
Lightweight Multicast Authentication in NoC-based SoCs

Hansika Weerasena and Prabhat Mishra
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, Florida, USA

Abstract—Network-on-Chip (NoC) is responsible for managing
communication in modern SoCs. The ubiquity of NoC and
its distributed nature across the chip has made it a focal
point of attacks. Spoofing attacks by impersonating the nodes
in SoC can lead to unauthorized information access and can
also be employed to launch denial of service attacks. Modern
software tends to use more parallelism among multiple cores,
increasing multicast communication among cores to exchange
cache coherence messages. Traditional multicast authentication
solutions are not effective due to the resource-constrained nature
of NoC-based SoCs. In this paper, we propose a lightweight
multicast authentication mechanism that utilizes existing unicast
authentication infrastructures in NoC using one-way accumula-
tors. Experimental results demonstrate the effectiveness of our
approach with required security while incurring minor area and
performance overhead.

Index Terms—Multicast Communication, Network-on-Chip,
Security, Authentication

I. INTRODUCTION

The advancement of manufacturing technologies has en-
abled the integration of more and more diverse intellectual
property (IP) cores on the same System-on-Chip (SoC). Mul-
tiprocessor SoC (MPSoC) is dominated by a large number of
computing cores that support parallel computation and muti-
programming workloads. Commercial MPSoC such as Altra®
multicore server processor has 128 cores [1]. Network-on-
chip (NoC) has become the de facto standard in providing
communication infrastructure among these core MPSoCs to
eliminate communication bottlenecks. For example, leading
MPSoC manufacturing companies such as Intel use Skylake
Mesh [2] NoC in server-grade processors. In a typical MPSoC,
NoC is mainly used for communicating cache coherence
and other control messages between processors and memory
subsystems.

Due to the steady increase in the number of cores in
MPSoC, parallel programming has become a viable option
for performance improvement in applications that can exploit
parallelism. Therefore, modern programs and compiler opti-
mizations are designed to exploit the parallelism provided by
multiple cores. This trend is expected to improve over time [3].
Parallel workloads lead to increased one-to-many (multicast)
communication inside MPSoCs. Multicast communication in
NoC can be used in replication, barrier synchronization, cache
coherency in distributed shared caches, and clock synchroniza-
tion [4].

When considering cache coherence, the intensity of one-to-
many communication in NoC depends on the specific cache
coherence protocol. For example, the MESI directory-based

cache coherence protocol has 5 - 13% multicast traffic when
running SPLASH2 and PARSEC benchmarks [5]. Similarly,
the multicast ratio can increase over 50% for broadcast-based
protocols [6]. It is important to note that multicast intensity is
expected to increase further with the increase in parallelisms in
programs. Traditionally, NoC treats multicast traffic patterns as
repeated unicast traffic, which is known as software multicast.

Software multicast can lead to hostspots and performance
bottleneck in NoCs. Consider a simple example to understand
the implications. Assume that there are only 5% multicast
messages with 10 destinations of 100 total messages. If
software-multicast is used there will be 95 unicast packets
and 50 software-unicast packets. Therefore, software-unicast is
not a scalable solution for multicast communication in NoC.
A multitude of path-based and tree-based multicast routing
schemes [7], [8], [9] are proposed in the literature for efficient
multicast communication in NoC. Figure 1 illustrates XY tree-
based multicast routing that is used in this paper.

S D1

D2

D3

IP

NI

IP core

Network
Interface

RouterR

Fig. 1: Multicast communication from source (S) to three
destinations (D1, D2, D3). Multicast packets follow the same
path according to XY protocol and branch out when necessary.

Due to cost and time-to-market constraints, it has become
an industry norm to use third-party Intellectual Property (IP)
blocks in designing SoCs. These third-party IPs pose security
concerns as they can come with malicious implants, hidden
backdoors, and undocumented bugs. Additionally, long supply
chains and potentially untrusted vendors can increase security
concerns in SoC. Since NoC has access to all the components
in SoC, it has become the focal point of the attackers. Ensuring
authenticity against spoofing attacks is recognized as one of
the critical security concerns in NoC [10]. In a spoofing attack,
a malicious node can impersonate another node to violate the
security of SoC. Though there are existing lightweight unicast

security solutions [11], [12], [13] for authentication, they
cannot be applied for multicast communication since they use
shared keys or secret between source and destination. On the
other hand, the existing multicast authentication solutions from
traditional computer networks are not suitable for resource-
constrained NoCs.

This paper tries to answer the following question: Is there
a way to provide lightweight multicast packet authentication
in resource-constrained NoCs? Specifically, this paper makes
the following research contributions.

• We propose a lightweight multicast authentication scheme
that utilizes the existing unicast authentication infrastruc-
ture in NoC.

• We show that our multicast authentication scheme can
provide the desired level of security.

• Our multicast authentication can also provide reconfig-
urable security.

• Experimental results demonstrate that our proposed mul-
ticast authentication scheme has minimal performance
and area overhead.

The rest of the paper is organized as follows. Section II
presents background on hashing-based authentication and
surveys the related efforts. Section III outlines the threat
model and provides the problem formulation. Section IV
describes our proposed lightweight multicast authentication
scheme. Section V presents the experimental results. Finally,
Section VI concludes the paper.

II. BACKGROUND AND RELATED WORK

In this section, we first introduce one-way accumulator as a
cryptographic primitive and outline a scheme for fast one-way
accumulation. Next, we survey prior efforts related to NoC
security.

A. Fast One-way Accumulator

One-way accumulator was proposed as an alternative to
digital signature by [14]. In accumulated hashing, items are
combined and hashed to generate a unique hash code, where
individual items can prove their membership in the accu-
mulated hash code. A one-way accumulator is a one-way
hash function with the quasi-commutative property. A function
f : A × B → A is said to be quasi-commutative if for all
a ∈ A, and for all b, c ∈ B:

f(f(a, b), c) = f(f(a, c), b) (1)

Simply, the order of accumulation of the items does not
affect the final outcome. The value a is considered as the
seed. Nyberg [15] defined a fast way of doing accumulated
hashing which is elaborated in the rest of the section.

Let N = 2d be the upper bound of the number of
possible accumulated items. Then h : {0, 1}∗ → {0, 1}l be a
cryptographically secure hash function that has the tag length
of l = rd, where r is an integer representing the length of the
accumulated hash value. So if X = x1, . . . , xm be the items
to be accumulated (m ≤ N).

yi = h(xi), i = 1 . . .m

Define αr : {0, 1}l → {0, 1}r. αr takes a input of length
l and interpret as r of sub-strings of d. Then it will replace
every all zero bit-strings with 0 and others with 1. So if we take
yi from y1, . . . , ym, yi is represented as yi = (yi,1, . . . , yi,r).
Then for each yij , if yij = {0}d it is replaced by 0, or 1
otherwise. The resultant r length bit-string is the output of αr

which can be expressed as ai = (ai,1, . . . , ai,r).
The fast accumulation [15] can be mathematically repre-

sented as follows, where s is the seed, ⊙ is the bitwise and
operator and

∏
represent bitwise prod operator:

Tg = H(s,X) = s⊙
m∏
i=1

αr(h(xi)) (2)

Since the bitwise operator is commutative and the hash func-
tion has the property of one-wayness, H is quasi-commutative.
Verification of membership of item xi using the accumulated
hash is straightforward. We need to calculate ai of an item
i as ai = αr(h(xi)). Then, check whether ai ⊙ H(s,X) =
H(s,X) to see if the item xi is in the accumulated hash.

The security of the accumulator depends on the ability of
an adversary to forge a single accumulated value (ai) of an
item i. The security is compromised when forged ai passes
an item from membership validation. For a security level t,
the length of the accumulated hash r = N × e × t, where
e is the Napier’s number. Our proposed modification of the
fast accumulator for multicast authentication needs a different
security guarantee discussed in Section IV-A.

B. Related Work

Security of NoC has been extensively studied across dif-
ferent security goals (confidentiality, authenticity, integrity,
anonymity and freshness) due to the evolving threat landscape
in SoCs [10]. Malicious NoC is a common threat model seen
across many types of attacks [13], [16], [17], [18], [19], [20]
since most SoC tend to use third-party NoC IPs. For example,
the threat model in [13] assumes that NoC IP is malicious.
Specifically, there are malicious routers that can eavesdrop,
tamper packets and impersonate other nodes in SoC. Malicious
routers have been used as a threat model in [16], [17] to
launch denial of service (DoS) attacks using packet tampering
and flooding. In [16], the authors introduced four types of
hardware Trojans (HT) in the router, which can change header
bits including address to launch spoofing attacks.

Several efforts have been made to secure NoC traffic against
spoofing or node impersonating attacks. The solution for con-
fidentiality with authenticated encryption provides protection
against spoofing attacks through authentication [11], [12], [13],
[21]. For example, [13] uses Siphash [22] for authentication
which is a lightweight and fast hash function well suited
for short inputs and is an ideal candidate for NoC-based
SoCs. SipHash iteratively performs a series of add, rotation,
and XOR operations to achieve fast MAC computation for
short messages. It can introduce hardware overhead of 2%
when compared to the entire baseline MPSoC. We assume
that Siphash authentication is implemented in each network
interface of the node. All of these solutions on authenticity

depend on a pre-shared secret (key) shared between two
communicating parties, which is suitable for unicast traffic
with one sender and receiver. Any of these solutions cannot
be directly applied on multicast communication because there
are multiple receivers.

Several efforts can be found in traditional computer net-
works to authenticate multicast traffic. Public key cryptog-
raphy [23] has the natural asymmetric property that can be
utilized for multicast authentication. Here, the sender can send
an authentication tag by signing with the private key and
receivers can use the public key to verify the authenticity.
Although this method provides adequate security, it is not suit-
able for resource-constrained NoC. Several group key-based
protocols [24] are proposed in traditional networks where a key
is shared between the multicast group to generate a message
authentication code. The main issue with this approach is it
uses a weaker threat model where the members of the group
are trusted. An adversary inside the group can easily imperson-
ate another member in the group using the shared key. A MAC
for each recipient is another approach used for trivial multicast
authentication which has high communication overhead due
to long packet sizes. µ-TESLA [25] is a lightweight multicast
authentication scheme that uses hash-chains, but the delayed
verification of this scheme makes it vulnerable to multitudes of
attacks [26], [27], including DoS. An HMAC-based multicast
authentication scheme is proposed in [28], which accumulates
HMAC tags of all receivers to create the final tag. However,
usage of HMAC makes it computationally intensive for NoC.
To the best of our knowledge, our proposed approach is the
first attempt in securing multicast communication to ensure
the complete authenticity of NoC traffic.

III. PROBLEM FORMULATION AND THREAT MODEL

In directory-based cache coherence protocols, multicast
messages are responsible for communicating cache invalida-
tion messages. These messages are short control messages that
are sent from the owner of the cache data to all the cores
that are sharing that cache data. Our threat model assumes
the possibility of one of the multiple malicious routers with
HT that can impersonate nodes and send fake invalidation
messages, as shown in Figure 2. These fake invalidation
messages will invalidate cache blocks that are in use by several
nodes, which will result in performance degradation due to
multiple reasons. (1) All the users of the cache blocks need
to send read requests to reacquire the cache blocks, resulting
in increased traffic. (2) Application execution may be halted
due to an invalidated cache block. (3) Traffic hotpots may
happen around the owner of the cache block with simultaneous
requests. Kim et al.[29] shows severe performance degradation
(more than 100%) due to fake cache invalidation requests.
Therefore, authenticating cache invalidation packets is critical.

Our trust model assumes network interface (NI) to be
trustworthy because they are fabricated in-house. A similar
trust model has been used in [17], [16], [13]. Furthermore, we
assume Siphash [22] is available for unicast authentication at
each NI. This Siphash scheme uses the shared key between

S D1

D2

D3
datai Shared

datai Shared

datai Shared

datai Shared

Malicious
Router

Fig. 2: Fake invalidation message is sent by a malicious router
impersonating cache block owner (S). The shared data in the
cache of D1, D2, and D3 will be invalidated.

the sender and receiver to generate the message authentication
code and then uses the same key to validate the authenticity
of the message. Since the invalidation is sent as a single
multicast message targeting multiple destinations, the existing
authentication scheme cannot be used to authenticate the
origin of the message. This allows a malicious adversary
to send a fake cache invalidation impersonating the actual
owner of the cache block. Section IV describes our proposed
lightweight authentication scheme that utilizes the existing
unicast authentication implementation.

IV. LIGHTWEIGHT MULTICAST AUTHENTICATION

Figure 3 shows an overview of our lightweight muticast
authentication scheme. Our proposed scheme has two major
components: (i) multicast MAC tag generation at sender, and
(ii) multicast tag verification at receiver. The tag generation
and verification procedures are shown in Algorithm 1 and
Algorithm 3, respectively. Table I summarizes the notations
used in these algorithms.

Algorithm 1 Multicast MAC tag generation at sender

1: Input: {M,ks,1 . . . ks,m}
2: Output: multicast authenticated packet
3: Tg ← {1}r
4: for i=1 to m do
5: tag ← siphash(ks,i,M)
6: ltag ← prng(tag)
7: Tg ← Tg ⊙ αr(ltag)

8: pkt←M ||Tg
9: Return pkt

Algorithm 1 highlights the major steps at the sender to
generate accumulated MAC Tag (Tg). Tg is initialized to the
’1’s of length r. This is to ensure that it will adhere to the
upper bound on a number of zeros to make multicast MAC
tag unforgeable, which is elaborated in section IV-A. Lines
5-7 show steps to be conducted targeting each receiver of
the multicast packet. There are m number of receivers where

Initialize
Tg

M

NoC

Rs
M || Tg

Di

M

RDi

S

NIs NIDi
Tag Generation
(Algorithm 1)

Verification
(Algorithm 3)

M, Tg
set i = 0

Siphash PRNG
Alpha

transformation
(Algorithm 2)

tag l_tag

Accumulate Tag

i < mi < m

TgTg

, i ++

Siphash

PRNG

Alpha
transformation
(Algorithm 2)

tag l_tag

Tag
Verification

Fig. 3: Overview of our proposed lightweight multicast authentication. It consists of two major components: (i) tag generation
by source(S) and (ii) verification by one of the multicast destinations (Di). Both tag generation and verification are implemented
in the network interface of the sender and receivers.

m ≤ N . First, MAC tag is generated by the existing MAC
algorithm for unicast which is Siphash. Siphash is a keyed hash
function, where the sender uses the pre-shared symmetric key
between sender and receiver (kS,D) and the message payload
as inputs to Siphash. This tag is short (64 bits), but the αr

needs a bit sequence of length l = r × d. Therefore, we use
a pseudorandom number generator that will map 64 bit short
MAC to a l length long random bit sequence (line 6). Then
αr function will be applied on to the expanded tag where it
will map it to a bit sequence of length r (line 7).

TABLE I: Table of notations.

⊙ Bitwise and operation
Tg Accumulated Hash/Tag
h Cryptographically secure hash function
s Seed value
N Upper bound of number of items accumulated
M Message payload

ks,i Symmetric key between node s and i
d log2(N)
m number of multicast destinations
r length of Tg
t Desired security level
z Minimum number of 1’s in Tg

prng Pseudorandom number generator
X Set of items to be accumulated
|| Concatenation operator

αr alpha transformation: {0, 1}l → {0, 1}r, r < l

The implementation of αr is described in Algorithm 2,
which is based on the procedure outlined in Section II-A. It
takes the bit-sequence of length l and generates r-length bit-
sequence (α value) of a receiver. First, the bit-string is parsed
as r of d length sub-strings (line 3). Then it will replace every
all zero bit-sub-strings with 0 and others with 1 (lines 5 - 9).

Finally, the α value of the receiver is accumulated to the
Tg by applying bit-wise AND operation (line 7 in Algorithm

1). The generation of the accumulated MAC Tag can be
summarized by modifying Equation 2 as follows.

Tg = {1}r ⊙
m∏
i=1

αr(prng(siphash(ks,i,M))) (3)

Algorithm 2 Alpha Transformation

1: Input: bit sequence in ∈ {0, 1}l
2: Output: bit sequence out ∈ {0, 1}r
3: Parse in as y1|| . . . ||yr where length(yj) = d
4: out← empty bit sequence
5: for j=1 to r do
6: if yj = {0}d then
7: out← out||0
8: else
9: out← out||1

10: return out

Equation 3 highlights that we have modified the original
fast accumulation proposed by [15] by replacing the hash
function by using a cryptographically secure hash (Siphash)
and a pseudorandom generator. This allows the modified
accumulation to be used for multicast authentication with
bounds discussed in Section IV-A

Algorithm 3 is used by the receiver to verify the authenticity
of the message using the accumulated MAC tag. First, the
receiver parses the packet to separate out the actual message
payload and the tag (line 3). Then Siphash is applied with
the key between sender and receiver (ks,i) and payload to
generate a short tag (line 4). The short tag is extended to
a long random bit sequence using a pseudorandom number
generator (prng) by providing the short tag as the seed (line
5). Finally, a conditional check is done (line 6) to verify that
the authenticity of the message is from the correct sender. This

Algorithm 3 Multicast MAC tag verification at receiver

1: Input: {pkt, ks,i}
2: Output: authenticity of the packet
3: parse pkt as M ||Tg′
4: tag ← siphash(ks,i,M)
5: ltag ← prng(tag)
6: if αr(ltag)⊙ Tg′ is Tg′ then
7: valid pkt

8: else
9: spoofed pkt

is done by doing bitwise AND between αr(tag) and Tg′ and
then comparing it again with Tg′.

A. Security Analysis

There are some group key-based protocols where a sym-
metric key is shared between a group. They pose a security
threat of using the same key across multiple nodes where
there’s more possibility of key being leaked and a malicious
node inside the group to launch attacks. Therefore, we did not
consider lightweight symmetric group key sharing protocols
for multicast authentication.

If we consider a unicast message authentication code, it
should have the property of unforgery to be secure. If the
hash function is proven to be secure, it cannot be forged.
Since our approach uses a cryptographically secure has func-
tion (siphash), we can rely on the same security properties.
Similarly, since prng uses siphash tag as the seed, the l length
tag cannot be forged. Therefore, we can claim that individual
accumulated hashes cannot be forged. We need to show that
the accumulated hash cannot be forged by an adversary. Since
the validation of the authenticity is done through bitwise AND
operation (⊙), an attacker can send a forged accumulated
signature with large number of 0s to increase the probability
of the validation. For example, if the actual accumulated hash
is Tg = 11001000, ai is 11101100, and if adversary used all
zero {0}8 as the forged accumulated hash (Tg′), the tag will
be verified because {0}8 ⊙ ai = {0}8. Therefore, we need to
define an upper bound on number of 0s in Tg depending on
the security requirement (t). On the other hand, we need to
define a lower bound on number of 1s to be on a valid Tg.

Assume that the number of ones in the r-length accumulated
hash is z. We can think of the bit composition of the final
accumulated MAC tag as a binomial distribution associated
with two possible outcomes: (1) a bit being 1 and (2) a bit
being 0. We can define discrete random variable Z as the
number of 1’s in the tag Tg. Then the probability of having
z ones in a r-bit long tag is given by the probability mass
function of a binomial distribution:

Pr(Z = z) =

(
r

z

)
pk(1− p)r−z (4)

We can find the probability p by looking at the accumulation
process. Since the probability of ai,j to be 0 after applying αr

is 2−d, Pr(ai,j = 1) = 1 − 2−d. If we consider one bit of
accumulated MAC tag Tgi that accumulates individual MAC
tags for m destinations:

p = Pr(Tgi = 1) = (1− 2−d)m (5)

By substituting probability p to the equation, we get the
probability mass function as follows:

Pr(Z = z) =
(r
z

)
(1− 2−d)m

(
1− (1− 2−d)m

)r−z
(6)

Equation 6 gives the probability of having exactly z 1’s in
tag Tg. Our goal is to find a lower bound on number of 1’s.
Since, the probability of getting z or more 1’s in bit sequence
of Tg is equal to 1 minus the probability of getting z or fewer
1s (1− Pr(Z ≤ z)).

P (Z > z) = 1−
z∑

i=0

(r
i

)
(1− 2−d)m

(
1− (1− 2−d)m

)r−i
(7)

By examining Equation 7, we can observe that probability
Pr(Z > z) depends on r, d, and m. The discussion in
Section II-A highlights that r depends on security strength
t. For a particular configurations of SoC (NoC size and cache
coherence protocol) of multicast authentication to secure cache
invalidations, we can fix d and m. For example, when using
MESI in a 4 × 4 mesh, the maximum possible m is 8 and d
is 3 [30]. Therefore, the minimum value for z depends on r.

TABLE II: Minimum multicast tag length for increasing
security levels when N = 8.

security
level (t)

Minimum
1s in tag (z)

Minimum
tag length (r)

4 32 128
6 48 196
8 64 262
10 80 330
15 120 500
20 160 672

Now let us focus on the verification of the proposed
authentication scheme in a scenario when Tg′ is a forged MAC
by an adversary. Since the verification now has a lower bound
on number of 1s on Tg′, it cannot have 1s less than min(z).
Let there be z 1s in the final MAC tag. Then the probability
of an arbitrary bit to be 1 on Tg is Pr(Tgj = 1) = z/r. If
we focus on αr calculation of the ith receiver, probability of
ai,j to be 0 after applying αr is 2−d (Pr(ai,j = 0) = 2−d).
If Tg′j ⊙ ai,j ̸= Tg′j , the receiver will detect forged MAC.
For a successful forge, the attacker need to avoid this scenario
for all r bits. The probability of doing so can be written as
follows :

Prforge = 1−
(
2−d × z

r

)r

=
(
1− z

N · r

)r

(8)

For any real number, inequality 1+x ≤ ex holds, therefore,
for x = − z

N×r , we deduce that 1− z
N×r ≤ e−z/Nr. By raising

both sides to the power of r, we obtain:

Siphash 1 Siphash 2 Siphash m

prng 2

prng m

Siphash 2

prng 1

prng m-1Two
parallel prngs

mu + v cycles

v cycles

Fig. 4: Pipelining siphash and two prng for speedup.

Prforge =
(
1− z

N · r

)r

≤ e−z/N (9)

Now for fixed N and security level t we can calculate q
using Equation 9. Then Equation 7 can be used to calculate
respective r values. Table II shows calculated r and z values
for increasing t values for M = 8.

B. Pipelined Multicast Authentication

The discussion from the previous section highlights that
the length of the long tag after applying prng is relatively
high. For example, when N = 8 and t = 10, the value of l
is 652 bits. Generating long bit sequence takes more cycles
than generating MAC using Siphahsh. Therefore, we use two
prngs working simultaneously in pipelined manner as shown
in Figure 4.

Assume that we need u cycles for generating single unicast
MAC and v cycles for generating long MAC where u < v.
When there are m multicast recipients, this approach will
result in total of mu+v+1 cycles in total for generating multi-
cast MAC tag. A non-pipelined approach will take u+mv+1
cycles.

V. EXPERIMENTS

In this section, we first describe the experimental setup.
Next, we present the results and demonstrate the performance
and overhead of our approach.

A. Experimental Setup

We used the gem5 [31] simulator, which is a cycle-
accurate full system simulator to evaluate our approach.
The “GARNET2.0” model was used as on-chip intercon-
nection model [32]. We modified the network interface (NI)
and routers of gem5 source to simulate the XY-tree based
multicast routing. For securing unicast traffic, we model
SipHash-2-4 [22] which produces a 64bit tag. For pseudo-
random number generator in multicast signature, we model
xoroshiro128+ [33]. Then, the proposed countermeasure was
implemented on the NI of the gem5 source. We modified gar-
net synthetic traffic to generate multicast packets for evaluating
our approach on synthetic traffic. Multiple benchmarks from
SPLASH-2 and PARSEC benchmarks were run as applications
to capture performance on actual traffic. The configuration
parameters used in our experiments are outlined in Table III.

TABLE III: gem5 configuration parameters.

Synthetic traffic configuration
Topology 4 x 4 mesh

Packet length unicast : 1 flit and 5 flits
multicat : 1 flit

Multicast ratio 10%
Multicast destination count 4-8 (uniformly random)
No. of nodes 16

Vnets 0: 1 flit multicast, 1: 1 flit unicast
2: 5 flit unicast

Full System Configuration
Cahe Coherence protocol MESI Two Level
Topology 4 x 4 mesh
No. of directories 16
Core frequency 2GHz
Instruction Set Architecture x86
L1 Cache (I & D) 16KB
L2 Cache 256KB

The configurations were carefully chosen considering real
multicast traffic characterization by [30]. For example, in 4x4
mesh, the destinations per multicast message in directory-
based coherence vary between 2 and 8. We compare our
approach (MulAuth) against two scenarios:

• No-MulAuth: NoC without supporting authentication of
multicast packets. Note that unicast authentication uses
Siphash 2-4 algorithm.

• Pub-MulAuth: Since there are no previous efforts of
multicast authentication on NoC, we compare it with tra-
ditional public/private key multicast authentication. Here,
multicast packets are authenticated with private key and
validated with public key.

To evaluate the area overhead of our approach, we synthe-
sized the network interface with proposed multicast authenti-
cation using Synopsys Design Compiler with ASAP7nm [34]
library.

B. Performance Analysis

Figure 5 shows normalized packet latency for increasing
packet injection rates when 10% of the total packets are multi-
cast packets. The packet latencies are normalized against Pub-
MulAuth packet latencies. For MulAuth, we fixed the security
level to be 10 (t = 10). Our lightweight multicast authen-
tication scheme incurs significantly less overhead compared
to public key multicast authentication. For example, at packet
injection rate 0.001 multicast authentication scheme introduces

0.001 0.005 0.01 0.05
Packet Injection Rate

0.0025

0.005

0.01

0.02

0.04

0.1

0.2

0.4

1
Av

er
ag

e
pa

ck
et

 la
te

nc
y

No-MulAuth
MulAuth
Pub-MulAuth

Fig. 5: Comparison of normalized average packet latency
across increasing packet injection rates for synthetic traffic.

performance overhead of 0.7x while traditional public key
multicast results in 15x performance overhead compared to
no authentication on multicast packets. At higher injection
rate of 0.1, our approach incurs relatively high overhead (1.4x
times compared to no authentication) due to buffering of the
multicast authentication process. At the same injection rate
(0.1), traditional public key authentication incurs overhead of
≈ 400x times.

We evaluated our approach across multiple benchmarks
of SPLASH-2 and PARSEC, namely, Blacksholes, Barnes,
Raytrace, and fft. Figure 6 shows normalized average packet
latency across the benchmarks for No-MulAuth, MulAuth,
and Pub-MulAuth scenarios. For MulAuth, we fixed the se-
curity level to be 10 (t = 10). The packet latencies are
normalized against Pub-MulAuth packet latencies. It can be
observed that our proposed scheme behaves similarly across
all benchmarks. When benchmarked against an unprotected
multicast traffic scenario, our method exhibits an average
performance overhead of 0.87x across all benchmarks. In
contrast, traditional public key multicast authentication has a
significantly higher average overhead of 17.3x. Synthetic and
real traffic experimental results highlight that our proposed
approach is suitable when multicast authentication is needed
to secure NoC traffic.

Figure 7 shows average packet latency of synthetic traffic
when we increase security of multicast authentication. When
security level increases, the accumulated MAC tag length
(r) increases according to Table II. This results in increase
of packet latency in two ways: (1) prng need to generate
longer bit-streams will incur more cycles, and (2) increase
in r results in more flits per packet resulting in increase of
NoC traffic congestion. This reconfigurability allows security
designer to trade-off between security and performance of the
system considering both threat model of the adversary and
performance requirement.

C. Overhead Analysis

Our approach shows an area overhead of only 2.2% com-
pared to the baseline network interface with unicast authenti-

Blacksholes Barnes Raytrace fft
Benchmark

0.0025

0.005

0.01

0.02

0.04

0.1

0.2

0.4

1

Av
er

ag
e

pa
ck

et
 la

te
nc

y

No-MulAuth
MulAuth
Pub-MulAuth

Fig. 6: Comparison of normalized average packet latency
across SPLASH-2 and PARSEC benchmarks.

Security level

A
ve

ra
ge

 p
ac

ke
t l

at
en

cy

0

20

40

60

80

4 6 8 10 15 20

Fig. 7: Average packet latency across increasing security levels
for 10% multicast packet percentage.

cation. This is because baseline NoC has a network interface
with logic for siphash and key tables. Our approach only needs
additional logic for xoroshiro128+ prng and fast accumulation
which are both lightweight. Therefore, our approach is ideal
for resource-constrained NoC architectures.

VI. CONCLUSION

Network-on-Chip (NoC) is a widely used solution for com-
munication between IP cores in modern SoCs. The ubiquity
of NoC and its distributed nature across the chip has made it
a focal point of attacks. While there are existing solutions for
protecting unicast traffic, they cannot be used for protecting
multicast traffic. Moreover, traditional multicast authentication
solutions can lead to unacceptable performance overhead. In
this paper, we developed a lightweight multicast authentication
scheme by leveraging state-of-the-art unicast authentication
and accumulation techniques. Our approach is configurable
and provides adequate security. Experimental results demon-
strate the effectiveness of our approach with an acceptable area
and performance overhead.

VII. ACKNOWLEDGMENTS

This work was partially supported by the National Science
Foundation (NSF) grant SaTC-1936040.

REFERENCES

[1] Ampere, “Ampere Altra Max 64-Bit Multi-Core Processor,” https://
amperecomputing.com/processors/ampere-altra/, 2022.

[2] Intel, “Intel® xeon® processor scalable family technical overview,”
https://www.intel.com/content/www/us/en/developer/articles/technical/
xeon-processor-scalable-family-technical-overview.html, 2022.

[3] C. E. Leiserson, N. C. Thompson, J. S. Emer, B. C. Kuszmaul, B. W.
Lampson, D. Sanchez, and T. B. Schardl, “There’s plenty of room at the
top: What will drive computer performance after moore’s law?” Science,
vol. 368, no. 6495, p. eaam9744, 2020.

[4] M. Palesi and M. Daneshtalab, Routing algorithms in networks-on-chip.
Springer, 2014.

[5] A. Karkar, T. Mak, K.-F. Tong, and A. Yakovlev, “A survey of emerging
interconnects for on-chip efficient multicast and broadcast in many-
cores,” IEEE Circuits and Systems Magazine, vol. 16, no. 1, pp. 58–72,
2016.

[6] T. Krishna, L.-S. Peh, B. M. Beckmann, and S. K. Reinhardt, “Towards
the ideal on-chip fabric for 1-to-many and many-to-1 communication,”
in Proceedings of the 44th Annual IEEE/ACM International Symposium
on Microarchitecture, 2011, pp. 71–82.

[7] P. Abad, V. Puente, and J.-A. Gregorio, “Mrr: Enabling fully adaptive
multicast routing for cmp interconnection networks,” in 2009 IEEE 15th
International Symposium on High Performance Computer Architecture.
IEEE, 2009, pp. 355–366.

[8] W. Hu, Z. Lu, A. Jantsch, and H. Liu, “Power-efficient tree-based
multicast support for networks-on-chip,” in 16th Asia and South Pacific
Design Automation Conference (ASP-DAC 2011). IEEE, 2011, pp.
363–368.

[9] F. A. Samman, T. Hollstein, and M. Glesner, “Multicast parallel pipeline
router architecture for network-on-chip,” in Proceedings of the confer-
ence on Design, automation and test in Europe, 2008, pp. 1396–1401.

[10] H. Weerasena and P. Mishra, “Security of electrical, optical and wireless
on-chip interconnects: A survey,” ACM Transactions on Design Automa-
tion of Electronic Systems (TODAES), 2023.

[11] H. K. Kapoor, G. B. Rao, S. Arshi, and G. Trivedi, “A security
framework for noc using authenticated encryption and session keys,”
Circuits, Systems, and Signal Processing, vol. 32, no. 6, pp. 2605–2622,
2013.

[12] K. Sajeesh and H. K. Kapoor, “An authenticated encryption based secu-
rity framework for noc architectures,” in 2011 International Symposium
on Electronic System Design. IEEE, 2011, pp. 134–139.

[13] J. Sepúlveda, A. Zankl, D. Flórez, and G. Sigl, “Towards protected
mpsoc communication for information protection against a malicious
noc,” Procedia computer science, vol. 108, pp. 1103–1112, 2017.

[14] J. Benaloh and M. De Mare, “One-way accumulators: A decentralized
alternative to digital signatures,” in Workshop on the Theory and
Application of Cryptographic Techniques. Springer, 1993, pp. 274–
285.

[15] K. Nyberg, “Fast accumulated hashing,” in International Workshop on
Fast Software Encryption. Springer, 1996, pp. 83–87.

[16] M. K. JYV, A. K. Swain, S. Kumar, S. R. Sahoo, and K. Mahapa-
tra, “Run time mitigation of performance degradation hardware trojan
attacks in network on chip,” in 2018 IEEE Computer Society Annual
Symposium on VLSI (ISVLSI). IEEE, 2018, pp. 738–743.

[17] R. JS, D. M. Ancajas, K. Chakraborty, and S. Roy, “Runtime detection
of a bandwidth denial attack from a rogue network-on-chip,” in Proceed-
ings of the 9th International Symposium on Networks-on-Chip. ACM,
2015, p. 8.

[18] H. Weerasena, S. Charles, and P. Mishra, “Lightweight encryption using
chaffing and winnowing with all-or-nothing transform for network-on-
chip architectures,” in IEEE International Symposium on Hardware
Oriented Security and Trust (HOST), 2021, pp. 170–180.

[19] H. Weerasena and P. Mishra, “Breaking on-chip communica-
tion anonymity using flow correlation attacks,” arXiv preprint
arXiv:2309.15687, 2023.

[20] S. Charles and P. Mishra, “Securing network-on-chip using incremental
cryptography,” in 2020 IEEE Computer Society Annual Symposium on
VLSI (ISVLSI). IEEE, 2020, pp. 168–175.

[21] S. Charles and P. Mishra, “Reconfigurable network-on-chip security
architecture,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 25, no. 6, pp. 1–25, 2020.

[22] J.-P. Aumasson and D. J. Bernstein, “Siphash: a fast short-input prf,” in
International Conference on Cryptology in India. Springer, 2012, pp.
489–508.

[23] R. L. Rivest, A. Shamir, and L. Adleman, “A method for obtaining digital
signatures and public-key cryptosystems,” Communications of the ACM,
vol. 21, no. 2, pp. 120–126, 1978.

[24] D. Boneh, G. Durfee, and M. Franklin, “Lower bounds for multicast
message authentication,” in Advances in Cryptology—EUROCRYPT
2001: International Conference on the Theory and Application of Cryp-
tographic Techniques Innsbruck, Austria, May 6–10, 2001 Proceedings
20. Springer, 2001, pp. 437–452.

[25] A. Perrig, R. Szewczyk, V. Wen, D. Culler, and J. Tygar, “Spins:
Security protocols for sensor networks,” in Proceedings of the 7th annual
international conference on Mobile computing and networking, 2001,
pp. 189–199.

[26] P. Ning, A. Liu, and W. Du, “Mitigating dos attacks against broadcast
authentication in wireless sensor networks,” ACM Transactions on
Sensor Networks (TOSN), vol. 4, no. 1, pp. 1–35, 2008.

[27] Q. Dong, D. Liu, and P. Ning, “Pre-authentication filters: providing
dos resistance for signature-based broadcast authentication in sensor
networks,” in Proceedings of the first ACM conference on Wireless
network security, 2008, pp. 2–12.

[28] X. Yao, X. Han, X. Du, and X. Zhou, “A lightweight multicast
authentication mechanism for small scale iot applications,” IEEE Sensors
Journal, vol. 13, no. 10, pp. 3693–3701, 2013.

[29] M. Kim, S. Kong, B. Hong, L. Xu, W. Shi, and T. Suh, “Evaluating
coherence-exploiting hardware trojan,” in Design, Automation & Test
in Europe Conference & Exhibition (DATE), 2017. IEEE, 2017, pp.
157–162.

[30] S. Abadal, R. Martı́nez, J. Solé-Pareta, E. Alarcón, and A. Cabellos-
Aparicio, “Characterization and modeling of multicast communication
in cache-coherent manycore processors,” Computers & Electrical Engi-
neering, vol. 51, pp. 168–183, 2016.

[31] N. Binkert et al., “The gem5 simulator,” SIGARCH Computer Architec-
ture News, 2011.

[32] N. Agarwal et al., “GARNET: A detailed on-chip network model inside
a full-system simulator,” ISPASS, 2009.

[33] D. Blackman and S. Vigna, “Scrambled linear pseudorandom number
generators,” ACM Transactions on Mathematical Software (TOMS),
vol. 47, no. 4, pp. 1–32, 2021.

[34] L. T. Clark, V. Vashishtha, L. Shifren, A. Gujja, S. Sinha, B. Cline,
C. Ramamurthy, and G. Yeric, “Asap7: A 7-nm finfet predictive process
design kit,” Microelectronics Journal, vol. 53, pp. 105–115, 2016.

https://amperecomputing.com/processors/ampere-altra/
https://amperecomputing.com/processors/ampere-altra/
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html

	Introduction
	Background and Related Work
	Fast One-way Accumulator
	Related Work

	Problem Formulation and Threat Model
	Lightweight Multicast Authentication
	Security Analysis
	Pipelined Multicast Authentication

	Experiments
	Experimental Setup
	Performance Analysis
	Overhead Analysis

	conclusion
	Acknowledgments
	References

