2016.”
https://software.intel.com/en-us/node/734330, [Online].

[15] S. Charles et al., “Real-time detection and localization of dos
attacks in noc based socs,” in DATE, 2019.

[16] S. Charles et al., “Real-time detection and localization of
distributed dos attacks in noc based socs,” TCAD, 2020.

[17] Y. Huang et al., “Scalable test generation for trojan detection
using side channel analysis,” TIFS, vol. 13, no. 11, pp. 2746–
2760, 2018.

[18] Y. Lyu and P. Mishra, “A survey of side-channel attacks
on caches and countermeasures,” Journal of Hardware and
Systems Security, vol. 2, no. 1, pp. 33–50, 2018.

[19] M. Bellare et al., “Incremental cryptography and application
to virus protection,” in STOC, 1995.

[20] S. Garg and O. Pandey, “Incremental program obfuscation,”
in CRYPTO, 2017.

[21] L. Fiorin et al., “A security monitoring service for NoCs,” in
CODES+ISSS, 2008.

[22] M. Bellare et al., “Incremental cryptography: The case of
hashing and signing,” in CRYPTO, 1994.

[23] K. Sajeesh and H. Kapoor, “An authenticated encryption
based security framework for NoC architectures,” in ISED,
2011.

[24] E. R. Naru et al., “A recent review on lightweight cryptogra-
phy in iot,” in I-SMAC, 2017.

[25] D. Engels et al., “The Hummingbird-2 lightweight authenti-
cated encryption algorithm,” in RFIDSec. Springer, 2011.

[26] W. Itani et al., “Energy-efficient incremental integrity for
securing storage in mobile cloud computing,” in ICEAC,
2010.

[27] N. Binkert et al., “The gem5 simulator,” SIGARCH Computer
Architecture News, 2011.

[28] D. A. McGrew, “Counter mode security: Analysis and rec-
ommendations,” Cisco Systems, November, 2002.

[29] B. Lebiednik et al., “Architecting a secure wireless network-
on-chip,” NOCS, 2018.

[30] J. Sepulveda et al., “Efficient security zones implementation
through hierarchical group key management at noc-based
mpsocs,” Microprocessors and Microsystems, 2017.

[31] N. Agarwal et al., “Garnet: A detailed on-chip network model
inside a full-system simulator,” in ISPASS, 2009.

[32] I. Mironov et al., “Incremental deterministic public-key en-
cryption,” in EUROCRYPT. Springer-Verlag, 2012.

[33] M. J. O. Saarinen, “Cryptanalysis of hummingbird-1,” in FSE.
Springer, 2011.

[34] K. Zhang, L. Ding, and J. Guan, “Cryptanalysis of
hummingbird-2,” Cryptology ePrint Archive, Tech. Rep.,
2012.

