
Vulnerability-aware Dynamic Reconfiguration of
Partially Protected Caches

Yuanwen Huang and Prabhat Mishra
Department of Computer and Information Science and Engineering

University of Florida, Gainesville FL 32611-6120, USA

Abstract—Cache vulnerability is a serious design concern due
to exponential increase in soft errors with technology scaling.
Partially Protected Caches (PPC) is a promising solution to
mitigate vulnerability to soft errors in resource-constrained
embedded systems. However, PPC suffers from both performance
and energy overhead. Dynamic Cache Reconfiguration (DCR) is
widely used in embedded systems to save energy and improve
performance [13]. In this paper, we propose a methodology which
takes advantage of the protected cache to reduce vulnerability,
while utilizes reconfigurability to explore the trade-off between
vulnerability, energy and performance. Experimental results
demonstrate that our proposed method can significantly reduce
both vulnerability (up to 87%) and energy consumption (up to
41%) without affecting the performance.

I. INTRODUCTION

Soft errors, or transient faults induced by radiation, are
becoming a major challenge in embedded systems design.
When a high energy radiation particle strikes the diffusion
region of a CMOS transistor and produces enough charge, it
can flip the logic state of the transistor and cause a soft error.
The cache in embedded microprocessors is most susceptible
to the threat of soft errors [1], [2], [8] for several reasons:
(i) cache occupies the majority of chip area, (ii) cache has
an extremely high density of transistors, and (iii) cache cell
size shrinks as technology scales down, which reduces the
critical charge needed to flip a bit in stored data. A soft error
in the cache corrupts the data, or changes the architectural
state of a processor, which may eventually cause an observable
difference in the behavior of the program and result in a
failure. Consequently, it is very important to protect embedded
caches from soft errors.

Several microarchitectural techniques have been proposed
to reduce the vulnerability of memory data due to soft errors.
Lee et al. [1] proposed the partially protected cache (PPC)
architecture to mitigate cache vulnerability due to soft errors.
The PPC architecture has two caches, one smaller cache that
is protected, and the other unprotected cache which is prone
to soft errors. The intuition behind PPC is that not all data
is equally vulnerable to soft errors. By properly partitioning
the data and mapping vulnerable data into the protected cache,
PPC can significantly reduce the vulnerability or failure rate
due to soft errors [6]. However, PPC is expensive in terms
of energy consumption and performance, compared to the
original architecture with only an unprotected cache.

In this paper, we propose a reconfigurable cache architecture
(as shown in Figure 1) to address the above challenges. While

Fig. 1: A reconfigurable PPC-base architecture with one pro-
tected cache and the other unprotected cache at the same level
of hierarchy.

the protected cache reduces vulnerability, the reconfigurability
of the two (protected and unprotected) caches enables reduc-
tion in both execution time and energy consumption. This
paper makes four important contributions: (i) it presents a
reconfigurable cache architecture to improve performance and
energy efficiency while maintaining PPC’s natural advantage
for vulnerability reduction; (ii) it develops a heuristic algo-
rithm for partitioning data pages between the protected and
unprotected caches; (iii) it proposes synergistic exploration of
cache configurations and data partitioning schemes to trade-
off between vulnerability, energy and performance; (iv) it
proposes a fast exploration technique for selecting Pareto-
optimal cache configurations.

The remainder of the paper is organized as follows. We
discuss related works in Section II. Section III presents the
energy and vulnerability models. Section IV describes the data
partitioning method followed by our vulnerability-aware cache
reconfiguration framework. Section V presents our experimen-
tal results. Finally, Section VI concludes the paper.

II. RELATED WORK

We present related works in two separate categories: par-
tially protected caches and dynamic cache reconfiguration.

A. Partially Protected Caches

The idea of Partially Protected Caches (PPC) initially comes
from horizontally partitioned caches [7], where a processor has
two or more caches at the same level of the memory hierarchy.
Lee et al. [1], [6] extends the idea of horizontally partitioned
caches into the PPC architecture, by assuming that one of
the two caches is protected from soft errors. The protected
cache has redundancy logic like SEC-DED [9] (single-bit
error correction and double-bit error detection), which has
overhead in access time, area and power consumption [10],

[11]. The challenge of using PPC is to properly partition data
into the two caches to ensure that it would not introduce
too much penalty in performance and energy consumption.
However, the existing approaches [1], [6] use PPC only for
the purpose of reducing vulnerability, and their approaches
introduce unacceptable energy overhead.

B. Dynamic Cache Reconfiguration

Dynamic Cache Reconfiguration (DCR) is widely used for
energy and performance optimization in embedded systems
[12], [14]. There are many prior efforts in DCR to explore the
trade-off between energy and performance. Wang et al. [12]
presented a scheduling-aware cache reconfiguration for energy
saving in real-time systems. Cai et al. [15] showed that
different cache sizes could impact performance, energy and re-
liability. Huang et al. [2], [4] proposed a scheduling algorithm
to reduce cache vulnerability using static profiling of a task
set. The reconfigurable cache architecture chooses between
different cache configurations depending on whether the goal
is for energy optimization or vulnerability optimization. More
recent work externed the idea of DCR for cache vulnerability
reduction for multicore systems [3], and with machine learn-
ing [5]. None of these approaches consider PPC architecture.
Our proposed approach combines the advantages of PPC and
DCR through efficient data partitioning and cache exploration
to improve both vulnerability and energy efficiency.

III. ENERGY / VULNERABILITY MODELS

In this section, we introduce the models used to measure
energy consumption and vulnerability of the PPC caches.

Energy Model for the Unprotected Cache: The energy
model for unprotected cache is adopted from the one used in
[12]. The total cache energy consumption is E = Edyn+Esta,
where Edyn and Esta denote the dynamic and static energy
of the cache subsystem. Let Eaccess and Emiss be the energy
consumption for per access and per miss, Psta be the power
consumption for one clock cycle (CC). Specially, we have:

Edyn = Accesses× Eaccess +Misses× Emiss (1)
Emiss = Eoffchip access + Eblock fill (2)
Esta = Psta × CC × tcycle (3)

Energy Model for the Protected Cache: For the ECC
protected cache, the dynamic energy calculation also includes
energy consumption for ECC encode/decode. Similar to [1],
we categorize the cache accesses into read hit, read miss,
write hit, and write miss since each operation results in
different ECC events. For example, the energy consumption
of read hit is the sum of the access energy consumption and
the energy consumption of ECC decoding (d), while the energy
consumption of read miss is the sum of the access energy
consumption, the energy consumption of ECC decoding (d)
as well as the ECC encoding (e).

∆Edyn = RH × d+RM × (d+ e)

+WH × e+WM × (d+ e) (4)

where RH, RM, WH and WM denote the number of read hit,
read miss, write hit and write miss, respectively.

Vulnerability Model: Vulnerability analysis divides the
lifetime of a piece of data into vulnerable and un-vulnerable
intervals. Similar to [2], we measure the vulnerability of cache
on a per-byte basis.

V ulnerability =
∑

all bytes

vulnerable time of bytei

A byte is vulnerable in an interval only if soft errors happen
during the interval to contaminate the data (byte) and the
contaminated data is either used by instructions (program) or
written back to memory. Activities during the lifetime of a
byte includes “idle”, “fill”, “read”, “write” and “evict”. The
vulnerable intervals are of four types: fill-to-read, read-to-read,
write-to-read, and write-to-evict. We measure the vulnerability
of the unprotected cache as the summation of vulnerable
intervals of all bytes in all cache blocks. When we profile
an application to evaluate the vulnerability of each data page,
the vulnerability of that page is the summation of vulnerability
of all data that belongs to that page.

IV. CACHE RECONFIGURATION OF PPC
There are multiple aspects that have impact on a program

executing on a reconfigurable PPC-based architecture. These
aspects include: (1) the data page map which partitions data
pages into the two caches; (2) the configuration of the pro-
tected cache and the configuration of the unprotected cache.
Our goal is to minimize both vulnerability and energy con-
sumption with acceptable or no degradation on performance.
Since different programs have various data access patterns and
cache requirements, we need to make wise design decisions to
take advantage of the protected cache to reduce vulnerability,
while utilize reconfigurability to save energy consumption.

Fig. 2: Our exploration methodology consists of two design
decisions: data partitioning and cache reconfiguration.

Figure 2 outlines our approach to accomplish the goal of
vulnerability and energy optimization without penalizing the
performance. The two important design decisions we have
to make for each program include: (1) data partitioning to
map data pages into the protected and unprotected caches; (2)
cache reconfiguration to select the profitable configurations
for the two caches. We perform these two steps through off-
line (design time) analysis. It is important to note that off-
line exploration is applicable and useful for many embedded
systems because these systems have well-defined applications
(programs) that are known a priori. The remainder of this
section describes data partitioning and cache reconfiguration
in detail.

A. Data Partitioning
The protected cache is very effective in reducing the vul-

nerability. For any data mapped to the protected cache, it
is protected against soft errors. If we map all data into the
protected cache, the vulnerability of the application will be
reduced to zero. However, mapping too much data into the
small protected cache is likely to increase the cache misses and
eventually result in a significant degradation of performance
and increase in energy consumption. We performed a simple
experiment to show the effectiveness of protected cache in
reducing vulnerability, as well as its side-effect on runtime
and energy consumption. Figure 3 illustrate this exploration for
benchmark cjpeg from MediaBench [18]. First, we map all the
data pages (54 pages in total for cjpeg) into the unprotected
cache. Then we sort the pages by vulnerability in decreasing
order. Each time we map a new page (from the top of the
sorted list) into the protected cache if it would reduce the
vulnerability. Figure 3a shows that after mapping 35 pages
into the protected cache, vulnerability is reduced by 55%,
while runtime increases by 10%. The runtime is expected to
increase because the protected cache, which is much smaller in
capacity, will cause a lot of misses when there are many data
pages evicting each other’s data. Figure 3b shows that energy
consumption of unprotected cache decreases as we remove
pages from the unprotected cache. However, the energy con-
sumption of the protected cache will increase drastically when
more data pages are mapped into it. This example suggests that
we cannot afford to blindly map data pages into the protected
cache, which might result in unacceptable performance and
energy penalty.

Algorithm 1: DataPartition
Input: Benchmark, rThresh, page vulnerability profile
Output: PageMap

1 Set PageMap[n] = (0, 0, ..., 0);
2 {runtime, vulnerability} = simulate(PageMap)
3 Set BaseRuntime = runtime;
4 Set BestV ulnerability = vulnerability;
5 Sort the pages by vulnerability in descending order
6 for (i = 0; i < PageMap.size; i+ +) do
7 Set PageMap[i] = 1;
8 {runtime, vulnerability} = simulate(PageMap)
9 if vulnerability < BestV ulnerability then

10 if runtime < BaseRuntime× (1 + rThresh)
then

11 Set BestV ulnerability = vulnerability;
12 else
13 Set PageMap[i] = 0;

14 else
15 Set PageMap[i] = 0;

16 return PageMap

We introduce a greedy approach with a runtime threshold
during data partitioning. For the same example above, if we

set a 5% threshold for runtime, we are allowed to map only
three pages into the protected cache. The runtime threshold
will limit both the performance degradation and the energy
penalty. Algorithm 1 shows our data partitioning approach.
It takes the benchmark and the runtime penalty threshold
(rThresh) as inputs, and produces a data partitioning scheme
PageMap as output. PageMap[i] indicates the cache for the
ithPage: 0 means the unprotected cache, and 1 means the
protected cache. We first map all pages into the unprotected
cache (the base partitioning scheme) by setting PageMap as
all 0’s (line 1). We simulate the benchmark with the base
partitioning scheme, which provides us with BaseRuntime
and a profile of vulnerability of all data pages (line 2-4). After
sorting the pages by vulnerability in descending order (line 5),
we greedily select each page to test whether it is suitable to
be mapped into the protected cache (line 6 to 15). A page
is suitable to be protected if it satisfies two conditions: (i)
it is favorable for vulnerability reduction, and (ii) it would
not cause the program to exceed the runtime threshold. For
the benchmarks used in our experiments, we have up to 259
pages, on average 58 pages. Our algorithm is very efficient
with time complexity of O(p), where p is the total number of
data pages in the benchmark.

B. Cache Reconfiguration

This section describes how to take advantages of both
cache reconfiguration (DCR) and data partitioning (PPC) by
synergistic exploration. In our reconfigurable PPC architecture,
the base cache1 for the unprotected cache is 4096B 1W 32B
(size of 4KB, 1-way associative, and line size of 16-byte),
which can be reconfigured to the size of 1KB, 2KB and 4KB,
associativity of 1-way, 2-way and 4-way, line size of 16-byte,
32-byte and 64-byte. This will lead to 18 valid configurations2

for the unprotected cache. The base configuration for the
protected cache is 512B 1W 32B, which can be reconfigured
to the size of 256B and 512B, associativity of 1-way and 2-
way, and line size of 16-byte and 32-byte. This will lead to 6
valid configurations for the protected cache.

It is crucial to dynamically select partitioning schemes for
different cache configurations. For example, assume that we
have a data partitioning solution for the base configuration
(<512B, 4096B>) for the protected and unprotected caches.
If we use the same data partitioning for another cache config-
uration (<256B, 4096B>), it would likely encounter a lot of
cache misses in the protected cache and result in significant
performance and energy penalty.

The effectiveness of the data partitioning algorithm, de-
scribed in Section IV-A, is influenced by the cache exploration.
First, the data partitioning depends on the configuration of
the unprotected cache, as it requires the vulnerability profile
of data pages. When using a different unprotected cache, the
vulnerability of a data page will change, which will directly
affect its priority (importance in reducing vulnerability) during

1The base cache refers to the cache configuration that is widely used in
the literature for the selected benchmarks.

2It is not equal to 33 since not all combinations are valid [12].

8.4

8.6

8.8

9.0

9.2

9.4

9.6

9.8

0

2

4

6

8

10

12
Runtime Vulnerability

Number of Data Pages

R
un

tim
e

(1
0

 c
yc

le
s)

V
ul

ne
ra

bi
lit

y
(1

0
 b

yt
e

X
 c

yc
le

s)

6 9

5% runtime threshold

(a) Vulnerability and Runtime trade-off

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

Energy (unprotected cache) Energy (protected cache)

Number of Data Pages

E
ne

rg
y

(m
J)

(b) Energy Consumption
Fig. 3: Trade-off between vulnerability, runtime and energy, for benchmark cjpeg. As more pages are mapped into the protected
cache, vulnerability goes down rapidly, while runtime and the total energy consumption increase significantly.

data partitioning. Similarly, the data partitioning is a greedy
algorithm and is constrained by the configuration of the pro-
tected cache. We propose a synergistic exploration of different
cache configurations with various partitioning of data pages.

Algorithm 2: CacheReconfiguration
Input: Benchmark, rThresh
Output: Protected and unprotected cache configs

1 for cache size su of 1024B, 2048B, 4096B do
2 for associativity au of 1, 2, 4 ways do
3 for line size lu of 16B, 32B, 64B do
4 UnproConfig = (su, au, lu)
5 Generate vulnerability profile
6 for cache size sp of 256B, 512B do
7 for associativity ap of 1, 2 ways do
8 for line size lp of 16B, 32B do
9 ProConfig = (sp, ap, lp)

// Call Algorithm 1
10 DataPartition(rThresh)

11 Collect (runtime, vulnerability, energy) for all configs.
12 Choose the best configs based on system goal.
13 return (UnproConfig, ProConfig, PageMap)

Algorithm 2 shows our approach of dynamic data partition-
ing during the process of cache exploration. We explore the
cache size, way associativity, and line size of the unprotected
cache in line 1-3. For each unprotected cache configuration,
it is necessary to re-evaluate the vulnerability of all pages
based on the current configuration of the unprotected cache
(line 4-5). Next, we explore the configurations of the protected
cache and call Algorithm 1 to get the best data partitioning
for the selected pair of cache configurations (line 6-10). The
complexity of the algorithm is O(n1×n2× p), where n1 and
n2 are the number of configurations for the unprotected and
protected caches, respectively, and p is the number of data
pages in the benchmark.

C. Fast Exploration of Caches

One major drawback of the exhaustive approach outlined
in the previous section is the long exploration time. The total
time for exhaustive exploration is (C × n1 × n2 × p). For the
largest benchmark epic with p=258 pages, the time needed
for one simulation is C=22 seconds, so the total time is
(22×18×6×258) seconds, which is about 7 days. In order to
improve the scalability of our reconfiguration framework, we
propose a fast and effective exploration heuristics that would
explore fewer cache configurations without compromising the
quality of optimization objectives.

By examing the results generated by exhaustive exploration,
we find that some very unprofitable cache configurations are
also explored. We have 18 configurations for the unprotected
cache and 6 configurations for the protected one. Both caches
(protected and unprotected) have influence on the overall
vulnerability and energy consumption. If one configuration
for the protected (or unprotected) cache is very bad, it may
not be useful to explore the unprotected (or protected) cache
at all. We can explore the two caches independently and
pick out the Pareto-optimal tradeoff points. Candidates with
both vulnerability and energy consumption worse than the
Pareto-optimal ones are eliminated during the exploration.
Our proposed Fast Exploration of Caches (FEC) heuristic is
summarized below:

1) Hold the protected cache as the base configuration.
Tune the unprotected cache and record all its Pareto-
optimal configurations. Let Pu denote the set of recorded
configurations for the unprotected cache.

2) Hold the unprotected cache as the base configuration.
Tune the protected cache and record all its Pareto-
optimal configurations. Let Pp denote the set of recorded
configurations for the protected cache.

3) Explore all the combinations from each set of Pareto-
optimal configurations from the previous two steps,
and find the best combination for the protected and
unprotected caches.

In the last step, we choose the primary optimization ob-
jective as the energy-aware vulnerability-minimization explo-
ration in our experiments. In other words, our exploration finds

the best cache configurations with lowest vulnerability while
the energy consumption is equal or better than two (protected
and unprotected) fixed base caches (no DCR capability).

The first two steps explore 24 (=18+6) candidates while the
last step explores |Pu|∗|Pp| candidates. The number of Pareto-
optimal points varies for different applications but normally
around 2 to 6. In our experiments, the total number of explored
cache configurations is 35 on average for the above heuristic
approach. The total exploration time for one benchmark will
be reduced to C × n′ × p, where n′ = 35 on average. The
number of cache configurations is reduced from 108(=18*6)
to 35, which results in about 3X speed-up. Our experiments
show that our fast exploration approach can find the best cache
combination without compromising the quality of optimization
objectives.

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0
(a) Vulnerability

256B_1W_16B 256B_1W_32B
512B_1W_16B 512B_1W_32B
512B_2W_16B 512B_2W_32B

V
ul

ne
ra

bi
lit

y
(1

0
 b

yt
e

X
 c

yc
le

s)

0

1

2

3

4

5

6
(c) Energy

Unprotected Cache Configurations

E
n

e
rg

y
co

n
su

m
p

tio
n

 (
m

J)

8.5

9.0

9.5

10.0

10.5

11.0
(b) Runtime

R
un

tim
e

(1
0

 c
yc

le
s)

9
6

(Protected cache configs)

Fig. 4: Exploration of all cache configurations for benchmark
cjpeg, with rThresh = 5%.

V. EXPERIMENTS

Our framework used the sim-outorder simulator from the
SimpleScalar toolset [16]. The protected cache has an ECC-
based technique, while the unprotected cache has no protection
against soft errors. We assume that the protected cache is
optimized to have the same access time as the unprotected one.
Both caches are reconfigurable, and the reconfigurable cache
model is described in Section III. The ten benchmarks that are
used in our experiments are from the MediaBench [18] and

MiBench [19], which are representative of embedded system
applications. The energy model and vulnerability model are
detailed in Section III. The energy consumption for cache
accesses is estimated using CACTI 4.2 [17] with a 0.18 µm
technology. We implemented the vulnerability calculation in
the simulator for the unprotected cache.

A. Synergistic Exploration
In this subsection, we explore the interesting trade-off be-

tween vulnerability, runtime, and energy consumption.Figure 4
shows the exhaustive exploration on 18*6 cache configurations
for benchmark cjpeg, with runtime penalty threshold to be 5%.

Figure 4(a) highlights two interesting observations about
vulnerability, which are also observed for other benchmarks.
(1) Vulnerability is dominated by the unprotected cache. For
different protected caches with same unprotected cache, the
vulnerability is almost the same. This is as expected, since vul-
nerability only comes from data maintained in the unprotected
cache. (2) The vulnerability of the first nine unprotected cache
configurations (of size 1024B and 2048B) is smaller than that
of the last nine configurations (of size 4096B). This is due to
the fact that a large unprotected cache can retain more data
and the data usually stay in the cache for longer time because
of lower miss rates, compared with a small unprotected cache.

Figure 4(b) shows the runtime of cjpeg. For this benchmark,
the upper two curves (protected cache of a small size of
256B) have very bad runtime, compared with the other four
configurations of size 512B. This is because cjpeg is a data-
intensive benchmark, and the most vulnerable pages happen
to be the most frequently accessed pages. A small size (256B)
cache can protect data from vulnerability while incurring a lot
of misses and causing performance degradation. Figure 4(c)
shows the energy consumption of cjpeg. For this benchmark,
the curve for the protected cache (256B 1W 32B) has much
worse energy consumption than others, and this is also related
to its long runtime. For a fixed protected cache, the energy
consumption fluctuates because of different configurations of
the unprotected cache.

TABLE I: Vulnerability reduction compared to DCR [2]

Benchmark DCR [2] Our Approach Improvement
fft 2.55E+10 1.19E+09 95.3%
cjpeg 1.01E+10 3.78E+09 62.6%
djpeg 1.95E+09 1.68E+09 13.6%
pegwit 2.26E+09 2.46E+08 89.1%
rijndael 6.78E+10 6.78E+10 0.0%
stringsearch 2.02E+09 6.70E+08 66.8%
untoast 2.46E+10 1.53E+09 93.8%
epic 6.44E+09 4.30E+09 33.2%
ospf 2.42E+09 2.89E+08 88.0%
susan 9.82E+09 6.36E+09 35.2%
Average - - 57.8%

B. Comparison with Previous Works
In this subsection, we compare our results with [2] and [6]

to demonstrate the effectiveness of our approach.

(1) Comparison of our approach with DCR [2]:

The approach in [2] proposed to use dynamic cache recon-

TABLE II: Comprison of our DCR+PPC approach with PPC [6]

Benchmark Vulnerability (109byte× cycles) Energy (mJ) Runtime (106cycles)
PPC [6] Our Approach Improvement PPC [6] Our Approach Improvement PPC [6] Our Approach Improvement

fft 3.50 1.19 66.1% 10.1 5.98 40.5% 59.9 58.3 2.7%
cjpeg 6.33 3.78 40.3% 2.14 2.08 2.7% 9.22 9.54 -3.4%
djpeg 3.36 1.68 49.9% 0.34 0.32 6.8% 2.63 2.69 -2.1%
pegwit 0.86 0.25 71.3% 4.42 4.30 2.6% 17.5 17.6 -0.7%
rijndael 80.1 67.8 15.4% 3.84 3.20 16.7% 46.3 46.3 0.0%
stringsearch 2.92 0.67 77.1% 0.66 0.62 5.2% 6.81 6.69 1.9%
untoast 1.61 1.53 5.0% 2.60 2.45 5.6% 29.5 29.3 0.9%
epic 33.4 4.30 87.1% 4.80 3.84 19.9% 36.2 37.5 -3.6%
ospf 0.76 0.29 62.1% 1.54 1.20 22.1% 5.19 5.06 2.5%
susan 15.4 6.36 58.7% 1.05 1.03 1.8% 15.8 15.2 3.5%
Average - - 53.3% - - 12.4% - - 0.2%

figuration (DCR without PPC) to reduce vulnerability. Table I
compares our DCR+PPC approach with them. The results
for DCR [2] are from the EAVO approach in [2], which
uses only one reconfigurable cache. Our approach can reduce
vulnerability by up to 95.3%, on average 57.8%, for the ten
benchmarks. For rijndael, our vulnerability number is the
same as [2]. This is because our DCR+PPC configuration is
the same as DCR, which means we map all the data into
the unprotected cache while the protected one is not used
at all. The reason is that rijndael has only 17 data pages
(the smallest among all benchmarks), and mapping any of the
data pages into the protected cache resulted in exceeding the
performance threshold. Our approach is able to provide drastic
improvement in vulnerability compared to [2], because we take
advantage of PPC’s ability to reduce vulnerability.

(2) Comparison of our approach with PPC [6]:

Table II shows the detailed results. The first column indi-
cates the benchmark. The second, fifth and eighth columns
provide the vulnerability, energy and execution time, respec-
tively, for the base configuration with PPC [6]. The third, sixth
and ninth columns provide vulnerability, energy and execu-
tion time, respectively, using our approach (DCR+PPC). The
fourth, seventh and tenth columns indicate the improvement
produced by our approach compared to [6]. A positive num-
ber implies improvement whereas a negative number means
overhead (penalty). Table II shows that our approach can pro-
vide significant reduction (53.3% on average) in vulnerability,
modest reduction (12.4% on average) in energy, and minor
performance improvement (0.2% on average).

Anthor interesting obsevation is that we have very minor (at
most 3.6%) performance penalty. Although we set the runtime
threshold to be 5% in our data partitioning algorithm, all
benchmarks have far better performance than the threshold. In
fact, many of them even have performance improvement. The
is due to the fact that although PPC has the potential to cause
performance degradation, DCR can find the suitable cache
configurations to hide the performance penalty. This further
demonstrates the effectiveness of our DCR+PPC approach.

VI. CONCLUSION

Designing reliable embedded systems needs to consider
cache vulnerability due to soft errors. Partially protected
caches (PPC) provide an effective mechanism to reduce cache

vulnerability. However, it may introduce unacceptable energy
and performance overhead. In this paper, we presented a
reconfigurable cache architecture to combine the advantages
of PPC (vulnerability reduction) and cache reconfiguration
(energy and performance improvement). Synergistic integra-
tion of cache reconfiguration and data partitioning improved
both vulnerability and energy efficiency. Our vulnerability-
aware energy minimization approach can significantly reduce
vulnerability (up to 87.1% and on average 53.3%) as well as
energy (up to 40.5% and on average 12.4%) without affecting
the performance.

REFERENCES

[1] K. Lee et al. Mitigating soft error failures for multimedia applications by
selective data protection. CASES, 2006.

[2] Y. Huang and P. Mishra. Reliability and Energy-aware Cache Reconfig-
uration for Embedded Systems. ISQED, 2016.

[3] Y. Huang and P. Mishra. ”Vulnerability-aware Energy Optimization using
Reconfigurable Caches in Multicore Systems,” ICCD, 2017.

[4] Y. Huang and P. Mishra. ”Vulnerability-aware Energy Optimization for
Reconfigurable Caches in Multitasking Systems,” TCAD, 2018.

[5] A. Ahmed, Y. Huang and P. Mishra. ”Cache Reconfiguration using
Machine Learning for Vulnerability-aware Energy Optimization,” TECS,
2019.

[6] K. Lee et al. Partitioning Techniques for Partially Protected Caches in
Resource-Constrained Embedded Systems. TODAES, 2010.

[7] A. Shrivastava et. al. Compilation techniques for energy reduction in
horizontally partitioned cache architectures. CASES, 2005.

[8] M. M. Sabry et al. OCEAN: An Optimized HW/SW Reliability Mitigation
Approach for Scratchpad Memories in Real-Time SoCs. TECS, 2014.

[9] N. N. Sadler and D. J. Sorin. Choosing an Error Protection Scheme for
a Microprocessor’s L1 Data Cache. ICCD, 2006.

[10] J.-F. Li and Y.-J. Huang. An Error Detection and Correction Scheme for
RAMs with Partial-Write Function. MTDT, 2005.

[11] Doe Hyun Yoon and Mattan Erez. Memory mapped ECC: low-cost error
protection for last level caches. SIGARCH Comput. Archit., 2009.

[12] W. Wang et al. Dynamic Cache Reconfiguration for Soft Real-Time
Systems. TECS, 2012.

[13] W. Wang et al. Dynamic Reconfiguration in Real-Time Systems -
Energy, Performance, Reliability and Thermal Perspectives. Springer,
2012.

[14] P. Hsu and T. Hwang. Thread-criticality aware dynamic cache reconfig-
uration in multi-core system. ICCAD, 2013.

[15] Y. Cai et al. Cache size selection for performance, energy and reliability
of time-constrained systems. ASP-DAC, 2006.

[16] T. Austin et al. SimpleScalar: An Infrastructure for Computer System
Modeling. Computer, 2002.

[17] T. David et al. CACTI 4.0. Technical Report HPL-2006-86, HP Labo-
ratories Palo Alto, 2006.

[18] Lee, Chunho et al. MediaBench: a tool for evaluating and synthesizing
multimedia and communicatons systems. IEEE Computer Society, 1997.

[19] Guthaus, Matthew R., et al. MiBench: A free, commercially represen-
tative embedded benchmark suite. WWC, 2001.

